
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/10175469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Reducing DRAM Row Activations with Eager Writeback

by

Myeongjae Jeon

This thesis describes and evaluates a new approach to optimizing DRAM performance

and energy consumption that is based on eagerly writing dirty cache lines to DRAM. Under

this approach, dirty cache lines that have not been recentlyaccessed are eagerly written to

DRAM when the corresponding row has been activated by an ordinary access, such as

a read. This approach enables clustering of reads and writesthat target the same row,

resulting in a significant reduction in row activations. Specifically, for 29 applications, it

reduces the number of DRAM row activations by an average of 38%and a maximum of

81%. The results from a full system simulator show that for the 29 applications, 11 have

performance improvements between 10% and 20%, and 9 have improvements in excess of

20%. Furthermore, 10 consume between 10% and 20% less DRAM energy, and 10 have

energy consumption reductions in excess of 20%.

iii

Acknowledgments

I would like to first thank my advisors, Prof. Scott Rixner and Prof. Alan L. Cox,

for their guidance and support on my research. Their suggestions and directions over the

past year have had a major influence on all aspects of my research and helped me develop

professionalism. I would also like to thank Prof. Peter Varman for his helpful advice

and valuable comments on this thesis. Additionally, I am grateful to Conglong Li for his

contribution to this project with several discussions and suggestions on the design.

I would like to thank our group members including Kaushik Kumar Ram, Thomas

Barr, Brent Stephens, and Mehul Chadha for their feedback and advice at the practice

talk. Also, I am grateful to my friends in CS including Xu Liu, Shams Imam, Dragos

Dumitru Sbirlea, and Wei-Cheng Xiao for helping me prepare a successful defense. Prof.

Jan Hewitt, throughout ENGI 600 class, helped shape this thesis. Finally, I would like to

thank my parents for their unwavering support throughout the years of my study.

Contents

Abstract ii

List of Illustrations vi

List of Tables viii

1 Introduction 1

1.1 Introduction . 1

1.2 Contributions . 3

1.3 Organization . 5

2 DRAM Data Access 6

2.1 Energy and Delay . 6

2.2 Timing Constraints . 9

3 Related Work 12

3.1 Eager Writeback Schemes . 12

3.2 DRAM Access Clustering . 14

3.3 Hardware Approaches to DRAM Energy Savings 15

3.4 Software Approaches to DRAM Energy Savings 17

4 Workload Analysis 19

4.1 Effects of Cache Line Writebacks .20

4.1.1 Frequency of DRAM Writes . 20

4.1.2 Frequency of Row Activations . 20

4.2 Effects of Row Activations .21

4.3 Conclusions . 23

v

5 DRAM Energy and Performance Optimizations 26

5.1 Background: Eager Writeback . 26

5.2 Row Activation Reduction . 27

5.2.1 Illustrative Example . 28

5.3 Architecture Design .30

5.3.1 Cache/Memory System Coordination 33

5.4 Memory Access Scheduling . 35

5.5 Conclusions . 39

6 Evaluation 40

6.1 Full-System Simulator .40

6.2 Applications . 42

6.3 Simulation Results . 42

6.3.1 Comparison to The Baseline . 43

6.3.2 Varying the Number of Cache Lines Written Back 46

6.3.3 Evaluation with SWAS and Cancellation Disabled 49

6.3.4 XOR-based Address Mapping . 50

6.3.5 Overhead . 53

6.4 Conclusions . 55

7 Conclusions 59

7.1 Future work . 60

Bibliography 62

Illustrations

2.1 Modern DRAM Structure [1]. Row address is issued by row activate or

precharge command, and column address is issued by read or write

command. 7

2.2 Row Activation Timing. 10

4.1 Read/Write Operations per Activated Row.libquantum Read (19.13),

libquantum Write (14.91),libquantum No Write (48.89), andlbm No

Write (29.72) are cut off due to the space. 22

5.1 Reshaped Memory Access Pattern with Eager Writeback. 29

5.2 A coordinated Cache/Memory System. 34

5.3 Scheduling Eager Writeback Operations. See Figure 5.1 for request type

and latency information. 37

6.1 Performance Improvement and Energy Savings for 29 Applications

(Normalized to The Results of No Eager WB). The larger number means

the more optimized. 45

6.2 Performance Improvement with Different Cache Lines for aEager WB

(denoted as Eager WB-N for using N LRU-side lines for a speculative

writeback issue). 47

6.3 Energy Savings with Different Cache Lines for a Eager WB (denoted as

Eager WB-N for using N LRU-side lines for a speculative writeback issue). 48

6.4 Comparison of Performance Improvement with Results Observed With

SWAS and Cancellation disabled. 50

vii

6.5 Comparison of Energy Savings with Results Observed With SWAS and

Cancellation disabled. 51

6.6 Comparison of Performance Improvement with XOR-Based Memory

Mapping (XOR) and with Eager WB on XOR (Eager WB-XOR) 52

6.7 Comparison of Energy Savings with XOR-Based Memory Mapping

(XOR) and with Eager WB on XOR (Eager WB-XOR) 53

6.8 Decomposition of DRAM Accesses by Access Type. No Eager WB,

Eager WB-1, and Eager WB-2 correspond to the three stacked bars (in

order from left to right) for each application. The fractions in all of the

values are relative to the total number of DRAM accesses in No Eager WB. 54

Tables

2.1 Micron DDR3-1600 Delay and Energy Costs [2]. 8

4.1 Decomposition of DRAM Accesses, DRAM Activations, and Row Buffer

Hit Count by Access Type. SPEC applications are sorted in decreasing

order of WR in DRAM Accesses. 25

5.1 Fraction of Writes to Dirty Cache Lines with Respect to the LRU-MRU

Position. 32

6.1 Processor and DRAM System Parameters. 41

6.2 Decomposition of Row Activations. The SPEC applicationsare presented

in the same order as in Table 4.1, which is based on the fraction of DRAM

accesses that are writes. 57

6.3 Average Row Buffer Hit Count for No Eager and Eager WB. The

Improved indicates the the number that the results in Eager WBare

normalized to the results in No Eager WB. 58

1

CHAPTER 1

Introduction

1.1 Introduction

DRAM has become as a performance bottleneck in many computingsystems because its

speed, pin count, and pin bandwidth have all increased very slowly [3, 4]. DRAM per-

formance becomes an even more critical issue in modern systems with the widespread

use of data-centric applications. These applications, including scientific applications and

databases, have much larger memory footprints than ever before and thus dramatically in-

crease the demand for memory bandwidth. Since the bandwidthprovided by DRAM is a

very limited resource and is not scalable, it is often under extremely heavy contention that

degrades overall system performance considerably.

The performance is not all that matters in the design of DRAM systems. DRAM has

become one of the largest energy consumers in modern server systems. Therefore, the

DRAM power budget is now comparable to or even exceeds the CPU power budget. It has

been shown that DRAM in a commercial server consumes 25–45% oftotal system-wide

power [5, 6, 7]. For example, DRAM in Google’s datacenters spends up to 30% of the total

system power, which is similar in amount to CPU power consumption, which is 33% of

the total [6]. In a next-generation high-end POWER7 server, power consumed in DRAM

system is expected to grow up to 46% of the total [7]. This is the largest portion in the

2

breakdown of system power with respect to system components, such as processors and

DRAM. With this trend, DRAM energy efficiency has emerged as thefirst-order design

constraint of the server design.

In designing energy efficient DRAM, the dynamic power consumption has become a

much more important concern than the static power consumption. DRAM dynamic power

consumption grows proportionally to dynamic activities experienced in DRAM, such as

the rate of DRAM accesses, while DRAM static power consumptionis solely determined

by its capacity. Therefore, the amount of DRAM power varies depending on its dynamic

activities. For example, Micron DDR3-1600 1GB DRAM with no access consumes 1.6

watts of power, but under the maximum access rate it can consume up to 15.17 watts [8].

Managing the dynamic power becomes a greater issue because DRAM access rate has

rapidly been increasing with the popular use of data-centric applications.

To optimize DRAM performance and dynamic energy consumption, the primary focus

should be placed on improving the row-level locality of access and reducing the number of

row activations. Every DRAM operation requires a chunk of data to access (calleda row)

to be placed in DRAM buffer area (calledrow buffer) before the read/write access is sched-

uled. This process,row activation, is recognized as the most expensive DRAM operation

in terms of energy and delay. The row buffer (or a row) is typically 4–16KB in size, and

so it stores 64–256 adjacent cache lines at a time. Thus, if the DRAM system performs as

many read and write accesses per activated row as possible, then row activations are cor-

respondingly reduced. Rows otherwise would be activated so frequently that energy and

delay are significantly wasted.

In modern systems, there are typically only 1–3 cache line accesses per row activation.

This thesis analyzes DRAM activities and shows that cache line writebacks are the root

cause of the lack of row utilization. Specifically, since last level caches evict dirty cache

3

lines without taking the locality of data written back to DRAMinto account, 1) writebacks

often require row activations, and 2) they often cause future read accesses to re-activate

rows that would have already been in the row buffer if the writeback has not occurred. This

thesis addresses these two problems by placing an emphasis on the achieved row locality

in DRAM when performing line writebacks.

Recent efforts have been made to optimize these DRAM inefficiencies by clustering

cache line writebacks that target the same row [9, 10]. Theseapproaches have been suc-

cessful at maximizing the number of write accesses when a rowis activated for a writeback

operation. However, these approaches still have cache linewritebacks that exhibit no local-

ity of access with the surrounding DRAM read operations. Therefore, the aforementioned

problems are never eliminated entirely. To eliminate the problems entirely, the best way is

to cluster writebacks with both read and writes that all target to the same row. This clus-

tering can maximize overall energy savings and performancebecause of the overall high

number of DRAM accesses per row activation.

1.2 Contributions

In this thesis, we first present analysis results that show how applications exercise the mem-

ory system in practice. We delved into how activated rows areaccessed for each access

type, i.e. cache line read or writeback, and found that writebacks are aproblem. Specifi-

cally, we found that rows are activated by writebacks too frequently and that these write-

backs are a main reason that makes the activated rows insufficiently accessed. Applications

may exhibit good data access locality that would result in much reuse in the row buffer

by reads. However, writebacks often interfere with that locality, reducing the number of

accesses per row activation. Eliminating this interference is a key to decreasing the number

of row activations in DRAM.

4

Second, we present a technique for dealing with problems observed in the analysis. We

propose a novel scheme that significantly reduces the numberof row activations through

clustering of read and write accesses that target the same row. The proposed scheme con-

tributes to addressing inefficiencies existing in the current memory system. Specifically, it

transforms destructive and expensive writebacks that accompany DRAM row activations

into very efficient ones that require no such row activations. Moreover, it enables data

access locality exhibited in an application to be kept in therow buffer, without being in-

terfered with by writebacks. As a result, the proposed scheme can significantly optimize

DRAM performance and energy consumption.

There have been attempts to cluster a specific type of memory accesses,e.g. writeback,

for improving the low-level locality of access. However, there have been no attempts to

cluster read and write accesses to the same row. This clustering of reads and writes has

several advantages. First, in most cases, it enables DRAM writes to be effectively related

with DRAM reads in terms of hits on the row buffer. Second, evenapplications that do not

show enough data access locality can benefit from it. Finally, it can offer better scalability

in supporting multi-core systems by activating rows much less frequently, thereby reducing

competition for the row buffer.

Last, this thesis explores the design space of the eager writeback scheme that is used

to improve the row-level locality of access. The scheme can be aggressive by processing a

burst of eager writebacks without being stopped, or can be conservative by clearing away

those writebacks from the memory controller when an ordinary, non-eager access appears.

Also, it can be aggressive by eagerly writing back all dirty cache lines of a row, or can be

conservative by writing back only a part of them. We explore these configurations for the

scheme and present the trade-offs involved with energy consumption and performance for

each configuration.

5

1.3 Organization

This thesis is organized as follows. Chapter 2 provides relevant background on DRAM ac-

cess characteristics in terms of performance and energy. Chapter 3 discusses related work.

