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Abstract

Coding for Phase Change Memory Performance Optimization

by

Azalia Mirhoseini

Over the past several decades, memory technologies have exploited

continual scaling of CMOS to drastically improve performance and cost.

Unfortunately, charge-based memories become unreliable beyond 20 nm

feature sizes. A promising alternative is Phase-Change-Memory (PCM)

which leverages scalable resistive thermal mechanisms. To realize PCM’s

potential, a number of challenges, including the limited wear-endurance

and costly writes, need to be addressed. This thesis introduces novel

methodologies for encoding data on PCM which exploit asymmetries

in read/write performance to minimize memory’s wear/energy consump-

tion. First, we map the problem to a distance-based graph clustering

problem and prove it is NP-hard. Next, we propose two different ap-

proaches: an optimal solution based on Integer-Linear-Programming, and

an approximately-optimal solution based on Dynamic-Programming. Our

methods target both single-level and multi-level cell PCM and provide

further optimizations for stochastically-distributed data. We devise a low

overhead hardware architecture for the encoder. Evaluations demonstrate

significant performance gains of our framework.
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Chapter 1

Introduction

In the design of digital integrated circuits, memory often significantly impacts the

system’s implementation cost, performance, and power dissipation. Presently, there

is an ever increasing performance and energy gap between emerging (multi-)processor

families and memory. For portable devices and embedded systems with constrained

energy sources, minimizing memory energy dissipation is of great importance [1].

Improving and scaling the currently used storage technologies, would have a limited

effectiveness in the long run, especially as the miniaturized technologies reach the

limits of the silicon. For example, for capacitive memories such as DRAM, scaling

beyond 20 nm would likely result in a diminishing capacitor with increased leakage

that is unreliable for holding the charge [2]. The newer resistive memory technologies

enable an alternative or a hybrid solution that could bridge the growing performance

and energy gap between processing and storage.

The data storage mechanism for resistive memories is built upon the large electrical

resistance discrepancy between the states of a phase-change material. In one phase

(state), the material is amorphous and has a very high resistance. In another phase,

the same material is crystalline which is highly conductive. Extensive research in

the field of phase change storage has demonstrated new material and non-volatile
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memory cell structures with improved performance, integration, endurance, retention,

and yield properties. Phase-change memory is projected to scale to 9nm [3, 4]. Since

several recent work have adopted the PCM terminology for Phase-Change Memory,

in the remainder of the manuscript, we use this term.

This thesis aims at minimizing the energy cost of rewriting to the PCM by propos-

ing very low overhead data encoding methods. Our general optimization is easily

integrable within the processor architecture and memory interface with a very low

complexity and overhead. The method is largely transparent and orthogonal to most

other energy saving transformations and methods. Our proposed resistive memory

encoding utilizes bitwise manipulation ability during the word overwrites; only the

bits that are changing for the new word compared to the existing word in the mem-

ory location would require overwriting. Our encoding ensures that the number of

required overwrites is minimized. Our optimizations capture asymmetries in energy

cost of read, set, and reset operations.

A special case of data encoding for minimizing the unidirectional transitions in the

memory is the Write-Once Memory (WOM) coding originally proposed by Rivest and

Shamir [5]. They assumed a memory model where the bits could only be set (and could

not be reset) and the goal was to increase the number of effective cycles for rewriting

to the memory. Subsequent interesting work followed, mostly in information theory

and coding with the goal of estimating the capacity and finding more efficient WOM

codes. Applications and extension of this model for addressing the flash memory

device lifetime improvements were studied [6, 7, 8]. These methods however cannot be

directly applied to PCM due to its distinctive energy characteristics. There has been a

few work focusing specifically on improving PCM endurance and energy consumption.

Reducing the number of cell programming in data updates by avoiding reprogramming

redundant bits and flipping the data in case it costs less programming energy has been
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suggested [9, 10]. Our work generalizes the above approaches by devising codes for

minimizing the energy cost of bi-directional bit transitions for PCM data writes.

The large space of possibilities provided by the freedom in both setting and re-

setting transitions, and the possibility to perform bit-level operations, motivate the

development of new type of codes that can improve the PCM’s energy consumption.

The complicating factors for this problem are the new degrees of freedom and the

curse-of-dimensionality resulting from the exponential number of plausible code com-

binations. To address the challenge, this thesis presents a novel formal handling of

the energy minimization that is appropriate for resistive memory and other storage

technologies with bit-level operations and simultaneous consideration of the set and

reset transition energy costs. Our contributions are as follows.

• We introduce a formal treatment and formulation of PCM coding, with the goal

of minimizing the energy. We show that the problem is NP-complete.

• A methodology for deriving the optimal bounds for minimum-energy data en-

coding problem is developed.

• We devise a new Integer Linear Programming (ILP) formulation that can find

the optimal solution to the problem. Our ILP framework can integrate both

symmetric and asymmetric set/reset costs for different code sizes.

• For runtime and efficiency reasons, we develop a new alternative rapid and

efficient algorithms for addressing the problem. The method builds upon the

smaller optimal codes using Dynamic Programming (DP).

• An efficient distribution-aware data encoding method for non-uniformly dis-

tributed data is introduced.

• We discuss and analyze how our method reduce the memory wear.
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• An architecture for the coding module is proposed and its overhead is discussed.

• We develop and present a new energy efficient coding for Multi-Level Cell PCM

that incorporates its different structure and energy-related properties compared

to PCM.

• Evaluation of the proposed encoding methods on a diverse set of data stored

on PCM is demonstrated. The data includes a diverse set of benchmark image,

audio and text files.

An earlier version of this work appeared in 49th Design Automation Conference

(DAC) in San Fransisco, CA [11].



Chapter 2

Related Work and Background

Recent advances in resistive memory material and device technology have paved the

way for building PCM devices that are comparable or better than conventional solid

state memory and DRAM in terms of certain properties. The field has been rapidly

growing in recent years both in research and in terms of industrial prototypes, making

PCM the most viable emerging technology for the next generation storage devices

[12, 13].

The idea of using the resistance change in phase-change material for storage has

been known for more than forty years now [14]. Historically, the performance of

resistive memories was not on par with the contemporary solid state and DRAM

storage alternatives. During the past 15 years, there has been an unprecedented

growth in this technology driven by its desirable characteristics and extensive research

in the field. A number of recent work have shown significant improvements in memory

performance by integrating PCM within the storage hierarchy [15, 16, 17, 18].

Previous PCM research introduced methods for rewriting to the memory cells

such that the writes to all bits have a uniform distribution. The heavily used written

lines are remapped to the less frequently utilized locations by the memory manage-

ment unit [19]. It has been demonstrated that the PCM endurance, reliability, and
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energy consumption would greatly improve if the redundant writes are avoided, i.e.,

by reading the existing contents of the bits and only programming those bits that

must be changed. The method is called Data-Comparison-Write (DCW), [9].

Flip-N-Write (FNW) is a protocol that adds an indicator bit to each word to

determine if the word is inverted or not, [10]. PCM controller can write the data in

an inverted form if it requires less number of bit changes. No optimality proof was

provided. Our paper formalizes, provides proofs and generalizes the Flip-N-Write

method by devising codes of length N + K for words of length N , where K ≥ 1.

Our approach, for the first time in the literature, considers the asymmetric set and

reset energy costs. We will show that significant improvements in energy are achieved

over FNW at the expense of allowing a few extra storage bits. We have also devised

coding for Multi-Level-Cell PCM.

