

Abstract

Low-Level Haskell Code: Measurements and Optimization Techniques

by

David M. Peixotto

Haskell is a lazy functional language with a strong static type system and excellent

support for parallel programming. The language features of Haskell make it easier

to write correct and maintainable programs, but execution speed often su↵ers from

the high levels of abstraction. While much past research focuses on high-level opti-

mizations that take advantage of the functional properties of Haskell, relatively little

attention has been paid to the optimization opportunities in the low-level imperative

code generated during translation to machine code. One problem with current low-

level optimizations is that their e↵ectiveness is limited by the obscured control flow

caused by Haskell’s high-level abstractions. My thesis is that trace-based optimiza-

tion techniques can be used to improve the e↵ectiveness of low-level optimizations for

Haskell programs. I claim three unique contributions in this work.

The first contribution is to expose some properties of low-level Haskell codes by

looking at the mix of operations performed by the selected benchmark codes and com-

paring them to the low-level codes coming from traditional programming languages.

The low-level measurements reveal that the control flow is obscured by indirect jumps

caused by the implementation of lazy evaluation, higher-order functions, and the sep-

arately managed stacks used by Haskell programs.

My second contribution is a study on the e↵ectiveness of a dynamic binary trace-

based optimizer running on Haskell programs. My results show that while viable

program traces frequently occur in Haskell programs the overhead associated with

maintaing the traces in a dynamic optimization system outweigh the benefits we get

from running the traces. To reduce the runtime overheads, I explore a way to find

traces in a separate profiling step.

My final contribution is to build and evaluate a static trace-based optimizer for

Haskell programs. The static optimizer uses profiling data to find traces in a Haskell

program and then restructures the code around the traces to increase the scope avail-

able to the low-level optimizer. My results show that we can successfully build traces

in Haskell programs, and the optimized code yields a speedup over existing low-level

optimizers of up to 86% with an average speedup of 5% across 32 benchmarks.

Acknowledgements

None of this would have been possible without the support and encouragement of

my advisor, Keith Cooper. He allowed me to thrive and encouraged me to explore

the ideas I found interesting. Grad school is much easier when you know your advisor

always has your back. I am lucky to have found him. Vivek Sarkar was a great teacher

and mentor throughout my time at Rice. I was fortunate to work with him on many

di↵erent projects and I throughly enjoyed our time together. Wotao Yin served as

the outside committee member with great enthusiasm. He was a joy to work with

and I could not ask for a better participant. I am deeply grateful for everyone that

served on my committee.

My friends and fellow graduate students kept me sane during the hard times and

happy during the rest. Raghavan Raman, my constant o�ce mate, provided hours

of good discussions and taught me everything I know about cricket. Je↵ Sandoval

and Raj Barik were not only great fellow graduate students, but also great friends.

Eddy Westbrook, Ted Dervin, and Rob Banagale provided the friendship that keeps

one happy and healthy. Tim Harvey was always there for me. I had many useful

conversations with Thomas Schilling about trace-based compilation and Haskell.

I would have never made it without the love and support of Dana Parries, my

fiancee. She encouraged me when times got tough and was a constant reminder of

the important things in life. I owe her more than I can say, but will still make her

call me “Dr. Dave” for the rest of my days.

Finally I would like to thank my family. They have supported and encouraged

me my whole life. My parents, Kathleen and David, and my sister Jessica have all

positively shaped my future. I have them to thank for all of the advantages I have

enjoyed.

Contents

1 Introduction 1
1.1 Organization . 2
1.2 Motivation . 4

2 Benchmarks 8
2.1 Fibon Benchmark Suite . 8
2.2 SPEC Benchmark Suite . 12
2.3 Compilers . 12
2.4 Machines . 15
2.5 Performance . 15

3 Low-Level Haskell Code 21
3.1 Example Program . 21
3.2 Low-Level Code . 26
3.3 Low-Level Control Flow . 34

4 Low-Level Haskell Behaviors 39
4.1 Low-Level Behaviors . 39
4.2 Measuring Low-Level Behaviors . 41
4.3 Results . 44

4.3.1 Instruction Mix . 44
4.3.2 Branch Mix . 47
4.3.3 Indirect Branch Targets . 49
4.3.4 Basic Block Length . 53

4.4 Conclusion . 57

5 Dynamic Trace-Based Optimization of Haskell with DynamoRIO 61
5.1 Hand-Coded Trace Case Study . 63
5.2 How DynamoRIO Works . 66
5.3 Performance of Applications with DynamoRIO 69
5.4 DynamoRIO Program Traces . 75
5.5 Conclusion . 84

iv

6 Static Trace-Based Optimization of Haskell with Profile Data 86
6.1 Design . 87

6.1.1 Finding Traces . 88
6.1.2 Building Traces . 100
6.1.3 Optimizing Traces . 102

6.2 Implementation . 103
6.2.1 GHC Modifications . 103
6.2.2 LLVM Modifications . 108
6.2.3 Putting It All Together . 117

6.3 Results . 119
6.3.1 Performance . 121
6.3.2 Trace Statistics . 129
6.3.3 The E↵ect of Hotness Thresholds 140

6.4 Conclusion . 144

7 Related Work 148
7.1 Static Haskell Optimization . 149
7.2 Dynamic Optimization . 156

7.2.1 Virtual-Machine Based Optimizers 156
7.2.2 Dynamic Binary Optimizers 162

7.3 Feedback Directed Optimization . 166
7.3.1 Collecting Profile Data . 166
7.3.2 Optimizing with Profile Data 171

8 Conclusion 174

v

List of Figures

2.1 E�ciency of the Fibon benchmarks. 11
2.2 Low-level compilation path in the GHC compiler 13
2.3 GHC performance improvement on the Fibon benchmarks. 16
2.4 LLVM performance improvement on the Fibon benchmarks. 18
2.5 Impact of LLVM’s machine independent optimization 20

3.1 Simplified Haskell code listing for sum program 22
3.2 Haskell code listing for sum program 24
3.3 Low-level code for upto entry. 28
3.4 Low-level code for upto continuation point number one 29
3.5 Low-level code for upto continuation point number two 31
3.6 Low-level code for the upto thunk . 33
3.7 Hand-coded trace example: non-lazy call graph 34
3.8 Hand-coded trace example: non-lazy call graph 35
3.9 Hand-coded trace example: detailed call graph 37

4.1 Mix of instruction types for Fibon and SPEC programs. 46
4.2 Mix of branch types for Fibon and SPEC programs. 48
4.3 Indirect branch targets for Fibon and SPEC programs. 51
4.4 Indirect branch targets by type for Fibon and SPEC programs. 52
4.5 Indirect branch weighted distribution by type for Fibon and SPEC

programs. 54
4.6 Indirect branch target execution percent for Fibon and SPEC programs. 55
4.7 Mix of basic block lengths for Fibon and SPEC programs. 56
4.8 Average basic block lengths for Fibon and SPEC programs. 58
4.9 Average basic block lengths for Fibon and SPECint programs. 59

5.1 Overview of DynamoRIO. 66
5.2 Code Cache Overview of DynamoRIO 67
5.3 Performance of Fibon benchmarks under DynamoRIO 70
5.4 Performance of SPEC benchmarks under DynamoRIO 71
5.5 PC profile results for Fibon benchmarks under DynamoRIO 73
5.6 PC profile results for SPEC benchmarks under DynamoRIO 74
5.7 Average trace length for Fibon benchmarks 77
5.8 Average trace length for SPEC benchmarks 77
5.9 Execution percent of the most frequently executed Fibon traces . . . 78

vi

5.10 Execution percent of the most frequently executed SPEC traces . . . 79
5.11 Number of Fibon traces needed to encompass 50% of execution time . 80
5.12 Number of SPEC traces needed to encompass 50% of execution time . 80
5.13 Sum program with DynamoRIO traces 81
5.14 DynamoRIO traces found for the sum benchmark 83

6.1 The design of the Htrace system. 89
6.2 Algorithm for inserting instrumentation to build program traces. . . . 92
6.3 State transition diagram for trace runtime 94
6.4 Trace runtime callbacks. 96
6.5 The ExtendTrace routine. 97
6.6 The CommitTrace routine. 98
6.7 The shadow tracing routines. 99
6.8 Algorithm for instantiating traces. 100
6.9 GHC build.mk file. 104
6.10 GHC runtime CMM files used in building traces. 105
6.11 GHC rts ghc.mk file. 105
6.12 Tables next to code (TNTC) layout. 107
6.13 Htrace LLVM implementation . 109
6.14 External format of trace records. 115
6.15 C type definitions for external trace format. 116
6.16 Preparing a Haskell program to use Htrace 118
6.17 Standard library files used for Htrace programs 120
6.18 Performance of benchmarks under Htrace 122
6.19 Disposition of benchmarks run with Htrace. 123
6.20 Trace code shape for the Dotp benchmark 128
6.21 Number of traces found by Htrace . 131
6.22 Types of traces found by Htrace . 132
6.23 Types of traces found by Htrace weighted by trace entries 133
6.24 Length of traces found by Htrace . 134
6.25 Percent of broken traces found by Htrace 135
6.26 E↵ect of trace scope on percent of broken traces found by Htrace . . 137
6.27 Weighted average trace completion rate of traces found by Htrace . . 139
6.28 Fibon speedup by hotness threshold. 141
6.29 Distribution of hotness thresholds for best speedup. 143
6.30 Best speedup for any hotness threshold. 144

vii

List of Tables

2.1 Fibon benchmarks . 10
2.2 Benchmark machines . 15

4.1 Categories used for classifying instruction types. 45
4.2 Categories used for classifying branch types. 47

5.1 Hand-coded trace performance . 65
5.2 Key for PC profiling results graphs in Figures 5.5 and 5.6. 72
5.3 Number of traces found by DynamoRIO 82

6.1 List of callback routines for the trace runtime 114
6.2 Benchmark disposition categories . 123
6.3 Disposition of benchmark traces. 125
6.4 Sources of improvement for restructured low-level code 128
6.5 Number of traces found by Htrace . 130
6.6 Htrace overheads and file sizes . 138
6.7 Trace parameters used in the Htrace design. 145

viii

Chapter 1

Introduction

This thesis focuses on the low-level code of Haskell programs. Haskell is a statically

typed lazy functional language. While much research e↵ort has gone into improving

the execution speed of Haskell, the majority of this e↵ort has focused on high-level

transformations that can take advantage of the functional nature of the language.

My contributions examine how we can improve performance of Haskell programs

by optimizing the low-level code that appears in the translation into assembly code

from the high-level Haskell source code. These investigations lead to three major

contributions. The first contribution is related to the measurement of low-level Haskell

codes, the second contribution examines the possibility of using a binary trace-based

optimizer for low-level Haskell, and the third contribution shows how we can improve

the performance of Haskell code by using profiles to increase the scope available to a

low-level optimizer.

The main contributions of this thesis are in Chapters 4, 5, and 6 that exam-

ine the low-level behavior of Haskell programs and explore techniques for improving

performance by running low-level optimizations. The remaining chapters provide

information about the benchmarks used in the thesis, a look at the structure of low-

level Haskell code, and a discussion of related work. The introduction provides an

1

overview of the organization of the document and the motivation for why this thesis

is important.

1.1 Organization

This thesis is organized into five major chapters. We begin by looking at the bench-

marks used in experiments throughout the thesis. Next, to clarify what we mean

by the phrase “low-level Haskell“, we take a detailed look at an example program.

We then take a variety of measurements of the low-level code and compare them to

measurements from traditional languages. Finally, we look at trace-based techniques

for optimizing the code. One technique uses dynamic binary optimization and the

other uses profiling data to statically re-write the code. Each of these chapters is

explained in more details below.

Some of the initial investigations in this work used the venerable nofib Haskell

benchmarks [Partain, 1993]. These benchmarks have served Haskell implementers

well for many years, but many of them now run in less than a second which makes

it di�cult to collect accurate benchmark numbers. This thesis introduces the Fibon

benchmark suite, which is a new benchmark suite of modern Haskell programs. As

part of the work done for this thesis, we created the Fibon benchmark suite for

evaluating the e↵ects of compiler optimizations. Chapter 2 discusses the composition

of the Fibon benchmark suite and contains some performance measurements on the

e↵ectiveness of low-level optimizations on Haskell programs. Our experiments show

that low-level optimizations are generally ine↵ective for Haskell codes. To understand

the root of the di�culties in applying low-level optimizations to Haskell, we try and

compare the low-level code of Haskell and other languages.

To get a better sense of how the low-level code of Haskell programs compares to

the low-level code of traditional languages like C, C++, and Fortran, we measure the

2

behavior of programs from the Fibon and SPEC benchmark suites. Chapter 4 dis-

cusses how we measure the low-level behavior of programs and shows the comparison

between Haskell and traditional languages. The study reveals some di↵erences in the

behaviors that we measured for these low-level codes, particularly with the amount

of indirect control-flow operations. We can better understand these di↵erences in the

context of a detailed example of low-level Haskell code.

Chapter 3 provides a detailed look at a Haskell program and its translation to

low-level code. This examination shows how the abstraction mechanisms of Haskell

make it di�cult to perform low-level optimizations. A key problem with trying to

optimize Haskell programs is that the program control flow is obscured by the use

of high-order functions and lazy evaluation. Although the control flow is di�cult for

the compiler to deduce statically, it is readily available at runtime. We looked at two

di↵erent techniques for finding program traces and using them to give the compiler

a larger scope for optimization: dynamic binary and profile-guided tracing.

DynamoRIO is a binary trace-based optimization system developed by Bruening

et al. [2003]. It takes an unmodified program and builds traces of frequently exe-

cuted paths with the option to run additional optimizations when a trace is built.

The improved scope of a program trace would appear to be a good fit for low-level

optimization of Haskell programs. Chapter 5 examines how Haskell programs per-

form when running under DynamoRIO. While DynamoRIO is able to find traces in

Haskell programs, the overhead of running under DynamoRIO outweighs any poten-

tial benefits. The fact that DynamoRIO is able to find program traces is encouraging.

Our experience with DynamoRIO led us to explore techniques that would move the

trace-building and optimization o✏ine. That led to our work on statically derived,

profile-based traces and their optimization.

Chapter 6 presents Htrace, which is a system we built for profile-guided optimiza-

tion of Haskell programs. Since the profiling and optimization are done separately

3

from the normal program execution, we avoid the overheads associated with building

traces at runtime. Htrace runs the program once to find hot traces in the program

and then uses these traces as an increased scope for optimization. The end result is a

system that increases the performance of Haskell programs by up to 86% for programs

that contain frequently executed loop-based traces. For other programs, the traces

have little e↵ect or can sometimes harm performance. This chapter shows that the

performance of Haskell programs can be improved by focusing solely on the low-level

code without knowledge of the high-level structure of the Haskell program.

A reader of this thesis is not expected to have an in depth knowledge of Haskell.

Familiarity with a functional programming language would be useful, but most of the

technical discussion focuses on the low-level code produced during the compilation

process. This low-level code is certainly shaped by the fact that it comes from Haskell,

but it can be understood as a unique artifact without having to understand the

execution model of Haskell. Chapter 3 contains a detailed example of high-level

functional Haskell code and its translation to the low-level imperative code that is

the focus of this thesis. The information in that chapter should be enough background

to understand the important features of Haskell as they relate to this thesis.

1.2 Motivation

Software is important and ubiquitous. We rely on software to improve our lives and

keep us safe. Software is used in many vital human activities such as transportation,

commerce, and scientific discovery. Yet even though software is already widespread, it

it likely to continue to gain importance as we rely on it to further automate our lives

and expand the boundaries of knowledge. As software continues to push itself into

our lives the importance of writing correct and maintainable code grows. Consider

an example from the scientific domain.

4

A survey by Hannay et al. [2009] found that scientists spend 30% of their time

developing software, and the amount of time spent developing software has increased

compared to ten years ago. Computation is now an integral component in scientific

research so we must find a way to leverage the increasing power of computer hard-

ware without burdening scientists with onerous programming tasks. Hannay et al.

additionally report that most scientists develop software on desktop computers with

fewer than 10% of scientists targeting a supercomputer. These results suggest that

productive programming languages are important and that software developed for

desktop computing is an important subject of focus. Despite their increased impor-

tance in scientific discovery, programs are still di�cult to write correctly. A recent

article in Nature [Merali, 2010] describes several situations where software bugs have

led to retracted publications.

These examples point to the importance of software and the di�culty of writing

correct programs. While the cited examples come from scientific domain, the di�culty

of writing correct software is certainly not isolated to scientific computing. If we are

to meet the broad set of challenges of the future across all knowledge domains we

must provide programmers with languages that are expressive, safe, scalable, and

e�cient.

Haskell is a lazy functional programming language that is well suited to writing

concise and correct programs. It is expressive because of its declarative nature, which

allows the programmer to specify what is to be computed rather than the exact steps

for how the computation should be carried out. It is safe because the strong static type

system prevents many programming errors at compile time and allows components

to be safely reused. Haskell is a purely functional language, which means side e↵ects

are easily controlled and the programmer can reason about the correctness of disjoint

parts of a program. It is scalable because of the many abstractions it provides for

building large programs: higher-order functions, lazy evaluation, and type classes.

5

Higher-order functions allow computations to be explicitly represented as data

and provide a standard way to abstract over computations. Lazy evaluation lets

the programmer write program definitions without worrying about the exact order

in which they will be executed and allows the programmer to cleanly separate the

process of producing and consuming data. Finally, type classes are used to express

ad-hoc polymorphism and provide similar abstraction mechanisms as interfaces or

abstract classes in object-oriented languages. Unfortunately, all these abstractions

can harm performance which may dissuade programmers from using the language.

It is the job of the compiler to translate high-level abstractions to low-level machine

code with a minimal loss in performance. The programmer may be willing to tolerate

a decrease in performance for an increase in productivity. However, there is a limit to

how much performance one is willing to pay for these high-level abstractions. When

the performance cost is too great, a programmer will switch to a di↵erent language

with fewer abstractions but better performance. Ideally we could have a language

with all of the high-level abstractions and great performance. In this thesis I seek to

advance the state of the art in optimizing functional languages by employing dynamic

low-level compiler optimizations. My goal is to further close the performance gap

between high-level functional languages and low-level imperative languages.

Although performance is an important consideration, there are many factors that

influence the popularity of a programming language. Languages that are commonly

taught and used in university courses are generally more successful because of the

large number of programmers that know how to use the language. Education, qual-

ity libraries, and corporate support are all important factors in language adoption.

Although functional programming languages, such as Haskell, may have many good

qualities they will only thrive when these good qualities are widely recognized. Fortu-

nately, multi-core computing has brought a renewed interest to functional program-

ming languages because of their suitability for parallel programming.

6

I believe that the safe and expressive nature of functional programming languages

will be important for the future hardware trend of mainstream parallel computers.

My work will encourage the adoption of functional programs in domains where per-

formance remains an important metric for success. My work seeks to improve the

performance in a single thread of control and any parallelism in the program would

automatically take advantage of the improvements found in my research. Even if

Haskell does not see a widespread adoption in the scientific community, the focus of

my work on reducing the cost of abstractions through low-level optimization will pro-

vide a valuable reference point for future implementations of expressive and e�cient

programming languages.

7

Chapter 2

Benchmarks

In this chapter we describe the Fibon benchmark suite, a new Haskell benchmark suite

developed during the production of this thesis. The primary motivation for developing

a new benchmark suite came from the quick running time of many programs from

the popular nofib benchmark originally introduced by Partain [1993]. We wanted a

benchmark suite that contained programs that ran for more than one second so that

the impact of low-level optimizations could be reliably measured. In this chapter we

will describe the Fibon benchmark suite and provide basic performance measurements

for the e↵ectiveness of low-level optimizations. Although the Fibon benchmark suite

was developed for this thesis, none of the benchmarks were written by the thesis

author. Each of the individual benchmark programs predates this thesis.

2.1 Fibon Benchmark Suite

The Fibon benchmark suite is a collection of 32 benchmarks from four di↵erent

sources Fibon [2010]. Each source provides a di↵erent outlook on the use of Haskell.