Chapter 4 explains analysis results that motivate our eager writeback scheme. Chapter 5

describes the design of the scheme. Chapter 6 presents experimental results under a variety

of different configurations. Finally, we summarize this thesis and present future work in

Chapter 7.

6

CHAPTER 2

DRAM Data Access

Modern DRAM devices are organized into banks, rows, and columns, as shown in Fig-

ure 2.1. This structure leads to non-uniform energy and latency of access [11]. Therefore,

the memory controller must carefully schedule memory accesses in order to minimize en-

ergy consumption and access latency. This chapter explainsDRAM access characteristics

in detail and highlights the importance of intelligently managing row activations to build

high-performance and energy-efficient systems.

2.1 Energy and Delay

As Figure 2.1 shows, a DRAM device is itself partitioned into 4–16 banks. Each bank can

process memory requests independently of other banks. The memory controller utilizes

this bank-level parallelism to maximize DRAM bandwidth by overlapping the processing

of memory requests across different banks. However, memorycells within a bank cannot

be accessed directly. Instead, data may only be read or written from therow buffer. Each

bank has a dedicated row buffer that can hold one row from the bank at a time. A row is

transferred from the memory array to the row buffer by arow activate command. After

an arbitrary number of read and write commands which transfer columns within the row

buffer, theprecharge command restores the row back to the memory array and prepares the

bank for another row activation.

7

Bank N (3-15)

...

Bank 1

Data

Row address

Column decoder

R
o

w
 d

e
co

d
e

r

Column address

Row buffer

Bank 0

..
.

...

data array

Figure 2.1 : Modern DRAM Structure [1]. Row address is issued byrow activate or
precharge command, and column address is issued by read or write command.

Multiple DRAM devices are tied together across a rank to create a wider data interface.

Within a rank, the address lines are tied together to create the illusion of a single, wider

DRAM. This leads to rows of 4–16KB across the rank. A modern DIMM consists of 1–4

ranks of DRAM devices.

Modern DRAM timing is quite complex and there are many constraints placed upon

when DRAM commands (precharge, activate, read/write) can beissued. These constraints

ensure both that data can traverse the long internal wires ofthe DRAM device and that the

power dissipation does not exceed the limits of the device.

The precharge and activate commands are far more expensive,both in terms of energy

and delay, than the read and write operations to a column within the row buffer. Intuitively,

this makes sense, as the column operations simply read a few bytes out of a buffer, whereas

the precharge and activate commands must drive thousands oflong wires across an entire

8

Operation
Latency Energy

Cycles ns nJ

Precharge 10 12.5
3.90

Activate 10 12.5

Column read 14 17.5 1.44

Column write 12 15.0 1.44

Table 2.1 : Micron DDR3-1600 Delay and Energy Costs [2].

DRAM bank.

To illustrate the delay and energy costs of a modern DRAM, Table 2.1 shows the tim-

ing and energy costs of the various DRAM operations for a Micron DDR3-1600 1 Gb 8-bit

wide DRAM device [2]. Recall that before performing a column operation, the appropriate

bank must first be precharged and then the appropriate row within that bank must be acti-

vated in order to transfer it to the row buffer. So, to read a single burst of data (64 bits in

this example) would take10+10+14 = 34 memory cycles, or 42.5ns. Note that the read

access occupies the data bus for only the last four of the 14 cycles. Once a row has been

activated, however, read operations can be pipelined, yielding 64 data bits every 4 memory

cycles (due to the 8-bit wide double data rate bus). As such DRAM devices are aggregated

into a rank, as discussed above, each read would occur simultaneously across 8 DRAM

devices to yield a 64-byte cache line for each read operation. This clearly illustrates that

there is an enormous advantage to reading multiple cache lines per row, to achieve the peak

bandwidth of the DRAM of one cache line every 4 cycles, insteadof one cache line every

34 cycles.

Write operations are similarly expensive, with a potential 32 memory cycle delay. They

9

also can be pipelined with each other at a rate of one burst every 4 memory cycles. How-

ever, read and write operations cannot be easily interleaved. When transitioning from read-

ing to writing, there is a two cycle delay in the Micron DRAM to allow the bus drivers to

turn around. The situation is worse when transitioning fromwriting to reading, as the logic

for dealing with the row buffer requires these operations tobe isolated. This leads to a 20

memory cycle delay from the completion of a write to the completion of the read (6 empty

memory cycles plus the full 14 cycle latency of a column read).

While these latencies are all quite high, in practice the fulllatencies can be partially

hidden for two reasons. First, precharge operations can be overlapped with read operations

so that you can precharge the bank as the last column read is proceeding. Second, precharge

and activate operations can occur in parallel to other bankswhile the row buffer from one

bank is being read or written. However, due to power considerations, there are limits to the

amount of bank parallelism that can be exploited.

2.2 Timing Constraints

As Table 2.1 shows, the combination of a precharge and an activate command for a bank

consumes 3.9nJ . Not only is this more than twice the energy of a read or write access,

these row operations can occur in parallel for multiple banks. If there were no limitations,

all eight banks within a DRAM could be activated simultaneously, which would result in

instantaneous power dissipation of 1.25 W per DRAM device, without even transferring

any data across the pins of the device. In a memory system with8 DIMMs, each with 8

DRAM devices, that would consume 80 W.

To limit the power dissipation of the DRAM, modern devices limit the rate at which

row activations can occur. The three key DRAM timing constraints that help limit power

consumption are the row cycle time (tRC), the activate to activate delay (tRRD), and the

10

tFAW = 24 cycles

Time (Cycles)

tRRD = 5 cycles

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

tRC = 38 cycles

Activate Column Read

Column Read

Column Read

Column Read

Column Read

Precharge Column Read

Activate

Activate

Activate

Activate

Activate

4 cycles/interval

Figure 2.2 : Row Activation Timing.

four-bank activation window (tFAW). Figure 2.2 illustrates these timing constraints. The

row cycle time is the minimum time interval between successive row activations in the

same bank. The activate to activate delay is the minimum timeinterval between successive

row activations to different banks in the same rank. The four-bank activation window is

a time window in which no more than four row activations are allowed in the same rank.

These timing constraints all prevent activations from occurring too frequently, but they also

limit bandwidth utilization if there are few reads/writes to the activated row.

For the Micron device,tRC is 38 memory cycles,tFAW is 24 memory cycles, andtRRD

is 5 memory cycles. Under these constraints, it would take 24memory cycles to issue five

consecutive activation commands to different banks, as shown in Figure 2.2. If the first

activation is issued on memory cycle 0, the subsequent four activations would be issued on

cycles 5, 10, 15, and 24. The first four activations are limited only by tRRD, whereas the

last one is limited bytFAW . Furthermore, another row activation (after precharging)could

not be issued to the first bank until cycle 38 because oftRC . These constraints make it even

more critical to perform multiple column accesses per row activation, as they further delay

11

row activations in a busy memory system.

Due to the latency, energy, and timing constraints of row activations, it is important

to activate rows judiciously and to perform as many read and write accesses per activated

row as possible. In order to mitigate the cost of row activation, there have been several

proposals to either reduce the row size of the DRAM [12, 13, 14,15] or to improve the

locality of access within a row [16].

12

CHAPTER 3

Related Work

The technique for read and write clustering presented in this thesis is built upon eager

writeback. Eager writeback was recently used to find more writebacks that can cause row

hits [9, 10]. In our work, writebacks are clustered with bothreads and writes to maxi-

mize row hit operations. Classic DRAM access clustering techniques can alleviate row

buffer conflicts by grouping some accesses together. However, they do not consider energy

consumption. Work on saving memory energy consumption can be divided into hardware-

based approaches and software-based approaches. Hardwareinnovations recently proposed

have mostly focused on architecting DRAM with smaller row buffer size to lower dynamic

energy consumption by activating fewer bits. This, however, sometimes sacrifices system

performance. The software-based approaches are restricted to an optimization that exploits

low power modes of DRAM for saving background energy consumption. Our work is

complementary to these approaches.

3.1 Eager Writeback Schemes

Lee et al. [17] first proposedeager writeback to optimize systems that experience a sig-

nificant number of cache misses while fetching streaming data. In writeback caches, dirty

cache lines are evicted and written to DRAM at the same time that the data is being fetched

into the cache. This causes the memory bus congestion that impedes the delivery of data to

13

the cache, thereby negatively affecting an application’s forward progress. Eager writeback

distributes the competing traffic by writing dirty cache lines to DRAM before the lines

must be evicted from the cache. The concept of eager writeback has recently been used to

address a different problem,i.e. improving row-level access locality.

Virtual Write Queue [9] is a recent proposal that exploits eager writeback for increasing

row-level access locality. This technique coordinates DRAMaccess scheduling with cache

writeback to increase the opportunities to find dirty cache lines in the last-level cache that

can hit on the activated row. While write operations in the DRAMwrite queue are being

scheduled, other dirty cache lines that are mapped to the same row as the scheduled ones are

searched in the last-level cache and immediately transferred to DRAM. Eager writeback is

therefore exploited inVirtual Write Queue to increase row-level locality of DRAM writes.

At the same time thatVirtual Write Queue was introduced, a similar technique, called

DRAM-Aware Writeback [10], was proposed. It also exploits eager writeback to cluster

writebacks. DRAM-Aware Writeback instead monitors the writeback of dirty cache line

entering into the processor’s write buffer and finds other dirty cache lines in the last-level

cache that are mapped to the same row as the evicted one. Doingso can populate the write

buffer with many row hit eager writebacks. For a trigger of the flushing of eager writebacks

to the DRAM, DRAM-Aware Writeback utilizesdrain-when-full write buffer management

– the drain-when-full services all writes in the write buffer at once when it is full.

Virtual Write Queue andDRAM-Aware Writeback enable writebacks to be consolidated

in order to maximize the number of column writes when a row is activated for a writeback

operation. However, both of these schemes have two limitations which have been ad-

dressed in this thesis. First, they only cluster writebackswith other writebacks. In contrast,

our proposed scheme clusters writebacks with both reads andwrites. Clustering writebacks

with both reads and writes is critical in order to maximize overall energy savings and per-

14

formance because of the overall low number of column operations per row activation (as

discussed in Section 4.2). Second, these prior approaches do not allow eager writebacks

to be cancelled. We cancel eager writebacks when new conflicting read operations arrive,

thereby ensuring that subsequent read operations are not delayed. Without cancellation,

eager writebacks can delay non-eager reads, leading to decreased performance.

3.2 DRAM Access Clustering

Some efforts have been made to try to avoid access interference within banks. The XOR-

based address mapping [18] scheme avoids row buffer conflicts between reads and cache

writebacks under page interleaving by generating bank addresses pseudo-randomly. This

technique effectively redirects to another bank writes that would conflict in a bank. We

simulate this address mapping scheme in Section 6.3.4 and compare it with our eager write-

back scheme. A write buffer with read bypass [19] could also alleviate row buffer conflicts

by postponing writebacks. This potentially would allow consecutive reads to be grouped

together.

Unlike the technique presented in this thesis, these schemes do not eliminate write

interference but rather attempt to reduce it, and neither scheme reduces the number of row

activations caused by writes. However, because the XOR-based address mapping is an

address translation optimization, combining it with our eager writeback scheme achieves

better results than either one alone, as discussed in Section 6.3.4.

There have been several studies, such as [20, 1, 21, 22, 23, 24, 25, 26], that present

techniques to reschedule memory accesses to improve overall system performance. These

works introduce a variety of scheduling mechanisms and algorithms to increase perfor-

mance. However, they do not consider energy consumption andare orthogonal to our read

and write clustering technique.

15

3.3 Hardware Approaches to DRAM Energy Savings

Sudanet al. [16] recently observed that a large number of accesses within heavily accessed

OS pages happen to small, contiguous chunks of cache lines, and they therefore proposed

the co-location of the chunks from different OS pages in a rowbuffer to improve its uti-

lization. This technique is effective if applications expose spatial locality of access in rows.

Therefore, some of the applications discussed in Section 4.2, such assjeng andgems, which

do not inherently have good spatial locality, will not benefit from this technique at all.