Some of the existing digital storage mechanisms, including the optical storage,

only allow for one directional transition of the bits. Write-Once Memory (WOM)

encoding was introduced in a classic paper by Rivest and Shamir [5] to increase the

number of writes to such memories with one directional bit setting (in an irreversible

fashion). A flurry of subsequent research have centered on improving and generalizing

the WOM codes and to extend its reach to other models. The NAND flash memory

has been modeled as a one-way transitional memory. Thus, generalizations of the

WOM codes have been applied to this class of memories [7, 6, 8].

For the PCM devices, the WOM model and the flash encoding methods do not

correctly capture the specifics of the technology. One reason is that the energy dis-

crepancy ratio between the set and reset commands on the PCM is much less subtle

when compared to the NAND flash memory devices. The other reason, perhaps even

more important, is the ability to perform bit-level manipulation on the PCM, as op-

posed to block-level operations on NAND flash. The bit-level operations for PCM
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have been used earlier for error correcting codes [20]. The work in [20] focused on

developing error correction for PCM. Since the faulty bits are rather static, they have

demonstrated that Error Correcting Pointers (ECP) that include the knowledge of the

fault location, are much more efficient than classic Error Correcting Codes (ECCs).

Error correction is orthogonal to our energy efficient data encoding method.

Write-Efficient Memory or WEM is an extension of WOM that has been intro-

duced in [21]. The objective of WEM codes is to minimize the overall number of

transitions, and therefore, its goal is close to our encoding case when the set and re-

set have equal costs. However, to the best of our knowledge, the few papers available

on WEM have mainly focused on developing bounds but did not provide an optimal-

ity guarantee, or they centered on constructing suitable error correcting codes, e.g.,

[22, 23]. Aside from the loose bounds and the error correction, we have not been

able to find WEM codes that are applicable to the PCM. Besides, we did not find a

transform or discussion of the problem’s NP-completeness in the earlier literature.



Chapter 3

PCM Operation and Energy Model

3.1 Single-Level PCM

A key challenge for non-volatile memory technology, in particular flash, is the high

energy cost of writes [13]. The speed of writing and reading from the caches and from

the DRAM is often high, and therefore, the number of transitions is higher than the

external memories. Therefore, since resistive memory is suggested for replacing and

complementing various storage units in the memory hierarchy, saving the energy cost

of set and reset transitions is of a high value [13, 19].

Programmable 
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Set pulse

Read pulse

(a) (b)

Figure 3.1: (a) The cross section of a conventional PCM memory cell; (b) The flowing
current pulses amplitude and duration control the set, reset, and read operations.

As shown in Figure 3.1(a), the current flows through the phase change mate-

rial(chalcogenide) from the electrode/metal to the heater. This current is provided
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as a pulse, and its duration and amplitude controls the temperature needed for the

set and reset operations. Heating the phase change material above a crystallization

temperature by applying an average current but wide duration pulse results in the

set operation. A very high current (melt quenching) pulse with a short duration

resets the device to its amorphous state. The read is done by applying a very low

amplitude and low power pulse that senses the device resistance. The shape of the

three pulses used for set, reset, and read commands is plotted in Figure 3.1(b) (source

[13]). The energy discrepancy between the PCM set and reset operations has been

experimentally demonstrated and quantified, e.g., [24].

3.2 Multi-Level PCM

The large difference between set and reset resistances in PCM has enabled devising

Multi-Level Cell (MLC) PCM. As opposed to the conventional single-level PCM, the

randomness and variability in MLC-PCM structure makes it impossible to have a

universal pulse shape to attain intermediate resistance levels. Instead, Program and

Verify (P&V) is the technique that is used to obtain different resistance distributions

for PCM [25]. P&V applies partial program pulses iteratively and then verifies if the

desired cell level is achieved. The iterative approach causes MLC PCM to acquire an

order of magnitude more write energy than the single level PCM.

One of the main challenges in prototyping MLC PCM is the relaxation effect

that induces resistance drift in the phase-change material over the time. The drift is

particularly important in MLC-PCM due to the high sensitivity of the cell state level

to the resistance value. Different memory sensing and error correction techniques

have been proposed to develop more robust MLC PCM systems, [26, 27, 28]. IBM

has announced implementing of the first drift-tolerant 2-bit cell PCM in 2011, [29].



Chapter 4

Data Coding Problem

4.1 Coding Overview

Our codes bring energy efficiency by reducing the cost of writes. The efficiency is

achieved at the expense of memory overhead; the coded data has a larger length

than the actual data. For a given budget of memory overhead, our algorithm de-

velops the codes off-line and its complexity does not affect the realtime performance

of the system. The resulting codes from our algorithms are then saved in the mem-

ory controller which interfaces to the PCM on one side and to processing units on

the other side. Figure 4.1 presents an abstract view of the placement of the data

encoding/decoding module for our method. The details of the architecture of the

encoder/decoder module and its overhead will be discussed in Chapter 8.CPU MemoryControllerData Code/Decode Misc.MemoryPCM
Figure 4.1: Data encoding/decoding module is a part of memory controller in the
memory hierarchy.
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4.2 Problem Formulation, Complexity and

Bounds

Our goal is to minimize the energy cost associated with writing words to the memory

with bitwise operability. In this section, each word consists of a fixed number of bits

and the energy cost of writing the word is equal to the total cost of the required bit

flips, i.e., sets/resets.

We provide an optimal encoding scheme that assigns multiple representations (or

codes) to each word in the data set. The objective of encoding is to minimize the en-

ergy cost for writing the next word of data. The method trades-off the encoding data

overhead with resulting energy improvements. We provide a motivational example to

demonstrate the concept more clearly .

4.2.1 A word encoding/decoding Example

In this example, we describe how one may benefit from coding the PCM data. Here

we are solving the problem of finding the optimal coding for 2-bit words with 3-bit

codes. We denote the words by W1=(00), W2=(01), W3=(10), W4=(11) and denote

the codes corresponding to the word Wi by Zi1 and Zi2, for 1 ≤ i ≤ 4; since K=1

each word has 2K=1=2 code representation. The key point is to exploit multiple

representations of each word for minimizing the write energy. For instance, if the

existing data is Z11 and W2 is to be written on it, among its representations Z21 and

Z22, the one that incurs the minimum energy cost to overwrite Z11 is selected.

Figure 4.2 shows a graph representation of the encodings for the 2-bit words

shown in separate clusters. The vertices of the graph are the codes and each cluster

represents a word. The graph is a directed graph and the weight of each edge shows

the cost of overwriting one node with the other. The optimal encoding is provided



12Z11 Z12
Z31 Z32

W1
W3

Z21Z22 W2Z41Z42W4 Z11= 000Z12= 111Z21= 001Z22= 110Z31= 010Z32= 101Z41= 100Z42= 011
Optimal codesES=ER

Figure 4.2: A 3-bit encoding for the 4 words W1, W2, W3, and W4; ES and ER are
set and reset energies.

on the figure. If the code Z22 is to be overwritten by a code of W3, Z31 is selected

because its energy cost is only equal to ES that is the required energy for setting a

bit. Denote the bit rest energy by ER. If no coding was used, overwriting W2 with W3

would cost the higher value of ER+ES. Another example is a cycle of word overwrites

(W1,W2,W3,W4,W1). Assume that W1 is codes as Z11. Then, the minimum cost codes

would be selected as follows (Z11,Z21,Z32,Z41,Z11). The cost associated with the code

overwrites is ES+ES+ES+ER+ER = 2ES+2.ER. Whereas the cost for overwriting

the codes without coding is ES + (ES + ER) + ES + (2.ER) = 3.ES + 3.ER.