The four benchmark Groups are described below and the benchmarks from each group

are summarized in Table 2.1.

8

Hackage Hackage [2010] is an open source repository for all kinds of Haskell codes.

The programs come from a wide variety of domains, including: computer al-

gebra, compression, cryptography, graph algorithms, linguistics, SAT solving,

finite automata, parsing, scientific simulation, and bioinformatics.

Shootout The Shootout [2009] benchmarks were created to compare performance

across a wide variety of programming languages. The benchmarks are small

programs, but they have been written specifically to run fast.

Repa Repa is a library for parallel arrays in Haskell written by Keller et al. [2010].

The benchmarks are small programs that test the quality of the code generated

for the library. These programs tend to be loop-based codes that work on the

parallel arrays.

DPH Data Parallel Haskell (DPH) is a Haskell library for nested data parallelism

by Chakravarty et al. [2007]. The benchmarks are small programs that test the

quality of the code generated by the library. These programs are similar to the

Repa group in that they tend to be loop-based codes working on arrays.

In addition to the informal characterization of the benchmark category given in Ta-

ble 2.1, an important characteristic to measure for Haskell benchmarks is the amount

of time spent doing garbage collection compared to the amount of time spent execut-

ing the program. In a Haskell implementation, the mutator is the code that does the

real work of the program (e.g. computing ⇡ to 1000 digits) and the garbage collector

is an implementation detail that is only needed because our computers have finite

memories. The e�ciency of a Haskell program is the ratio of the time spent running

in the mutator compared to the total execution time. A low e�ciency means that a

lot of execution time was spent collecting garbage.

Figure 2.1 shows the e�ciency of the Fibon benchmarks as executed by GHC.

The Hackage group shows the greatest variety in e�ciency, from the very ine�cient

9

Benchmark Category Lines of Code

Hackage
Agum Algebra 786
Bzlib FFI 432
Cpsa Cryptography 11582
Crypto Cryptography 4486
Fgl Graphs 3834
Fst Compilers 4532
Funsat SAT 16085
Gf Linguistics 23972
HaLeX RE 4035
Happy Compilers 5837
Hgalib AI 822
Palindromes String 496
Pappy Compilers 7313
Regex RE 6873
Simgi Simulation 5134
TernaryTrees String 722
Xsact Bioinformatics 2783
TOTAL 104221

Benchmark Category Lines of Code

Dph
DphLib 316
Dotp Array 308
Qsort Array 236
QuickHull Array 680
TOTAL 1612

Repa
RepaLib 8775
Blur Array 106
FFT2d Array 89
FFT3d Array 103
Laplace Array 274
MMult Array 133
TOTAL 9480

Shootout
BinaryTrees GC 92
Chameneos Threads 96
Fannkuch Array 27
Mandelbrot Array 68
Nbody Array 192
Pidigits Stream 26
SpectralNorm Array 97
TOTAL 598

Table 2.1: The list of Fibon benchmarks. The Hackage benchmarks are the most
diverse since they come from a wide variety of sources. The Dph and Repa bench-
marks are pulled from other benchmark suites that focus on array-oriented codes.
The Shootout benchmarks are small programs mostly have array-oriented programs,
but also contain several non-array codes.

10

Ef
fic

ie
nc

y
=

M
ut

Ti
m

e
/ T

ot
al

Ti
m

e

0.2

0.4

0.6

0.8

1.0
Dph

●

●

●

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Ag
um

Bz
lib

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

Q
ui

ck
C

he
ck

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa
●

●
● ● ●

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

●

●

●

● ● ● ●

Bi
na

ry
Tr

ee
s

C
ha

m
en

eo
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Figure 2.1: E�ciency of the Fibon benchmarks. The e�ciency is a measure of the
time spent in the program mutator compared to the total execution time. A low
e�ciency means that a lot of execution time was spent in the garbage collector.

Pappy benchmark at around 10% to the very e�cient Bzlib benchmark at near 100%.

The Repa benchmarks all have a very consistently high e�ciency. The Shootout

benchmarks have high e�ciency with the exception of the BinaryTrees benchmark,

which was actually designed to test the performance of the garbage collector.

In this thesis we focus on low-level optimization opportunities. These optimiza-

tions seek to improve the execution time of the mutator rather than change the

behavior of the garbage collector. To reflect that focus, most of the runtime numbers

we present in this thesis measure changes in the mutator execution time. The overall

impact of these optimizations will depend on the e�ciency of the program, but mea-

suring changes in mutator time allow us to detect performance improvements even in

benchmarks that have low e�ciency. Although there are many high-level optimiza-

tions that can a↵ect GC performance (e.g. by allocating fewer bytes), the low-level

11

optimizations we target in this thesis focus on mutator performance.

2.2 SPEC Benchmark Suite

The SPEC benchmark suite is an industry standard for evaluating the performance of

a computer system [SPEC, 2006, SPEC CPU Subcommittee, 2006]. The benchmark

suite is self-described as a “next-generation, industry-standardized, CPU-intensive

benchmark suite, stressing a system’s processor, memory subsystem and compiler.”

The CPU benchmarks are compute-intensive benchmarks that were developed from

real applications, and are divided into two groups SPECint, and SPECfp.

The SPECint group contains benchmarks testing integer performance and the

SPECfp group is for testing floating point performance. The benchmarks are widely

used in evaluation of compiler optimizations. In this thesis, we use them as a reference

set of programs from traditional languages and as a foil for the Fibon Haskell bench-

marks. The SPECint benchmarks are all written in C and C++ while the SPECfp

benchmarks contain a mix of C, C++, and Fortran.

2.3 Compilers

This thesis revolves around two di↵erent compilers: GHC and LLVM. In this section

we discuss the basic details of the two compilers.

The Glasgow Haskell Compiler (GHC) Peyton Jones and Marlow [2011] is a state-

of-the-art compiler for Haskell. It contains a large number of high-level optimizations

for improving the execution time and reducing the space usage of Haskell programs.

In addition to the standard Haskell language, GHC includes a number of popular

extensions used when writing modern Haskell programs. More information on the

high-level optimizations used by GHC is given in Chapter 7.

The results in thesis are based on GHC version 7.4. The compiler has largely

12

.hs

Core

Desugar

CMM

Optimize

LLVM IR

Code Gen

ASMLLVM

Backend

CMM Opt

Figure 2.2: Low-level compilation path in the GHC compiler. The square boxes are
di↵erent program intermediate representations. The oval shapes represent di↵erent
transformations that work on the various intermediate representations.

been used without modification. The primary exception is in Chapter 6 where the

compiler was slightly modified to enable easier collection of program traces. One

major advantage of using GHC is its inclusion of an LLVM back end, which was

added by Terei and Chakravarty [2010]. The LLVM back end is an alternate to the

native code generator which directly outputs assembly code. The compilation path

in GHC is shown in Figure 2.2.

The actual compilation path in GHC is obviously much more complicated than

the simplified picture shown in the figure. However, the simplified view is su�cient for

understanding the work in this thesis. The high-level optimizations are left untouched

by this work so that we can take advantage of the many optimizations used by GHC.

The high-level optimizations are represented by the Core-to-Core transformation in

the image. The Core language is then lowered to CMM through a transformation

called CodeGen in GHC. CMM is low-level intermediate representation. GHC con-

13

tains a few simple local optimizations for CMM such as constant propagation. From

the CMM, GHC will go through one of two back ends: the native back end or the

LLVM back end. The native back end will directly generate assembly code from the

CMM. The LLVM back end will generate LLVM IR from the CMM and then use

LLVM to optimize the IR and generate native code.

LLVM is a compiler infrastructure dedicated to “lifelong program analysis and

transformation” [Lattner and Adve, 2004]. The results in this thesis are produced

with LLVM version 3.0. The LLVM compiler was modified to build program traces

as described in Chapter 6. LLVM has gained popularity in recent years because

of its large number of program transformations and (perhaps more importantly) its

permissive open source license. The LLVM framework contains several tools that

combine to optimize the LLVM IR and generate machine code. The main tools used

in this thesis are opt, llc, and lli.

The opt tool is LLVM’s machine independent optimizer. The current version of

LLVM lists over 100 di↵erent analysis and transformation passes available [LLVM,

2011]. Theses optimizations include many of the classic compiler optimizations found

in compiler text books like Cooper and Torczon [2012].

The llc tool is LLVM’s machine dependent optimizer. These optimizations in-

clude standard compiler back end optimizations such as instruction selection, register

allocation, and instruction scheduling. Additionally the llc tool has optimizations

that become available as the LLVM IR is lowered to machine code, such as strength

reduction of array address calculations.

The final important tool for this thesis is the lli tool which is used to interpret

and JIT compile LLVM IR files. The lli tool is important for building program

traces and its use is more fully described in Chapter 6.

14

Chapters 4, 5 3, 6
Machine

Model Dell T5400 Macbook Pro
Year 2009 2010
RAM 8GB 8GB

OS
Flavor Linux Mac OS
Version Fedora 14 10.7.2
Kernel 2.6.35.6-45 11.2.0
Arch x86 64 x86 64

CPU
Model Intel Xeon E5405 Intel Core i7
Speed 2.00GHz 2.66GHz

Processors 2 1
Cores 8 = 4 ⇥ 2 2

Table 2.2: Benchmark machines

2.4 Machines

Two di↵erent machines were used to collect results for this thesis. The machines are

listed in Table 2.2. The T5400 was used to collect the low-level behavior measure-

ments in Chapter 4 and for the DynamoRIO results in 5. The Macbook was used to

generate the example code for Chapter 3 and for the LLVM-based optimizer described

in Chapter 6.

2.5 Performance

The performance characteristics of the Fibon benchmarks are discussed in this sec-

tion. We look at two main characterizations of performance. First, we look at the

e↵ectiveness of high-level optimizations done by GHC. We will see that GHC does

a very good job at optimizing Haskell programs and can achieve a speedup of up

to 97⇥over a non-optimized program. Second, we look at the e↵ectiveness of the

low-level optimizations implemented by LLVM. We will see that generally the LLVM

optimizations have little e↵ect on the performance of Haskell programs, with most

15

M
ut

at
or

 S
pe

ed
up

20

40

60

80

Dph

●● ●● ●●

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

●● ●● ●● ●●

●●

●●
●●

●● ●● ●● ●● ●●

●●

●● ●● ●●

●●

Ag
um

Bz
lib

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

Q
ui

ck
C

he
ck

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

●●

●● ●●

●●

●●

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

●● ●●
●●

●●

●●

●● ●●

Bi
na

ry
Tr

ee
s

C
ha

m
en

eo
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Speedup
Factor

● <1x
● 1:2x
● 2:5x
● 5:10x
● >10x

Figure 2.3: GHC performance improvement on the Fibon benchmarks. This graph
shows the speedup GHC achieves comparing optimization level -O0 vs. -O2. The high-
level optimizations in GHC are generally very e↵ective, with a whopping 97⇥speedup
on the Nbody benchmark. The average (geometric mean) speedup is 4.28⇥.

benchmarks exhibiting a performance change of less than 5%.

The high level optimizations done by GHC are generally very e↵ective for the Fi-

bon benchmarks. Figure 2.3 shows the speedup GHC obtains using its optimizations.

It measures the benchmark performance when running GHC with no optimizations

(-O0) compared to running with a high optimization level of -O2. We can see that the

high-level optimizations performed by GHC are generally very e↵ective. The HaLeX

benchmark is the lone outlier in that it runs about 5% slower. Many benchmarks

achieve a speedup of 2⇥ or more. The Repa benchmarks in particular see a large

speedup with each benchmark running at least 10⇥ faster. Although the speedups

from the high level GHC optimizations are quite impressive, the low-level optimiza-

tions done by the LLVM compiler tell a di↵erent story.

16

Figure 2.4 shows the performance benefit we get from running the Haskell pro-

grams through the LLVM compiler. The graph compares the performance of the

program when compiled using GHC’s native code generator to the performance when

compiled with the LLVM code generator. The same GHC high-level optimizations

were used in both cases. As we can see the majority of the programs show little

improvement from running through the LLVM back end. The dearth of improvement

is somewhat surprising given the large number of optimizations performed by LLVM

compared to the GHC back end. Four of the programs show an improvement of

greater then 20%: Blur, Laplace, Mandelbrot, and Nbody.

The four benchmarks that show the greatest improvement all have a very spe-

cial property in common that none of the other benchmarks share. Each of these

benchmarks have loops that LLVM can identify. These loops are are single tail-

recursive functions. Although the Fibon benchmarks have many programs that have

tail-recursive loops in the Haskell code, these loops are obscured by the translation

process which inhibits the optimization e↵orts of LLVM. A major goal of this thesis is

to make the loops in the program visible to LLVM so that it can optimize them to the

same degree as these four benchmarks. In the end, we were able to expose low-level

Haskell loops for many of the Fibon benchmarks, and the performance improvements

we report in this thesis come from exposing these loops to LLVM, which is able to

optimize many, but not all, of the loops we exposed.

We can also examine how the optimization level used by LLVM e↵ects the per-

formance of our Haskell benchmarks. Figure 2.5 shows the speedup we achieve on

the Fibon benchmarks using only the machine-independent optimizations of LLVM.

The programs were first compiled with opt -O0 and compared against opt -O2. The

same set of back end optimizations were used by the llc program.

We could not separately test the e↵ects of di↵erent levels of back end optimization

since the programs all crashed when running with llc -O0 and the levels -O1 and

17

M
ut

at
or

 S
pe

ed
up

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Dph

●●
●● ●●

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

●●
●● ●●

●● ●●
●●

●●
●●

●●

●●
●●

●●
●●

●●

●●
●●

●●

●●

Ag
um

Bz
lib

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
Fu

ns
at G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

Q
ui

ck
C

he
ck

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

●●

●●

●●

●●

●●

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

●●

●●
●●

●●

●●

●●
●●

Bi
na

ry
Tr

ee
s

C
ha

m
en

eo
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Impact
● − <10%
● − 5:10%
● ± 5%
● + 5:10%
● + >10%

Figure 2.4: Speedup of Fibon benchmarks when optimizing with LLVM. This graph
shows the speedup we get by running the Fibon benchmarks through the LLVM
compiler compared to using GHC’s native back end. The majority of the programs
get little benefit by running through LLVM. The four programs that get a large
speedup all have a similar property: they have loops that are contained in a single
function. The average (geometric mean) speedup is 5.8%.

18

-O2 run the same sequence of optimizations. The crashes were likely due to the need

to run the register allocator for these programs since GHC uses a custom calling

convention in LLVM which passes many parameters in registers. Still, we can gain

some insights by examining the e↵ects of the machine independent optimizations.

The most pressing observation is that the four loop-based benchmarks that had the

largest speedups compared to GHC’s back end (Blur, Laplace, Mandelbrot, Nbody) do

not show a great improvement from the opt-based optimizations. The Blur, Laplace,

and Mandelbrot benchmarks achieve a speedup of less than 5% from the opt-based

optimizations. The Nbody benchmark improves slightly less than 10%. These num-

bers indiciate that the majority of the improvement that LLVM gains is from the

machine-dependent optimizations present in the llc tool.

Since GHC’s native back end performs no loop optimizations, we can identify the

optimizations that are the likely cause of improvement in the loop-based benchmarks.

GHC uses a simple register allocator that is unlikely to capture any induction variables

in the loops causing the registers to be shu✏ed at the end of each loop iteration.

Additionally, the llc tool contains a code motion algorithm [Knoop et al., 1994] to

move operations out of the loop and a strength reduction algorithm [Cooper et al.,

2001] to reduce the cost of updating loop induction variables. These optimizations

are the major scalar optimizations we can perform on loops and since they are all

present in the llc tool the machine-independent optimizations in opt do not add any

great benefits to the loop-based benchmarks.

19

M
ut

at
or

 S
pe

ed
up

1.00

1.05

1.10

Dph

●●

●●

●●

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

●●
●●

●●

●●

●●

●●

●●

●●

●●
●●

●● ●●

●●
●●

●●

●●

●●
●●

Ag
um

Bz
lib

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
Fu

ns
at G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

Q
ui

ck
C

he
ck

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

●●

●● ●●

●●

●●

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

●●
●●

●●

●●

●●

●● ●●

Bi
na

ry
Tr

ee
s

C
ha

m
en

eo
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Impact
● − <10%
● − 5:10%
● ± 5%
● + 5:10%
● + >10%

Figure 2.5: Impact of LLVM’s machine independent optimizations (opt -O2 vs opt
-O0). This graph compares the e↵ect of di↵erent levels of machine independent op-
timizations in LLVM (the optimizations run by the opt program). The machine-
independent optimizations do not have as great an impact as the back end opti-
mizations as seen by the small speedup in the loop-based benchmarks. The average
(geometric mean) speedup is 1.7%.

20

Chapter 3

Low-Level Haskell Code

In this chapter we take a detailed look at the low-level code that gets generated for

Haskell programs. We focus on a simple example so that we can fully see the structure

of the low-level code. We start by describing a Haskell source program for readers

unfamiliar with Haskell. Next we describe the low-level code that is generated for a

single function in the program. Finally, we explore the control flow in the program

and identify a simple optimization that could be done by the compiler if it had more

information about the runtime paths executed by the program.

3.1 Example Program

The program used in the case study is shown in Figure 3.1; it computes the sum of

integers from 1 to 300,000,000. The code is written in a functional style and uses

the type-class and lazy-evaluation abstraction mechanisms. There are two primary

functions involved in the computation: upto and sum. The upto function lazily

generates a list of the numbers. This list is consumed by the sum function, which is a

tail-recursive function that uses an accumulator parameter to hold the result of the

sum.

The syntax of Haskell may be a bit foreign to programmers coming from traditional

21

1 root :: Int -> Int

2 root x = sum (upto 1 x)

3

4 upto :: Int -> Int -> [Int]

5 upto from to =

6 if from > to then [] else from : upto (from + 1) to

7

8 sum :: (Num a) => [a] -> a

9 sum l = sum’ l 0

10 where sum’ [] a = a

11 sum’ (x:xs) a = sum’ xs (a+x)

Figure 3.1: Simplified version of the example program used in this chapter. See the
text for a description of the syntax. The full version of the program is shown in
Figure 3.2.

languages, so we will give a detailed explanation of the code in this figure. The overall

computation is captured by the root function. Line 1 contains the type signature

of the function. The double colon :: is read “has type”, and is used to give a type

signature. The arrow -> represents a function type, so the type Int -> Int is a

function that takes one integer parameter and returns an integer. Line two is the

definition of the root function. The parameter to the function is the variable x, and

it computes the sum of values from one upto x.

The upto function is defined on lines 4-6. It computes the list of integers in the

range from up to to. Line 4 contains the type signature, which says that upto is a

function that takes two integers and returns a list of integers. The square brackets

[] are used to represent the type of singly linked lists in Haskell. The definition

of the function is given in line 6, and it shows how the resulting list of integers is

computed. If the from parameter is greater than the to parameter then the empty

list is returned, denoted by the empty square brackets. Otherwise, a new list element

is returned. The colon operator : read as “cons” constructs a new list element. At

the head of the list is the current value of from. The tail of the list is computed

as a recursive call to the upto function with the current from incremented by one.

22

Because Haskell is a lazy language, the recursive call is not performed immediately,

but rather it is delayed until the tail of the list is demanded.

The sum function is the final piece of the program. Line 8 is the type signature of

the function, which indicates it is a polymorphic function. The sum function works

for any type a, as long as a belongs to the Num type class. The Num type class requires

that the type implement standard numerical operations (such as addition). The sum

function takes a list of the Num-implementing values and returs a single value which

is the sum of the list. The function uses an auxiliary function defined in lines 10-11

to actually compute the sum. The auxiliary function is defined by case analysis on

the list. If it gets an empty list, then the accumulated sum is returned. Otherwise,

the head of the list is added to the accumulated sum and we recursively compute the

sum for the tail of the list.

The code in Figure 3.1 shows the basic program we use in this chapter. In order

to get presentable low-level code we can use to explain Haskell behavior, we actually

use a more detailed version of the code shown in Figure 3.2.