Energy and latency could further be reduced by utilizing smaller rows within the

DRAM. Rixner [12] and Cooper-Baliset al. [27] presented memory controller policies

that can make effective use of commercial DRAM architecturesthat support the use of

subsets of rows to further reduce the average latency of the DRAM. These types of propos-

als have recently been revisited in the context of multi-core systems where access streams

are mixed to compose more interference in the row-buffers. Udipi et al. [15] proposed a re-

design of DRAM to activate subsets of a row and to keep inactivesubarrays in low-power

sleep modes. Others have proposed arank subsetting that enables the smaller number of

devices to be involved for a memory access [13] [14]. A comprehensive analysis for the

effectiveness of rank subsetting on the performance, energy efficiency, and reliability is

presented in [28]. All of these techniques are orthogonal toour read and write clustering

strategy and we would expect the ideas to be complementary.

Taking advantage of low-power modes has also been focused inthe memory controller.

Hur et al. [29] extended the Adaptive History-Based Scheduler (AHB) with power con-

sumption to increase the average idle duration of each rank,thus increasing the utility

of the power-down unit. Huanget al. [30] identified memory access traffic as often ran-

dom when the OS arbitrarily maps virtual pages to physical pages. They thus proposed

16

a way to reshape such random memory traffic to produce longer idle periods by which

more aggressive power-saving mode is actively utilized. These two optimizations focus

on optimizing DRAM static energy consumption while our work focuses on optimization

DRAM dynamic energy consumption. We would expect both types of techniques to be

complementary and to be easily combined.

Since re-activating main memory from a low-power mode is costly, it is crucial to mask

the resynchronization time associated with re-activatingmemory modules. Pisharathet

al. [31] proposed on-chip memory module buffer that reduces theoverhead incurred due to

frequent resynchronization of memory modules. Floydet al. [32] designed a queue-driven

policy in IBM POWER6 on-chip memory controller for power-down exploitation. Under

the policy, applications of the power-down mode rarely see loss of performance, yet the

system can reduce DRAM power consumption significantly.

Memory is also a major power consumer in mobile devices [33, 34]. Mobile devices

can be either in active mode or in standby (or suspended) mode, and in standby mode,

the refresh operation is dominant consumer of DRAM power. Liuet al. [35] designed

Flikker, a software/hardware coordinated technique for lowering the refresh rate of the part

of memory containing non-critical data to save power; an example of non-critical data is

frame data in a video processing application. Since the application’s reliability is not sensi-

tive to errors in the non-critical data, making marginal disruptions in the data is acceptable.

Isen and John [36] proposed ESKIMO, a hardware mechanism to reduce the refresh power

of unused part of memory. In ESKIMO, the hardware exploits information about applica-

tion’s memory allocation patterns that are exposed by memory allocator. Finally, DRAM

refresh operations can be reduced by employing a time-out counter for each DRAM row.

Ghosh and Lee [37] utilized the counter to identify the DRAM row that was recently read

or written to by the processor and thus that does not need to berefreshed by periodic re-

17

fresh operation. I would expect these techniques can be usedin combination with our

eager writeback technique to save power in both active mode and suspend mode of mobile

devices.

3.4 Software Approaches to DRAM Energy Savings

At a much higher semantic level, there have been approaches to save memory power/energy

consumption in the context of OS or VMM hypervisor. In these approaches, memory

management [38, 39, 40, 41, 42], IO processing [43], runtimelibrary [44], compiler [45,

46], or process/VM scheduling [47, 48, 49] of OS or VMM hypervisor is optimized to be

aware of memory power characteristics. Then, based on this,low power modes that can be

applied to each memory unit (i.e. a DRAM device or a rank) are exploited.

Huanget al. [39] optimized OS memory management to reduce energy consumption by

putting more memory into low power modes. They specifically exploited page aggregation

and migration techniques by which the average number of active memory devices used by

a process can be minimized. More memory devices that are idletherefore can take advan-

tage of low power modes to consume less power. Leeet al. [41] additionally took buffer

caches of the OS into account in power management to save moreenergy consumption of

memory. These proposals are for per-process power management where all memory ranks

that belong to the running process are powered on and kept on during the execution. Biet

al. [42] addressed this limitation by managing memory power when file-I/O system calls in

the OS are invoked. They exploited the delay for the system calls to hide the delay incurred

by the memory power mode transition so that performance degradation is minimized.

Pandeyet al. [43] characterized the effect of DMA accesses on memory energy and

identified that significant energy is wasted due to the mismatch between memory and I/O

bus bandwidths. Due to the mismatch, memory is often idle butactive (in power consump-

18

tion) during DMA transfers. They therefore proposed DMA-aware techniques for memory

energy management that maximize the utilization of memory devices by increasing the

level of concurrency between multiple DMA transfers from different I/O buses to the same

memory device.

Scheduling also has a dramatic impact on memory energy consumption. Merkelet

al. [48] found that scheduling for avoiding resource contention is crucial both in terms of

performance and energy efficiency. Accordingly, they designed a scheduling policy that

avoids memory contention by sorting the processors’ runqueues by memory intensity, and

a frequency heuristic based on memory intensity. Janget al. [49] proposed memory-aware

virtual machine scheduling for virtualized servers running on multicore systems. Under the

proposed scheduling, memory ranks that belong to virtual machines that run on the cores

overlap as many others as possible so that more ranks are put into low power modes.

All of these techniques are intended to save DRAM background (static) energy con-

sumption through, for example, transition to low power modes. However, they do not im-

prove row-level locality of accesses that determines DRAM dynamic energy consumption,

and therefore are orthogonal to our read and write clustering strategy.

19

CHAPTER 4

Workload Analysis

Given the impact of row buffer utilization on both delay and energy discussed in the pre-

vious section, it is important to understand how applications exercise the memory system.

In modern systems, there are typically only 1–3 column accesses per row activation. This

leads to poor DRAM performance and energy consumption. This chapter explores in detail

the root cause of this lack of utilization.

This chapter clarifies the problems with cache line writebacks. These writebacks in-

terfere with the read locality found in every application that we studied and themselves

lead to significant performance and energy problems. Table 4.1 highlights these problems.

The data in this table was collected using the same experimental methodology that will be

described in Chapter 6. To make sure that results are not influenced by the lack of bank-

level parallelism, we varied the degree of the parallelism by having a configuration of more

memory ranks; we observed similar results.

This chapter is organized as follows. Section 4.1 characterizes frequencies of DRAM

accesses and row activations for 29 applications. Section 4.2 continues to analyze the uti-

lization of activated rows and discusses the cause of insufficient accesses to the row buffer

that almost all applications have shown. Section 4.3 summarizes this chapter’s conclusions.

20

4.1 Effects of Cache Line Writebacks

4.1.1 Frequency of DRAM Writes

Whenever a cache line is first accessed, it must be read from theDRAM. Therefore, both

read and write cache misses trigger DRAM read accesses. Giventhat all modern systems

employ write-back caches, DRAM writes occur only when a dirtycache line is evicted.

Intuitively, this should occur far less often than DRAM reads.

The first column of Table 4.1 shows the number and fraction of DRAM accesses that are

reads and writes for 29 applications. For 20 of these applications, writes account for more

than 20% of total DRAM accesses. Writes account for more than 40% of the DRAM ac-

cesses for some of these applications (libquantum, hmmer, lbm, astar, sjeng, andapriori).

Therefore, DRAM writes are not actually all that infrequent.

4.1.2 Frequency of Row Activations

Modern cache replacement policies attempt to achieve the highest hit rate in the cache

possible. When performing eviction, they select a cache linethat is not likely to be accessed

later in the set,e.g. the least recently accessed one in the LRU scheme. They do not

typically consider the locality of data written back to the next level in the memory hierarchy.

In particular, last level caches place no emphasis on the achieved row locality in the DRAM,

which can greatly influence overall performance. Therefore, writes caused by evictions

frequently exhibit no locality of access with the surrounding read operations. Furthermore,

they are most likely unrelated to other surrounding write operations, as well.

The second column of Table 4.1 shows the number and fraction of row activations

caused by read and write operations. Except for 4 applications (libquantum, tonto, h264ref,

andnamd), more than 70% of the write operations cause row activations. For example,

21

bzip2 has 1,064,285 total writes, of which 865,982 (81.4%) cause row activations. This

leads to the situation where row activations caused by writes account for more than 30% of

all row activations in 19 of the applications. In 6 applications, writes account for more than

50% of all row activations.

4.2 Effects of Row Activations

More important than the frequency of row activations causedby cache writebacks is the

damage that these row activations cause. The third column inTable 4.1 shows the number

of read/write operations that occur per activated row. As the table shows, for most appli-

cations there are 1–3 read/write operations per activated row, with an average of 3.13 read

operations and 1.91 write operations. Worse, there are fewer than 2 write operations per

activated row for 25 of the applications. Furthermore, for every application exceptgems

andbwave there are more read operations per activated row than write operations.

Surprisingly, the trends for rows that are activated by readoperations is not much better

than for rows that are activated by writes. Except forlibquantum, which is an outlier, the

most reads per activated row is just 5.64 fornamd, and most applications perform less than

3 reads per activated row.

There are two reasons for the very low hit rates on activated rows. First, not all appli-

cations have good spatial locality in the row buffer. These experiments map the physical

address space across ranks and banks at a row granularity, which should provide the max-

imum opportunity for such row locality. Therefore, purely sequential access would yield

numerous read operations per activated row, but this is not happening because the cache

hierarchy acts as a filter over the memory access stream whichyields less predictable ac-

cess. Second, even when applications do have good spatial locality, cache evictions often

interfere with that locality, further reducing the number of read accesses per row activation.

22

Figure 4.1 : Read/Write Operations per Activated Row.libquantum Read (19.13),libquan-
tum Write (14.91),libquantum No Write (48.89), andlbm No Write (29.72) are cut off due
to the space.

We will refer to this phenomenon aswrite interference throughout the paper. This write

interference increases the number of row activations considerably.

Figure 4.1 shows the number of read/write operations that occur per row buffer acti-

vation. The first two bars (labeled “read” and “write”) are repeated from Table 4.1. The

third bar, labeled “no write”, shows what would happen if allof the write operations were

discarded. This indicates the amount of row locality there is in the reference stream, and

implicitly shows the damage done by write interference. While all applications show at

23

least modest increases in the number of reads per activated row, many do not increase by

all that much. However, the number of reads per activated rowdoes increase markedly for

eight of the applications (libquantum, lbm, tonto, h264ref, gromacs, deal, namd, andmcf).

Therefore, eliminating write interference will have a positive effect for all applications and

will have a significant impact on some applications.

One might think that simply prioritizing row hit reads (i.e., column-first scheduling)

would suffice to avoid write interference when row hit reads and row miss writes compete

for access to the DRAM. However, this is not always the case. A memory controller will

choose the best issuable command among pending DRAM commandson each memory

cycle. So, if the next row hit read arrives even a cycle late, then the memory controller may

already have begun the precharge/activate cycle for the rowmiss write. This subtle timing

occurs often in practice.

Furthermore, some efforts have been made to avoid access interference within banks.

Examples include the XOR-based address mapping [18] scheme and a write buffer with

read bypass [19]. As already discussed in Section 3.2, both schemes do not eliminate write

interference but rather attempt to reduce it. Moreover, neither scheme can relate writes to

surrounding reads in terms of locality of access.

4.3 Conclusions

In modern systems, there are typically only 1–3 column accesses per row activation. This

leads to poor DRAM performance and energy consumption. The root cause of this lack

of utilization is cache line writebacks. Specifically, theyoccur more often than might be

expected, they often require row activations, and they often cause future read accesses

to re-activate rows that would have already been in the row buffer if the write had not

occurred. The first two phenomena lead to significant performance and energy problems

24

of the DRAM. The situation is worse with the third phenomenon,though, because even

when applications exhibit good spatial locality of access,writebacks often interfere with

that locality, reducing the number of accesses per row activation.