We have shown that assigning the best codes to each word is equivalent to cluster-

ing the vertices of a graph where each cluster represents a word (See Section 4.2.1).

Clustering should be done such that it yields the minimum distance between the

vertices of different clusters. We can formally define our problem as follows:

Problem. Minimize the energy cost of PCM rewrites.

Given. The word and the codeword (symbol) lengths in bits denoted by N and

N +K, where K ≥ 1. Each word is represented by 2K symbols. The read, set and

reset energy are denoted by Eread and ES and ER respectively.

Objective. Find the best codes for each word so as to minimize the average energy

cost of overwrites. We refer to this problem as P(N,K).
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4.2.2 Problem Formulation

We denote the words byW1,W2, . . . ,W2N and denote the codes corresponding to word

Wi by Zli, where 1 ≤ l ≤ 2K . Function Φ gives the energy required to overwrite a

currently written symbol by a symbol of the next word that would incur the minimum

energy cost:

ϕ(Zli,W
′
l ) = min{C(Zli, Zl′i′), ∀1 ≤ i′ ≤ 2K}. (4.1)

The cost function C measures the amount of energy consumed to overwrite a symbol

by another one. To overwrite Zli with Zl′i′ , if NS number of bit sets and NR number

of bit resets are needed, then C would be:

C(Zli, Zl′i′) = (N +K).Eread + (NS).ES + (NR).ER. (4.2)

In the above equation, the first term shows the energy for reading the bits of the

existing symbol in the memory (Zli). This cost is ignored in our work because of its

low value. The next two terms show the energy for the overwrite process (setting and

resetting) so as to get Zl′i′ . Similar bits in the two symbols remain untouched. The

Objective Function (OF) can be written as follows:

OF : min{C(N,K) =
1

22N+K

∑
1≤l,l′≤2N

∑
1≤i≤2K

ϕ(Zli,Wl′)}. (4.3)

The challenge is to find the optimal coding of the words that minimizes the OF.

Function C(N,K) represents the average energy cost of code overwrites for all possible

rewrites.
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4.2.3 Problem Complexity

We have expressed the energy minimizing coding problem as an instance of a distance-

based graph clustering problem; each cluster corresponds to a word and the nodes that

belong to a cluster are different codes for the cluster’s associated word. The goal is to

minimize the inter-cluster distances. In the energy minimizing encoding scenario, the

inter-cluster distance is the average distance between the code symbols in one cluster

and the closest code symbol in every other cluster. Our example demonstrates the

interpretation of the data coding as a graph problem (See Section 4.2.1). Extensive

prior work on distance-based graph clustering have shown that this problem is NP-

hard. The proof was given by a reduction from the set covering problem [30].

4.2.4 Optimal Bounds on the OF

In this part, we provide a lower bound for the OF. The average cost of overwriting

each symbol Zli with the other words is determined by the following formulation:

1
2N−1

∑
l′ ϕ(Zli,W

′
l ) for l

′ ̸= l and 1 ≥ l′ ≤ 2N . An optimal code assignment is the one

that assigns each of the closest 2N − 1 symbols to Zli to one of the words W ′
l ̸= Wl.

This assignment gives the minimum average overwrite cost of the symbols.

We provide a lower bound for the OF as follows. First, we calculate the distances

from each code Zli to all the other 2N+K − 1 possible codes. Next, the resulting

distances are sorted and the average sum of the smallest 2N−1 distances are calculated

for each node. We compare our DP algorithm result with the optimal bound in our

evaluations.



Chapter 5

Solving Energy Efficient Coding Problem

We propose two different approaches for solving the problem formulated earlier. Our

first solution is based on mapping the problem to an instance of an Integer Linear

Programming (ILP). The method finds the optimal coding for any given word/code

width. The approach is discussed in details in the Section 5.1. Due to the com-

plexity of the ILP approach which grows exponentially with the size of the coding

problem (i.e., the word and code widths), we introduce another solution based on

Dynamic Programming (DP) paradigm. The solution is designed for both uniform

and stochastic data and is presented in the Section 5.2.

5.1 Optimal Coding via Integer Linear Program-

ming

An ILP problem formulation requires linear representation of the objective function

and the constraints. To the best of our knowledge, ILP has not been used for ad-

dressing similar coding problems before. The variables in ILP take integer values.

There is a combinatorial complexity associated with assigning values to the variables
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of our NP-complete problem. The OF represented in Equation 4.3 is not linear since

the function ϕ(., .) is a distance minimization function. To formulate this OF in a

linear form, we define variables to indicate the distance of each symbol in a cluster

from its closest symbol in every other clusters. The OF is equivalent to the average of

all these variables. Certain linear constrains are applied to ensure the variable meets

the minimum distance criteria. The ILP method finds the optimal solution at the

expense of runtimes exponentially increasing with the code size.

To formulate OF in a linear form, we define an index variable that for each sym-

bol, keeps track of the index of the element (in each of the other clusters) with the

minimum distance to the symbol. The following set of variables were used in our ILP

formulation:

l, l′ Words indices Wl or W
′
l for 1 ≤ l, l′ ≤ 2N .

i, i′ Code indices within each cluster, 1 ≤ i, i′ ≤ 2K .

Zli The i-th code ∈ Wl for all i.

Φll′i ϕ(Zl′i,Wl) for all l, l
′, i and i′.

wll′ii′ w(Zli, Zl′i′) for all l, l
′, i and i′.

∆ll′ii′ wll′ii′ − Φll′i for all l, l
′, i and i′.

Xlij j-th significant bit of Zli for 1 ≤ j ≤ (N +K).

Fll′ii′j w(Xlij, Xl′i′j) for all l, l
′, i, i′ and j.

Idll′ii′ An indicator binary; =0 iff ∆ll′ii′ = 0

for all l, l′, i and i′.

The codes representing a word Wl are shown by Zli; Φll′i denotes the cost of

overwriting Zli by a code in Wl′ that requires the minimum overwrite energy; wll′ii′

is the cost of overwriting two codes Uli and Ul′i′ . Thus, Φll′i = mini′ wll′ii′ . Each

code Zli consists of N +K bits and can be written as (XliN+K , . . . , Xli2, Xli1). The

parameter Fll′ii′j is defined to be the cost of overwriting Xlij with Xl′i′j and its range

of values is shown in the table below. Variable Idll′ii′ is an indicator binary variable
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that indicates if the closest code to Zil in cluster l′ is Zi′l′ or not.

Xlij Xl′i′j Fll′ii′j

0 0 0

0 1 ES

1 0 ER

1 1 0

Using the above variables, we define our OF and provide constraints to our prob-

lem in a way that conforms to the ILP format. Our OF, as written in Equation 4.3,

minimizes the average cost of overwriting the codes for all possible overwrites:

OF : min
1

2N .2N .2K

∑
Φl′li for all l′, l and i variables (5.1)

The following constraints define Φll′i:

C1. ∆ll′i ≥ 0 for all l, l′ and i variables,

C2. Σi′∈1,...,2kIdll′ii′ ≤ 2K − 1,

C3. Idll′ii′ ≤ ∆ll′ii′ ,

C4. ER.(N +K).Idll′ii′ ≥ ∆ll′ii′ .

Constraints C1 and C2 set Φll′i not greater than each distance ∆ll′i and equal

to at least one of them respectively; Constraints C3 and C4 define the indicator

variable based on the fact that ER.(N +K) is always grater than ∆ll′ii′ .