There are several interesting features of the detailed code in Figure 3.2. The

upto function is not polymorphic because it can only generate a list of Int values

which is Haskell’s representation of boxed machine-sized integers. A Haskell Int is

a boxed wrapper around an unboxed integer. GHC uses a naming convention where

types and operators that work with unboxed types end in a #. The upto function

is written using GHC-specific primitive functions for operating on the unboxed part

of the integers (i.e. the m and n values inside the I# boxes). Using the primitive

operations (>#, +#) simplifies the generated code and makes the example easier to

follow.

The sum function is polymorphic because it can sum a list of any type belonging

to the Num type class (e.g. Int, Float, Double). The actual implementation of

the Num class specifies how to perform the addition in the sum function (a+x) and

23

1 {-# LANGUAGE NoImplicitPrelude, BangPatterns, MagicHash #-}

2 module Main where

3

4 import GHC.Base

5 import GHC.Num

6 import qualified Prelude

7

8 {-# NOINLINE upto #-}

9 upto :: Int -> Int -> [Int]

10 upto from@(I# m) to@(I# n) =

11 if m ># n then [] else

12 from : upto (I# (m +# 1#)) to

13

14 {-# NOINLINE sum #-}

15 sum :: (Num a) => [a] -> a

16 sum l = sum’ l 0

17 where

18 sum’ [] !a = a

19 sum’ (x:xs) !a = sum’ xs (a+x)

20

21 {-# NOINLINE root #-}

22 root :: Int -> Int

23 root x = sum (upto 1 x)

24

25 main = do

26 let res = root (I# 300000000#)

27 Prelude.putStrLn (Prelude.show res)

Figure 3.2: Complete code listing that produces the traces in Figure 3.9. The program
computes the sum of the first 300,000,000 integers. The integers are generated lazily
by the upto function, and the sum is computed using a strictly evaluated accumulator
as a tail recursive function.

24

how to convert the constants (e.g. 0) to a value of the appropriate type. The Num

implementation is passed to the sum function as a dictionary that holds pointers to

the Num functions for that type. When a method of the Num type class is called (e.g.

+), the generated code will lookup the appropriate function in the dictionary. This

function is then called using the generic apply routine in the GHC runtime [Marlow

and Peyton Jones, 2006].

I should also note that sum uses the auxiliary function sum’ to consume the lazily

generated list. This function uses an accumulator parameter that stores the sum as

the list is consumed and recursively calls itself with the updated parameter. The

sum’ function is strict in the accumulator parameter (seen by the ! in front of the

a) so that the addition will be performed before the recursive function call. If sum’

was not strict in a, then the addition would be delayed as a thunk and not performed

until the entire list had been consumed.

The final point to note about the detailed example program is that it has been

purposely annotated with NOINLINE pragmas to keep GHC from inlining the functions

and optimizing away the example. The example program was selected because it is

simple, which makes it easy to manipulate by hand. GHC can optimize away most of

the overhead in this example by inlining the functions, but the purpose of this exercise

is to show the problems with code generated by GHC and to show how trace-based

optimization can improve the performance of the code. Although GHC can easily

optimize this program, we use it to show the potential of trace-based optimization

because the program contains overheads common to Haskell programs that GHC

may not be able to so easily optimize when they are obscured in more complex or

convoluted code.

25

3.2 Low-Level Code

In this section we take a look at some of the low-level code that is generated for the

example program. We will focus on the code generated for the upto function to keep

the discussion manageable. The discussion here focuses on the parts of the Haskell

code that is most relavant to this thesis. We do not attempt to give a full description

of the execution model used by GHC to implement Haskell programs. GHC uses

the Spineless Tagless G-machine (STG) execution model described by Peyton Jones

[1992]. The description in that paper is fairly accurate for today’s GHC. Some major

changes include the use of eval/apply for calling unknown functions [Marlow and

Peyton Jones, 2006] and the addition of pointer tagging to avoid unnecessary indirect

jumps [Marlow et al., 2007].

One important feature of GHC is that it manages the Haskell call stack separately

from the standard C stack. During the translation from the high-level Haskell code

to the low-level imperative code, the stack manipulations are made explicit in the

low-level code. One implication of managing the Haskell call stack separately is that

when a call is made to another function, GHC must generate a return point where

the call can return. These return points serve to hold the code for the continuation as

well as an indication of which values are pointers of the values that have been saved

on the stack for use in the continuation. The pointer info is needed by the garbage

collector to accurately find all of the roots for garbage collection. The return points

cause a single source function to get broken up into multiple pieces. For example, the

upto function is broken into four pieces.

To understand the low-level code we need to know a bit about the calling conven-

tion GHC uses for Haskell programs. The calling convention is used for the code at

the CMM level and lower (see Figure 2.2). GHC compiles programs with a number

of virtual registers R1-RN. These registers are assigned specific purposes on entry to

a function. The R1 register contains the value under evaluation. For a function this

26

is simple a pointer to the function, but in some instances it will point to a thunk. A

thunk is simply a value whose evaluation has been delayed to respect Haskell’s lazy

evaluation strategy. The registers R2, R3, ... contain the arguments to the func-

tion. In addition there are several special registers: Sp, Hp, SpLim, HpLim, and

BaseReg. The Sp register contains a pointer to the top of Haskell runtime stack, and

SpLim contains the stack limit. Similarly, Hp contains a pointer to the next free mem-

ory location in the heap and HpLim is the current heap limit. These heap registers

allow very a cheap allocation strategy of simply bumping the current heap pointer to

allocate memory. The notation I64[x] represents a dereference of a memory location

that is 64 bits wide and is pointed to by the value x. It is used as the notation for

both loading and storing values to memory. Finally, the BaseReg register points to a

table of commonly used function addresses, such as the garbage collector entry point.

The upto function must perform several tasks: ensure that the arguments are

evaluated, check to see if the limit has been reached (from > to) and if not to allocate

a new list element in the heap. Figure 3.3 shows the CMM code for the entry to

the upto function. Because Haskell uses lazy evaluation the arguments to the upto

function may not be evaluated yet. The entry code ensures that the first argument is

evaluated and hands control to the continuation that will finish the remaining tasks.

On entry to the function we first check to make sure that we have enough space on the

runtime stack (line 4) and if not we call back into the runtime to extend our stack (line

13). Next we prepare to evaluate the first argument, which is the from variable stored

in R2. Because of lazy evaluation, evaluating the argument may require an unknown

amount of computation. We need to save any live variables to the stack so that we can

access them when we need them later. Line 5 saves the second function argument (to

stored in R3) to the stack. Line 7 pushes the continuation point (sMX ret) onto the

stack so that we will return to the correct place after evaluating the first argument.

Now we are ready to evaluate the argument.

27

1 upto_entry()

2 {

3 cQ2:

4 if ((Sp + -24) < SpLim) goto cQ4;

5 I64[Sp - 8] = R3;

6 R1 = R2;

7 I64[Sp - 16] = sMX_ret;

8 Sp = Sp - 16;

9 if (R1 & 7 != 0) goto cQ7;

10 jump I64[R1] ();

11 cQ4:

12 R1 = Main.enumFromTo_closure;

13 jump (I64[BaseReg - 8]) ();

14 cQ7: jump sMX_ret ();

15 }

Figure 3.3: Low-level code for upto entry. It evaluates the from argument.

In line 6 we copy the first argument into R1 since that will be item under evaluation.

We can now evaluate the argument. GHC represents values uniformly as a closure

that contains a pointer to the code that will evaluate the value along with any free

variables needed to evaluate the value. To evaluate a value we simply jump to the

code pointer stored in the closure as shown in line 10. As an optimization, GHC will

tag closures that have already been evaluated by marking the low-order bits in the

address pointing to the closure [Marlow et al., 2007]. Before jumping to the closure,

GHC will first check to see if it has been tagged as evaluated as shown in line 9. If

the closure is already evaluated we can jump directly to the continuation point as

shown in line 14. Either way we will eventually end up at the sMX ref continuation

with the first argument evaluated.

Figure 3.4 is the continuation point for the upto function after evaluating the

first argument. It has a similar structure to the entry point described above and is

responsible for evaluating the second argument. First, on line 4, we save the value

that was under evaluation to the stack. This value is actually the first argument to

the upto function that was evaluated by the entry code. It is saved on the stack

28

1 sMX_ret()

2 {

3 cPS:

4 I64[Sp + 0] = R1;

5 _cPQ::I64 = I64[Sp + 8];

6 I64[Sp + 8] = I64[R1 + 7];

7 R1 = _cPQ::I64;

8 I64[Sp - 8] = sN0_ret;

9 Sp = Sp - 8;

10 if (R1 & 7 != 0) goto cPU;

11 jump I64[R1] ();

12 cPU: jump sN0_ret ();

13 }

Figure 3.4: Low-level code for upto continuation point number one. It evaluates the
to argument.

because we must now evaluate the second argument to the upto function. In line 6

we save the primitive integer value of the from variable to the stack. Recall from

Section 3.1 that in Haskell integers are stored as boxed values in the heap. Here, we

extract the unboxed integer and save it on the stack for later use. Line 5 loads the

to variable that we saved on the stack in the entry code. The variable is loaded into

the R1 register in preparation to evaluate it. Line 8 saves the continuation address

(sN0 ret) to the stack so that we return to the correct location after evaluating the

value in R1. Finally, in line 10 we check to see if the to value has already been

evaluated. If it is already evaluated we jump to the continuation, otherwise we jump

to the code that evaluates the parameter.

After evaluating both of the arguments to the upto function we end up at the

sN0 ret continuation shown in Figure 3.5. This continuation corresponds to the part

of the upto function that checks the termination condition and then returns the next

list element or the empty list if the limit has been reached. If the limit has not been

reached then the head of the list returned to the caller contains the current number

in the enumeration (the from argument to the upto function) and the tail of the

29

list contains a thunk that can be evaluated to produce the rest of the list. This two

element combination is the prototypical lazily evaluated list.

On entry to the continuation the R1 parameter contains the to argument of the

upto function. In lines 4-5 we check to make sure there is enough space in the heap

to allocate the list element and the thunk. If not, we call the garbage collector in line

19. Line 6 is the check to see if m > n. The comparison uses the unboxed integer

values stored on the stack for from and in the to closure pointed to by R1. If the

limit is reached the empty list is returned to the caller in lines 21-24. Otherwise, we

allocate a new list element and thunk.

The allocations are performed on lines 7-12. The thunk closure is allocated at

Hp-48. It consists of a code pointer (sat sOO entry) and the free variables needed

by the code. In this case, the free variables are the to argument stored in R1 and

the unboxed from integer stored in the stack. The new list element is allocated at

Hp-16. It consists of a tag (: con info) and the head and tail of the list. The head

of the list is the from element which is loaded from the stack, and the tail of the list

is the thunk that was just allocated at Hp-48. After the allocations are done we are

prepared to return to the caller of the upto function.

We load the return value into R1 in line 13. The return value is the new list

element we just allocated. It is tagged with a two in the low-order bits by pointing

R1 to Hp-14 instead of Hp-16. The tag indicates that the closure is evaluated and

contains a cons cell as opposed to an empty list (which would be tagged with a one).

The stack space allocated by the upto function is deallocated in line 14. Finally, in

line 15 we return to the caller of the upto function by jumping to the return address

stored on top of the stack. When the thunk we just allocated is demanded later in

the program’s execution it will cause the control to jump to the sat sOO entry code.

Figure 3.6 shows the code for the thunk allocated by the upto function. The code

for the thunk will be entered when the value of list element that holds the thunk is

30

1 sN0_ret()

2 {

3 cPr:

4 Hp = Hp + 56;

5 if (Hp > I64[BaseReg + 144]) goto cPu;

6 if (%MO_S_Gt_W64(I64[Sp + 16], I64[R1 + 7])) goto cPw;

7 I64[Hp - 48] = sat_sOO_entry;

8 I64[Hp - 32] = R1;

9 I64[Hp - 24] = I64[Sp + 16];

10 I64[Hp - 16] = :_con_info;

11 I64[Hp - 8] = I64[Sp + 8];

12 I64[Hp + 0] = Hp - 48;

13 R1 = Hp - 14;

14 Sp = Sp + 24;

15 jump (I64[Sp + 0]) ();

16 cPx: jump (I64[BaseReg - 16]) ();

17 cPu:

18 I64[BaseReg + 184] = 56;

19 goto cPx;

20 cPw:

21 R1 = []_closure + 1;

22 Sp = Sp + 24;

23 Hp = Hp - 56;

24 jump (I64[Sp + 0]) ();

25 }

Figure 3.5: Low-level code for upto continuation point number two. It checks the
termination condition and returns either the empty list or the next list element.

31

demanded. At that point, the thunk is responsible for performing the recursive call

to upto with the from parameter increase by one.

The thunk code begins by checking to see if there is enough free space available

on the stack and heap. Next, on line 7 we push an update frame onto the stack along

with a pointer to the thunk closure that is stored in the R1 register. The update

frame is responsible for overwriting the closure with (an indirection to) the value to

which the closure evaluates. These updates are necessary to avoid repeated evaluation

of shared closures and are a required part of an implementation of lazy evaluation.

The update will be performed when we return from the sN0 function with the newly

allocated list value.

Line 9 contains the increment of the from variable. The increment is done on

the unboxed value (m#) stored as a free variable in the closure. Lines 10-11 allocate

the new boxed integer that will be passed as the new value of the from parameter.

We are now ready to prepare for the recursive call to to upto. Lines ll-12 load the

two parameters into the expected registers. The R2 register gets the first parameter,

which is the freshly allocated integer. The R3 register gets the second parameter

which is the original to value that is store in the closure. Finally, we can call the

upto function on line 14.

In this section we took a detailed look at the low-level code generated for a single

Haskell function. It is important to note that each of the four low-level entities de-

scribed in this section will be seen as separate functions by the LLVM back end. It

is the complexity of the low-level code, introduced by the managed environment, the

support for first class functions, and laziness, that creates the fundamental opportu-

nity for optimization that our work tries to exploit. In the next section we examine

how control flows between multiple functions and the e↵ects that lazy evaluation and

type classes have on control flow.

32

1 sat_sOO_entry()

2 {

3 cPa:

4 if ((Sp + -16) < SpLim) goto cPc;

5 Hp = Hp + 16;

6 if (Hp > I64[BaseReg + 144]) goto cPe;

7 I64[Sp - 16] = I64[stg_upd_frame_info];

8 I64[Sp - 8] = R1;

9 _sOL::I64 = I64[R1 + 24] + 1;

10 I64[Hp - 8] = GHC.Types.I#_con_info;

11 I64[Hp + 0] = _sOL::I64;

12 R2 = Hp - 7;

13 R3 = I64[R1 + 16];

14 Sp = Sp - 16;

15 jump Main.upto_entry ();

16 cPc: jump (I64[BaseReg - 16]) ();

17 cPe:

18 I64[BaseReg + 184] = 16;

19 goto cPc;

20 }

Figure 3.6: Low-level code for the upto thunk. It calls the upto function with an
incremented from parameter.

33

upto

root

sum

Figure 3.7: The non-lazy call graph with no type classes for the code in Figure 3.2.

3.3 Low-Level Control Flow

The program in Figure 3.2 is simple, but it demonstrates several of the overheads in-

troduced by abstraction mechanisms in Haskell. In particular, we can see the overhead

e↵ects of lazy evaluation and type classes. These abstraction mechanisms interfere

with the compiler’s ability to optimize the program because they obscure the control

flow visible to the compiler. In this section we will examine the control flow in the

example program and describe how it becomes obscured in the code generated by

GHC. In this section we examine the control flow of the sum program and identify

a simple optimization opportunity that becomes available when the control flow is

exposed to the compiler.

Without lazy evaluation or type-class methods, we would expect the control flow

to look like the image in Figure 3.7. The program begins in the root function which

calls the upto function which generates the list of numbers and returns to root.

Control flow then transfers to the sum function which computes the sum of all the

numbers in the list. Although this description is accurate for an eager language, the

actual control flow in the Haskell program will be quite di↵erent.

34

upto

root
sum

NumRuntime

method lookup

unknown function
application

thunk update

thunk eval

direct control flow
lazy control flow
type-class control flow

Figure 3.8: The lazy call graph with type classes for the code in Figure 3.2. The thick
dashed lines are edges introduced from lazy evaluation an the thin dotted lines are
edges introduced by type classes. The solid lines show the control flow as seen by the
static compiler. The root function calls the upto function which returns a thunk to
the root function. Next, the root function calls the sum function passing the thunk.
The sum function will repeatedly evaluate the thunk to pull each number from the
list as it accumulates the total.

Figure 3.8 shows the control flow that occurs in a language like Haskell with lazy

evaluation and type classes. There are two new nodes in the control-flow graph and

several new edges. The new nodes are for the Num type class and Haskell runtime.

The dashed edges are for control flow induced by lazy evaluation and the dotted edges

are for control flow induced by type-class method calls.

The path from the sum node to the Num node represents the call into the Num type

class to look up the + function implementation and then use a generic application rou-

tine to apply the unknown (at compile time) function (see Marlow and Peyton Jones

[2006] for details about generic application). The path from the sum node to the upto

node is made by the lazy evaluation of the list of numbers. The list is represented by

35

a thunk that will generate elements of the list as they are needed. We took a detailed

look at how that list is generated by the upto function in Section 3.2. When the list

is inspected in the sum’ function to see if it is empty or not, the actual control flow

will shift back to the upto function to generate the next element. Before returning

the element to the sum function, the thunk is overwritten with (an indirection to) the

new list cell. The thunk must be updated in this way to avoid wasting execution time

by repeatedly evaluating the thunk.

As we can see, the control flow for even this simple example is quite complex.

Unfortunately, the actual control-flow graph gets even worse when we look at the real

code generated by GHC. Figure 3.9 shows the control flow that was reconstructed

from the actual executable code generated for the example program.

The primary addition to the control flow in Figure 3.9 is the new nodes for the

return points from case evaluations. These evaluations will be done when the value

of a function argument is needed. Since Haskell is a lazy language, there may be

an arbitrary amount of code that is executed when inspecting a variable with a case

statement (i.e. turning a thunk into a value may involve a lot of work). Because of

this potentially unbounded amount of work, every time a variable is scrutinized with

a case statement a continuation point must be created to hold the code necessary to

continue the computation. Normally, these case continuations will be reached by an

indirect jump after the evaluation of the case statement. However, with the addition

of pointer tagging as described in Marlow et al. [2007] we can directly jump to the

continuation point if the variable has previously been evaluated to a value.

Figure 3.9 also reveals the frequent execution paths in the program. There are two

main traces in the example program. The first trace is the upto trace marked by the

dashed blue line and corresponds to the evaluation of the list thunk. The second trace

is the sum trace marked by the dotted red line; it corresponds to the sum’ function

that inspects the list and performs the addition with the accumulator. Combining the

36

up
to

ro
ot

sM
X

C
C

: f
ro

m

sN
0

C
C

: t
o

sQ
g

C
C

:
en

um
Fr

om
To

su
m

N
um

.
fro

m
In

te
ge

r
st

g_
ap

_p

sN
j

C
C

: f
ro

m
In

t

sM
I

ev
al

: l
is

t

sN
h

co
ns

 c
he

ck
ap

_0
_f

as
t

ev
al

 a
cc

um
sM

G
ev

al

ac
cu

m
 +

 x

N
um

.+
ge

t +

fu
nc

tio
n

st
g_

ap
_p

p
ap

pl
y

pl
us

In
t

sN
I

re
tu

rn
 p

oi
nt

sa
t_

s0
0

th
un

k
ev

al
ad

d
fro

m
 +

 1

st
g_

up
d_

fra
m

e
pl

us
In

t
ev

al
 a

 +
 x

s1
0X

C
P:

 e
va

l o
f a

s1
0W

C
P:

 e
va

l o
f x

ad
d

a
+

x

di
re

ct
 ju

m
p

(s
ol

id
 a

rro
w

 h
ea

d)

in
di

re
ct

 ju
m

p
(o

pe
n

ar
ro

w
 h

ea
d)

fir
st

 ti
m

e
ex

ec
ut

io
n

en
um

Fr
om

To
 tr

ac
e

su
m

 tr
ac

e
op

tim
iz

ed
 tr

ac
e

su
m

up
to

nu
m

 t
yp

e
cl

as
s

ru
nt

im
e

F
ig
u
re

3.
9:

H
an

d
-c
od

ed
tr
ac
e
ex
am

p
le

fo
r
th
e
p
ro
gr
am

in
F
ig
u
re

3.
2.