25

DRAM Accesses Row Activations Row buffer hit count

RD WR RD WR RD WR Avg.

libquantum 6396537 (0.50) 6346650 (0.50) 334285 (0.44) 425596 (0.56) 19.13 14.91 16.77

hmmer 1557443 (0.52) 1446100 (0.48) 1082032 (0.50) 1101266 (0.50) 1.44 1.31 1.38

lbm 14573106 (0.58) 10669136 (0.42) 6481510 (0.47) 7317800 (0.53) 2.25 1.46 1.83

astar 3689208 (0.60) 2458745 (0.40) 1801606 (0.49) 1841565 (0.51) 2.05 1.34 1.69

sjeng 210523 (0.60) 139795 (0.40) 192496 (0.58) 139369 (0.42) 1.09 1.01 1.06

tonto 106241 (0.61) 68368 (0.39) 26786 (0.50) 26469 (0.50) 3.78 2.77 3.28

gobmk 684619 (0.68) 323681 (0.32) 318330 (0.58) 234455 (0.42) 2.11 1.43 1.82

bzip2 2317657 (0.69) 1064285 (0.31) 1119656 (0.56) 865982 (0.44) 2.08 1.21 1.70

h264ref 686468 (0.70) 300904 (0.30) 180844 (0.57) 135736 (0.43) 3.79 2.23 3.12

gems 10811870 (0.70) 4550271 (0.30) 9616973 (0.72) 3804887 (0.28) 1.12 1.20 1.14

calculix 23210 (0.73) 8611 (0.27) 9970 (0.57) 7405 (0.43) 2.32 1.17 1.83

soplex 8677229 (0.73) 3207230 (0.27) 4680762 (0.67) 2315124 (0.33) 1.85 1.39 1.70

leslie3d 5869350 (0.77) 1756647 (0.23) 3626551 (0.75) 1239772 (0.25) 1.62 1.41 1.57

gromacs 495834 (0.78) 140818 (0.22) 189728 (0.62) 116692 (0.38) 2.61 1.22 2.08

perlbench 1828075 (0.78) 511830 (0.22) 706975 (0.63) 410769 (0.37) 2.57 1.27 2.09

cactus 2702913 (0.78) 761070 (0.22) 2527874 (0.77) 742433 (0.23) 1.07 1.02 1.06

deal 892999 (0.79) 231881 (0.21) 193273 (0.57) 144297 (0.43) 4.59 1.65 3.33

namd 90830 (0.82) 20106 (0.18) 16089 (0.62) 9665 (0.38) 5.64 2.09 4.31

mcf 30894021 (0.84) 5990861 (0.16) 7184316 (0.61) 4646697 (0.39) 4.30 1.29 3.12

zeusmp 1543721 (0.84) 283265 (0.16) 1021625 (0.82) 221578 (0.18) 1.50 1.31 1.47

gcc 97740 (0.86) 15796 (0.14) 37888 (0.72) 14570 (0.28) 2.57 1.12 2.16

povray 7975 (0.89) 975 (0.11) 2322 (0.75) 758 (0.25) 3.42 1.35 2.91

gamess 7480 (0.92) 607 (0.08) 2539 (0.82) 552 (0.18) 2.85 1.56 2.62

sphinx3 6674087 (0.95) 346501 (0.05) 3083259 (0.92) 278787 (0.08) 2.16 1.26 2.09

bwave 31388285 (0.95) 1545320 (0.05) 30119315 (0.97) 963946 (0.03) 1.04 1.60 1.06

omnetpp 6901520 (0.97) 207057 (0.03) 2549077 (0.94) 148554 (0.06) 2.71 1.42 2.64

apriori 13068580 (0.51) 12574560 (0.49) 3144676 (0.28) 8172633 (0.72) 3.93 1.63 2.27

glimpse 464982 (0.75) 151102 (0.25) 155383 (0.60) 104167 (0.40) 2.96 1.50 2.37

tpcc 4576886 (0.77) 1339750 (0.23) 1955964 (0.64) 1096572 (0.36) 2.33 1.24 1.94

Table 4.1 : Decomposition of DRAM Accesses, DRAM Activations,and Row Buffer Hit
Count by Access Type. SPEC applications are sorted in decreasing order of WR in DRAM
Accesses.

26

CHAPTER 5

DRAM Energy and Performance Optimizations

5.1 Background: Eager Writeback

In certain applications that process huge incoming data streams, such as 3D graphics and

multimedia, the overall performance tends to be bounded by the efficiency in processing

incoming stream data. However, in these applications, the writeback traffic often competes

for limited memory bandwidth with traffic for demand reads, delaying the delivery of the

stream data to the cache. Specifically, in these applications, data fetches into the cache

cause many conflict misses and have dirty cache lines evictedto the next level of memory

hierarchy, while consecutive reads of a data stream are in progress. This competition of-

ten makes it difficult for the applications with enormous data streams to fully utilize the

available memory bandwidth for reads. For this problem, unfortunately, even a large write

buffer does not help a lot.

Eager writeback was first proposed to reduce the likelihood of writing dirty cache lines

that impede data fetches into the cache [17]. The key approach is writing dirty cache lines

to DRAM before they are evicted by cache replacement, especially when the bus is idle.

When the cache lines are eagerly written back, their dirty bits are cleared. If these cache

lines are re-written before eviction and thus marked dirty again, date writes to DRAM

are seen more frequently. However, this will never impact the correctness of architectural

27

state because it is nothing but writing “premature” data. For the best triggering of eager

writebacks, only cache lines that have been dirty and reach the LRU (Least Recently Used)

state can be considered as prime candidates for writing backbecause they rarely get dirty

again before being evicted.

Eager writeback is an effective way that decouples and distributes the two competing

traffics by selectively writing some dirty cache lines to DRAMprior to writeback, but

later than write-through. Therefore, it can be considered as a compromise between write-

through and writeback policies. In the scheme, “any” of dirty cache lines in the cache can

be eagerly written to DRAM if the bus is “idle”. These conditions, however, are not taken

into account if eager writeback is used for improving row-level access locality.

5.2 Row Activation Reduction

We utilize eager writeback as a way to reduce the number of rowactivations. The basic idea

is to write back dirty cache lines ahead of time when their associated row has been activated

by other ordinary, non-eager access. This will enable better clustering of accesses, both

read and write, that target the same row. By increasing the clustering of reads and writes

together, there will be fewer row activations and less writeinterference.

In order to preserve cache behavior, lines that are speculatively written back are not

actually evicted from the cache. Therefore, the overall cache hit rate should remain largely

unaffected (minor timing variations due to the rescheduling of DRAM accesses could cause

minor changes). If those cache lines do not subsequently become dirty again, then their

later eviction will not cause a write to the DRAM, thereby reducing both row activations

due to writes and write interference.

This strategy improves the performance of both reads and writes in the DRAM by

effectively clustering read and write accesses to the same row. This increases the overall

28

number of DRAM accesses per activated row, and consequently results in both improved

performance and reduced energy consumption in the memory system, as will be discussed

in Section 6.3.

5.2.1 Illustrative Example

Figure 5.1 shows how the memory access pattern in a conventional DRAM system is re-

shaped when using our proposed eager writeback strategy. Figure 5.1(a) shows the impact

of writes to the DRAM. The two writebacks to row 0 cause interference in the DRAM,

thereby delaying several read accesses and reducing the number of accesses per row acti-

vation. The first writeback causes a problem because the cache line eviction occurs before

the subsequent read to the currently open row. As the memory controller cannot know that

such a read will arrive, it activates the row needed for the writeback operation. The second

writeback causes a problem because the cache line eviction causes a row activation which

delays the activation of a different row for a subsequent read operation. Note that in both

cases, a row is activated to perform a single write operation. The situation is even worse

in reality because the timing constraints of the DRAM (specifically tRC) force additional

delay before the activation for the following read operation can occur.

Given that row 0 was already activated to satisfy the first read operation, eager write-

back can be used to speculatively perform the two writeback operations, as shown in Fig-

ure 5.1(b). In this case, the two eager writebacks occur speculatively while row 0 is active,

and then do not later interfere with any of the following readoperations. This results in

better access clustering and DRAM efficiency. There are threeaccesses for each of the

first two row activations. In the first case, one read and two writes are clustered, and in the

second case, three reads are clustered. This clustering also mitigates the delays caused by

the timing constraints of the DRAM, because fewer row activations need to be performed

29

Req. Arrival

Time (Cycles)

(R,0) (R,1) (W,0) (R,1) (R,1)

Scheduling

(W,0) (R,2)

Delays

Activate 0 R Activate 1 R Activate 0 W Activate 1 R R Activate 0 W Activate 2 R

(a) Memory access pattern without eager writeback

Req. Arrival

Time (Cycles)

(R,0) (R,1)(E,0) (R,1) (R,1)

Scheduling

(E,0) (R,2)

Delays

DRAM request format:

(Request type, Row ID)

Request type:
R (Read), W (Write), E (Eager Write)

Latency:

Column access: R, W, E (1 cycle)

Row activation: Activate (3 cycles)

Row cycle time: t
RC

(5 cycles)

Activate 2Activate 0 R E E Activate 1 R R R R

(b) Memory access pattern with eager writeback

Figure 5.1 : Reshaped Memory Access Pattern with Eager Writeback.

30

to satisfy the stream of memory references.

In this example, the DRAM timings are simplified to make the DRAMwriteback prob-

lem easier to understand. A precharge/activate is assumed to take 3 memory cycles and a

column access is assumed to take a single cycle. The row cycletime (tRC) is 5 cycles, so

two read or write operations are needed to avoid additional delays. Further, there is no de-

lay when switching between read and write operations. Underthese simplified timings, our

eager writeback strategy results in fewer row activations,increased DRAM bandwidth, and

decreased average read latency. In practice, with realistic DRAM timings, the reference

streams will be more complex and eager writebacks will not always eliminate the subse-

quent writeback when the cache line is later evicted. However, the savings are very real, as

the results will later show.

5.3 Architecture Design

Eager writebacks are initiated as soon as the memory controller begins to activate a row.

The memory controller then cooperates with the last-level cache controller to find dirty

cache lines belonging to the activated row. Since this does not affect the LRU status of

the cache lines, it does not compromise any benefit that comesfrom cache replacement

optimizations.

The primary architectural modification to support our eagerwriteback strategy is that

the last level cache controller must be able to find all dirty cache lines that are from currently

activated rows in the external memory system. The memory controller can easily transmit

the row address to the last level cache whenever it activatesa row. The cache must then

send the appropriate speculative writes back to the memory controller.

In order for this to work, the cache hit logic must be modified.Each row activation is

likely to trigger only a small number of eager writebacks. So, the cache controller must

31

access the cache a handful of times using the row address to find dirty cache lines. A cache

line will be selected for eager writeback if it, (1) matches the given row address, (2) is dirty,

(3) is in a particular LRU position, and (4) has not already been speculatively written back.

In order to satisfy condition (1), the cache hit logic must bemodified to enable matching

only on the tag bits that correspond to the DRAM row address. This is a minor modification

that requires the hit logic to support two modes, normal fulltag matches and partial row

matches. Conditions (2) and (3) can easily be checked by reusing the cache line eviction

logic. In most cases, it is sufficient to only perform eager writebacks on cache lines in the

LRU position, as the results will later show.

Unless it is guaranteed that the memory controller will always perform the speculative

writeback, condition (4) requires that each cache line needthe addition of a single bit,

called the “eager” bit. This bit would normally be cleared for all cache lines. Once a cache

line is selected for eager writeback, the “eager” bit would be set. This would prevent the

same cache line from being returned twice from a partial row match.

Using the above modifications, when the last level cache controller receives a row ad-

dress from the memory controller, it can simply access the cache repeatedly with the row

address until there is a miss or the memory controller indicates it is going to activate a

different row. These lines can be forwarded to the memory controller for speculative write-

back as they are found in the cache. As a modern memory system has multiple channels

and banks, the last level cache controller may need to interleave accesses for several active

rows.