The below linear constraints set Fll′ii′j to the desired value:

C5. 1
ER+ES

Fll′ii′j +Xlij +Xl′i′j ≤ 2,

C7. Fll′ii′j − ER.Xlij − ES.Xl′i′j ≤ 0,

C8. Fll′ii′j − ER.Xlij − ER.Xl′i′j ≥ 0,

C9. Fll′ii′j − ES.Xlij − ES.Xl′i′j ≥ 0.
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The following constraint defines the distance wll′ii′ :

C10. wll′ii′ = Σ1≤j≤N+KFll′ii′j.

The next constraint is set to ensure that no code is assigned to more than one word;

ES is the minimum cost of overwriting two different codes:

C11. wll′ii′ ≥ ES.

The output of the above ILP is the values of Xlij that constructs the codes Uil.

The above constraints are all in linear format and can be readily implemented by

any ILP solver. The complexity and runtime for solving the instances of the ILP

for our NP-complete problem exponentially increases with the instance size. In our

experiments, we have been able to find the optimal solution by using a limited version

of an ILP solver licensed to one user for N and K (N = 2, 3, 4, K = 1, 2). If one

has access to the commercial ILP solvers that run on the cloud or supercomputers, it

is likely possible to find the optimal codes for the practical problems of longer sizes.

The longer runtimes can be tolerated since the ILP needs to be used only once and

off-line.

5.2 Coding via Dynamic Programming

5.2.1 Coding for Uniform Data

In this subsection, we first show the optimal coding for solving the P(N, 1). Next,

we show how to devise the codes any P(N, k) based on the coding solutions for the

smaller instances of N and K.

Coding For P(N, 1):

Claim: Optimal coding of P(N, 1), for any N ≥ 1 is achieved by assigning the
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complement pairs to the words.

Proof: The optimal coding finds 2K = 2 symbols, each of size N + 1, for each word.

For now, let us assume that the cost of set and reset is equal. This makes the overwrite

cost proportional to the number of bitwise differences for the codes, ER = ES = E.

The average transition cost from each code Zli to all the other words satisfies the

following inequality:

1
2N−1

∑
l′ ϕ(Zli,W

′
l ) ≤ 0.

(
N+1
0

)
+ E.

(
N+1
1

)
+ · · ·+

N−1
2

E.
(
N+1
[N−1

2
]

)
+O.N+1

2
E.

(
N+1
[N+1

2
]

)
, for 1 ≤ l′ ≤ 2N .

Where O = 1 if N is odd and O = 0 otherwise. The right side of the inequality equals

E.(N +1)2N−1. The proof of the inequality is as follows. The nearest 2N codes to Zli

should contain all the codes that have zero distance from it (that is Zli itself). The

number of such codes is
(
N+1
0

)
. It should also include all the codes that are in just

one bit different from Zli; the number of such codes is
(
N+1
1

)
. The next closest set

of codes are the ones that are in different from Zli in 2 bits and so on. We continue

until we reach to the first closest 2N codes to Zli. In that case, the number of bit

differences reach to N−1
2

when N is even and N+1
2

when N is odd. This is because

the following equation holds:(
N+1
0

)
+

(
N+1
1

)
+ ... +

(
N+1
[N−1

2
]

)
+ O

(
N+1
[N+1

2
]

)
= 2N , where O is the same as defined

before.

Now, we show that the complement-pair coding assigns all the above 2N codes

to different words. In this case, the average transition cost for each code Zli will be

equal to its optimal value and thus the optimal OF is achieved. The sum of bitwise

differences of Zli from any complement pair (Zl′1, Zl′2), is equal to N + 1. This is

because each bit of Zli is equal to exactly one of the bits of the complement pair.

Thus, one symbol of each word has a distance of less than N+1
2

bits and the other

symbol has a distance of more than N+1
2

bits from Zli. This means that all the 2N −1



20

Algorithm 1. DP-based method for energy-aware cod-
ing
Inputs: Word and code lengths: N, N+K; C(N, 1)
and optimal coding for P(N, 1) from Section 5.2.1.

⋆ Finding C(n, k) and the partitioning index index(n, k, 1 :
2):

1 for (n=1 to n=N)
2 for (k=1 to k=K)
3 if (k==1)
4 C(n, k) = C(n, 1);
5 else
6 for (i=1 to i=n-1)
7 for (j=1 to j=k-1)
8 if (C(n, k) ≥ C(n− i, k − j))
9 C(n, k) = C(n− i, k − j) + C(ij);
10 index(N,K, 1 : 2)=(i, j);
⋆ Building the codes for P(N,K):
11 for (n=1 to n=N)
12 for (k=1 to k=K)
13 if (k==1)
14 P(n, k) = P(n, 1) from Section 5.2.1;
15 else
16 P(n, k) = all code combinations from P(n −

index(n, k, 1),
, k − index(n, k, 2)) and

P(index(n, k, 1), index(n, k, 2));

closest codes to Zli belong to different words.

Note that our complement results for the K = 1 case also apply to the asymmetric

set/reset costs. The number of sets and resets for traversing from a code to its

complement is not symmetric for most of the code words. Recall that our objective is

to minimize the average costs over all possible transitions. It can be readily shown that

for achieving the mean cost, the average inter-complement distance can replace the

two disparate transition costs between the complements. The results of the Lemma

1 then directly follows.

Coding For P(N,K):
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We introduce a DP-based algorithm for solving the general P(N,K) problem. Our

algorithm uses the coding results for P(p, q) and P(r, s) to construct the codes for

P (p+ r, q + s) such that the following bounds can be achieved:

C(p+ r, q + s) = C(p, q) + C(r, s). (5.2)

The code construction is as follows. The word Wi of length p + r is partitioned into

2 words, W 1
i and W 2

i . The first word is the first p bits and the second word is the

last r bits of Wi. There are 2q, p + q-bit symbols for W 1
i and 2s, r + s-bit symbols

for W 2
i that are obtained from solving P(p, q) and P(r, s) respectively. We construct

the codes for Wi by concatenating all the possible combinations of these two set of

symbols which provides a total of 2q.2s = 2q+s codes (of length p + q + r + s) for

Wi. It can be easily seen that the codes satisfy Equation 5.2. Based on the above

code construction, the DP method breaks N into smaller values and selects the best

partitioning to minimize:

C(N,K) = min
i≤N

{min
j≤i

C(N − i,K − j) + C(i, j)}. (5.3)

Algorithm 1 provides the details of the DP method. The optimal coding for P(N, 1)

is given from the previous part and the algorithm iteratively traverses over all the

possible partitions to improve the energy minimization objective (Lines 1-10). The

index vector index(n, k, 1 : 2) is used to store the optimal partitioning of (n, k). After

finding all the indices, the algorithm builds the codes (Lines 11-16). The complexity

of the algorithm is O(N2K2), but recall that this algorithm is run off-line.
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0 0 0 N+K-bit

Prefix

e

All 2N+K symbols

0 0 1 N+K-bit

Prefix

t

All 2N+K symbols

0 1 0 N+K-bit

Prefix

a

All 2N+K symbols

0 1 1 N+K-bit

Prefix

o

All 2N+K symbols

1 0 0 N+K-bit

Prefix

i

All 2N+K symbols

1 0 1 N+K-bit

Prefix

n

All 2N+K symbols

1 1 0 N+K-bit

Prefix

s

All 2N+K symbols

1 1 1 N+K-bit

Prefix

other 

letters

2K symbols of P(N,K)

Figure 5.1: Data-aware alphabet letter codings.