37

two traces results in the loop that consumes the majority of the program’s execution

time. As we can see, the frequent execution path tends to contain nodes from a variety

of source level functions as well as runtime and Num type class functions. This mixture

of nodes is only visible at runtime; the static compiler has no chance to reconstruct

this flow at compile time.

Once the control flow is apparent, we can see an opportunity to reduce the over-

head of type classes using a technique similar to the inline method cache used to

e�ciently implement Smalltalk as described by Deutsch and Schi↵man [1984]. We

could modify the code so that the + function is not looked up in the type class dictio-

nary every time through the loop. Instead, we place a direct call to the function stored

in the dictionary. This optimization is e↵ective because it eliminates the lookup of the

function in the dictionary and the application of the unknown function returned by

the dictionary lookup. Further, the optimization is best performed based on runtime

information when we will know the value stored in the dictionary and can use that

value as the target of the function call. The optimized trace is indicated in Figure 3.9

by the long-dashed green arrow.

In this chapter we took a detailed look at the low-level code we get for a Haskell

program and how lazy evaluation and type classes e↵ect the control flow of a pro-

gram. From our observations it would appear that Haskell programs have some unique

low-level code shapes compared to traditional programming languages. These code

shapes, in turn, may create opportunities for optimization that are not apparent in

either the original Haskell code or in the low-level code generated by GHC. In chap-

ter 6, we will develop techniques to find and expose these opportunities by creating

traces through the low-level code. In the next chapter we will measure a variety of

Haskell programs and compare their low-level behavior to the behavior of C and C++

programs.

38

Chapter 4

Low-Level Haskell Behaviors

In this chapter we examine the low-level behavior of Haskell programs and compare

them to programs from the SPEC benchmark suite. The goal of this study is to see if

we can distinguish Haskell programs from programs written in traditional program-

ming languages. These low-level behaviors give an insight into the code shape of the

program. Cooper and Torczon [2012] define code shape as “all of the decisions, large

and small, that the compiler writer makes about how to represent the computation

in both IR and assembly code.”. Code shape is important because it dictates the

optimization opportunities available to the compiler. We saw in the previous chapter

how making the control flow manifest enabled an optimization for reducing the over-

head of applying type-class functions. We are interested in applying the traditional

compiler optimizations found in LLVM, so the code shape of Haskell will have a direct

bearing on the e↵ectiveness these optimizations.

4.1 Low-Level Behaviors

Measuring the exact code shape would account for both common sequences of in-

structions and common control-flow patterns in the control flow graph. Even in a

small program, the number of combinations of instructions are large. We therefore

39

approximate the code shape by measuring four key properties: the mix of instructions

executed, the di↵erent types of jumps executed, the number of targets for indirect

branches, and the length of the basic blocks. The rational for each of these measure-

ments is discussed below.

The instruction1 mix tells us both what instructions are generated and how much

variety exists in the instruction stream. The identification of the instructions is useful

for an analysis of what instructions are commonly executed by a running program.

We can use this information to tell, for example, if a program performs many memory

operations compared to the number of arithmetic and logic operations. Note that the

instruction mix is not weighted by execution time so that simply performing more

of a given kind of instruction does not mean that kind of instruction is responsible

for more of the execution time of the program. The variety of instructions executed

relates to the complexity of the translation to low-level instructions. A greater variety

of instructions may indicate that a more complicated translation is used to produce

the machine code, and a more complicated translation typically indicates that opti-

mizations were applied during the translation process.

Measuring the di↵erent kinds of jumps gives an idea about how much code the

compiler will typically be able to see. Indirect jumps and calls obscure control flow,

limit the scope of optimization, and decrease the precise of an optimizing compiler’s

analysis of the code. On the other hand, direct branches are easily dealt with in the

compiler since it can build a precise control flow graph that contains edges to the

known target(s) of the branch.

The number of targets for indirect branches is important for measuring the locality

of branches. We saw in Chapter 3 that lazy evaluation can cause Haskell programs to

jump to arbitrary code when evaluating function arguments. These lazy-evaluation

induced jumps will be indirect jumps in the final program. If these jumps typically

1I will use the term instruction and opcode interchangeably.

40

have few targets then we could expect to get some benefit by specializing the code

for the di↵erent jump targets. If the number of targets is very large then specializing

the code is unlikely to help.

A basic block is a maximal sequence of straight-line code with a single entry and

a single exit. Basic blocks are standard units inside compilers because they provide a

known context for optimization: if one instruction in the block executes, they will all

execute. Many traditional local compiler optimizations work over the basic blocks in

a program. Small basic blocks indicate that there is little computation taking place

between the control flow operations in the program. Large basic blocks provide good

opportunities for optimizations. The distribution of the lengths of basic blocks give

some insight into the average size of the nodes in the control flow graph, but not into

the shape of the graph.

4.2 Measuring Low-Level Behaviors

The code behaviors were measured by examining the hardware instruction traces

generated by running the program. The traces are collected using the Pin tool of Luk

et al. [2005]. Pin works by dynamically instrumenting a program binary to provide

callbacks to user defined functions at various times during execution. As the program

executes, Pin builds up execution traces for the dynamically executed paths in the

program. The first time a new trace is executed, we get an analysis callback that

allows us to insert instrumentation code along the trace. Subsequent executions of

the trace will include any code added by the analysis pass.

To collect the instruction mix, jump mix, and basic block length data we break

the trace into its component basic blocks. For each basic block we record the mix of

instructions in the block and its length. We then insert an instrumentation callback

that executes every time the basic block executes. Our instrumentation callback

41

increments the count of the number of times that block executes. When the program

has completed, we can compute the counts for the actual instruction mix, jump mix,

and basic block lengths based on the information we recorded for each basic block.

The collection of indirect branch target data is a bit more complicated.

The collection of the indirect branch target data proceeds in three main phases:

instrumentation, consolidation, and histogramming. The instrumentation phase uses

Pin’s bu↵ering API to record some data at the location of each indirect branch. A

program has three di↵erent kinds of indirect branches: jumps, calls, and returns. We

normally may not think of a function return as an indirect branch, but it qualifies

since a return will jump to an instruction whose address is stored in memory (i.e.

the return address on the stack). At each indirect branch we record three pieces of

data into a bu↵er provided by Pin. We record the kind of indirect branch (jump,

call, or return) the address of the branch instruction, and the address of the branch

target. Using Pin’s bu↵er API allows for more e�cient instrumentation because we

are simply writing into a data bu↵er at each indirect branch and avoid the overhead

of calling out to a function to record the data. Pin manages the size of the data bu↵er

and when it is full Pin will call a user defined consolidation function to process the

data.

The consolidation function takes the bu↵er records and groups data based on the

address of the branch instruction (the actual address of the branch instruction, not

the address of the target of the branch). For each unique indirect branch instruction

address executed by the program we keep a JumpRecord that keeps track of all the

targets the branch reaches. To process a full bu↵er we examine each entry in the bu↵er

and lookup the JumpRecord for the branch address (creating a new record if needed).

Each JumpRecord maintains a set of target addresses and a counter for the number

of times the branch was executed. Once we find the appropriate record for the source

address of the branch we add the target address of the branch to the set of targets

42

and increment the counter. The consolidation routine is called repeatedly during the

program until execution completes. When the program has finished executing, we

process all JumpRecords to build a histogram.

The histogram of JumpRecords bins the indirect branches in the program by the

number of distinct targets reached through the branch. The histogram maps the

number of distinct targets to the branches that have that number of targets. For

example, we will group together all branches that have one target, two targets, and

so on. We can then sum the total number of times the branches having that number

of targets is executed. The sum will tell us how frequently branches with the given

number of targets are executed by the program.

An important point to note about the data collection for Haskell programs is that

we do not collect data when the program is executing inside the GHC runtime. For

our purposes, we can consider the GHC runtime as consisting of two parts: a CMM-

runtime containing hand-written CMM code that is used to implement parts of the

Haskell execution model, and a GC-runtime written in C code that implementes

runtime services such as the garbage collector and lightweight threads. The CMM-

runtime contains important Haskell features such as the implementation of updating

a thunk with its value and applying unknown functions to their arguments. It would

be good to include the data for when we are executing in this part of the runtime.

On the other hand, we do not want to include data from the GC-runtime since it

is never visible to the compiler, and the GC-runtime features for garbage collection

and lightweight thread creation are not relavant to our study of low-level compiler

optimization. Unfortunately, we were unable to separately collect numbers for the

di↵erent parts of the runtime because they are included in the same shared library.

Our goal is to characterize the behavior of Haskell programs to get a better un-

derstanding of how they might respond to compiler optimizations. We exclude the

runtime execution from the behavior of Haskell programs to gain a more accurate

43

picture of the shape of the low-level Haskell code. Leaving out data for the CMM-

runtime means that we will not see the e↵ects of several commonly called functions

(e.g. the thunk update function). Our resulting data will not show the runtime func-

tions that are frequently called from many di↵erent spots, but it will also exclude

the GC-runtime functions that have no bearing on the goals of this thesis. While

not a perfect solution, our choice to exclude runtime data means that we get a more

accurate picture of what LLVM typically sees when it compiles the low-level Haskell

code. Excluding the runtime data requires a simple change to the collection strategy

described above.

To make sure that we only instrument the desired parts of a program we add a

dynamic check when adding the instrumentation. The check examines the address

where we are adding the instrumentation. If the address comes from the main exe-

cutable program or a library we want to instrument then we add the instrumentation.

Pin provides a way to map an address to the image that contains the address. To

get the list of acceptable images we ran our benchmarks with Pin and recorded each

image that was loaded during program execution. The list was then edited by hand

to only include libraries containing Haskell code or libraries containing code for the

SPEC benchmarks. Using this technique we are able to avoid adding instrumentation

for the Haskell runtime and the C runtime library. Restricting the instrumentation

in this way provides a more accurate picture of the code shape as it is seen by the

compiler.

4.3 Results

4.3.1 Instruction Mix

Figure 4.1 shows the mix of instructions executed by each benchmark. The categories

for instruction types are given in Table 4.1. We can see that the SPECfp programs

44

Type Meaning Example
ARITH Arithmetic operations (integer & float) add, lea, mulsd
CONTROL Control flow operations jne, call, jmp
DATA Data movement operations push, pop, mov
LOGIC Logic and comparison operations and, cmp, maxsd, test
OTHER Miscellaneous operations cvtsi2sd, nop

Table 4.1: Categories used for classifying instruction types.

contain a much higher ratio of arithmetic operations compared to both the Haskell and

the SPECint programs. We would expect to see that the Haskell benchmarks from

the Dph and Repa groups have a larger fraction of arithmetic operations compared to

other Haskell programs since they are array-oriented codes. As we suspected, the Dph

and Repa benchmarks do have a higher percent of arithmetic operations compared

to the Hackage benchmarks, but they fall far short of the behavior of the SPECfp

benchmarks.

The Hackage benchmarks have a very uniform look to the distribution of their

opcodes. It is remarkable to see so little variation in breakdown of opcodes. Although

they look similar to the SPECint benchmarks, the number of arithmetic operations

is generally higher and lacks the variation found in the SPEC benchmarks. The

great uniformity of arithmetic operations for the Haskell benchmarks is likely due

to the heap and stack pointer manipulations which show up as simple addition and

subtraction operations.

Compared to the SPEC benchmarks, the Hackage benchmarks seem to have

slightly more data movement operations and slightly fewer logic operations. The

di↵erence is not that pronounced, but can probably be attributed to the frequent

heap usage by Haskell programs.

Somewhat surprisingly there does not appear to be a huge di↵erence between the

distribution of opcodes for Haskell programs and SPECint programs. We can see a

big di↵erence between the SPECfp and Haskell programs, even for the numerically-

oriented benchmarks from the Dph and Repa groups. These results suggest that

45

Be
nc

hm
ar

k

Percent of Execution

0%20
%

40
%

60
%

80
%

10
0%

D
ph Dotp

Qsort
QuickHull

H
ac

ka
ge

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep

a

Blur
FFT2d
FFT3d

Laplace
MMult

Sh
oo

to
ut

BinaryTrees
Chameneos

Fannkuch
Mandelbrot

Nbody
Pidigits

SpectralNorm

SP
EC

fp

410.bwaves
416.gamess

433.milc
434.zeusmp

435.gromacs
436.cactusADM

437.leslie3d
444.namd

450.soplex
453.povray

454.calculix
459.GemsFDTD

465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar

Ty
pe

AR
IT

H
C

O
N

TR
O

L
DA

TA
LO

G
IC

O
TH

ER

F
ig
u
re

4.
1:

M
ix

of
in
st
ru
ct
io
n
ty
p
es

fo
r
F
ib
on

an
d
S
P
E
C

p
ro
gr
am

s.
T
h
e
m
ea
n
in
g
of

th
e
in
st
ru
ct
io
n
ty
p
e
is
gi
ve
n
in

T
ab

le
4.
1

46

Type Meaning Example
branch Direct conditional or unconditional jump jne L, jmp L
call Direct function call call foo
indirect-branch Indirect unconditional jump jmp %rax
indirect-call Indirect function call call %rax
return Return from a function call ret

Table 4.2: Categories used for classifying branch types.

Haskell programs and C programs can expose similar code to the compiler and that

optimizations that work well for the SPECint programs could work for Haskell pro-

grams as well.

These results show us properties of the overall executions of the benchmarks.

Next we will zoom in on the control flow operations used by the programs to see if

we can distinguish Fibon and SPEC programs based on the distribution of control

flow operations.

4.3.2 Branch Mix

Figure 4.2 shows the distribution of branch types for programs from the Fibon and

SPEC benchmark suites. Table 4.2 gives the meaning of the labels for the di↵erent

types of branches. The first observation we can make is that standard, or direct,

branch instructions are by far the most common type of branch executed across all

the benchmarks.

The most striking observation we can make about this data is the di↵erence in

the number of indirect jumps between the program groups. With the exception

of the Dph group, we can see that Haskell programs have a much larger number

indirect branches than their imperative counterparts. There are two reasons for this

di↵erence. First, the implementation of lazy evaluation used by GHC will cause an

indirect branch to be executed whenever an unevaluated parameter is needed in a

function. Section 3.2 contains a detailed explanation of the indirect jumps needed

47

Be
nc

hm
ar

k

Percent of Total Jumps

0%20
%

40
%

60
%

80
%

10
0%

D
ph Dotp

Qsort
QuickHull

H
ac

ka
ge

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep

a

Blur
FFT2d
FFT3d

Laplace
MMult

Sh
oo

to
ut

BinaryTrees
Chameneos

Fannkuch
Mandelbrot

Nbody
Pidigits

SpectralNorm

SP
EC

fp

410.bwaves
416.gamess

433.milc
434.zeusmp

435.gromacs
436.cactusADM

437.leslie3d
444.namd

450.soplex
453.povray

454.calculix
459.GemsFDTD

465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar

Ty
pe

br
an

ch
ca

ll
in

di
re

ct
−b

ra
nc

h
in

di
re

ct
−c

al
l

re
tu

rn

F
ig
u
re

4.
2:

M
ix

of
b
ra
n
ch

ty
p
es

fo
r
F
ib
on

an
d
S
P
E
C

p
ro
gr
am

s.
T
h
e
m
ea
n
in
g
of

th
e
b
ra
n
ch

ty
p
e
is
gi
ve
n
in

T
ab

le
4.
2

48

to implement lazy evaluation. The second reason for the greater number of indirect

jumps is that GHC manages its own Haskell call stack separated from the C call

stack. A Haskell function calls another using a jmp instruction and when a Haskell

function call needs to return, it does not use the ret instruction but rather executes

an indirect jump to the return address.

The data we collected does not distinguish between indirect jumps due to lazy

evaluation and those due to function returns. If we take the SPECint benchmarks

as a model for the number of return instructions typically executed then it appears

that Haskell programs require a significant number of indirect branches beyond those

required to implement function returns.

Unlike the instruction mix in Section 4.3.1, there appears to be a significant dif-

ference in the types of branches executed by Haskell programs and those executed by

SPEC programs. We can contribute this di↵erence to lazy evaluation and the sepa-

rately managed Haskell call stack. It is likely that this di↵erence will be significant

in terms of code shape. The large number of indirect branches make it di�cult for

the compiler to model the control flow. Without an accurate model of control flow

the compiler is limited to optimizing over much small scopes which generally reduce

the opportunities for optimization.

4.3.3 Indirect Branch Targets

Figure 4.3 shows the raw data collected for indirect branch targets. The graph plots

a point for each group of indirect branches that have the number of targets indicated

by the y-axis. We can see that the majority of the data is clustered near the bottom

of the graph, which indicates that there are few branches with large numbers of

targets. The graph does show that it is not uncommon to have indirect branches

with a large number of targets. The SPECint benchmarks in particular seem to have

benchmarks that contain indirect branches with a large number of targets. The large

49

number of targets is likely due to the presence of routines that get called from many

distinct places. The returns from these functions are indirect branches that jump

back to the many points from which they were called. The over plotting in this graph

makes is slightly di�cult to see all of the details. The next graph uses jittering and

transparency to get a better impression of the data trends.

Figure 4.4 shows distribution of indirect branch targets broken down by the type

of indirect branch. The plot has been rendered with the points jittered to better

reveal data distribution. We can see a distinct di↵erence in the types of indirect

branches between Fibon and SPEC programs. The Haskell programs have many

more jump branches compared to the SPEC programs which have many more return

branches. This di↵erence is attributed to the fact that GHC implements its own call

stack, so that the jump instructions are actually used both for the implementation of

lazy evaluation and for function call returns. We can again see that the majority of

the branches are clustered in the part of the graph that indicates a fewer number of

targets. These graphs have shown the distribution of branch targets without taking

frequency of execution into account. We next examine the branch target data when

it has been weighted by execution counts.

Figure 4.5 shows the distribution of indirect branch types weighted by execution

frequency. As expected, the Fibon benchmarks show that nearly all of the indirect

branches executed are from jumps. We expect to see this because return instructions

are rare in GHC-compiled programs since GHC is managing its own call stack. The

one outlier is Bzlib which uses C function calls through the Haskell Foreign Function

Interface (FFI) to access libbz2 for data compression. Somewhat surprisingly, the

SPEC programs are not totally dominated by return instructions. The inclusion of

jump and call types in the distribution for the SPECfp benchmarks can be partially

attributed to the fact that these benchmarks typically make very few calls as seen

in Figure 4.2. Since they make so few calls, it does not take many indirect jumps in

50

Be
nc
hm

ar
k

Targets

5010
0

15
0

20
0

25
0

30
0

35
0

D
ph

●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●● ●●●●

Dotp
Qsort

QuickHull
H
ac
ka
ge

●●●●●●●●●●●●●● ●●●●●
●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●
●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●● ●●●●
●● ●●●●

●●●●●●●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●●●●●●●●●● ●●●●
●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●● ●●●●

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep
a

●●●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●● ●●●●

Blur
FFT2d
FFT3d
Laplace
MMult

Sh
oo
to
ut

●●●●●●●●●● ●●●
●●●●●●●●●● ●●●

●●●●●●●● ●●●
●●●●●●●● ●●●

●●●●●●●●● ●●●●
●●●●●●●●●●●● ●●●●

●●●●●●●●●● ●●●●

BinaryTrees
Chameneos
Fannkuch

Mandelbrot
Nbody
Pidigits

SpectralNorm

SP
EC

fp

●● ●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●● ● ●●●●●●●●●●●●●●●

●● ●●●●●●●●

●●●●● ●● ●●●●●●●●●●●●●●

●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●
●● ●●●●●●●●●

●● ●● ●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●
●●●● ●●●●●●●●●●●●●●●●

●● ●●
●● ●●

410.bwaves
416.gamess

433.milc
434.zeusmp
435.gromacs

436.cactusADM
437.leslie3d
444.namd
450.soplex
453.povray
454.calculix

459.GemsFDTD
465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●

●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●

●● ●●
●●●●●●● ●●●●●●●●●●●●●●●● ●●●

●● ●●●●●●●●●●

●●●●● ● ●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●

●●●●● ●●● ●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●●● ●●

●● ●●●●●●●

400.perlbench
401.bzip2
403.gcc
429.mcf

445.gobmk
456.hmmer
458.sjeng

462.libquantum
464.h264ref
471.omnetpp

473.astar

F
ig
u
re

4.
3:

N
u
m
b
er

of
ta
rg
et
s
fo
r
th
e
in
d
ir
ec
t
b
ra
n
ch
es

in
F
ib
on

an
d
S
P
E
C

p
ro
gr
am

s.
W
e
ca
n
se
e
m
os
t
of

th
e
d
at
a
is
cl
u
st
er
ed

at
th
e
b
ot
to
m

of
th
e
gr
ap

h
,
w
h
ic
h
in
d
ic
at
es

th
at

m
os
t
in
d
ir
ec
t
b
ra
n
ch
es

h
av
e
a
sm

al
l
nu

m
b
er

of
ta
rg
et
s.