The “eager” bit can be used to ensure that the cache state is always correct. As a specu-

lative write is not guaranteed to be performed, as will be described later in this chapter, the

dirty bit for a cache line cannot necessarily be cleared until the memory controller confirms

that the line has been written. If another write occurs to that cache line while the “eager” bit

32

apriori tpcc glimpse soplex lbm gems mcf hmmer gcc

1st MRU 99.14 98.39 99.75 99.08 79.89 97.9 98.69 50.91 99.95

2nd MRU 0.51 0.92 0.17 0.62 18.18 0.57 1.14 22.61 0.05

3rd MRU 0.19 0.39 0.06 0.24 1.92 1.51 0.15 26.44 0.00

LRU 0.16 0.30 0.02 0.06 0.01 0.02 0.02 0.04 0.00

Table 5.1 : Fraction of Writes to Dirty Cache Lines with Respect to the LRU-MRU Position.

is set, it should be cleared. When the confirmation comes back from the memory controller

that the speculative writeback has been performed, if the “eager” bit is still set, then both

the “eager” and dirty bits will be cleared for the cache line.If instead, the “eager” bit is no

longer set, that indicates there has been new data written tothe cache line, so the dirty bit

is not cleared.

If a speculative writeback is guaranteed to be performed by the memory controller,

then the “eager” bit is not necessary and the dirty bit can be cleared as soon as the eager

writeback is initiated. However, there is a significant advantage to allowing the memory

controller to “cancel” speculative writebacks in order to activate other rows to perform

pending read accesses.

As noted before, the dirty cache lines selected for eager writeback can be limited to

some number of the least recently used ways in the cache. The most recently used cache

lines in a set are likely to be written again, negating advantages gained from eager write-

back. Leeet al. [17] have shown this trend by analyzing the ratio of the number of times a

dirty cache line in the LRU (or MRU) state is written to. The analysis results show that dirty

cache lines that reach the LRU state are rarely written again. We observed a similar, but

more obvious trend over the applications we used. Table 5.1 presents the results observed

33

in 9 representative applications.

5.3.1 Cache/Memory System Coordination

Figure 5.2 shows a system design for our eager writeback scheme. Eager writeback is

initiated by a row activation, which is to be detected by Row Activation Detector (RAD) in

the memory controller. RAD informs the last level cache controller the ID of the activated

row to trigger eager writeback of dirty cache lines associated to the row. In our design, the

physical address of the row is used as the ID for simplicity. The bus used for delivering the

row ID to the cache controller is of the same bit width as the memory address bus width.

For page interleaving, however, low order bits corresponding to row size can be ignored

and taken off from the row ID to reduce the bus width.

Upon the receipt of a row address at the cache, Eager WritebackManager (EWM)

creates a new entry in its Eager Writeback Queue (EWQ). By managing EWQ, EWM keeps

tracking concurrent eager writebacks in progress at multiple DRAM banks. EWQ is a FIFO

queue that is dynamically growable, and each queue entry contains the address of cache line

to examine for eager writeback for an activated row. A new entry is initialized with the row

address,i.e. the address of the first cache line of the row, and if it is scheduled, then the

entry is updated to the address of the next cache line. The size of EWQ is determined by

the number of DRAM banks given that there is at most one activated row per bank. For

example, assuming a 8-bank 8-rank DRAM system, EWQ contains atmost 64 entries. This

is a small overhead in hardware.

While eager writebacks for multiple banks are served, EWM needs to interleave ac-

cesses for several active rows to fully exploit bank-level parallelism. This can simply be

implemented by scheduling EWQ entries in a round robin fashion. After pulling an entry

at the head of the queue, EWM coordinates with Eager Writeback Arbiter (EWA) to find

34

Row Activation

Detector

Memory Access Scheduler

Memory accesses to DRAM

Memory Controller

R
o

w
 I

D
(R

o
w

 a
d

d
re

ss
)

Rank

Command

Queue

Row

activation

Cache Controller

Eager Writeback

Arbiter

Eager Write

Queue

Eager Writeback

Manager

Way 0

Set 0

Last Level Cache

Row match

Full tag match

Figure 5.2 : A coordinated Cache/Memory System.

35

the cache line to eagerly write back. EWA monitors cache bus utilization to find idle cycles

and, if found, it processes the request. Once completed, EWM will generate the next cache

line to process and, if the cache line is still mapped to the same row, EWM will put it into

the tail of the queue.

Note that EWM needs to be fully aware of the address mapping policy of the DRAM

because data stored in a row is not always recognized as contiguous in the physical address

space. Consider an address mapping where adjacent cache lineaccesses are striped across

different channels so that streaming bandwidth can be sustained across multiple channels.

Under the mapping, contiguous cache lines in the row are not contiguous in the physical

address range. In this case, generating the physical address for a certain cache line in a row

must consider bit fields encoded for channel selection to retrieve the exact address of the

next cache line in the row. Because the address mapping is known at system boot time, this

address generation is not a significant constraint.

Note also that a dirty cache line may be evicted while its associated speculative eager

writeback is still in the memory controller. The memory controller should detect this sit-

uation and remove the eager writeback in favor of the actual eviction. Of course, this is a

performance optimization that will not affect correctness.

5.4 Memory Access Scheduling

The proposed eager writeback technique often results in a memory access pattern in which

an initial read access to a row is followed by a burst of other reads and writes to the same

row. When there are a lot of dirty cache lines, this access pattern may keep the row open

for quite a long time, delaying pending reads to other rows inthe same bank. Therefore,

there is a trade-off between the value of reducing write interference by performing many

eager writebacks and the value of favoring pending read accesses in order to minimize their

36

latency.

It is difficult to evaluate this trade-off, as the resulting performance in either case de-

pends on several factors, including the degree of write interference, the update rate to cache

lines that have previously been speculatively written back, and the average number of writes

that delay pending reads. For some benchmarks, such as theapriori data mining bench-

mark, performing eager writeback in this manner can degradeperformance because too

many reads accesses are delayed for too long. Note, however,that even in this case, energy

is still saved because of the large reduction in row activations.

To address the problem of delayed read accesses, while maintaining the benefits of spec-

ulative eager writeback, speculative writebacks must be handled specially by the memory

controller and it must be possible to cancel them in certain situations. In combination, this

addresses the delayed read access problem, thereby improving the value of the speculative

eager writeback technique.

Speculative writeback-aware scheduling (SWAS) differentiates between a write caused

by a normal cache eviction and a write caused by a speculativewriteback. The baseline

memory access scheduler is based on a column-first scheduling policy [1]. Effectively,

this means that the scheduler favors column accesses first, row activations second, and

precharge operations third. This maximizes the number of column accesses per row acti-

vation. With SWAS, a column access for a speculative writeback is not given first priority

with other column accesses, but rather is given fourth priority behind all other DRAM com-

mand types. This ensures that speculative writebacks will only be performed if there are

no other useful non-speculative operations that can be performed on a particular memory

cycle.

If the memory controller activates another row while speculative writebacks remain for

the previous row, those speculative writebacks would trigger another row activation later.

37

Time (Cycles)

(R,0)(E,0)(E,0) (E,0)(E,0) (R,0) (R,1)(R,0)(R,0)

Pending eager writes for

Delays

Scheduling

Req. Arrival

row 0 activate row 0 again

R E E R R R RActivate 0 Activate 1 Activate 0 E E

(a) Memory access pattern with only SWAS

Time (Cycles)

(R,0)(E,0)(E,0) (E,0)(E,0) (R,0) (R,1)(R,0)(R,0)

Pending eager writes for

Delays

Scheduling

Req. Arrival

row 0 cancelled when row 1 is activated

R E E R R R RActivate 0 Activate 1

(b) Memory access pattern with SWAS and cancellation

Figure 5.3 : Scheduling Eager Writeback Operations. See Figure 5.1 for request type and latency information.

38

While that may still be useful, it is often a better choice tocancel all speculative writebacks

to a row once that bank is precharged. That way, they will either be re-issued speculatively

if the original row is ever re-activated by a read operation or they will simply occur when

the cache lines are finally evicted, as if no eager writeback had been attempted.

Figure 5.3 shows how the SWAS/cancellation coordinated system allows eager write-

back to better cluster reads and writes without unnecessarily delaying subsequent non-

speculative operations. In Figure 5.3(a), the activation of row 0 triggers four eager write-

back operations. When read operations later arrive, they push back the eager writeback

operations. As the figure shows, row 0 must be re-activated later in order to satisfy all of

the eager writebacks. Figure 5.3(b) shows that the delays caused by eager writebacks can

be eliminated simply by cancelling them. Note that once cancelled, these writebacks will

never be scheduled, so row 0 will not need to be re-activated for them. Eventually, the

lines will be evicted from the cache and have to be written back, though. Or they might be

eagerly written back in the future if row 0 is activated for another reason before the lines

are evicted.

Note that the situation shown in Figure 5.3(a) is not necessarily bad. It potentially

saves energy, as the number of column operations to row 0 is higher. The trade-off between

additional accesses to row 0 and the latency of the read to row1 is difficult to evaluate in a

situation like this. The value depends on what happens to thewrites later. The effectiveness

of cancellation is mainly determined by how many useful writes are processed before being

canceled—here “useful” writes are those not having furtherupdates to their cache lines and

thus not generating “redundant” DRAM writes by either repeated eager writeback or cache

eviction. If eager writes are organized in an ordered way so that more useful writes come

first and less useful writes come next, cancellation may be more effective.

39

5.5 Conclusions

DRAM performance and energy consumption in modern systems are significantly impacted

by the efficiency of managing the row buffer. Unfortunately,applications cannot make an

effective use of data in the row buffer because of the lack of the low-level access locality.

An analysis in the previous chapter showed that cache line writebacks are the root cause

of this lack of utilization. This chapter has presented a newapproach to improving the

low-level access locality that is based on clustering writebacks with reads that will hit in

the same row. We used eager writeback for this optimization.While this thesis focuses a

simple DRAM configuration that is composed of single memory channel and single rank

in a DIMM, the results should apply generally to other configurations.

Since Modern DRAM timing is quite complex and there are many constraints of the

DRAM, this chapter has extensively explored several dimensions in the design of our eager

writeback to avoid potential performance degradation. Oureager writeback scheme incor-

porates two mechanisms, Speculative Writeback-Aware Scheduling (SWAS) and Cancel-

lation, to prevent eager writebacks from adversely affecting a program’s execution time.

These two optimizations make certain that the scheme does noharm. In addition, the

scheme incorporates a less aggressive configuration that writes back one or two least re-

cently used cache lines from the set. Examining these cache lines is sufficient to achieve

overall good results without incurring much overhead.

40

CHAPTER 6

Evaluation

6.1 Full-System Simulator

We use a full-system simulator to evaluate eager writeback.This simulator is based on HP

Labs’ COTSon [50], which we have extended to simulate a cycle-accurate DRAM system

using DRAMSim2 [51]. COTSon uses AMD’s SimNow [52] to emulate an x86-64 proces-

sor and to capture all instructions that are executed for theoperating system and user-level

processes. For each instruction, the opcode, the registersaccessed, and the instruction

and data addresses accessed are fed to the COTSon processor module for detailed simula-

tion. This simulation models an out-of-order processor using a 256-entry re-order buffer

(ROB), in-order issue and out-of-order execution, comprehensive register- and memory-

dependency checking, and blocking reads. The simulator does not model implementation-

dependent parameters, like the bandwidth between pipelinestages and the number of out-

standing cache misses, that do not directly affect our evaluation of eager writeback. Ta-

ble 6.1 shows the important parameters of the simulated system.

The timing model in COTSon is modified so that a cache hit at any level of the memory

hierarchy adds zero latency to an instruction’s execution.This allows us to focus on the

impact of the DRAM system. Last-level cache misses are sent toDRAMSim2, which

accurately models all characteristics of the external memory system, including the state

41

Processor ISA AMD Family 10h

Re-Order-Buffer 256

Pipeline 2.4 GHz, in-order issue, out-of-order execution, out-of-order write

L1 caches 16 KB Inst/16 KB Data, 2-way, 64 Bytes line size, write-through, no write-allocate

L2 cache 512 KB, 4-way, 64 Bytes line size, write-back, write-allocate

Memory Configuration 2 DIMMs/channel, 1 rank/DIMM, 8 devices/rank, 8-bit output/device, 64 bit channel

DRAM Device Parameters

Micron MT41J128M8 DDR3-1600 [2] Timing Parameters

tRCD-tRP -tCL = 10-10-10 (12.5 ns)

8banks/device, 32768 rows/bank, 512 columns/row, 4 KB row buffer

Total DRAM Capacity 1 GBit/device× 8 devices/rank× 2 ranks = 2 GB

Table 6.1 : Processor and DRAM System Parameters.

of all channels, ranks, banks, and rows, in a cycle-accuratemanner. The modified timing

model in COTSon ensures that an instruction only blocks when either the reorder buffer is

full or there is a memory dependence. As the external memory system is cycle-accurate,

these memory dependencies accurately model the delays thatwould be incurred by DRAM

latency.