5.2.2 Coding For Stochastic Data

In Section 4.2, the OF 4.3 minimizes the average energy cost for all the possible word

overwrites. Here, we discuss how the inherent stochastic properties for real data

scenarios can be exploited to further improve the memory’s energy performance. An

important feature is that different words occur with differing frequencies. To benefit

from this fact, instead of weighting all the rewrite energy costs equally, we aggressively

optimize our encoding for the rewrites that are more prevalent by assigning different

number of codes to the words based on their frequency of occurrence.

Variable-length and fixed-length coding are two statistical compression techniques.

In the variable-length method, shorter codes are assigned to the more frequent words

to better improve the compression. However, this adds to decoding complexity and

since our main goal is to minimize the energy, decoding efficiency is very important.

Thus, we use a fixed-length coding method. We describe our method on text files that

contain English alphabet letters. The method can be generalized to other data sets

with nonuniform frequencies. Our data consists of the lower-case alphabet letters:

W1 = a, W2 = b, ..., W26 = z. Since there are 26 letter, Wi’s are 5-bit words.

Let us consider the first 7 most frequent letters of the table, e, t, a, o, i, n and

s. The probability that an overwrite occurs on any of these letters (by any other

letter) plus the probability that these letters overwrite any other letter accounts for

almost 60% of all probable overwrites. Thus, we can benefit a lot by optimizing our
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coding for these seven letters. To do so, we assign a different prefix to each of these

letters such that only the prefixes determine the letter. Since there are 7 letters, the

prefixes are 3-bit each and are shown in Figure 5.1. The prefixes can be interpreted

as dictionary indices. The remaining N +K bits of these letters take all the possible

2N+K states. Thus, an overwrite to/by any of these letters requires only adjusting

the prefix that is of length 3. The other 19 letters have the prefix (111) as shown in

the figure. The remaining N +K bits for the less frequent letters are filled with the

codes obtained by solving P(N,K) as described in Subsection 9.2. Thus, an overwrite

between the letters costs as much as for a regular P(N,K). By this coding, we assign

2N+K symbols to the highly frequent letters and 2K codes to the rest of the letters.

All the symbols are of length prefix-length+N +K.



Chapter 6

Effect of the Encoding on Memory Wear

In this section, we study our encoding scheme in terms of memory wearing. The

write endurance of PCM, although orders of magnitude higher than Flash memories,

is still limited and considerably less than DRAM. Wear leveling is a technique that is

widely used to diminish the limited number of memory write cycles by managing data

writes such that they are distributed uniformly across the memory. Wear leveling is

performed by memory controller. The encoding scheme can be used along with any

conventional wear leveling technique. After the memory controller decides the address

to write the data based on the wear leveling method, the encoding module steps in

and performs the encoding by first reading the memory at those addresses and then

accordingly finding the best codes for the data to be writhen.

The encoding improves the endurance of the memory by reducing the total number

of writes (sets and resets). For example, for P(2, 1), the average number of program-

mings, i.e., average total number of resets and sets, per code write is 0.39 that is equal

to 0.13 per bit (since the codes have 2+1=3 bits). However, the average number of

programmings per word write if no coding is used is 0.5 that is equal to 0.25 per bit

(since the words have 2 bits). In general, the average number of bit flips for rewriting
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an N+1-bit code with any other existing code is equal to the following:

1

N + 1

Σ1≤k≤⌊N+1
2

⌋k.
(
N+1
k

)
2N

=
(N + 1).Σ1≤k≤⌊N+1

2
⌋
(

N
k−1

)
(N + 1).2N

=
1

2
− 1

2

(
N

⌊N
2
⌋

)
2N .

(6.1)

The numerator represents the total number of bit flips required to write an arbitrary

code by the closest code (the one that requires less cost) of each of the other 2N words.

As mentioned in the proof of optimal coding for P(N, 1), our coding is designed such

that for rewriting a code by the closest code of any other word, the number of bit flips

k is in the following range, 1 ≤ k ≤ N+1
2

. For each k, there are
(
N+1
k

)
of such closest

codes, each representing a different word. There is a total of 2N of such close codes

(one for each word) and each code has N+1 bits. Thus, dividing by the denominator

yields the average number of flips for each individual bit during a code write. For the

N-bit word data, without coding, the average number of bit flips is 1
2
. The proof is

straightforward due to the symmetry in the words.
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Figure 6.1: This plot shows that PCM write endurance improves with data coding.
Each word of length N (bits) is coded by codes of length N+1. The wear efficiencies
of 2N-1-bit and 2N-bit codes are equal.

Figure 9.7 shows the improved write endurance with coding compared to DCW

method. The words are of length N with the codes of length N +1. For example for

a 2-bit word with 3-bit codes, the number of allowed writes per bit increases by 50%.
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Note that the wear efficiencies of codes of length 2N − 1 and 2N are equal. However,

the memory overhead of an 2N -bit code is 1
2N

which is less than that of an 2N−1-bit

code that is 1
2N−1

. Thus, it is more efficient to use codes with even lengths for saving

the memory capacity. Our DP algorithm takes this property into account.



Chapter 7

Multi-Level Cell PCM

The programming energy properties of the MLC-PCM varies from that of a single cell

PCM. Thus, we provide our energy encoding optimizations. As mentioned earlier,

program and verify is used Table 7.1 shows the average required energies for different

levels for a 4-level PCM [25, 31].

Table 7.1: Required energy for programming different levels.
Level Energy (pJ)
00 36
01 307
10 547
11 20

Since the required energy for programming the intermediate levels, 01 and 10,

is significantly higher than that of 00 and 11, we decided to encode the data such

that the number of 01 and 10 cells are minimized. Our method assigns N+1-cell

(2N+2-bit) codes to N-cell (2N-bit) data. There are 22N+2 different N+1-cell data.

Our coding selects data of length N+1 (Cells) that have the minimum number of

intermediate levels and uses them to code the words of length N (Cells). Each N-cell

word is coded by one N+1-cell. Here, we provide an example for 2-cell word 3-cell

codes in Table 7.2.
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Table 7.2: MLC-PCM coding for 2-cell words. The total number of intermediate cells
(01 and 10s) in the 2-cell words is 16. The total number of intermediate cells in the
corresponding 3-cell codes is 8.

Word Code
00,00 00,00,00
00,01 00,00,11
00,10 00,11,00
00,11 00,11,11
01,00 01,00,00
01,01 01,00,11
01,10 01,11,00
01,11 01,11,11
10,00 10,00,00
10,01 10,00,11
10,10 10,11,00
10,11 10,11,11
11,00 11,00,00
11,01 11,00,11
11,10 11,11,00
11,11 11,11,11

As it can be observed in the table, the total number of intermediate levels for the

words is 16, whereas there is only 8 intermediate levels for the corresponding codes.

To observe the energy efficiency of the code, we compare the average energy cost for

writing uniform data on the memory before and after coding. We denote the four

levels 00, 01, 10, and 11 with L1, H1, H2, and L2 respectively. For simplicity and

due to the symmetry of the problem, we consider the write energies of L1 and L2

to be equal to the average of their individual energies; 36+20
2

= 28. Likewise, H1

and H2 write energies are considered to be 307+547
2

= 427. For uniform data, where

on average all the 16 values are written equal number of times, the average write

energy of words is 8(L1+H1+H2+L2)
16

= 455; whereas for coded data, this value equals

20(L1+L2)+4(H1+H2)
16

= 183.75. Thus, on average, the energy is reduced by almost 60%.