H
ow

ev
er
,
w
e
d
o
h
av
e

ex
am

p
le
s
of

b
ra
n
ch
es

w
it
h
a
la
rg
e
nu

m
b
er

of
ta
rg
et
s,
p
ar
ti
cu
la
rl
y
in

th
e
S
P
E
C
in
t
gr
ou

p
.
O
ve
r
p
lo
tt
in
g
m
ak
es

it
a
li
tt
le
d
i�

cu
lt

to
se
e
al
l
th
e
fe
at
u
re
s,
b
u
t
th
ey

ar
e
ex
p
lo
re
d
in

la
te
r
gr
ap

h
s.

51

Be
nc
hm

ar
k

Targets

5010
0

15
0

20
0

25
0

30
0

35
0

D
ph Dotp

Qsort
QuickHull

H
ac
ka
ge

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep
a

Blur
FFT2d
FFT3d
Laplace
MMult

Sh
oo
to
ut

BinaryTrees
Chameneos
Fannkuch

Mandelbrot
Nbody
Pidigits

SpectralNorm

SP
EC

fp

410.bwaves
416.gamess

433.milc
434.zeusmp
435.gromacs

436.cactusADM
437.leslie3d
444.namd
450.soplex
453.povray
454.calculix

459.GemsFDTD
465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

400.perlbench
401.bzip2
403.gcc
429.mcf

445.gobmk
456.hmmer
458.sjeng

462.libquantum
464.h264ref
471.omnetpp

473.astar

Ty
pe
C
AL
L

JU
M
P

R
ET

U
R
N

F
ig
u
re

4.
4:

N
u
m
b
er

of
ta
rg
et
s
fo
r
th
e
in
d
ir
ec
t
b
ra
n
ch
es

in
F
ib
on

an
d
S
P
E
C

p
ro
gr
am

s.
T
h
e
d
i↵
er
en
t
in
d
ir
ec
t
b
ra
n
ch

ty
p
es

ar
e

p
lo
tt
ed

se
p
ar
at
el
y
in

th
e
gr
ap

h
.
T
h
is
gr
ap

h
u
se
s
ji
tt
er
in
g
an

d
tr
an

sp
ar
en
cy

to
b
et
te
r
re
ve
al

w
h
er
e
th
e
b
u
lk

of
th
e
d
at
a
p
oi
nt
s

li
e.

52

the program to dominate the distribution. Although most of the SPECint programs

have return statements as their most frequent indirect branch type, there are some

benchmarks such as perlbench that have a large portion of indirect calls and jumps.

We could reasonably expect to see more indirect jumps and calls in the SPECint

benchmarks compared to the SPECfp benchmarks because of their more control-

oriented structure.

Figure 4.6 shows the weighted execution percent of indirect branches broken down

by the number of branch targets. The first thing to notice is the large number of Fibon

benchmarks that execute a lot of indirect branches that have only one target. These

single target branches are likely due to lazy evaluation; they could either be from

the indirect jump that happens when evaluating an unevaluated parameter or from

the return jump to the continuation. In general many of the benchmarks appear to

be execute a large number of branches that have only one or two targets. Overall

the SPEC benchmarks seem to have more indirect branches that have more than

two targets. The SPECint benchmarks in particular appear to have many indirect

branches with multiple targets.

4.3.4 Basic Block Length

Figure 4.7 shows the raw data collected for basic block lengths. Each point in the

graph represents that the benchmark contains a basic block of that size. The size of

the point indicates the percent of the time that was spent executing blocks of that size.

We can see from the data that the majority of benchmarks frequently execute basic

blocks between 1 and 5 instructions in length. The one obvious outlier is cactusADM

which executes blocks of length 70 or more 80% of the time.

Figure 4.8 shows the average basic block length for each benchmark. The average

length is computed as a weighted average that uses the execution percent for each

basic block size as the weights. This graph more clearly shows that the SPECfp

53

Be
nc

hm
ar

k

Percet of Total

0%20
%

40
%

60
%

80
%

10
0%

D
ph Dotp

Qsort
QuickHull

H
ac

ka
ge

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep

a

Blur
FFT2d
FFT3d

Laplace
MMult

Sh
oo

to
ut

BinaryTrees
Chameneos

Fannkuch
Mandelbrot

Nbody
Pidigits

SpectralNorm

SP
EC

fp

410.bwaves
416.gamess

433.milc
434.zeusmp

435.gromacs
436.cactusADM

437.leslie3d
444.namd

450.soplex
453.povray

454.calculix
459.GemsFDTD

465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar

Ty
pe

C
AL

L
JU

M
P

R
ET

U
R

N

F
ig
u
re

4.
5:

In
d
ir
ec
t
b
ra
n
ch

d
is
tr
ib
u
ti
on

by
ty
p
e
fo
r
F
ib
on

an
d
S
P
E
C
p
ro
gr
am

s.
T
h
is
gr
ap

h
sh
ow

s
th
e
d
is
tr
ib
u
ti
on

of
th
e
ty
p
es

of
in
d
ir
ec
t
b
ra
n
ch
es

w
ei
gh

te
d
by

ex
ec
u
ti
on

fr
eq
u
en
cy
.

54

Be
nc

hm
ar

k

Percet of Total

0%20
%

40
%

60
%

80
%

10
0%

D
ph Dotp

Qsort
QuickHull

H
ac

ka
ge

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep

a

Blur
FFT2d
FFT3d

Laplace
MMult

Sh
oo

to
ut

BinaryTrees
Chameneos

Fannkuch
Mandelbrot

Nbody
Pidigits

SpectralNorm

SP
EC

fp

410.bwaves
416.gamess

433.milc
434.zeusmp

435.gromacs
436.cactusADM

437.leslie3d
444.namd

450.soplex
453.povray

454.calculix
459.GemsFDTD

465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar

Ta
rg
et
s

1 2 3+

F
ig
u
re

4.
6:

In
d
ir
ec
t
b
ra
n
ch

ta
rg
et

ex
ec
u
ti
on

p
er
ce
nt

fo
r
F
ib
on

an
d
S
P
E
C

p
ro
gr
am

s.
T
h
is
gr
ap

h
sh
ow

s
th
e
w
ei
gh

te
d
ex
ec
u
ti
on

p
er
ce
nt

of
in
d
ir
ec
t
b
ra
n
ch
es

b
ro
ke
n
d
ow

n
by

th
e
nu

m
b
er

of
b
ra
n
ch

ta
rg
et
s.

55

Be
nc
hm

ar
k

Length 10203040506070

D
ph

●●

●●●

●●●

Dotp
Qsort

QuickHull
H
ac
ka
ge

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep
a

●●●

●●

●●●

●●●

●●

Blur
FFT2d
FFT3d
Laplace
MMult

Sh
oo
to
ut

●●

●●●

●●

●●

●●

●●●

●●

BinaryTrees
Chameneos
Fannkuch

Mandelbrot
Nbody
Pidigits

SpectralNorm

SP
EC

fp

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

410.bwaves
416.gamess

433.milc
434.zeusmp
435.gromacs

436.cactusADM
437.leslie3d
444.namd
450.soplex
453.povray
454.calculix

459.GemsFDTD
465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

400.perlbench
401.bzip2
403.gcc
429.mcf

445.gobmk
456.hmmer
458.sjeng

462.libquantum
464.h264ref
471.omnetpp

473.astar

Ex
ec
ut
io
n

Pe
rc
en
t

0.
0

●
0.
2

●
0.
4

●
0.
6

●
0.
8

F
ig
u
re

4.
7:

M
ix

of
b
as
ic
b
lo
ck

le
n
gt
h
s
fo
r
F
ib
on

an
d
S
P
E
C
p
ro
gr
am

s.
T
h
e
si
ze

of
th
e
p
oi
nt

in
d
ic
at
es

th
e
p
er
ce
nt

of
th
e
ex
ec
u
ti
on

th
at

w
as

sp
en
t
in

b
lo
ck
s
of

th
at

si
ze
.
F
or

ex
am

p
le
,
th
e
la
rg
es
t
d
ot

in
d
ic
at
es

th
at

th
e
p
ro
gr
am

sp
en
t
80
%

of
it

ex
ec
u
ti
on

ti
m
e

on
b
lo
ck
s
of

th
at

si
ze
.

56

benchmarks have a longer average basic block length than the rest of the benchmarks.

We can zoom in on the remaining benchmarks by omitting the SPECfp group.

Figure 4.9 shows the average basic block lengths for the Fibon and SPECint

benchmarks. We can see that the average lengths are all very similar at around 5-7

instructions per block. There does not appear to be a significant di↵erence between

the size of the basic blocks in Haskell programs and the SPECint programs. The

SPECfp benchmarks do seem to have a longer average basic block length. This

longer length could be because SPECfp programs spend a lot of time in loops that

can be unrolled and optimized to increase the size of the blocks.

From the compiler’s perspective, the small basic blocks in Haskell programs means

that we want to optimize over larger scopes. We are unlikely to find many optimiza-

tion opportunities in these small basic blocks. Building an accurate model of control

flow to enable global optimizations is likely to be important for optimizing Haskell

programs since there will not be many local optimizations that will produce a big

win.

4.4 Conclusion

In this chapter we measured the low-level behavior of Haskell programs from the

Fibon benchmarks and compared them to C/C++/Fortran programs from the SPEC

benchmark suite. We examined low-level behavior in terms of instruction mix, jump

mix, indirect branch target counts, and basic block length.

The opcode mix revealed that Haskell and SPEC programs exhibit similar be-

havior in terms of the mix of instructions they execute. The jump mix shows that

Haskell programs are unique in one regard: the number of indirect jumps executed.

Haskell programs tend to have a much greater number of indirect jumps compared

to SPEC programs. These jumps occur both because of lazy evaluation and because

57

Be
nc

hm
ar

k

Weighted Average Length 102030405060

D
ph

●

●
●

Dotp
Qsort

QuickHull
H

ac
ka

ge

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep

a

●
●

●
●

●

Blur
FFT2d
FFT3d

Laplace
MMult

Sh
oo

to
ut

●
●

●

●

●

●
●

BinaryTrees
Chameneos

Fannkuch
Mandelbrot

Nbody
Pidigits

SpectralNorm

SP
EC

fp

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

410.bwaves
416.gamess

433.milc
434.zeusmp

435.gromacs
436.cactusADM

437.leslie3d
444.namd

450.soplex
453.povray

454.calculix
459.GemsFDTD

465.tonto
470.lbm

482.sphinx3
998.specrand
999.specrand

SP
EC

in
t

●

●

●
●

●

●

●
●

●

●

●

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar

Su
m
m
ar
y

M
ed

ia
n

F
ig
u
re

4.
8:

A
ve
ra
ge

b
as
ic
b
lo
ck

le
n
gt
h
s
fo
r
F
ib
on

an
d
S
P
E
C
p
ro
gr
am

s.
T
h
e
gr
ap

h
sh
ow

s
a
w
ei
gh

te
d
av
er
ag
e
fo
r
ea
ch

b
en
ch
m
ar
k,

w
h
er
e
th
e
le
n
gt
h
of

th
e
b
lo
ck
s
h
av
e
b
ee
n
w
ei
gh

te
d
by

th
e
ex
ec
u
ti
on

p
er
ce
nt

fo
r
th
at

si
ze
.

58

Be
nc

hm
ar

k

Weighted Average Length

51015

D
ph

●

●

●

Dotp
Qsort

QuickHull
H

ac
ka

ge

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

Agum
Bzlib
Cpsa

Crypto
Fgl
Fst

Funsat
Gf

HaLeX
Happy
Hgalib

Palindromes
Pappy

QuickCheck
Regex
Simgi

TernaryTrees
Xsact

R
ep

a

●

●

●

●

●

Blur
FFT2d
FFT3d

Laplace
MMult

Sh
oo

to
ut

●
●

●

●

●

●

●

BinaryTrees
Chameneos

Fannkuch
Mandelbrot

Nbody
Pidigits

SpectralNorm

SP
EC

in
t

●

●

●

●

●

●

●
●

●

●

●

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar

Su
m
m
ar
y

M
ed

ia
n

F
ig
u
re

4.
9:

A
ve
ra
ge

b
as
ic

b
lo
ck

le
n
gt
h
s
fo
r
F
ib
on

an
d
S
P
E
C
in
t
p
ro
gr
am

s.
T
h
e
gr
ap

h
sh
ow

s
a
w
ei
gh

te
d
av
er
ag
e
fo
r
ea
ch

b
en
ch
m
ar
k,

w
h
er
e
th
e
le
n
gt
h
of

th
e
b
lo
ck
s
h
av
e
b
ee
n
w
ei
gh

te
d
by

th
e
ex
ec
u
ti
on

p
er
ce
nt

fo
r
th
at

si
ze
.

59

GHC manages the its own Haskell call stack separate from the C call stack. When we

look at the number of targets for indirect branches in a program, we see that many

of the indirect jumps in Haskell programs have only one or two targets. The small

number of targets appears to be more pronounced in Haskell programs compared to

SPEC programs. Finally, the length of basic blocks are similar for Haskell and the

SPECint programs. Further, the average basic block length is quite short at around

6 instructions per block. This fact, in turn, may make the higher fraction of indirect

jumps more significant because the precision of the control flow graph, or alterna-

tively the exit from the CFG to another function, will make cross block optimization

less e↵ective.

The low-level behavior reveals some areas where Haskell di↵ers from SPEC pro-

grams and shows the importance of optimizing over larger scopes. One way to increase

the scope of optimization across blocks is to consider traces of frequently executed

blocks. Since Haskell programs have many indirect jumps, these traces will need to

be found at runtime so that the targets of the jumps can be made available to the

compiler. The small number of targets for many of the indirect branches suggest

that we can build stable traces by tracing through these indirect jumps. The next

chapter examines our attempt to build program traces in Haskell programs using

DynamoRIO, a binary trace-based optimization system.

60

Chapter 5

Dynamic Trace-Based

Optimization of Haskell with

DynamoRIO

In this chapter we look at a technique for building traces in Haskell programs by

using a dynamic binary trace-based optimization system. As we saw in Chapter 4,

Haskell programs tend to have more indirect branches that obscure the control flow

visible to the compiler than do programs in the SPEC benchmark suite. We suspect

that the obscured control flow is one of the reasons that low-level optimizations are

less e↵ective for Haskell programs than for programs written in C, C++, or Fortran.

At runtime the targets of these branches are known and the control flow is clear.

If we could build larger optimization scopes for the compiler by tracing through

frequently executed paths then the compiler optimizations might be more e↵ective.

In this chapter we explore the impact of building program traces at runtime using

DynamoRIO.

DynamoRIO [Bruening, 2004] is a system for manipulating programs at runtime

by automatically building program traces and providing callback hooks for modifying

61

these traces. The traces are built as the program executes by monitoring the stream

of instructions executed by the application. In this way, DynamoRIO works on an

unmodified program binary without needing access to any source code. The program

traces found by DynamoRIO extend seamlessly through both application and library

code.

Each time DynamoRIO finds a new trace, it calls the callback functions installed

by the user giving them a chance to optimize the traces. The traces are optimized

in memory and the application continues executing by running the newly optimized

trace. The original binary sitting on disk is never altered by DynamoRIO. Our

initial idea for this chapter was to use the callbacks to optimize the traces found by

DynamoRIO. However, once we measured the overhead introduced by simply finding

the traces we abandoned DynamoRIO for the approach described in the next chapter.

This chapter describes our initial e↵ort of using DynamoRIO for optimizing Haskell

traces.

We begin the chapter by looking at a case study where we build and optimize a

program trace by hand. This study shows that we can achieve a speedup of 39% on

the sum benchmark presented in Chapter 3. We next explore a general technique

for building program traces by running Haskell programs under DynamoRIO. Un-

fortunately, the performance results with DynamoRIO are rather poor. The Fibon

benchmarks show an average slowdown of 57% when running under DynamoRIO. We

look at the root cause of the slowdown and discover that the main problems are poor

trace formation and a bad interaction with the garbage collector.

This chapter is divided into four main parts. In Section 5.1 we explore building

traces by hand for a single benchmark to provide some motivation for our trace-

based optimization approach. The remaining sections focus on building traces with

DynamoRIO. In Section 5.2 we describe the basic execution environment for applica-

tions running in the DynamoRIO framework. Next, in Section 5.3, we examine the

62

performance of Haskell and SPEC programs running through DynamoRIO without

any optimizations. Finally, in Section 5.4, we present an analysis of the program

traces found by DynamoRIO.

5.1 Hand-Coded Trace Case Study

In this section we present the results of a hand-coded case study of the performance

potential of trace-based optimization for Haskell. The goal of this study is to show

that trace-based optimization can improve the performance of Haskell code. The

study examines a simple program and builds traces by hand for the common execu-

tion paths. We explore one transformation to build an optimized trace that reduces

the overhead of type-class dictionaries. The initial results are encouraging. By run-

ning the trace just for the common execution path we can achieve a 15% speed

improvement, and by running the optimized trace that reduces type-class overheads

we see a 39% improvement. The results demonstrate that trace-based optimization

has the potential to speed up the execution of Haskell programs.

The program used in the case study is the example program from Chapter 3 and

is shown in Figure 3.2; it computes the sum of integers from 1 to 300,000,000.

To test the e↵ectiveness of trace-based optimization, we experimented with build-

ing the traces by hand and performing a single optimization. The traces were hand

written in assembly code using a combination of ghc -O2 -S to get the assembly

output of the program and gdb to disassemble the machine code for the library and

runtime functions used by the program. The snippets of assembly were collected to-

gether and the control-flow instructions were modified so that the fall through path

stays on the trace. The remaining original code was left unmodified except for chang-

ing one control-flow instruction to jump to the trace at the appropriate point. The

assembly code was then compiled and linked using gcc to produce an executable

63

program.

Results were collected for four di↵erent versions of the traces shown in Figure 3.9

on page 37. The first version only used a trace for the evaluation of the list thunk as

indicated by the dashed blue line. The second version used the trace for the evaluation

of the sum function as indicated by the dotted red line. The third version linked the

two traces together by placing a jump at the end of the upto trace to the beginning

of the sum trace. A final version of the trace used an optimized version of the linked

trace and shows the limit of how good our inter-procedural knowledge can be for this

program.

As described in Section 3.3, the trace was optimized using a technique similar

to the inline method cache used to e�ciently implement Smalltalk as described by

Deutsch and Schi↵man [1984]. We modified the assembly code so that the + function

is not looked up in the type class dictionary every time through the loop. Instead,

we place a direct call to the function stored in the dictionary. This optimization is

e↵ective because it eliminates the lookup of the function in the dictionary and the

application of the unknown function returned by the dictionary lookup. Further, this

optimization is an example of an opportunity we would expect to find in a trace-

based optimization system. The optimized trace is indicated in Figure 3.9 by the

long-dashed green arrow.