All configurations use column-first scheduling, single-channel address mapping, page

interleaving, and open page mode for DRAM (with 1Gb x8 devices). A single channel

with one rank per DIMM is simulated for simplicity. As discussed in Section 5.4, memory

access scheduling is performed using a column-first scheduler [1] modified to give specu-

lative eager writebacks low priority. Detailed timing and power parameters for the memory

devices are based upon the Micron MT41J128M8 DDR3-1600 datasheet [2]. Energy and

power are calculated using Micron’s power calculation methodology, assuming x8 DRAM

devices [53].

42

6.2 Applications

We use a wide variety of applications, including Glimpse [54], TPC-C, and a large num-

ber of applications from the MineBench [55], SPEC CFP, and SPECINT benchmark

suites [56]. Glimpse is a text indexing and search application. We use a collection of

program source and text files, whose total size is 2.3 GB, as theinput to Glimpse. TPC-C

is a distributed, on-line transaction processing (OLTP) benchmark specification. We use

an open-source implementation of TPC-C, TPCC-UVa [57]. MineBench is a data min-

ing benchmark suite. We useapriori, an association rule mining application, on a large

dataset. For each of these applications, we simulate 0.5 billion instructions. To eliminate

the initialization phase from our simulations, we apply appropriate fast-forwarding to each

application. We have also performed some simulations with alarger number of instructions

and they have shown similar results.

6.3 Simulation Results

The evaluation of our eager writeback scheme proceeds as follows. We first evaluate a rep-

resentative eager writeback configuration that performs SWAS and cancellation and that

examines two LRU-side cache lines within a set. This configuration is referred to asEager

WB throughout this section. We then evaluate the different features of our scheme individ-

ually in order to understand their impact on the overall results. Specifically, we evaluate the

effects of varying the number of cache lines that are considered for eager writeback and of

disabling SWAS and cancellation. Finally, we look at the effects of combining eager write-

back with a state-of-the-art DRAM address interleaving optimization, XOR-based address

mapping [18]. Unless stated otherwise, the performance andenergy consumption results

for each application are normalized to the results for the baseline system,No Eager WB,

43

that does not perform eager writeback.

6.3.1 Comparison to The Baseline

Since a single write access has high possibility of generating a row activation, as discussed

in Section 4.1, its effectiveness largely depends on the fraction of write accesses. If more

write accesses are issued in running an application, more row activations can be reduced

through eager writebacks. Moreover, if so, the damage done by write interference can be

more reduced.

Table 6.2 presents a breakdown of the row activations with NoEager WB and Eager

WB for each of the applications. Row activations are broken down into three categories:

DRAM read (RD), write interference (RD Interfered), and DRAM write (WR). Row

activations in bothRD Interfered andWRcategories represent potentially destructive

row activations and can possibly be eliminated by our eager writeback scheme.

The fractions in all of the columns are relative to the total number of row activations

in No Eager WB. For example, 17% of all activations inlibquantum are due to DRAM

reads. In Eager WB, row activations due to DRAM reads increase to18% of the number of

activations in No Eager WB. However, the total number of row activations with Eager WB

is only 42% of the total number of activations with No Eager WB. Therefore, the lower the

“Total”, the more effective our eager writeback scheme is atreducing row activations.

With Eager WB, the total number of row activations is reduced byan average of 38%

and a maximum of 81%. Moreover, the total number of row activations is never in-

creased for any of these applications. Specifically, the number of row activations in the

RD Interfered category is reduced from 14% to 2% of the total with No Eager WB.

With Eager WB, the average number of row activations by DRAM writes, which is the sum

of WR and Eager WR, accounts for only 10% of the average number of all row activations.

44

This is a significant reduction from the 36% observed with No Eager WB. However, some

applications, such assjeng, gamess, bwave, andomnetpp, show no more than a 10% reduc-

tion in the total number of row activations. Except forsjeng, these are the applications that

perform the fewest DRAM writes.

The remaining destructive row activations in Eager WB (fromRD Interfered and

WR) occur largely because of cancellation. When higher priority read accesses arrive, pend-

ing eager writebacks are cancelled and therefore occur later when the dirty cache line is

evicted, often causing row activations at that point.

Table 6.3 presents the average number of accesses to an activated row with No Eager

and Eager WB for each of the applications in the first tow columns. The third column

(Improved) shows the number that the results in Eager WB are normalized to the results

in No Eager WB. This shows the relative improvement in utilizing activated rows. For

example, an activated row inlbm was accessed an average of 1.83 times with No Eager

WB. With Eager WB, it increases to 9.58, meaning that there is 5.23times of improvement

in accessing data in the activated row. Therefore, the higher the Improved , the more

effective our eager writeback scheme is at clustering readsand writes to the same row.

With Eager WB, 9 applications improve accesses to the row more than twice.

There are two factors that limit this improvement in Eager WB. First, Cancellation

itself is a mechanism that limits performing many accesses per row activation. Second,

the physical address is mapped into DRAM banks following the direct-mapped scheme,

and the degree of bank-level parallelism in the memory is relatively small. So, there are

still frequent conflicts between DRAM accesses within the bank that interchange rows in

the row buffer frequently. We observed that to promote accesses on the row, releasing strict

constraints placed upon Cancellation works better than having more bank-level parallelism.

Because the reduction in row activations is considerable, many of the applications

45

Figure 6.1 : Performance Improvement and Energy Savings for29 Applications (Normal-
ized to The Results of No Eager WB). The larger number means the more optimized.

achieve significant performance improvements and energy savings, as illustrated in Fig-

ure 6.1. Specifically, out of the 29 total applications, 11 have overall performance improve-

ments between 10% and 20%, and 9 have improvements in excess of 20%. Moreover, 10

consume between 10% and 20% less DRAM energy, and 10 have energy consumption re-

ductions in excess of 20%. One interesting, also expected, trend is that applications for

which row activations are significantly reduced tend to gainremarkable benefits. For ex-

ample,lbm, mcf, hmmer, gromacs, deal, calculix, andh264ref, for which the reduction in

row activations is larger than 50%, achieve 20% or more improvement in both performance

and energy consumption. Conversely, applications with minor reductions in row activations

46

(e.g. sjeng, gamess, bwave, andomnetpp) achieve performance improvements and energy

reductions of no more than 5%.

6.3.2 Varying the Number of Cache Lines Written Back

Determining appropriate cache lines used for eager writeback is critical. If many useless

cache lines are included, resources in DRAM, such as bandwidth and cycles, will signif-

icantly be wasted—these are eager cache line writebacks where the cache line is written

to again before it is evicted, and thus the cache line must be written again to DRAM. On

the other hand, if too few useful cache lines are included, itis difficult to expect to achieve

substantial improvements. One simple metric that can be used to control these properties

is the position in the set-associative cache [17] where cache lines are located. As discussed

in Section 5.3, dirty cache lines located nearer to the leastrecently used position are do not

tend to be written again. Therefore, these cache lines are more useful than the cache lines

that are most recently used. But, note that not all cache linesat the most recently used are

useless.

Figure 6.2 and 6.3 show the effect on performance and energy consumption, respec-

tively, of varying the number of least recently used positions in a cache set that may be

eagerly written back. In these figures, Eager WB-N denotes a configuration that may write

back the N least recently used cache lines from each set. Thus, in these figures, the config-

uration that we evaluated in Section 6.3.1, Eager WB, is renamed Eager WB-2.

As compared to Eager WB-2, more aggressive configurations, such as Eager WB-4, that

may write back more cache lines from a set achieve relativelyworse overall results. While

for some applications the more aggressive configurations achieve slight improvements, for

many other applications they achieve significantly worse results. The explanation for this

has two aspects. First, with the more aggressive configurations,useless cache line write-

47

Figure 6.2 : Performance Improvement with Different Cache Lines for a Eager WB (de-
noted as Eager WB-N for using N LRU-side lines for a speculativewriteback issue).

backs are more likely to occur. Second, cancellation is morelikely to occur because of

the larger number of cache lines that the more aggressive configurations are writing back.

Thus, many useful cache line writebacks are cancelled, leading to later DRAM writes when

the cache lines are evicted.

The situation in Eager WB-4 will be much better if eager writebacks for a row are issued

in an ordered way thatuseful cache lines are written back beforeuseless ones. These eager

writebacks are issued in a way that those dirty cache lines inthe most LRU position are

written first, those in the second most LRU position are written next, and so on. In this

approach, eager writebacks that are not likely to be writtenagain will be scheduled earlier.

48

Figure 6.3 : Energy Savings with Different Cache Lines for a Eager WB (denoted as Eager
WB-N for using N LRU-side lines for a speculative writeback issue).

Therefore, eager writebacks that are scheduled until the cancellation tend to be moreuseful

compared to the unordered issues. This will result in havingless cache lines that must be

written again to DRAM because of more processing of useful cache line writebacks. We

expect that this approach will at least perform as good as other good configurations, such

as Eager WB-2.

Surprisingly, the least aggressive configuration, Eager WB-1, achieves overall results

that are almost as good as Eager WB-2. In fact,gamess, povray, andtonto achieve the most

energy savings and performance improvement with Eager WB-1. For these applications, as

compared to the others, data writes are more likely to hit in the cache, cache lines are less

49

likely to be evicted, and DRAM writebacks are relatively infrequent. So, more aggressive

configurations simply result in more useless cache line writebacks.

6.3.3 Evaluation with SWAS and Cancellation Disabled

Using SWAS and Cancellation allows read accesses to be scheduled as early as possible.

However, without these optimizations, clustering of readsand writes is maximized, as all

eager writebacks will always complete, keeping rows open for a longer period of time and

performing more accesses per row activation. In contrast, the use of SWAS and Cancel-

lation reduces the average read latency, but potentially incurs additional row activations.

These optimizations are complementary and perform much better together than alone.

Figure 6.4 and 6.5 evaluate the trade-offs with these optimizations. “SWAS-Can-Dis”

shows the performance improvements and energy savings relative to No Eager WB when

the SWAS and Cancellation optimizations are disabled. In contrast, “SWAS-Can-En”

shows the improvements over No Eager WB when the optimizations are enabled. As the

figure shows, our eager writeback scheme provides improvements both with and without

SWAS and Cancellation for all benchmarks exceptapriori. Apriori under SWAS-Can-Dis

performs 25% more writes than the baseline due to useless cache line writebacks. It also

has a high row-buffer hit count (> 6). Together these result in the situation that reads are

often delayed by earlier speculative writes, some of which are also useless writes. There-

fore, these two optimizations are necessary to make sure that our eager writeback scheme

“does no harm”.

Enabling only Cancellation works very similarly to SWAS-Can-Dis, meaning that Ca-

cellation itself has no significant effects. Enabling only SWAS, however, has a potential

problem that switches scheduling of eager writebacks and incoming reads back and forth,

causing repeated row activations. In the worst case, 2N row activations can occur with N

50

Figure 6.4 : Comparison of Performance Improvement with Results Observed With SWAS
and Cancellation disabled.

eager writebacks. This is observed inapriori and results in much more energy consumption

than SWAS-Can-Dis. Because using SWAS makes reads not significantly delayed though,

the performance with only SWAS enabled is very similar to SWAS-Can-En.