In the above example, despite the significant energy saving, the 33% reduction

in memory capacity (3-cell codes for 2-cell data) is not desirable. To address this
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problem, we propose coding N-cell data with N+1-cell codes for larger N values. In

this case, the memory capacity is reduced by a factor of 1
N+1

. The coding uses the

same technique as the example and reduces the number of intermediate levels to save

energy. We begin with assigning all the codes with zero intermediate levels to the

words, then we assign all the codes with one intermediate levels to the words and so

on until all the words have a code. Here we calculate how many N+1 cell codes with

a given number of intermediate levels, say 0 ≤ m, are available. The answer is equal

to the number of N+1-character data with exactly m, H1 and H2 characters and

N + 1 −m, L1 and L2 characters. From combinatorics, this number is equal to the

following.

(
N + 1

m

)
.2N+1 for 1 ≤ m ≤ N+1. (7.1)

To have the best code for all the N-cell words, we find the minimum m, such that

all the 22N words are covered with codes that has at most m intermediate levels, i.e.,

the minimum m such that the following inequality holds.

Σ0≤m

(
N + 1

m

)
.2N+1 ≤ 22N . (7.2)

We denote the answer bymMIN . Given the answer, the average energy for a code write

for the uniform data is 1
22N

Σ0≤m≤mMIN

(
N+1
m

)
.2N+1.(m× 427 + (N + 1−m)× 28).

The average write for the corresponding non-coded words is ⌊N⌋
2
(427+28); The proof

is straightforward due to the symmetry.
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Data Encoder/Decoder Architecture and Overhead

Figure 8.1 shows the architecture of the encoding unit. The read buffer contains the

data from the current address and the write buffer contains the new data that is

not yet coded. A lookup table is employed for storing the matching codes; given the

data in write buffer and the data in the read buffer, the lookup table finds the code

that incurs minimum energy for the overwrite. The process of finding the best code

from the lookup table causes very low energy overhead due to the low read energy

of PCM. Also, since PCM is non-volatile and the leakage power consumption is very

small, there is negligible standby power for storing the lookup table [15]. The read

latency of PCM is also very low and comparable to that of DRAM [15, 32].

One method to store the lookup table is to store all possible 2N words and 2N+K

codes combinations that means a lookup table of size 2N+N+K . For example, such a

lookup table yields to a 215=32KB table for 8-bit codes (with N = 7 and K = 1) that

is a low memory overhead considering the large memory capacity of today’s computer

systems (≥GB). However, as the size of the codes grows, the size of the lookup table

increases exponentially. To make the lookup table design feasible for large codes,

we break the table into sub-lookup tables each containing part of the efficient codes.

From our dynamic programming method, each coding problem P(N,K) is solved by
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concatenating the codes from the optimal sub-problem P(N1, K1) and P(N2, K2),

where N1 +N2 = N and K1 +K2 = K. For example, P(28, 4) = P(14, 2) + P(14, 2)

that can be further break using the following P(14, 2) = P(6, 1) + P(8, 1). Thus, for

storing the codes for the original problem, we only need to break the 28-bit word into

sub-words of length 6 and 8 and store the codes for the corresponding 26+7=13 and

28+9=17 sub-words. The result is two lookup tables of sizes 8KB and 128KB.

Write

Buffer

(N-bit)

Read Buffer (N+K-bit)

LUT_1

LUT_2

LUT_K

N1

N1+1

N2

NK

N2+1

NK+1

N1+1 N2+1 NK+1

PROGRAM/SET/RESET Enable

Figure 8.1: This plot shows the architecture of the encoder module. The read buffer
contains the old data from PCM and the write buffer contains the new data that is
going to be overwritten the read data on PCM.

The Read-Before-Write technique has already been implemented and shown to be

promising by designing PCM cache to replace the SRAM cache. The higher density

of PCM allows replacing the SRAM cache with a larger capacity cache. Read and

write buffers can be used to compensate for the lower speed of PCM compared to

SRAM [33].

The main overhead of our coding system will be the memory overhead since in

P(N,K), K extra bits are used to represent an N -bit word, incurring an overhead of

K
K+N

. In our evaluations, we will study the effect of different memory overheads on

the system performance.
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Evaluations

We perform system level evaluations of our methods on a variety of real world data

sets. The effect of different word widths, different set and reset energies, and the

memory and delay overheads on the efficiency of our method is examined.

9.1 ILP Results

We used the latest version of Gurobi ILP solver, Gurobi 4.5.2, to solve the ILP method

described in Section 5.1, [34]. Gurobi provides free access for academic purposes. The

runtime of the solver for solving P(4, 2) is about 30 hours on a computer with an Intel

dual core 2.80GHz processor and 4GB RAM. Thus, due to the time constraint we

were not able to solve the objective function for larger problems. The python ILP

code is available upon request to the interested readers.
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Figure 9.1: 8-bit system

5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Im
pr

ov
em

en
t o

ve
r 

D
C

W
 (

%
)

Memory overhead (%)

 

 

Our method
FNW

Figure 9.2: 16-bit system
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Figure 9.3: 32-bit system

9.2 Performance of DP-based Algorithm on Uni-

form Data

We analyze DP-based encoding method provided in Algorithm 1 for different memory

overheads. We compare our results with Data-Comparison-Write (DCW) and Flip-

N-Write (FNW) algorithms [9, 10] described in Section 2.

Here, we show the average efficiencies for uniform data where all the word writes

occur with the same frequency. Our metric is the average (per write) energy for all

possible word combination overwrites.

Figures 9.1, 9.2, and 9.3 show the energy improvements of our method and the

FNW method over the conventional DCW method for 8-bit, 16-bit and 32-bit system

respectively. The lined graph shows the results of our method and the black circles

show the result of FNW. For example, a 25% memory overhead in a 320bit system

means a 32-bit code represents a 24-bit data. The results for FNW system are sparser

since they can only take memory overheads of type 1
N+1

. Thus, in a 32-bit system,

FNW only accept data-overhead sizes of 31-1, 30-2( 15-1), 28-4( 7-1), and 24-8( 3-1).

It can be seen that our method performs up to 15% better than FNW. There

are two main reasons for the better performance. The first reason is the ability of

our method to accept different overheads. For example, for solving P(30, 2) the DP

algorithm breaks it into P(14, 1) + P(16, 1) as apposed to the FNW approach that
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is 2×P(15, 1). The former combination, as we discussed in Section 6 delivers better

efficiency. Note that as the memory overhead increases, our methods become more

efficient. Whereas, in FNW method, P(31, 1) with memory overhead of 03.13% is

slightly more efficient than P(30, 2) with memory overhead of 6.25%.

The second reason is our focus on energy-efficient selection of the codes to over-

write; FNW always flips the data if the number of bit-flips required to write the

original data is more than half of the word’s size. However, considering the asym-

metric cost of set and reset, we do not count the number of bit-flips; what we count

is the total energy of set and resets as our metric to choose a code. For example,

let us assume that the new word 00001111 is to overwrite 00000000, FNW writes the

new word as it is whereas our method chooses its complement 11110000 to overwrite

000000000. The difference in energy levels is 4 × ER for FNW versus 4 × ES in our

method, if the ratio of the reset to set energy (ER

ES
) is 2, then our code requires twice

less energy.

9.2.1 Performance comparison with respect to the optimal

coding

We have compared the performance of our DP-based algorithm with the optimal

bound (as presented in Section 4.2.4 and provided the results in the following table.

The results shows the average energy cost for all possible data overwrites (see above)

with ER

ES
=2. According to the table, the performance gap is increasing with the

memory overhead increment, however, the DP algorithm results are still close and in

some cases equal to the optimal bound.
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Table 9.1: Performance compared to the optimal coding for various code sizes.
Problem size P(4, 1) P(4, 2) P(8, 1) P(8, 2) P(8, 3) P(8, 4)

Optimalcost
DPcost

1 1 1 .98 .93 .90
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Figure 9.4: Cost reduction by data-aware coding.