Table 5.1 shows the performance results for the trace experiment. Each version

was run 100 times and the execution time compared to a baseline execution that

contained no traces. The program was optimized by GHC at level -O2. The speedups

reported here are the median execution time of the original program divided by the

median execution time of the hand-built trace version.

The results show that the upto trace alone improves the performance by 5% over

the baseline version. The sum trace improves the performance by 8%, and linking the

traces improves the performance by 16.0%. The linked trace performance is better

64

Trace Mean Median StdDev Median Speedup

None (baseline) 6.91 6.83 0.32 1.00
EnumFromTo 6.58 6.50 0.25 1.05
Sum 6.24 6.34 0.33 1.08
Linked 5.81 5.89 0.24 1.16
Optimized 4.94 4.92 0.09 1.39
None (inlining) 4.38 4.37 0.06 1.56

Table 5.1: Hand-coded trace performance. The table reports the runtime of the
baseline program compiled by GHC at -O2 to the runtime of the various trace versions.
The Mean and Median columns report the execution time in seconds. The Speedup
column is the median baseline time divided by the median traced-version time.

than the total of the two individual traces, a result which indicates that combining

traces can produce better performance than the sum of the individual improvements.

The optimized trace performs the best with an overall improvement of 39%, suggesting

that such an optimization could be profitable in programs that make heavy use of

type class methods.

As mentioned in Section 3.1, we stopped GHC from inlining the sum and upto

functions. If we allow GHC to inline those functions, it can achieve an improvement

of 56.5%. This result shows that GHC finds additional optimization opportunities

that are enabled by inlining. However, the performance improvements we get from

building and optimizing traces are still encouraging because GHC will not always

inline functions in a program and we would expect to find control flow in real code

similar to what we have seen in this example program.

In this section we saw that by creating and optimizing traces through the com-

monly executed portions of a program we can achieve a performance improvement of

up to 39%. The results indicate that trace-based optimization can be profitable for

Haskell programs. A major challenge to address is how to build these traces auto-

matically without incurring more overhead than benefit. In the next section, we will

discuss our results for building traces with DynamoRIO, which is a state-of-the-art

runtime optimization framework.

65

multi−threaded application

operating system

hardware

dispatch basic block
builder

code cache

context switch

system calls

ke
rn

el
−m

ed
ia

te
d

co
nt

ro
l t

ra
ns

fe
rs

Figure 1.3: The DynamoRIO runtime code manipulation layer. DynamoRIO interposes itself be-
tween an application and the underlying operating system and hardware. It executes a copy of the
application’s code out of a code cache to avoid emulation overhead. Key challenges include man-
aging multiple threads, intercepting direct transfers of control from the kernel, monitoring code
modification to maintain cache consistency, and bounding the size of the code cache.

The cached code can then be executed natively, avoiding emulation overhead. However, shifting

execution into a cache that occupies the application’s own address space complicates transparency.

One of our most significant lessons is that DynamoRIO cannot run large, complex, modern appli-

cations unless it is fully transparent: it must take every precaution to avoid affecting the behavior

of the program it is executing.

To reach the widest possible set of applications (to be universal and practical), DynamoRIO

targets the most common architecture, IA-32 (a.k.a. x86), and the most popular operating systems

on that architecture, Windows and Linux. The efficiency of a runtime code manipulation system

depends on the characteristics of the underlying hardware, and the Complex Instruction Set Com-

puter (CISC) design of IA-32 requires a significant effort to achieve efficiency. To be universal,

DynamoRIO must handle dynamically-loaded, generated, and even modified code. Unfortunately,

since any store to memory could legitimately modify code on IA-32, maintaining cache consistency

25

Figure 5.1: Overview of DynamoRIO. This is Figure 1.3 from Bruening [2004]

5.2 How DynamoRIO Works

In this section we describe the DynamoRIO framework for dynamic optimization.

This description is based on the thesis of Bruening [2004], which is the most com-

prehensive description available. We will present the most important features of

DynamoRIO as they pertain to our work.

Figure 5.1 shows an overview of DynamoRIO. When an application runs under

the control of DynamoRIO, its code is not executed directly. Instead, the code is

run out of the code cache and DynamoRIO copies the application code into the code

cache as it executes. The first time a basic block is executed by the application it is

copied into the code cache. The code is then directly executed from the code cache

and control is transferred back to DynamoRIO so that it can find the next basic block

to execute.

While the execution scheme described above is simple, it is not very e�cient.

66

BASIC BLOCK CACHE
non−control−flow

instructions
TRACE CACHE
non−control−flow

instructions

START basic block builder

dispatch

trace selector

context switch

indirect branch lookup indirect branch
stays on trace?

Figure 2.1: Flow chart of DynamoRIO. A context switch separates the code cache from Dy-
namoRIO code (though it all executes in the same process and address space). Application code
is copied into the two caches, with control transfers (shown by arrows in the figure) modified in
order to retain control.

Average slowdown
System Components SPECFP SPECINT
Emulation �300x �300x
Basic block cache 3.54x 17.16x
+ Link direct branches 1.32x 3.04x
+ Link indirect branches 1.05x 1.44x
+ Traces 1.02x 1.17x
+ Optimizations 0.88x 1.13x

Table 2.2: Performance summary of the fundamental components of DynamoRIO described in this
chapter: a basic block cache, linking of direct and indirect branches, and building traces. Average
numbers for both the floating-point (SPECFP) and integer (SPECINT) benchmarks from the SPEC
CPU2000 suite are given (our benchmarks are described in Section 7.1). We overcame numerous
architectural challenges (Chapter 4) to bring each component to the performance level listed here.
The final entry in the table shows the best performance we have achieved with DynamoRIO, using
aggressive optimizations to surpass native performance for some benchmarks (see Section 9.2).

manner from other systems, and by our novel scheme of eliding unconditional control transfers

when building basic blocks (Section 2.4).

30

Figure 5.2: Code Cache Overview of DynamoRIO. This is Figure 2.1 from Bruening
[2004]

DynamoRIO contains a few features to improve the e�ciency of applications running

under its control. The main goal is to keep the program executing in the code cache

as long as possible to avoid the costly context switch needed when we must lookup

the next basic block to execute. The two primary mechanisms to keep programs

executing in the code cache are exit-stub linking and trace building. Figure 5.2 shows

a more detailed picture of the code cache illustrating these features.

Exit-stub linking allows code to stay in the code cache by linking together basic

blocks in the code cache. If a basic block ends in a direct jump and the target of

the jump is already in the code cache, then the jump can target the other block in

the code cache rather than returning control to DynamoRIO. Linking blocks together

reduces the overheads of running through DynamoRIO because more time is spent in

the code cache, which contains the actual code for the application. Exit-stub linking

works well for direct branches because we know the target of the branch just by

inspecting the code. Indirect branches are more di�cult because the target of the

branch depends on the data, and so the target of the branch can change over the

execution of the program. DynamoRIO must perform a lookup of the indirect branch

67

target each time.

To look up the target of an indirect branch, DynamoRIO uses a hash table that

maps addresses in the application’s address space to a trace or basic block in the

code cache. The performance of the indirect branch lookup routine is important for

applications that contain a lot of indirect branches. As we will see in the next section,

the large number of indirect branches in Haskell are detrimental to the performance

of DynamoRIO because of the time they spend in the lookup routine.

One way that DynamoRIO reduces the overhead of indirect branches is by building

traces of frequently executed paths in the program. Traces are a collection of basic

blocks that correspond to an execution path in the application. DynamoRIO builds

traces to reduce the overheads of running the application and to provide a context

for optimization. To build traces, DynamoRIO uses a variant of the Next Executing

Tail (NET) algorithm that was used in the original Dynamo system of Bala et al.

[2000]1. It works by keeping counters associated with potential trace heads. Trace

heads are all blocks that are the targets of backward branches. When the counter

on a trace head exceeds a certain threshold DynamoRIO enters trace-building mode

and records the next execution of the blocks that are visited starting from that trace

head until it reaches another trace head or a size limit. The trace is now stored in

the code cache and branches that target the trace head are changed to point to the

new trace.

An important optimization for reducing the overhead of indirect branches is per-

formed when building traces. As DynamoRIO is building the trace it will inline the

targets of indirect branches into the trace. Because the target of the indirect branch

may change the next time it is executed, DynamoRIO will include a check to make

sure that the target of the indirect branch is the same as when the trace was originally

created. If the target has changed, then the trace is exited and control returns to Dy-

1NET was called MRET (Most Recently Executed Tail) in the original Dynamo paper, but
renamed to NET in the subsequent paper by Duesterwald and Bala [2000]

68

namoRIO to perform a lookup for the target of the indirect branch. This optimization

is very similar to the inline method caches of Deutsch and Schi↵man [1984].

In the next section we look at the performance characteristics of programs running

under the control of DynamoRIO.

5.3 Performance of Applications with DynamoRIO

Applications running under DynamoRIO will su↵er a performance penalty for the

time they are running DynamoRIO code instead of application code. All of the

time spent outside the code cache is pure overhead. To get an understanding of

how much overhead we incur from running under DynamoRIO we looked at the

performance of the Fibon and SPEC benchmarks. These results show mostly the

overhead of DynamoRIO without all of the potential benefits because no optimizations

are performed on the traces. The one benefit we do see is from the straightening and

compacting of the code into traces.

Figure 5.3 shows the performance penalty for the Fibon benchmarks running un-

der DynamoRIO. We see that the benchmarks su↵er an average slowdown of 57%.

The Hackage benchmarks su↵er the worst with an average slowdown of over 1.75⇥.

Figure 5.4 shows the performance of the SPEC benchmarks under DynamoRIO.

Compared to the Fibon benchmarks, the SPEC benchmarks su↵er much less of a

performance hit with an average slowdown of 12%. Although no optimizations are

performed on the traces, the overhead of DynamoRIO looks quite high. We next tried

to determine the source of these overheads using program counter (PC) profiling.

DynamoRIO provides a mechanism to repeatedly sample the program counter

during execution and record what was executing when the sample occurred. Using

this technique we are able to get an idea of how much time is spent in the various

parts of DynamoRIO. Figures 5.5 and 5.6 show the profiling results for the Fibon

69

Sl
ow

do
w

n
(h

ig
he

r i
s

wo
rs

e)

1.0

1.5

2.0

2.5

Dph

● ●

●

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Ag
um

Bz
lib

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
Fu

ns
at G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

Q
ui

ck
C

he
ck

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

●

●

●

●

●

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

●

●

●

●

●

●
●

Bi
na

ry
Tr

ee
s

C
ha

m
en

eo
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

GeoMean
Group
Suite

Figure 5.3: Performance of Fibon benchmarks under DynamoRIO. The benchmarks
su↵er an average slowdown of about 57%.

70

Sl
ow

do
w

n
(h

ig
he

r i
s

wo
rs

e)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

SPECfp

●

●

●
●

● ● ● ●

●

●

● ●

●

●
●

41
0.

bw
av

es
41

6.
ga

m
es

s
43

3.
m

ilc
43

4.
ze

us
m

p
43

5.
gr

om
ac

s
43

6.
ca

ct
us

AD
M

43
7.

le
sl

ie
3d

44
4.

na
m

d
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

9.
G

em
sF

D
TD

46
5.

to
nt

o
47

0.
lb

m
48

2.
sp

hi
nx

3

SPECint
●

●

●

●

●

●

●

●

●

●

●

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sj

en
g

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

1.
om

ne
tp

p
47

3.
as

ta
r

GeoMean
Group
Suite

Figure 5.4: Performance of SPEC benchmarks under DynamoRIO. The benchmarks
su↵er an average slowdown of about 12%.

71

Location Meaning
Interp Translating basic blocks to code cache
Dispatch Control flow outside of code cache
Monitor Trace head counter monitoring
Syscall Handler System calls
IBL Indirect Branch Lookup
O↵ Trace In the code cache not on a trace
In Trace In the code cache on a trace
Unknown Some other location

Table 5.2: Key for PC profiling results graphs in Figures 5.5 and 5.6.

and SPEC benchmarks. Unfortunately, some of the Fibon benchmarks failed to run

properly when the PC profiling was enabled so we have a reduced set of data for these

results. A key for the meaning of the sample locations is given in Table 5.2

The profiling results reveal several interesting observations. First we can see a

big di↵erence in the distribution of PC samples between the Fibon and SPEC bench-

marks. The prominent di↵erence in the PC samples is that the Fibon benchmarks

spend much more time in the indirect branch lookup (IBL) routine. We can attribute

this di↵erence to the large number of indirect branches in Haskell programs. We saw

in Section 4.3.3 that a fair number of the indirect branches have only a single target.

Apparently, the traces found by DynamoRIO are not able to exploit the branch target

locality and it has to fall back to the full lookup in the indirect branch hash table.

Although many of the Fibon benchmarks spend a great deal of time in the IBL

routine, there are some benchmarks that spend relatively little time there. The Pidig-

its, Nbody, Mandelbrot, and Bzlib benchmarks spend a reduced amount of time in the

IBL compared to other Fibon benchmarks. The Nbody and Mandelbrot benchmarks

spend most of their execution inside small loops, so DynamoRIO has no problems

finding those traces. The Pidigits and Bzlib benchmarks spend time in external li-

braries so their code does not have the same indirect-branch characteristics as the

other Haskell benchmarks. The Pidigits benchmark spends time in the libgmp li-

72

Agum
BinaryTrees

Bzlib
Crypto

Fannkuch
Fgl
Fst

Funsat
Gf

HaLex
Happy
Hgalib

Mandelbrot
Nbody

Palindromes
Pappy
Pidigits

Qc
Regex
Simgi

SpectralNorm
TernaryTrees

Xsact

20 40 60 80 100

Fibon � DynamoRIO PC Profile Data

Interp Dispatch Monitor Syscall_Handler
IBL Off_Trace On_Trace Unknown

Figure 5.5: PC profile results for Fibon benchmarks under DynamoRIO.

brary performing multi-precision arithmetic and the Bzlib benchmark spends its time

in the libz2 library.

The SPECint benchmarks in general spend more time in the IBL than their

SPECfp counterparts. The primary exceptions are the mcf, hmmer, libquantum,

and astar benchmarks. We can see in Figure 4.6 that these are the benchmarks that

have a higher proportion of indirect branches that have a single target. The traces

that DynamoRIO finds are able to exploit the single-target locality for these bench-

marks. The IBL behavior of the SPECfp benchmarks are slightly harder to correlate

with the indirect-branch data from Chapter 4. One obvious connection is the povray

benchmark which is the benchmark that spends the longest amount of time in the

IBL among the SPECfp benchmarks. As we see in Figure 4.5, the povray bench-

mark is unique among the SPECfp benchmarks in that it about 20% of the indirect

branches that it executes are indirect calls. These calls are causing trouble for the

73

400.perlbench
401.bzip2
403.gcc
429.mcf

445.gobmk
456.hmmer
458.sjeng

462.libquantum
464.h264ref
471.omnetpp

473.astar
410.bwaves
416.gamess

433.milc
434.zeusmp
435.gromacs

436.cactusADM
437.leslie3d
444.namd
450.soplex
453.povray
454.calculix

459.GemsFDTD
465.tonto
470.lbm

482.sphinx3
999.specrand

20 40 60 80 100

SPEC � DynamoRIO PC Profile Data

Interp Dispatch Monitor Syscall_Handler
IBL Off_Trace On_Trace Unknown

Figure 5.6: PC profile results for SPEC benchmarks under DynamoRIO.

trace heuristics used by DynamoRIO resulting in a large portion of the execution time

to be spent in the IBL. It appears that DynamoRIO’s trace building heuristics have a

sweet spot for SPEC behavior and a blind spot that diminishes their e↵ectiveness on

languages that induce higher levels of complex control flow such as Haskell or highly

object-oriented languages like Smalltalk.

Looking at the DynamoRIO profiling results together with the performance results

it looks like there is a strong correlation between time spent in the IBL and the

magnitude of the slowdown. We can see that the Fibon benchmarks generally spend

a lot of time in the IBL and their average performance under DynamoRIO is much

worse than the SPEC bencharks. Also, we can see that the two SPECfp benchmarks

that perform the worst (povray and tonto) are the same benchmarks that spend

the most time in the IBL routine. The correlation between slowdown and IBL time

suggests that the IBL is a large component of the overall slowdown and is a major

74

cause of the slowdown we see. It would also suggest that the trace building heuristics

are not generally applicable to all languages, but are rather tuned to the loop oriented

codes from the SPECfp benchmarks.

The second interesting feature that we can see in the PC profile results is the

observation that most benchmarks spend their code cache time executing traces and

not single basic blocks. Both the Haskell and SPEC programs are similar in this

regard. Once the overheads of DynamoRIO are accounted for, it appears that the

majority of the time is spent on program traces as opposed to single blocks in the

code cache. It is promising to see that traces get a good amount of execution time

because it is traces that we want to optimize to improve the speed of the programs.

Since we will want to optimize these traces, we need to get a better idea about the

properties of these traces and how many traces we see in a typical program. The next

section describes our e↵orts to answer these questions.

5.4 DynamoRIO Program Traces

We looked at two main properties of traces. First, we wanted to measure the length

of an average trace. The longer the trace the more opportunities should exist for opti-

mization since there is a larger context that can reveal ine�ciencies. Also, the length

of the trace contributes to optimization overhead since longer traces take more time

to optimize. Second, we wanted to look at how frequently each trace was executed.

If there are only a few traces that account for a majority of the execution time then

we can potentially have a big impact by successfully optimizing the patterns that

appear in a few traces. If the execution time is spread among many traces, then we

might see less benefit from optimization since the cost of the runtime optimization

must be amortized over the cumulative improvement in runtime from executions of

the optimized trace.

75

The first trace property we looked at was the average length of the traces generated

by DynamoRIO. Trace length is an important property because traces will be our unit

of optimization. Presumably, longer traces contain more optimization opportunities.

The length of a trace is measured in the number of instructions on the trace. We

computed the average length using an average weighted by the frequency of trace

execution. That is, the average trace length for a benchmark is computed as

Avg =

Pn
i=1 wixiPn
i=1 wi

where xi is the length of each trace in the benchmark, wi is the number of PC samples

falling on the trace, and n is the total number of traces. Using a weighted average

gives us a better idea of the average length of traces that are executed the most

frequently.

Figures 5.7 and 5.8 show the average trace lengths for the Fibon and SPEC bench-

marks. We can see that the Fibon benchmarks have an average length of 42 instruc-

tions compared to 74 for the SPEC benchmarks. It is unclear whether 42 instructions

is enough of a context to be able to perform significant optimizations, but it is con-

ceivable that we can find optimizations over a scope of this size. Had the average

length been very small, say around 10 instructions, it would call into question the

trace-based optimization approach. One encouraging aspect of the trace length is that

it is much higher than the average size of basic blocks we measured in Section 4.3.4.

If our goal is to increase the optimization scope, then it appears that program traces

are one way to achieve that goal. Now that we know the average length of the traces

we will look at how execution time is distributed among the various traces found by

DynamoRIO.

Figures 5.9 and 5.10 shows how much of the total execution time is spent on the

most frequently executed traces in the Fibon and SPEC benchmarks. The results here

are for only the single most frequently executed trace. The amount of time spent on

76

Ag
um

Bi
na
ry
Tr
ee
s

Bz
lib

C
ry
pt
o

Fa
nn
ku
ch Fg
l

Fs
t

Fu
ns
at G
f

H
aL
ex

H
ap
py

H
ga
lib

M
an
de
lb
ro
t

N
bo
dy

Pa
lin
dr
om

es
Pa
pp
y

Pi
di
gi
ts Q
c

R
eg
ex

Si
m
gi

Sp
ec
tra
lN
or
m

Te
rn
ar
yT
re
es

Xs
ac
t

M
ea
n
⇥
95
�
C
I

0

20

40

60

80

100

120

41.970
32.64

51.30

Fibon Weighted Average Trace Length

Figure 5.7: Average trace length for Fibon benchmarks. The average is shown
together with a 95% confidence interval.