6.3.4 XOR-based Address Mapping

XOR-based address mapping, often calledBank Swizzle Mode, generates the memory bank

index by XOR-ing two portions of the memory address bits. It was proposed as a way of

reducing row buffer conflicts between a cache line fill and a cache line eviction within the

same set [18]. Specifically, it reduces the likelihood that the fill and the eviction access the

51

Figure 6.5 : Comparison of Energy Savings with Results Observed With SWAS and Can-
cellation disabled.

same bank. Hence, it reduces the likelihood of write interference if the system typically

has some idle memory banks. XOR-based mapping is supported bymany AMD and Intel

processors, and can be enabled via the BIOS interface [58].

Figures 6.6 and 6.7 compare the performance and energy savings, respectively, for three

configurations: No Eager WB with XOR-based mapping (XOR), EagerWB, and Eager

WB with XOR-based mapping (Eager WB-XOR). As always, the results shown in the fig-

ure are normalized to the results for No Eager WB. By itself, XOR increases performance

and reduces energy consumption considerably. These applications are single-threaded.

Consequently, there are often idle banks that XOR can take advantage of. Nonetheless,

52

Figure 6.6 : Comparison of Performance Improvement with XOR-Based Memory Mapping
(XOR) and with Eager WB on XOR (Eager WB-XOR)

Eager WB usually achieves better results than XOR. Moreover, the combination of eager

writeback and the XOR-based mapping, Eager WB-XOR, is usually the best of the three

configurations. Like Eager WB, Eager WB-XOR always achieves better results than the

baseline, No Eager WB. Moreover, Eager WB-XOR achieves better results than XOR for

all but 2 of the 29 applications,tonto andpovray. For those two applications Eager WB-

XOR suffers from frequent switching from eager writes to reads across different banks in

a rank under our priority scheme.

While XOR-based mapping may reduce the likelihood of write interference, eager

writeback actually addresses its fundamental cause, poor row-level locality of access.

53

Figure 6.7 : Comparison of Energy Savings with XOR-Based MemoryMapping (XOR)
and with Eager WB on XOR (Eager WB-XOR)

Whereas XOR-based mapping simply redirects accesses to different banks, eager write-

back aggressively reorders accesses to increase row-levellocality. Furthermore, the eager

writeback approach is not dependent on the existence of idlebanks to increase performance

and reduce energy consumption.

6.3.5 Overhead

Figure 6.8 presents a decomposition of the DRAM accesses withNo Eager WB, Eager

WB-1, and Eager WB-2 for each of the applications, which correspond to the first, second,

and third stacked bar, respectively, for the application. DRAM accesses are broken down

54

Figure 6.8 : Decomposition of DRAM Accesses by Access Type. NoEager WB, Eager
WB-1, and Eager WB-2 correspond to the three stacked bars (in order from left to right)
for each application. The fractions in all of the values are relative to the total number of
DRAM accesses in No Eager WB.

into three categories: DRAM read (Read), DRAM write (Write), and eager writeback

(Eager Write). In the figure, the fractions in all of the values are relative to the total

number of DRAM accesses in No Eager WB. For example, 51.9% and 48.1% of all DRAM

accesses inhmmer are due to reads and writes, respectively, with No Eager WB. In Eager

WB-2, DRAM writes decrease to 5.5% of the number of DRAM accesses in No Eager

WB, and instead eager writebacks occupy 42.8%. The fraction ofDRAM reads remains

the same.

55

This figure specifically illustrates two trends in eager writebacks. First, it shows how

effectively DRAM writes are transformed to eager writebacksas moved to Eager WB-

2. The lower the “Write” in Eager WB-1 or Eager WB-2, the more effective our eager

writeback scheme is at doing so. Second, it shows the overhead of using eager writebacks

such that more memory traffic is required with Eager WB-1 or Eager WB-2 due to writing

cache lines that will be re-written later. For example, since the fraction of DRAM reads

remains unchanged with eager writebacks, there is only a marginal increase in the memory

traffic by 0.2% inhmmer.

The figure shows that our eager writeback scheme is very effective in transforming

normal, destructive DRAM writes into eager writebacks for both configurations. Moreover,

it shows that our scheme effectively prevents the memory traffic from increasing too much.

In fact, if more cache lines from a set are written back, the overhead tends to increase.

Therefore, for some applications, such astonto, gobmk, calculix, deal, andpovray, our

eager writeback scheme increases the memory traffic more than 10%. However, for most

of the applications, our eager writeback scheme incurs acceptable overhead. Especially,

more than half of the applications increase the memory traffic less than 1.0%.

6.4 Conclusions

A variety of applications running on a full-system simulator are used to evaluate the ef-

fects of our eager writeback scheme on performance and energy consumption. In short,

the simulations show that our eager writeback scheme reduces the number of DRAM row

activations by an average of 38% and a maximum of 81%. Moreover, our eager writeback

scheme produces compelling performance improvements and energy consumption reduc-

tions. Out of 29 applications, 11 have overall performance improvements between 10%

and 20%, and 9 have improvements in excess of 20%. Furthermore, 10 consume between

56

10% and 20% less DRAM energy, and 10 have energy consumption reductions in excess

of 20%.

In addition, this chapter examines the effects of combiningour eager writeback scheme

with a well-known DRAM address interleaving optimization, XOR-based address map-

ping. This optimization is also calledBank Swizzle Mode. XOR-based address mapping

was originally proposed as a way of reducing row buffer conflicts between a cache line fill

and a cache line eviction within the same set [18]. The results show that our eager write-

back scheme and XOR-based address mapping generally complement each other. Usually,

their combination achieves better results than either one alone.

57

No Eager WB Eager WB

RD RD Interfered WR RD RD Interfered WR Total

libquantum 130816 (0.17) 203469 (0.27) 425596 (0.56) 136350 (0.18) 16108 (0.02) 169750 (0.22)(0.42)

hmmer 862322 (0.39) 219710 (0.10) 1101266 (0.50) 870460 (0.40) 5688 (0.00) 151525 (0.07)(0.47)

lbm 577917 (0.04) 5903593 (0.43) 7317800 (0.53) 532237 (0.04) 971420 (0.07) 1133063 (0.08)(0.19)

astar 1118966 (0.31) 682640 (0.19) 1841565 (0.51) 1144581 (0.31) 182995 (0.05) 515661 (0.14)(0.51)

sjeng 189913 (0.57) 2583 (0.01) 139369 (0.42) 189592 (0.57) 2478 (0.01) 112807 (0.34)(0.92)

tonto 16249 (0.31) 10537 (0.20) 26469 (0.50) 15294 (0.29) 2024 (0.04) 7439 (0.14) (0.46)

gobmk 252021 (0.46) 66309 (0.12) 234455 (0.42) 251913 (0.46) 17286 (0.03) 68098 (0.12)(0.61)

bzip2 880371 (0.44) 239285 (0.12) 865982 (0.44) 881132 (0.44) 53769 (0.03) 209472 (0.11)(0.58)

h264ref 110662 (0.35) 70182 (0.22) 135736 (0.43) 111708 (0.35) 10287 (0.03) 29492 (0.09)(0.48)

gems 9320385 (0.69) 296588 (0.02) 3804887 (0.28) 9324255 (0.69) 44177 (0.00) 307186 (0.02)(0.72)

calculix 6214 (0.36) 3756 (0.22) 7405 (0.43) 6270 (0.36) 538 (0.03) 1057 (0.06) (0.45)

soplex 4126784 (0.59) 553978 (0.08) 2315124 (0.33) 4127887 (0.59) 171281 (0.02) 836009 (0.12)(0.73)

leslei3d 3000215 (0.62) 626336 (0.13) 1239772 (0.25) 2986233 (0.61) 38073 (0.01) 169415 (0.03)(0.66)

gromacs 97400 (0.32) 92328 (0.30) 116692 (0.38) 98886 (0.32) 5178 (0.02) 7704 (0.03) (0.36)

perlbench 508525 (0.45) 198450 (0.18) 410769 (0.37) 510178 (0.46) 32320 (0.03) 70545 (0.06)(0.55)

cactus 2479443 (0.76) 48431 (0.01) 742433 (0.23) 2473102 (0.76) 3357 (0.00) 95701 (0.03)(0.79)

deal 82642 (0.24) 110631 (0.33) 144297 (0.43) 82739 (0.25) 12448 (0.04) 17596 (0.05)(0.33)

namd 11407 (0.44) 4682 (0.18) 9665 (0.38) 11404 (0.44) 727 (0.03) 2274 (0.09) (0.56)

mcf 3413153 (0.29) 3771163 (0.32) 4646697 (0.39) 3432441 (0.29) 208079 (0.02) 285611 (0.02)(0.33)

zeusmp 990150 (0.80) 31475 (0.03) 221578 (0.18) 990734 (0.80) 3232 (0.00) 12371 (0.01)(0.81)

gcc 29709 (0.57) 8179 (0.16) 14570 (0.28) 29773 (0.57) 722 (0.01) 1417 (0.03) (0.61)

povray 1983 (0.64) 339 (0.11) 758 (0.25) 1986 (0.64) 112 (0.04) 244 (0.08) (0.76)

gamess 2379 (0.77) 160 (0.05) 552 (0.18) 2446 (0.79) 91 (0.03) 348 (0.11) (0.93)

sphinx3 2935051 (0.87) 148208 (0.04) 278787 (0.08) 2936898 (0.87) 17585 (0.01) 41168 (0.01)(0.89)

bwave 29960493 (0.96) 158822 (0.01) 963946 (0.03)29962832 (0.96) 10976 (0.00) 322769 (0.01)(0.97)

omnetpp 2505014 (0.93) 44063 (0.02) 148554 (0.06) 2514700 (0.93) 8438 (0.00) 68579 (0.03)(0.96)

apriori 2914963 (0.26) 229713 (0.02) 8172633 (0.72) 2975646 (0.26) 185554 (0.02) 5751747 (0.51)(0.79)

glimpse 128272 (0.49) 27111 (0.10) 104167 (0.40) 128160 (0.49) 8421 (0.03) 29723 (0.11)(0.64)

tpcc 1478498 (0.48) 477466 (0.16) 1096572 (0.36) 1479989 (0.48) 129609 (0.04) 298001 (0.10)(0.62)

Avg. (0.50) (0.14) (0.36) (0.50) (0.02) (0.10) (0.62)

Table 6.2 : Decomposition of Row Activations. The SPEC applications are presented in
the same order as in Table 4.1, which is based on the fraction of DRAM accesses that are
writes.

58

No Eager WB Eager WB Improved

libquantum 16.77 39.56 2.36

hmmer 1.38 2.93 2.13

lbm 1.83 9.58 5.23

astar 1.69 3.36 1.99

sjeng 1.06 1.16 1.10

tonto 3.28 10.11 3.08

gobmk 1.82 3.49 1.91

bzip2 1.70 3.04 1.78

h264ref 3.12 6.58 2.11

gems 1.14 1.59 1.39

calculix 1.83 4.53 2.47

soplex 1.70 2.34 1.38

leslei3d 1.57 2.40 1.53

gromacs 2.08 6.07 2.92

perlbench 2.09 3.97 1.90

cactus 1.06 1.35 1.27

deal 3.33 11.21 3.36

namd 4.31 7.99 1.86

mcf 3.12 9.40 3.01

zeusmp 1.47 1.82 1.24

gcc 2.16 3.67 1.70

povray 2.91 4.58 1.57

gamess 2.62 3.08 1.18

sphinx3 2.09 2.35 1.12

bwave 1.06 1.09 1.03

omnetpp 2.64 2.75 1.04

apriori 2.27 3.02 1.33

glimpse 2.37 3.98 1.68

tpcc 1.94 3.34 1.72

Table 6.3 : Average Row Buffer Hit Count for No Eager and Eager WB. The Improved
indicates the the number that the results in Eager WB are normalized to the results in No
Eager WB.

59

CHAPTER 7

Conclusions

This thesis introduces a new way in which to use eager writeback in order to optimize

DRAM performance and energy efficiency. Under this scheme, dirty cache lines are writ-

ten to DRAM ahead of time when their associated row has been activated. This enables

better clustering of accesses, both read and write, that target the same row. The proposed

scheme increases the row-level locality of access and reduces the number of row activa-

tions, increasing bandwidth and reducing energy.

The proposed scheme reduces row activations by an average of36% for 29 applications.

For the applications with more than 15% DRAM writes, row activations are reduced by

69%. This reduction results in significant improvements in both performance and energy.