9.2.2 Effect of the asymmetric set/reset energy ratios

Here we look at the effect of different ER

ES
ratios on the efficiency of our method.

Figure 9.4 shows the normalized energy costs for various memory overheads. As the

ratio increases, more energy savings are achieved; for example, for a memory overhead

30%, if the cost of set and rest is equal the efficiency is % less for P(31, 1)ER

ES
= 1

than for P(31, 1)ER

ES
= 4. This is because our coding scheme aims to optimize the

energy consumption by minimizing the number of overwrites. Since resets have a

higher energy cost, the minimization impact will be higher for them.

We always consider memory overheads of up to 33.34% (or equivalently Ks up

to N
2
) since no extra efficiency is achieved for K > N

2
. The reason is that our DP

algorithm breaks the P(N,K) problem for K > N
2
to at least one P(1, 1) and it is

straightforward to see that coding 1-bit words with 2-bit codes does not provide any

efficiency and only incurs memory overhead. Thus, by setting the limit on K we avoid

such overheads.
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9.3 Performance on Audio and Image Data
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Figure 9.5: Audio data, 32-bit system, ER

ES
= 2.

We use the encoding method for storage of audio and image data on PCM. Our

benchmark data were taken from Columbia University audio and Caltech Vision image

databases [35] and [36] respectively. Four audio and four image files are selected. The

audio data are msmn1.wav, msmv1.wav, mssp1.wav, and msms1.wav and are denoted

by a1, a2, a3 and a4 in and the image files are dcp − 2897.jpg, dcp − 2898.jpg, and

dcp− 2899.jpg and dcp− 2830.jpg.
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Figure 9.6: Image data, 32-bit system, ER

ES
= 2.

We show the normalized average energy cost of overwriting all the audio files in

Figure 9.5 and the image files Figure 9.6. There are 12 possible overwrites for each

file type. The costs are shown for 32-bit codings with various memory overheads.

PCM holds the following properties PCM: ES = 13.733pJ/bit, and ER = 26.808pJ

; the measures are according to for a 32-nm PCM from [17]. The cost of applying

our coding method and FNW method are presented. The costs are normalized to the
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DCW method’s cost. For some memory capacities, FNW cannot be applied and the

in such cases its cost is set to be equal to the DCW cost. i.e., 100%.

In both figures, our method outperforms the FNW method. The gap between

the performances become wider as the memory overhead increases. Our method

outperforms the FNW method by up to 14% and 16%.

9.4 Performance of Stochastic Data Coding

Here we first provide evaluation results for the English alphabet coding as described in

Section 5.2.2. Then, we provide coding and evaluations for the ASCII characters. We

used two text benchmarks, the 31 MB text8.txt file from [37], for alphabet (excluding

spaces) evaluations; and the 4.8 MB KJV.txt file from [38] for ASCII evaluations.

Our evaluations are based on the fact that the overwrites are independent events;

for example, the probability that letter a being overwritten by letter b, which we de-

note by p(a, b) is equal to p(a).p(b), where p(a) and p(b) are the normalized frequencies

of the corresponding letters. We experimentally verified the above assumption by ran-

domly selecting 100 vector pairs for overwriting, each of size 100000 from the text

benchmark Text8.txt. We formed a table of normalized frequencies for all combina-

tion of vector pair rewrites and observed that the resulting numbers comply with our

independence assumption.

9.4.1 Alphabet Letters

We encoded the alphabet letters with the distribution-aware encoding. Since there

are 26 alphabet letters, N = 5; we set K = 1, and Prefix=3. The codes are of length

Prefix+N + K = 9. We evaluated the method on Text8.txt data for different test

trials. For each trial, we created 100 pairs of vectors by randomly reading the data
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from the text file. Each vector has 1000 letters. We overwrote the vectors of each pair

and computed the average overwrite cost for ER

ES
= 2. The results demonstrate an

average 44.1% reduction when compared to the no-coding scheme and 9.3% reduction

compared to the uniform coding P(5, 2).

9.4.2 ASCII Characters

According to the frequencies of ASCII characters from [39], 59% of all the possible

rewrites are to/by one of the first 15 most frequent characters out of the total 127

characters. Thus, we optimize our coding for these characters by assigning separate

prefixes to them.

The first 15 most frequent characters are: space, e, t, a, o, i, n, s, h, r, d, l, u,

m, c. We assigned the following 4-it prefixes to them respectively: (0000), (0001),

(0010), (0100), (1000), (1001), (1010), (0110), (0111), (1011), (1101). The prefix for

all the other characters is (1111). Since there are 27 ASCII characters, N = 7 and we

set K = 1. Thus, the codes will be of length 4 +N +K = 12. The encoding method

is the same as described for alphabet letters.

We evaluated the ASCII coding scheme on the KJV.txt file. We created 100

pairs of vectors, each of length 1000 from the file. The first vector in each pair

was overwritten by the second vector. We considered ER

ES
= 2. To compare this

method with the uniform coding, we encoded the ASCII characters with the codes

from P(7, 1), P(7, 2) and P(7, 3) and report the corresponding average costs in the

following:

Table 9.2: Comparing the ASCII data-aware energy cost with the uniform coding.
The costs shows the energy reductions that are normalized to the no-coding method.

Encoding Data-aware P(7, 1) P(7, 2) P(7, 3)
Average normalized cost (%) 81.6 94.6 91.3 89.3
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We see that the ASCII data-aware coding, on average, reduces the energy cost

more than the best achieved from P(7, 3); for overwriting each ASCII character, there

will be almost 8% more reduction in the energy cost compared to the results of the

uniform encoding. This improvement is at the expense of two extra bits per character.

9.5 MLC Coding
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Figure 9.7: This plot shows the results of MLC-PCM proposed coding for energy
saving. The dashed line shows the (normalized) average required energy for writing
data compared to no-codeing method. The dotted line shows the capacity of the
MLC-PCM compared to no-coding method. For example coding a 30-bit (15-cell)
word with 32-bit (16-cell) codes results in 0.78 reduction in energy. The capacity is
reduced to 30

32
= 0.93 of the full memory capacity.

Figure 9.7 shows the result for the average energy reduction of the coded data

for different code widths (N) compared to the non-coded data. Each N-cell word is

coded with N+1-cell codes. Thus the overhead for such codes is 1
N+1

. The figure also

shows the memory capacity usage of the coded data. It can be seen there is a tradeoff

between the energy reduction and the capacity usage. However, the reductions are

still significant for a small capacity losses. For example,for 16-cell codes, the write

energy is reduced by 78% while 93% of the memory capacity is being used.
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Conclusion

We proposed a novel data coding methodology for minimizing the energy consump-

tion and wear effect of PCM writes. Our method creates several alternative codes

for each word on the memory, trading off performance with memory capacity and

encoding overhead. The new words to be written on the memory are encoded such

that they incur the minimum cost when overwriting the existing words of the mem-

ory. To address the coding problem, we developed (i) an ILP-based solution with

a high combinational complexity that found the codes optimally; (ii) a Dynamic

Programming-based approach that combined the smaller optimal codewords to find

near-optimal codes; (iii) and an independent coding approach for Multi-Level Cell

PCM that reduced the number of costly intermediate level transitions to improve the

performance. For cases where the distributions of the data were a priori known, we

created a new data-aware algorithm that incorporated those information for further

optimizations. A low overhead architecture for our encoder module was proposed.