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
bm

k
45
6.
hm

m
er

45
8.
sj
en
g

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f

47
1.
om

ne
tp
p

47
3.
as
ta
r

41
0.
bw

av
es

41
6.
ga
m
es
s

43
3.
m
ilc

43
4.
ze
us
m
p

43
5.
gr
om

ac
s

43
7.
le
sl
ie
3d

44
4.
na
m
d

45
0.
so
pl
ex

45
3.
po
vr
ay

45
4.
ca
lc
ul
ix

45
9.
G
em

sF
D
TD

46
5.
to
nt
o

47
0.
lb
m

48
2.
sp
hi
nx
3

99
9.
sp
ec
ra
nd

M
ea
n
⇥
95
�
C
I

0

50

100

150

200

250

300

350

73.94

39.67

108.21

SPEC Weighted Average Trace Length

Figure 5.8:
Average trace length for SPEC benchmarks. The average is shown together with a
95% confidence interval. Not shown is 436.cactusADM, which has an average length
of 1815.83.

77

Ag
um

Bi
na
ry
Tr
ee
s

Bz
lib

C
ry
pt
o

Fa
nn
ku
ch Fg
l

Fs
t

Fu
ns
at G
f

H
aL
ex

H
ap
py

H
ga
lib

M
an
de
lb
ro
t

N
bo
dy

Pa
lin
dr
om

es
Pa
pp
y

Pi
di
gi
ts Q
c

R
eg
ex

Si
m
gi

Sp
ec
tra
lN
or
m

Te
rn
ar
yT
re
es

Xs
ac
t

M
ea
n
⇥
95
�
C
I

0.0

0.2

0.4

0.6

0.8

0.19

0.10

0.27Pe
rc
en
to
fT
ot
al
Sa
m
pl
es

Fibon Most Frequently Executed Trace

Figure 5.9: Execution percent of the most frequently executed Fibon traces. The
average is shown together with a 95% confidence interval.

the most frequently executed trace provides a limit for how much speedup we could

get by optimizing a single program trace. If the system could perfectly optimize it

so that all instructions were eliminated then we could expect a speedup equal to the

time that we spend on the trace. The results show that the Fibon benchmarks spend

an average of 19% of their execution time on the most frequently executed trace

compared to 24% for the SPEC benchmarks. These results are encouraging because

they tell us that if we can successfully optimize the most important trace then we

should see a real performance improvement. We next look at how the execution time

is distributed among traces if we include more than just the most frequently executed

trace.

In Figures 5.11 and 5.12 we look at how many di↵erent traces we need to account

for 50% of the applications execution time. The summary statistic used in these

results is the median number because there are a few outliers that throw o↵ the

arithmetic mean. As we can see, the Fibon benchmarks need a median of 12 traces

78

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
bm

k
45
6.
hm

m
er

45
8.
sj
en
g

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f

47
1.
om

ne
tp
p

47
3.
as
ta
r

41
0.
bw

av
es

41
6.
ga
m
es
s

43
3.
m
ilc

43
4.
ze
us
m
p

43
5.
gr
om

ac
s

43
6.
ca
ct
us
AD

M
43
7.
le
sl
ie
3d

44
4.
na
m
d

45
0.
so
pl
ex

45
3.
po
vr
ay

45
4.
ca
lc
ul
ix

45
9.
G
em

sF
D
TD

46
5.
to
nt
o

47
0.
lb
m

48
2.
sp
hi
nx
3

99
9.
sp
ec
ra
nd

M
ea
n
⇥
95
�
C
I

0.0

0.2

0.4

0.6

0.8

0.24

0.14

0.34

Pe
rc
en
to
fT
ot
al
Sa
m
pl
es

SPEC Most Frequently Executed Trace

Figure 5.10: Execution percent of the most frequently executed SPEC traces. The
average is shown together with a 95% confidence interval.

and the SPEC benchmarks need a median of 9 traces to account for 50% of the total

number of PC samples taken. These results reinforce the idea that if we can find

optimization opportunities in the small number of important traces then we should

be able to reduce the running time of the benchmarks.

Although it takes few traces to encompass 50% of the trace samples, the overall

number of traces found by DynamoRIO is quite large. The quartiles for the number

of traces found by DynamoRIO is shown in Table 5.3. These results indicate that

only 25% of the Fibon benchmarks contain fewer than 334 traces. This number of

traces seems quite large compared to the small number of traces that actually contain

most of the samples. To see where the large number of traces come from we took a

detailed look at the traces from the sum program in Figure 3.2.

Figure 5.13 shows the low-level code from the sum program annotated with the

traces found by DynamoRIO. There are two interesting features to point out in this

figure. First, we can see that DynamoRIO has not identified the single long trace we

79

Ag
um

Bi
na
ry
Tr
ee
s

Bz
lib

C
ry
pt
o

Fa
nn
ku
ch Fg
l

Fs
t

Fu
ns
at G
f

H
aL
ex

H
ap
py

H
ga
lib

M
an
de
lb
ro
t

N
bo
dy

Pa
lin
dr
om

es
Pa
pp
y

Pi
di
gi
ts Q
c

R
eg
ex

Si
m
gi

Sp
ec
tra
lN
or
m

Te
rn
ar
yT
re
es

Xs
ac
t

M
ed
ia
n

0

10

20

30

40

50

12.00

N
um

be
ro
fT
ra
ce
s

Fibon Number of Traces Needed to Contain ⇥ 50� of Samples

Figure 5.11: Median number of Fibon traces needed to encompass 50% of execution
time.

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
bm

k
45
6.
hm

m
er

45
8.
sj
en
g

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f

47
1.
om

ne
tp
p

47
3.
as
ta
r

41
0.
bw

av
es

41
6.
ga
m
es
s

43
3.
m
ilc

43
4.
ze
us
m
p

43
5.
gr
om

ac
s

43
6.
ca
ct
us
AD

M
43
7.
le
sl
ie
3d

44
4.
na
m
d

45
0.
so
pl
ex

45
3.
po
vr
ay

45
4.
ca
lc
ul
ix

45
9.
G
em

sF
D
TD

46
5.
to
nt
o

47
0.
lb
m

48
2.
sp
hi
nx
3

99
9.
sp
ec
ra
nd

M
ed
ia
n

0

20

40

60

80

100

9.00

N
um

be
ro
fT
ra
ce
s

SPEC Number of Traces Needed to Contain ⇥ 50� of Samples

Figure 5.12:
Median number of SPEC traces needed to encompass 50% of execution time. Not
shown is 403.gcc, which requires 204 traces and 445.gobmk, which requires 614.

80

up
to

T
91

ro
ot

sQ
g

CC
:

en
um

Fr
om

To

su
m

Nu
m

.
fro

m
In

te
ge

r
st

g_
ap

_p

sN
j

CC
: f

ro
m

In
t

IB
L

sN
h

co
ns

 c
he

ck
ap

_0
_f

as
t

ev
al

 a
cc

um
sM

G
ev

al

ac
cu

m
 +

 x

Nu
m

.+
ge

t +

fu
nc

tio
n

IB
L

T
18

6

st
g_

ap
_p

p
ap

pl
y

pl
us

In
t

pl
us

In
t

ev
al

 a
 +

 x
s1

0X
CP

: e
va

l o
f a

Nu
m

.+
ge

t +

fu
nc

tio
n

T
5

s1
0W

CP
: e

va
l o

f x
ad

d
a

+
x

T
88

sM
I

ev
al

: l
ist

sN
I

re
tu

rn
 p

oi
nt T

23
0

sa
t_

s0
0

th
un

k
ev

al
ad

d
fro

m
 +

 1
sM

I
ev

al
: l

ist

T
14

6

sM
X

CC
: f

ro
m

T
79

sN
0

CC
: t

o
st

g_
up

d_
fra

m
e T

61

su
m

up
to

nu
m

 t
yp

e
cla

ss

ru
nt

im
e

tra
ce

 ju
m

p
no

n-
tra

ce
 ju

m
p

IB
L

In
di

re
ct

 B
ra

nc
h

Lo
ok

up

Dy
na

m
oR

IO
 tr

ac
e

F
ig
u
re

5.
13
:

S
u
m

p
ro
gr
am

fr
om

F
ig
u
re

3.
2
an

n
ot
at
ed

w
it
h
th
e
tr
ac
es

fo
u
n
d
by

D
yn

am
oR

IO
.

81

Quartile Fibon SPEC
Q1 334 220

Q2 = Median 634 453
Q3 1110 1446

Table 5.3: Number of traces found by DynamoRIO. The median number of traces
(e.g. Q2) found is 634 for the Fibon benchmarks and 453 for the SPEC benchmarks.

would like. Instead, the sum trace is broken into eight di↵erent pieces. Second, the

traces are not all connected by direct jumps. Two of the traces end with calls to the

indirect branch lookup routine. The failure of DynamoRIO to find the natural trace

in this program is indicative of the performance problems that we encounter when

using it to run Haskell programs.

If we look at the collection of all traces found by DynamoRIO for the sum program,

we can see another problem with using a binary trace-based optimizer. Figure 5.14

shows a graph of all the traces found by DynamoRIO for our example program. The

details will be di�cult to see, but the general trend should be apparent. The graph

has a node for every trace built by DynamoRIO. There is an edge between two traces

if there is a direct jump (i.e. not going through the IBL routine) between the traces.

We have colored the trace nodes according to how many PC samples fell on the trace.

Blue traces had the fewest samples, followed by green, yellow, orange and finally red.

Any trace that is not colored was never sampled by the profiler.

We can see that the sum trace is a tiny fraction of all the traces found by Dy-

namoRIO. A feature that jumps out immediately is the large collection of nodes near

the bottom right of the graph. These traces represent di↵erent paths through the

garbage collector. This graph reveals one of the issues with building traces with a

binary optimizer. The traces may include arbitrary parts of the language runtime

that we do not want to trace.

In Haskell, we saw traces as a way to overcome limitations of the execution model,

but building traces in a garbage collector is not necessarily a good idea because the

82

The sum trace

1

10

2

3

34 143 4

123

5

88

6

8

7

128

54

9

47

74

213

11

124

12

198

13

126

171

14

119

156

15

108 137

16

59

189

17

18

132

19

80183

185199 208

20

240

21

155

22

25

100

23

114

24

48

65

70106

26

41

27

28

222

29

30

125 31

32

169

33

35

170

36

53

37

181

38

210

39

162

40

174

42

166

43

196

44

45

158

46

242

60

49

50

51

72

52

83

127

187

184

55

112

56

135

57

58

237

203

61

195

62

168

219

63

64

73

167177

66

67

113

68

231

69

71

212

75

76

138

77 78

79

84

129

81

228

82

85 86

87

142

204

230

89

229

90

91

92

93

94

95

96

97

221

98

99

101

102

131

153

220

103

104

105

172

107

109

110

111

226

115

116

117

118

120

121

122

175

140

141

197

130 133 134

217

136

150

180

232

139

144

145

154

146

147

148

149

151

152

157

159

160

161

179

205

206

163

164

165

178

173

176

190

200

241

182

186

238

188

191

192

193 194

235

202

201

207

211

209

214

215

216

218

223

224

225

227

233

234

239

236

243

The garbage collector

Figure 5.14: Graph of the traces found by DynamoRIO for the sum program in
Figure 3.2. Each node is a separate trace and an edge between the nodes indicate
there is a direct jump from one trace to another. Nodes without direct jumps between
them are only reached by going through the Indirect Branch Lookup (IBL) routine.
A filled node indicates that the PC profiling results had a sample fall on that trace.

83

execution path will be highly data dependent. These traces may not be a big problem

if the program does not spend a large amount of time in the garbage collector, but

they still add extra overhead that is undesirable from an optimization perspective. It

is possible that the traces in the garbage collector causes Haskell programs to spend

more time in the IBL routine due to bad traces through the collector. We attempted

to correlate the e�ciency of a benchmark (time spent outside of the collector) with

the slowdown in DynamoRIO, but did not see any obvious connection.

We briefly tried to separate the Haskell runtime traces from the mutator traces

without much success. DynamoRIO does have an option to start and stop the tracing

mechanism at predefined points in the program, but the support is experimental and

not well supported by the current version of DynamoRIO. We attempted to insert

the calls to start and stop tracing into the GHC runtime, but it simply caused the

program to crash. With all of the negative performance e↵ects we observed with

Haskell programs we decided it was best to purse a di↵erent path for trace-based

optimization, and to attack directly the problem of building appropriate traces for

Haskell programs.

5.5 Conclusion

Our investigation of the characteristics of Haskell codes running under DynamoRIO

revealed three primary insights. First, we saw that Haskell codes spend a lot of time

in the indirect branch lookup routine and that this causes a big hit to performance.

Second, we saw that the traces generated by DynamoRIO are a decent size and that

a few traces account for a large amount of the execution time. Third, DynamoRIO’s

trace building heuristics miss a major source of ine�ciency in the Haskell codes - the

relatively heavy use of indirect branches (when compared to more traditional codes

such as SPEC). These ine�ciencies are likely to also appear in some other kinds of

84

programs, such as OO-heavy codes. However, they may be ameliorated in the OO

case by substantial amounts of inlining. The results presented here show that we need

to reduce the amount of time spent in the IBL for Haskell programs if we are to get

a performance improvement.

Our investigation of the traces built by DynamoRIO found that they were causing

the program to spend a lot of time in the indirect branch lookup routine. Addition-

ally, many extraneous traces were created that were not executed very often, including

many traces in the garbage collector. These extra traces add to the overhead of run-

ning the program through DynamoRIO. The root of the problem is that the heuristic

used for building traces is not very good for most Haskell programs. DynamoRIO

marks traces heads as the targets of backward branches. This heuristic makes sense

for finding loops in imperative programs, but is not very suitable for the code shape

of Haskell programs.

The promising results from this study are that we can find traces in Haskell

programs and that it takes few traces to account for the majority of the time spent

executing traces. If we can find a way to build good traces without incurring the

runtime overhead then we may be able to find some real optimization opportunities.

The next chapter describes Htrace, an LLVM trace-based optimizer for Haskell.

Unlike DynamoRIO which builds the traces at runtime, Htrace uses a separate train-

ing phase for finding, building, and optimizing traces. This design is intended to get

the benefits of optimizing over the scope of program traces without the performance

penalty of building traces at runtime.

85

Chapter 6

Static Trace-Based Optimization of

Haskell with Profile Data

In Chapter 4 we saw that low-level Haskell di↵ers from code coming from traditional

programming languages. These di↵erences are primarily caused by lazy evaluation,

higher-order functions, and the separately managed Haskell call stack. The di↵erences

mainfest in low-level code as a preponderance of indirect jumps. The di↵erent code

shape of Haskell programs limits the e↵ectiveness of traditional compiler optimizations

because it limits the scope of optimizations to small single functions. We proposed

using runtime trace-based optimization to increase the scope available to the compiler,

but found that the overheads of building and maintaining the traces at runtime was

too large. Further, we saw that the current state-of-the-art in runtime trace collection

for imperative languages, exemplified by DynamoRIO, does not capture the traces

that seem critical to optimization of Haskell programs. In this chapter we explore the

idea of building and optimizing traces in a separate o✏ine phase.

We want to gain the advantage of larger program scope without su↵ering from the

runtime overhead we experienced with DynamoRIO. There were three main problems

with running Haskell programs through DynamoRIO. First, the tracing heuristic

86

caused it to build traces that did not correspond to important paths through the

Haskell program. Second, it would build traces whose indirect branch targets changed,

which caused the program to spend a lot of time in the indirect branch lookup routine.

Finally, it was building traces through parts of the GHC runtime, such as the garbage

collector, that are not part of the ine�ciencies we are trying to target in this work. To

combat these problems we built Htrace, a new trace-based optimizer that knows about

the structure of low-level Haskell code. Htrace finds traces in a separate profiling run

and uses them to restructure the program o✏ine to avoid the runtime overhead of a

dynamic optimizer.

In this chapter we describe the design of Htrace, its implementation in LLVM,

and the performance results.

6.1 Design

In designing Htrace, we chose to separate the process into three phases: finding traces

in the program, restricting the low-level code around those traces, and optimizing

the restructured program. This separation allows for experimentation with di↵erent

strategies for each task without a tight coupling between them. After our experience

with performance problems when trying to build and optimize the traces at runtime,

we chose to use a separate profiling run to find frequently executed paths. Once the

paths have been discovered we use a separate pass to build and optimize traces along

these paths.

Using a separate training run to find program traces is a tradeo↵ of precision

for speed. The traces will be fixed after the profiles are collected. If the traces take

paths that are largely data dependent then the program will gain no benefits when run

with di↵erent data and may perform worse because of misguided assumptions that are

enshrined in the optimized code. However, this problem–the need for representative

87

training data–arises in all feedback-driven o✏ine optimization. Building the traces at

runtime gives precise behavior at the cost of diverting execution time to finding and

maintaing the connections between these traces, and re-optimizing the code during

every execution. As we saw with DynamoRIO, these overheads can be significant.

Figure 6.1 shows the overall structure of the Htrace design. The diagram starts

from the low-level code in the bottom left corner, which is produced by GHC and

LLVM. Note that some of the external libraries, in low-level code form, are also used as

an input to Htrace. The design can be broken up into three main components: trace

finder, trace builder, and trace optimizer. The trace finder is in the left hand side of

the figure and is primarily composed of the “Trace Runtime” and “Trace Callbacks”

components. After finding the traces, they are written in an external form to a

trace profile file. The profile data is read by the “Trace Builder” to restructure the

program around the traces. Finally the “Trace Optimizer” shown in the figure is used

to optimize the restructured code.

In this thesis we focus on how to find and build the traces. The trace finder takes

a program and instruments it to find the traces in a program. The program is run and

the traces we find are recored in a separate file for later usage. Once the traces have

been found we modify the original program by instantiating the traces and rewriting

the code to jump to the trace entries. Once the traces are fully built, we optimize

them using standard compiler optimizations. Each of these components are described

in more detail below.

6.1.1 Finding Traces

To find traces in a program we must be able to monitor the program as it executes. We

do this by inserting instrumentation into the program that will record the execution

sequence and call back into our Trace Runtime as specific points. The instrumenta-

tion serves as the mechanism for inspecting the program execution. One important

88

Instrumented
Program

Trace
Profile

Trace
Callbacks

External
Libraries

Address
Mapper

Trace
Runtime

Trace
Optimizer

Optimized
Program

Trace
Builder

Low-
Level
Code

Traced
Code

Read

Write

Read

Read
address

callbacks

trace
callbacks

Link

Write

Read

Write

Read Write

Read

Figure 6.1: The design of the Htrace system. In this thesis we focus on how to find the
traces (trace callbacks, trace runtime), and how to restructure the program around
the traces (trace builder).

question to address is what program locations should serve as the potential starting

points for program traces.

A trace header is a program point that can serve as the starting location for a

trace. DynamoRIO uses the targets of backward branches as trace headers. The

reason they chose this policy is to start the traces at loop headers so that the trace

will encompass as much of the loop as possible and will be focused on the hot parts

of the program. This definition does not work well for Haskell programs since the

loops will be encoded as recursive functions. Because of lazy evaluation these loops

may actually include portions of multiple functions. The notion of a backward branch

does not make much sense in this situation because the di↵erent functions can be laid

out in arbitrary locations in the code. We need a di↵erent policy for marking trace

heads in Haskell.

The policy we adopted was to mark as trace headers the low-level functions that

serve as the entry points for the high-level Haskell functions and thunks. This defini-

89

tion will exclude any low-level function that is generated because of lazy evaluation

as an internal continuation point for a Haskell function. In addition, we exclude as

trace headers any low-level functions from the runtime that are used to implement

GHC’s execution model. We want our traces to include these runtime functions, but

we do not want our traces to start from them since they are typically called from

many di↵erent call sites.