Specifically, 20 applications achieve a 10% improvement in both performance and energy

consumption.

This thesis evaluates the proposed eager writeback scheme along several dimensions.

In most cases, it is sufficient to perform eager writebacks only for cache lines in the LRU

position. Speculatively writing back cache lines in more recently used positions results in

marginal benefits. Therefore, the technique is practical, as it can share cache line eviction

logic. In addition, the use of a modified scheduling algorithm and allowing eager write-

backs to be canceled ensures that our proposed techniques donot degrade performance or

energy consumption.

60

7.1 Future work

The wide use of multi-core processors requires main memory to have steadily rising bus

frequency to provide higher data bandwidth. Moreover, datain the row buffer is accessed

much fewer, as memory access streams that multi-core processors simultaneously generate

have made main memory randomly accessed [28, 16]. The dynamic energy consumption

of main memory in this trend significantly increases. Furthermore, the situation will be

worse as systems continue to evolve to embed more cores in thedesign. To this extent,

more work should be done to qualitatively and quantitatively verify the suitability of using

the scheme proposed in this thesis on multi-core systems.

The primary concern with the use in multi-core systems is theeffectiveness of SWAS

and Cancellation. In these systems, almost all memory banks are busy for processing re-

quests coming from the multiple cores. SWAS and Cancellationare not likely to be effec-

tive in this case because there will be considerably fewer usable idle cycles during which

eager writebacks can be scheduled and processed. This meansthat performance improve-

ment and energy savings with the direct use of the proposed scheme on multi-core systems

can be not as good as results presented in this thesis. Thus, the proposed scheme would

need to be qualitatively and quantitatively evaluated, analyzed and improved in more detail

to be efficiently working in single-, multi-, or even many-core systems.

Managing useless writes should also be taken into account incurrent computer systems.

This thesis has shown that it is sufficient to only perform eager writebacks on cache lines in

the LRU position. However, ignoring the waste of memory bandwidth that is caused by the

processing of useless writes can be problematic in such systems that the available memory

bandwidth is scarce and under heavy use(i.e. many-core systems). Further research is

needed to determine which dirty cache lines will be and not begenerating useless writes if

61

eagerly written. This is an issue of identifying premature and mature cache lines, similar

to that identifying dead cache lines [59, 60]. We plan to analyze the behavior of writes to

cache lines to understand the characteristics of those cache lines.

62

Bibliography

[1] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access

scheduling,” inISCA ’00, pp. 128–138, 2000.

[2] Micron Technology Inc., “Micron MT41J128M8 DDR3-1600,” 2010.

http://download.micron.com/pdf/datasheets/dram/ddr3/

1Gb_DDR3_SDRAM.pdf.

[3] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,” in Proceedings of the

IEEE, pp. 490–504, 2001.

[4] ITRS. International Technology Roadmap for Semiconductors, 2007 Edition.http:

//www.itrs.net/Links/2007ITRS/Home2007.htm .

[5] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller, “Energy

Management for Commercial Servers,”IEEE Computer, vol. 36, pp. 39–48, 2003.

[6] U. Hoelzle and L. A. Barroso,The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st ed.,

2009.

[7] M. S. Ware, K. Rajamani, M. S. Floyd, B. Brock, J. C. Rubio, F. L. Rawson III, and

J. B. Carter, “Architecting for power management: The IBM POWER7TM approach,”

in HPCA ’10, pp. 1–11, 2010.

[8] DDR3 SDRAM System-Power Calculator. http://www.micron.

com/support/dram/ ˜ /media/Documents/Products/Power%

63

20Calculator/4300DDR3_Power_Calc.ashx .

[9] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K.John, “The virtual write

queue: coordinating DRAM and last-level cache policies,” inISCA ’10, pp. 72–82,

2010.

[10] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “DRAM-aware

last-level cache writeback: Reducing write-caused interference in memory systems,”

Tech. Rep. TR-HPS-2010-002, The University of Texas at Austin, April 2010.

[11] B. Jacob, S. Ng, and D. Wang,Memory Systems: Cache, DRAM, Disk. Morgan

Kaufmann, 2007.

[12] S. Rixner, “Memory Controller Optimizations for Web Servers,” in MICRO 37,

pp. 355–366, 2004.

[13] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-rank: Adaptive

DRAM architecture for improving memory power efficiency,” inMICRO 41, pp. 210–

221, 2008.

[14] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi, “Multicore DIMM: an Energy

Efficient Memory Module with Independently Controlled DRAMs,” IEEE Comput.

Archit. Lett., vol. 8, pp. 5–8, January 2009.

[15] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and

N. P. Jouppi, “Rethinking DRAM design and organization for energy-constrained

multi-cores,” inISCA ’10, pp. 175–186, 2010.

[16] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Davis,

“Micro-pages: increasing DRAM efficiency with locality-aware data placement,” in

64

ASPLOS ’10, pp. 219–230, 2010.

[17] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager writeback - a technique for

improving bandwidth utilization,” inMICRO 33, pp. 11–21, 2000.

[18] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme to

reduce row-buffer conflicts and exploit data locality,” inMICRO 33, pp. 32–41, 2000.

[19] T.-F. Chen and J.-L. Baer, “Reducing memory latency via non-blocking and prefetch-

ing caches,” inASPLOS-V, pp. 51–61, 1992.

[20] S. McKee, W. Wulf, J. Aylor, R. Klenke, M. Salinas, S. Hong, and D. Weikle, “Dy-

namic Access Ordering for Streamed Computations,”IEEE Transactions on Comput-

ers, vol. 49, no. 11, pp. 1255–1271, 2000.

[21] Z. Zhu, Z. Zhang, and X. Zhang, “Fine-grain Priority Scheduling on Multi-channel

Memory Systems,” inHPCA ’02, pp. 107–, 2002.

[22] I. Hur and C. Lin, “Adaptive History-based Memory Schedulers,” in MICRO 37,

pp. 343–354, 2004.

[23] Z. Zhu and Z. Zhang, “A Performance Comparison of DRAM Memory System Opti-

mizations for SMT Processors,” inHPCA ’05, pp. 213–224, 2005.

[24] I. Hur and C. Lin, “Memory Scheduling for Modern Microprocessors,”ACM Trans-

actions on Computer Systems, vol. 25, no. 4, 2007.

[25] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors,” inMICRO 40, 2007.

[26] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems,” inISCA ’08, pp. 63–74, 2008.

65

[27] E. Cooper-Balis and B. Jacob, “Fine-grained activation for power reduction in dram,”

IEEE Micro, vol. 30, pp. 34–47, May 2010.

[28] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S.Schreiber, “Future scaling

of processor-memory interfaces,” inSC ’09, pp. 42:1–42:12, 2009.

[29] I. Hur and C. Lin, “A comprehensive approach to DRAM power management,” in

HPCA-14, pp. 305–316, 2008.

[30] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving energy efficiency by

making DRAM less randomly accessed,” inISLPED ’05, pp. 393–398, 2005.

[31] J. Pisharath and A. Choudhary, “An integrated approach to reducing power dissipation

in memory hierarchies,” inCASES ’02, pp. 88–97, 2002.

[32] M. S. Floyd, S. Ghiasi, T. W. Keller, K. Rajamani, F. L. Rawson, J. C. Rubio, and

M. S. Ware, “System power management support in the IBM POWER6 microproces-

sor,” IBM J. Res. Dev., vol. 51, pp. 733–746, 2007.

[33] J. Flinn, K. I. Farkas, and J. Anderson, “Power and energy characterization of the

Itsy pocket computer (version 1.5),” Tech. Rep. TN-56, CompaqWestern Research

Laboratory, February 2000.

[34] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” in

USENIX ATC ’10, pp. 21–21, 2010.

[35] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving DRAM

refresh-power through critical data partitioning,” inASPLOS ’11, pp. 213–224, 2011.

[36] C. Isen and L. John, “ESKIMO: Energy savings using Semantic Knowledge of Incon-

sequential Memory Occupancy for DRAM subsystem,” inMICRO 42, pp. 337–346,

66

2009.

[37] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced Memory Controller De-

sign for Reducing Energy in Conventional and 3D Die-Stacked DRAMs,” in MICRO

40, pp. 134–145, 2007.

[38] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page allocation,” in

ASPLOS-IX, pp. 105–116, 2000.

[39] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation of power-aware

virtual memory,” inUSENIX ATC ’03, pp. 5–5, 2003.

[40] H. Huang, K. G. Shin, C. Lefurgy, K. Rajamani, T. Keller, E.Hensbergen, and

F. Rawson, “Software-hardware cooperative power management for main memory,”

in PACS’04, pp. 61–77, 2005.

[41] M. Lee, E. Seo, J. Lee, and J.-s. Kim, “PABC: Power-Aware Buffer Cache Man-

agement for Low Power Consumption,”IEEE Transactions on Computers, vol. 56,

pp. 488–501, 2007.

[42] M. Bi, R. Duan, and C. Gniady, “Delay-Hiding energy management mechanisms for

DRAM,” in 16th International Conference on High-Performance Computer Architec-

ture, HPCA-16, pp. 1–10, 2010.

[43] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “DMA-awarememory energy man-

agement,” in12th International Symposium on High-Performance Computer Archi-

tecture, HPCA-12, pp. 133–144, 2006.

[44] V. D. L. Luz, M. Kandemir, and I. Kolcu, “Automatic data migration for reducing

energy consumption in multi-bank memory systems,” inDAC ’02, pp. 213–218, 2002.

67

[45] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin,

“DRAM Energy Management Using Software and Hardware Directed Power Mode

Control,” in HPCA ’01, pp. 159–, 2001.

[46] O. Ozturk and M. Kandemir, “Data Replication in Banked DRAMs for Reducing

Energy Consumption,” inISQED ’06, pp. 551–556, 2006.

[47] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,

“Scheduler-based DRAM energy management,” inDAC ’02, pp. 697–702, 2002.

[48] A. Merkel and F. Bellosa, “Memory-aware scheduling for energy efficiency on multi-

core processors,” inProceedings of the 2008 conference on Power aware computing

and systems, HotPower’08, pp. 1–1, 2008.

[49] J.-W. Jang, M. Jeon, H.-S. Kim, H. Jo, J.-S. Kim, and S. Maeng, “Energy reduction

in consolidated servers through memory-aware virtual machine scheduling,”IEEE

Transactions on Computers, vol. 60, pp. 552–564, 2011.

[50] E. Argollo, A. Falćon, P. Faraboschi, M. Monchiero, and D. Ortega, “COTSon: infras-

tructure for full system simulation,”SIGOPS Oper. Syst. Rev., vol. 43, no. 1, pp. 52–

61, 2009.

[51] DRAMSim2: A Detailed Memory-System Simulation Framework. http://www.

ece.umd.edu/dramsim/ .

[52] AMD SimNow Simulator. http://developer.amd.com/tools/simnow/

Pages/default.aspx .

[53] “Calculating Memory System Power for DDR3,” Tech. Rep. TN-41-01, Micron Tech-

nology Inc., 2007.

68

[54] U. Manber and S. Wu, “GLIMPSE: a tool to search through entire file systems,” in

Proceedings of the USENIX Winter 1994 Technical Conference, pp. 23–32, 1994.

[55] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, andA. Choudhary,

“MineBench: A Benchmark Suite for Data Mining Workloads,” in2006 IISWC,

pp. 182–188, 2006.

[56] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” inProceedings of ACM

SIGARCH Computer Architecture News, 2005.

[57] TPCC-UVa: A free, open-source implementation of the TPC-CBenchmark.http:

//www.infor.uva.es/ ˜ diego/tpcc-uva.html .

[58] AMD, “BIOS and Kernel Developer’s Guide for AMD Athlon 64and AMD Opteron

Processors.” http://support.amd.com/us/Processor_TechDocs/

26094.pdf .

[59] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction &dead-block correlating

prefetchers,” inISCA ’01, pp. 144–154, 2001.

[60] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and bypassing algo-

rithms,” IEEE Transactions on Computers, vol. 57, pp. 433–447, April 2008.