Evaluations on a diverse set of text, image, and audio benchmark data demonstrated

the applicability and effectiveness of our new methods. It was shown that allowing

extra memory overhead results in significantly better reductions in memory energy

and wear.
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version),” in Symposium on Theory of computing (STOC), 1982, pp. 105–113. 1,
2

[6] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal rewriting in con-
strained memories,” in International Symposium on Information Theory (ISIT),
2009, pp. 1219–1223. 1, 2

[7] H. Mahdavifar, P. Siegel, A. Vardy, J. Wolf, and E. Yaakobi, “A nearly optimal
construction of flash codes,” in International Symposium on Information Theory
(ISIT), 2009, pp. 1239–1243. 1, 2

[8] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once memo-
ries,” IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3692–3697,
june 2011. 1, 2



42

[9] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A low power
phase-change random access memory using a data-comparison write scheme,”
in Circuits and Systems, ISCAS. IEEE International Symposium on, 2007, pp.
3014 –3017. 1, 2, 9.2

[10] S. Cho and H. Lee, “Flip-N-Write: a simple deterministic technique to improve
PRAM write performance, energy and endurance,” in International Symposium
on Microarchitecture (MICRO), 2009, pp. 347–357. 1, 2, 9.2

[11] A. Mirhoseini, M. Potkonjak, and F. Koushanfar, “Coding-based energy mini-
mization for phase change memory,” in Design Automation Conference (DAC),
2012, pp. –. 1

[12] S. Lai, “Current status of the phase change memory and its future,” in Interna-
tional Electron Devices Meeting (IEDM), 2003, pp. 10.1.1 – 10.1.4. 2

[13] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran, M. Asheghi,
and K. Goodson, “Phase change memory,” Proceedings of the IEEE, vol. 98,
no. 12, pp. 2201–2227, 2010. 2, 3.1, 3.1

[14] C. Sie, “Memory devices using bistable resistivity in amorphousAs-Te-Ge films,”
PhD dissertation, Proquest/UMI publication 69-20670, Iowa State University,
January 1969. 2

[15] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and DRAM
main memory system,” in Design Automation Conference, 2009, pp. 664 –669.
2, 8

[16] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change mem-
ory as a scalable dram alternative,” in International Symposium on Computer
Architecture (ISCA), 2009, pp. 2–13. 2

[17] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main
memory using phase change memory technology,” in International Symposium
on Computer Architecture (ISCA), 2009, pp. 14–23. 2, 9.3

[18] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Design explo-
ration of hybrid caches with disparate memory technologies,” ACM Transactions
on Architecture and Code Optimization, vol. 7, December 2010. 2

[19] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of pcm-based main memory with
start-gap wear leveling,” in International Symposium on Microarchitecture
(MICRO-42), 2009, pp. 14–23. 2, 3.1

[20] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not ECC, for
hard failures in resistive memories,” in International Symposium on Computer
Architecture (ISCA), 2010, pp. 141–152. 2



43

[21] R. Ahlswede and Z. Zhang, “Coding for write-efficient memory,” Information
and Computation, vol. 83, no. 1, pp. 80–97, October 1989. 2

[22] F.-W. Fu and R. Yeung, “On the capacity and error-correcting codes of write-
efficient memories,” IEEE Transactions on Information Theory,, vol. 46, no. 7,
pp. 2299 –2314, November 2000. 2

[23] T. Mittelholzer, L. Lastras-Monta ando, M. Sharma, and M. Franceschini,
“Rewritable storage channels with limited number of rewrite iterations,” in In-
ternational Symposium on Information Theory (ISIT), 2010, pp. 973 –977. 2

[24] F. Bedeschi, R. Bez, C. Boffino, E. Bonizzoni, E. Buda, G. Casagrande, L. Costa,
M. Ferraro, R. Gastaldi, O. Khouri, F. Ottogalli, F. Pellizzer, A. Pirovano,
C. Resta, G. Torelli, and M. Tosi, “4-Mb MOSFET-selected µtrench phase-
change memory experimental chip,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 7, pp. 1557 – 1565, July 2005. 3.1

[25] F. Bedeschi, R. Fackenthal, C. Resta, E. Donze, M. Jagasivamani, E. Buda,
F. Pellizzer, D. Chow, A. Cabrini, G. Calvi, R. Faravelli, A. Fantini, G. Torelli,
D. Mills, R. Gastaldi, and G. Casagrande, “A bipolar-selected phase change
memory featuring multi-level cell storage,” Solid-State Circuits, IEEE Journal
of, vol. 44, no. 1, pp. 217 –227, jan. 2009. 3.2, 7

[26] W. Xu and T. Zhang, “Using time-aware memory sensing to address resistance
drift issue in multi-level phase change memory,” in Quality Electronic Design,
2010 11th International Symposium on, march 2010, pp. 356 –361. 3.2

[27] S. Braga, A. Sanasi, A. Cabrini, and G. Torelli, “Voltage-driven partial-reset mul-
tilevel programming in phase-change memories,” Electron Devices, IEEE Trans-
actions on, vol. 57, no. 10, pp. 2556 –2563, oct. 2010. 3.2

[28] M. Joshi, W. Zhang, and T. Li, “Mercury: A fast and energy-efficient multi-
level cell based phase change memory system,” in High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, feb. 2011,
pp. 345 –356. 3.2

[29] N. Papandreou, H. Pozidis, T. Mittelholzer, G. Close, M. Breitwisch, C. Lam,
and E. Eleftheriou, “Drift-tolerant multilevel phase-change memory,” in Memory
Workshop (IMW), 2011 3rd IEEE International, may 2011, pp. 1 –4. 3.2

[30] “Clustering to minimize the maximum intercluster distance,” Theoretical Com-
puter Science, vol. 38, no. 0, pp. 293–306, 1985. 4.2.3

[31] J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie, “Energy-efficient multi-level cell
phase-change memory system with data encoding,” in Computer Design (ICCD),
2011 IEEE 29th International Conference on, oct. 2011, pp. 175 –182. 7



44

[32] K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, C.-S. Lee,
H.-J. Kim, J.-M. Park, Q. Wang, M.-H. Park, Y.-H. Ro, J.-Y. Choi, K.-S. Kim,
Y.-R. Kim, I.-C. Shin, K.-W. Lim, H.-K. Cho, C.-H. Choi, W.-R. Chung, D.-E.
Kim, K.-S. Yu, G.-T. Jeong, H.-S. Jeong, C.-K. Kwak, C.-H. Kim, and K. Kim,
“A 90nm 1.8v 512mb diode-switch pram with 266mb/s read throughput,” in
Solid-State Circuits Conference, ISSCC. Digest of Technical Papers. IEEE In-
ternational, 2007, pp. 472 –616. 8

[33] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy- and endurance-
aware design of phase change memory caches,” in Proceedings of the Conference
on Design, Automation and Test in Europe, ser. DATE ’10, 2010, pp. 136–141.
8

[34] “Gurobi ILP solver. http://www.gurobi.com/.” 9.1

[35] “Columbia University sound examples directory:
http://labrosa.ee.columbia.edu/sounds.” 9.3

[36] “Caltech computational vision data repository website:
http://www.vision.caltech.edu/html-files/archive.html.” 9.3

[37] “Text file test data. http://mattmahoney.net/dc/textdata/.” 9.4

[38] “The king james bible (KJV). http://patriot.net/ bmcgin/kjvpage.html.” 9.4

[39] “Letter frequency counter. http://millikeys.sourceforge.net/freqanalysis.html.”
9.4.2