The trace header policy was chosen to have traces start at natural locations in the

original Haskell program. Many di↵erent policies are possible and could drastically

change the traces found by the profiler. Our policy lets the programmer’s design and

decomposition influence the choice of trace headers. Program loops will be represented

by recursive functions, so the stated policy will have no trouble finding the loops.

Further, the programmer decomposed the original problem into the units found in

the source code. We rely on their original intuition to guide our choice of headers

rather than marking headers in arbitrary code locations that are created to implement

Haskell’s execution model. Our choice seem to produce good traces on the sample

programs, so we have not experimented with alternate policies. It would be interesting

to explore di↵erent trace head policies, but that task is out of the scope of this thesis.

Trace Instrumentation

Now that we have identified the policy for choosing trace heads we can describe the

algorithm used to insert instrumentation for collecting the traces. The main goal of

the instrumentation is to record the sequence of basic blocks executed by the program.

Conceptually we just need to insert a callback to the trace-building runtime at the

top of each block to record its execution. The practical di�culties arise when we have

direct function calls to code that we cannot see and indirect calls to any function.

Direct function calls cause problems when we cannot instrument the source code

for the called function. This situation arises with any direct call to an external

90

function. These functions will cause a break in the sequence of blocks that make up

the trace. Further, the called function could call back into another function that we

did instrument which would make it look like the trace is continuous between the

two functions even though it is separated by one or more intervening functions. At

direct function calls to functions that we are unable to instrument we need to insert

a callback to the tracing runtime to note that we have a break in the trace at the

current location.

Indirect function calls cause a similar problem as direct function calls to external

functions. The di↵erence with indirect function calls is that we do not know the called

function when we are inserting the instrumentation so it is not clear if the call will

cause a break in the the trace. We need to check at runtime whether or not we have

instrumented the target of the function call. If we have instrumented the target then

no break in the trace is needed. Otherwise, we need to record a break in the trace

just as with a direct function call.

Part of the di�culty in implementing the trace-breaking scheme for indirect func-

tion calls is finding a way to match function addresses used in an indirect call to

the actual function being called. We describe an implementation in Section 6.2 that

modifies the LLVM JIT to make the correct associations. For now, we will assume

that we have the correct hooks in place for notifying the Trace Runtime about the

association between a function address and its implementation.

The algorithm for inserting instrumentation is shown in Figure 6.2. There are

three program constructs that need instrumentation: functions, basic blocks, and call

sites.

Each function needs to be assigned a unique function number. This function

number is used by the runtime to determine when function calls require a break in

the trace. The function number can be added as an annotation in the function code

so that it can be read by later passes. The function number annotation is used in our

91

1 for each Function F

2 add function number annotation

3

4 for each BasicBlock B

5 if IS_TRACE_HEAD(B)

6 insert call to tracer_trace_head(BasicBlockNumber(B))

7 else

8 insert call to tracer_trace_path(BasicBlockNumber(B))

9

10 for each CallSite C

11 if C.isIndirect?

12 add call to tracer_check_trace_break(Address(C.target))

13 elif C.target.isOnlyDeclaration?

14 add call to tracer_break_trace(FunctionNumber(C.target))

Figure 6.2: Algorithm for inserting instrumentation to build program traces.

implementation to map function addresses to implementations.

In addition to numbering functions in the program, we also need to number the ba-

sic blocks. The basic block numbering is communicated directly to the trace runtime

through callback routines so it does not need to be recorded as a separate annotation

in the code. All of the basic blocks in the program get a call back to the trace runtime

at the top of the block. If the trace policy says that the block should be considered as

a trace head then we insert a call back to the runtime to indicate we have a potential

trace head. Otherwise, the block is not a header so we insert a callback to record that

we are passing through the block. Both of the basic block callbacks pass the basic

block number for the block containing the callback.

The last construct requiring instrumentation are the call sites in the program. At

each call site we need to check two things. First, if the call site in indirect we have

to let the trace runtime know that we are about to go through an indirect call and

pass the address of the function that we are calling. If the call is direct then we need

to see if we have an implementation of the function being called. When the called

function is external to our program then we insert a callback to the runtime so that

92

it knows we are about to have a break in the current trace.

After instrumenting the program we are ready to run it and collect the program

traces. The callbacks we inserted are used to communicate the execution path of the

program to the trace runtime. Next we describe how the runtime uses the information

in the callback routines to build traces.

Trace Runtime

The Trace Runtime receives callbacks from the program as it executes and uses the

provided information to record program traces. The runtime is modeled after a simple

state transition system. It maintains some internal state which dictates how it re-

sponds to the callbacks from the program. The runtime will transition between states

based on its current state and the new data received from the callback. Figure 6.3

shows the state transition diagram for the trace runtime.

The runtime has three states as shown in the diagram: Profile, Trace, and Shadow.

The Profile state is the starting state of the system and is used to collect data about

which parts of the program are executing frequently. The Trace state is used when

we are actually recording the execution path for a program trace. The Shadow state

is used for subsequent entries into a trace that we have previously recorded. It can be

used to collect additional profiling data about the trace or to re-record the trace with

a new path. We currently only use the Shadow state to collect trace-exit profiling

data.

Figure 6.4 shows the trace runtime callbacks used to record program traces. The

tracer trace head callback is used to signal to the runtime that we are about to

execute a block that has been marked as a potential trace header. If we are in the

Trace or Shadow state then we can simply extend those traces with the current block.

Otherwise, we must be profiling and so might need to transition to a new state. First,

we increment the hotness counter for the block and check to see if it is considered hot

93

tracer_trace_head
IF

is_hot(BlockNumber)
AND

not(has_trace(BlockNumber))

tracer_trace_head
trace_trace_path

IF
is_trace_start(BlockNumber)

OR
len(Trace) > trace_length_limit

tracer_trace_head
IF

has_trace(BlockNumber)

Profile

Record

Shadow

Start Trace

Commit Trace

Extend Trace

Start Shadow Trace

Commit Shadow Trace

Extend Shadow Trace

tracer_trace_head
tracer_trace_path

IF
BlockNumber != Trace.Blocks[Pos]

Start

Figure 6.3: State transition diagram for trace runtime. The nodes in the diagram
represent the states of the trace runtime. The edges are labeled with actions that
are taken when moving between the states. Next to the edges the conditions for the
transition are listed underneath the callbacks that can cause the transitions.

94

enough to start at trace. We also check to make sure that the block is not already

part of a trace. We avoid starting a trace from a block that is already contained in

another trace. Starting traces from multiple trace headers is problematic when these

headers are all part of the same trace because we end up with multiple entries onto

the trace. Without this restriction we would get one version of the trace for each

trace header in a trace that loops back to its starting point.

If a header passes all criteria for starting a new trace we will start recording the

trace from that block. Otherwise, we check to see if we have previously recorded a

trace for this block. If we do find a previous trace we begin recording a shadow trace

from this block.

The tracer trace path callback is used when entering a basic block that should

not be used as a trace header. If we are in the Trace or Shadow state then we will

extend the appropriate trace. Otherwise no action is necessary.

The tracer check trace break and tracer break trace callbacks are used to

signal potential and definite breaks in a trace. They are only used when in the Trace

state and are otherwise ignored. The logic for handling the breaks is pushed into the

ExtendTrace function which will be discussed shortly.

Finally, the tracer map target address callback is to associate an address to

a known function. We need this association to handle indirect calls so that we

know whether we should break the trace on the call or not. The ADDR MAP is

used inside the ExtendTrace function when it is called with an address from the

tracer check trace break callback.

The ExtendTrace function is called when we are in the Trace state and we get a

callback to notify the runtime that we entered a block or are about to (potentially)

break the trace with a function call. The code for the ExtendTrace function is shown

in Figure 6.5. The notation {T|Payload} is used to indicate a trace record that is

tagged with the tag T and has a payload containing the Payload data.

95

1 tracer_trace_head(BB)

2 case State of

3 Trace ->

4 ExtendTrace(BB)

5 Shadow ->

6 ExtendShadowTrace(BB)

7 Profile ->

8 HOTNESS(BB)++

9 if HOT(BB) && NOT(IS_PART_OF_TRACE(BB))

10 StartTrace(BB)

11 elif HAS_TRACE(BB)

12 StartShadowTrace(BB)

13

14 tracer_trace_path(BB)

15 case State of

16 Trace -> ExtendTrace(BB)

17 Shadow -> ExtendShadowTrace(BB)

18

19 tracer_check_trace_break(Addr)

20 if State == Trace

21 ExtendTrace(Addr)

22

23 tracer_break_trace(FN)

24 if State == Trace

25 ExtendTrace(FN)

26

27 tracer_map_target_address(FN, Addr)

28 ADDR_MAP(Addr) = FN

Figure 6.4: Trace runtime callbacks.

96

1 StartTrace(Header)

2 State = Trace

3 initialize new Trace structure

4 append {B|Header} to Trace

5

6 ExtendTrace(With)

7 case With of

8 BasicBlock(BN) ->

9 append {B|BN} to Trace

10 if IS_HEADER(BN)

11 IS_PART_OF_TRACE(BN) = True

12 if IS_TOO_LONG(Trace) || IS_LOOP(BB, Trace)

13 CommitTrace()

14 Function(FN) ->

15 append {F|FN} to Trace

16 Address(Addr) ->

17 append {A|Addr} to Trace

Figure 6.5: The ExtendTrace routine. The notation {T|Payload} is used to indicate
a trace record that is tagged with the tag T and has a payload containing the Payload
data

To start a new trace we set our current state to Trace and initialize a new trace

structure. We then record the header as the first block in the trace tagged with the

tag B so we know it is a block number. Each time extend trace is called, we check

the type of the data being used to extend the trace. If we are given a basic block

number, then we add a new trace record with that block number. If that block is also

a header we have to remember that it is now part of a trace so that we do not start

a new trace from it later. Finally, we check the termination conditions. When the

trace becomes too long or it becomes a loop we stop recording the trace and commit

it to disk. The ExtendTrace routine could also be called with a function number to

indicate a break in the trace or an address to indicate a potential break. Either way

we append the data to the trace by inserting a trace record with an appropriate tag.

The record will be processed once the trace is committed.

Committing a trace means processing the trace records to ensure we have an

unbroken sequence of blocks and converting the data to a format suitable for external

97

1 CommitTrace()

2 State = Profile

3 for Record(R) in Trace

4 case R of

5 {B|BB} -> save {B|BB}

6 {A|Addr} -> if Addr not in ADDR_MAP then save {G|Addr}

7 {F|FN} -> save {G|FN}

Figure 6.6: The CommitTrace routine.

storage. Figure 6.6 shows the CommitTrace routine. First we set the state to Profile

because we are done recording the trace. Next we look at each record we recorded

while building the trace. The records are consolidated so that there are only two

allowable tags. The B tag is for basic blocks in the trace and they are recorded with

the basic block number as the payload. The G is for a gap in the trace to indicate

that the trace is broken. The consolidation is straightforward except for the records

containing addresses for indirect function targets. We must lookup the address of

the function in our ADDR MAP to see if we know what function corresponds to that

address. If the function is known, then there is no break in the trace and the next

B record can be safely added. If the address is unknown then we must insert a trace

gap record since the next block record comes after a deviation into unknown code.

Once a trace has been recorded it could potentially be entered many times in the

future. Shadow traces are a way to monitor the subsequent executions of a trace to

either collect statistics or modify the existing trace. The primary routine for handling

a shadow trace is the ExtendShadowTrace function shown in Figure 6.7.

To start a new shadow trace we set our state to Shadow and then find the existing

trace that starts at the given header block. We assume that each trace has a counter

to keep track of how many times we have entered the trace, and we increment that

counter when we start a new shadow trace. We keep track of the current position

in the trace using the ShadowPosition counter which we initialize to one (assuming

98

1 StartShadowTrace(Header)

2 State = Shadow

3 ShadowTarget = existing trace structure starting at Header block

4 ShadowTarget.Entries++

5 ShadowPosition = 1

6

7 ExtendShadowTrace(BB)

8 if ShadowTarget.Records[ShadowPosition] != {B|BB}

9 ShadowTarget.Exits[ShadowPosition - 1]++

10 CommitShadowTrace()

11 elif ShadowPosition is last trace record of ShadowTarget

12 ShadowTarget.Exits[ShadowPosition]++

13 CommitShadowTrace()

14 ShadowPosition++

15

16 CommitShadowTrace()

17 State = Profile

Figure 6.7: The shadow tracing routines.

zero-based indexing of trace records).

Each time we encounter a new block on the shadow trace the ExtendShadowTrace

function is called. At that point, we check to see if the current block matches the

block stored in the trace we are shadowing. If the block does not match, we have

found an early exit for the trace which means that the previous block in the trace

did not flow to the current block. We increment the exit counter for the previous

block to indicate that we took an early exit from the trace at that block. If we have

reached the final block of the trace then we increment the exit counter for that block

to indicate we successfully made it through the entire trace. Once we have found an

exit point of the trace (early of otherwise) we will go back to the Profile state.

When the program finishes executing we can write out all the traces we have

found in a suitable external format. The trace file can then be read to report on

statistics of the traces we found and to actually modify the code to take advantage

of these traces. The next section describes how we use the trace records and rewrite

the original program to take advantage of these program traces.

99

1 for each trace starting at function root

2 # Clone trace functions every time it occurs on the trace

3 i = 0

4 for each occurrence of function f in trace

5 f_trace_i = clone f

6 i += 1

7

8 # Replace calls on trace to stay on trace

9 i = 0

10 active_function = f_trace_i

11 for each block in trace

12 if block contains call to function f

13 find corresponding block in active_function

14 if call is indirect

15 insert check to make sure target is still f

16 replace call to f with call to f_trace_i

17 active_function = f_trace_i

18 i += 1

19

20 # Inline cloned functions into caller

21 for i from 1 to size of trace

22 inline f_trace_i into caller

23

24 # Replace calls of root function

25 for each use of function root

26 replace with use of f_trace_0

27

Figure 6.8: Algorithm for instantiating traces.

6.1.2 Building Traces

After finding the traces in a program we must actually modify the code to take

advantage of this knowledge. In this section we describe a simple algorithm that

uses the profiling data from the previous section to instantiate the traces. The basic

strategy for building traces is to clone all of the functions on the trace and then inline

the cloned functions into their call site on the traces. Figure 6.8 shows the algorithm

for building traces.

A trace consists of a sequence of basic blocks that come from one or more functions.

The traces found by the profiler are instantiated one at a time. For each trace we

100

first clone every function on the trace every time it occurs on the trace. For example,

if a function appears twice on the trace we will produce two distinct clones of the

function. Next we need to modify the calls that reside in the trace blocks so that

they target our newly cloned functions.

We process each of the original blocks on the trace and look for the blocks that

contain calls. When the trace block has a call we find the corresponding block in the

function we cloned for the trace. If the call is an indirect call we need to insert a

check to make sure that the target matches the target that we found when recording

the trace. The check compares the target of the call to the address of the original

function that was the target when trace was found. If the address is a match then we

insert a direct call to the cloned function. If the target has changed since we recorded

the trace then we must execute the indirect call to ensure we jump to the correct

target. If the call is a direct call then we can simply replace the call to point to the

cloned trace function. Either way update the active function to the targeted trace

function so that we know where to search for corresponding block for the next call.

Once all of the call instructions have been modified to keep execution on the trace

we can inline the trace functions. Each of the cloned functions will only be called

from one site (e.g. the trace we are building) so we can easily inline the function and

then delete the cloned copy. We know that the cloned function will only be called

from one site on the trace because we have cloned each function each time it occurs

on the trace. We need to keep the original functions around since they may still be

called from other locations.

After inlining the trace functions we can replace uses of the root of the trace with

the newly cloned root function. This update will point all users of the original function

to the trace. Since we only allow one trace per header this policy is reasonable, but

could lead to excessive trace exits if the callers do not follow the trace path. We

could use a more fine-grained policy for replacing uses of the trace root, but have not

101

explored that area in this thesis.

We currently instantiate all traces that we found during profiling. However, there

are a wide range of policies that could be used for deciding which traces to instanti-

ate. The shadow tracing technique described above can be used to collect additional

profiling data such as trace entry and completion rates. We also currently instanti-

ate both loop and non-loop traces, but this is another choice that could be changed.

There is much room in the future for exploring di↵erent trace building policies. We

have described a basic algorithm that is easy to implement and produced good results

for several benchmarks and generally avoids degenerate behavior.

6.1.3 Optimizing Traces

Once the traces have been found and instantiated it is time to optimize them. In

this thesis we rely on the optimizations implemented by LLVM to improve the per-

formance of our traces. Our main contention is that Haskell programs will benefit

from running traditional optimizations over the increased scope of a program trace.

After building the traces as described above, the trace will be contained in a sin-

gle function. This function can be optimized using all of the traditional compiler

optimizations implemented by LLVM.

Although we fully rely on existing LLVM transformations to improve performance,

an easy trace-based transformation to implement would be to layout the basic blocks

in the function according to their position in the trace. We already have this infor-

mation available when building the trace so it would be conceptually simple to layout

the blocks so that all of the trace blocks are grouped together at the entry of the

function in the order they appear on the trace.

Our strategy of reusing the LLVM optimizations for traces has advantages and

disadvantages. The primary benefit is that we do not have to re-implement any of

these optimizations and we have access to a wide variety of transformations. The

102

major disadvantage is that we do not run any trace-specific optimizations. We have

e↵ectively increased the scope of optimization, but have not provided any guidance

to the compiler about the likely path through the function. If LLVM had imple-

mented any profile-guided optimizations we could seamlessly take advantage of those

optimizations using the profiling data we collected when finding the traces.

6.2 Implementation

In this section we describe how we implemented the Htrace design described above.

The implementation can be broken down into three main parts: changes to GHC,

changes to LLVM, and a way to bind it all together. First, we describe some modifi-

cations to GHC. The modifications were primarily needed in the build system so that

we could get access to the low-level code. The LLVM changes revolve around adding

the trace instrumentation and building the traces according to the algorithms given

in Section 6.1. Finally we describe how to combine all of the pieces to get a working

system.

6.2.1 GHC Modifications

The modifications to GHC are mostly to the build system and not to the actual

code for the compiler. The changes we needed to make in the build system were

already supported as options. We are documenting the changes here to make it

clear what options we use to build GHC. We also had to make some small changes

in the declarations of some C functions in the GHC runtime to enable them to be

dynamically linked into the LLVM interpeter. The necessary changes are described

in detail below.

103

1 SRC_HC_OPTS = -H64m -O

2 GhcStage1HcOpts = -O -fasm

3 GhcStage2HcOpts = -O2 -fllvm -keep-llvm-files

4 GhcLibHcOpts = -O2 -fllvm -keep-llvm-files

5 GhcLibWays = v dyn

6 GhcEnableTablesNextToCode=NO

7 INTEGER_LIBRARY = integer-simple

Figure 6.9: GHC build.mk file used to control the build options needed for trace
experiments.

Generating and Keeping LLVM Files

We need to generate LLVM files for all of the libraries used by GHC as well as any

of the hand-written CMM files used by the runtime. Figure 6.9 shows the build.mk

file we used that controls the build options for GHC. The GhcStage2HcOpts and

GhcLibHcOpts variables control the options used when building the final version of

GHC. We passed the -O2 option when compiling the Haskell files to ensure that we

run the standard set of high-level optimizations GHC has available. The -fllvm and

-keep-llvm-files flags are used to generate the LLVM IR for the Haskell source

files.

We also need to generate the LLVM IR files for the hand-coded and auto-generated

CMM files written for the GHC runtime. The runtime files we include in program

traces are listed in Figure 6.10. These files include operations such as updating a

thunk with an indirection after it has been evaluated as well as the code needed for

applying unknown functions. To generate the LLVM files for the runtime CMM files

we must modify the ghc.mk file in the runtime subdirectory of the GHC source code.

The necessary changes are listed in Figure 6.11. It is important that GHC itself is

built using the CMM code as compiled by LLVM. Due to a performance regression in

the LLVM backend, the native code generator currently does a better job of compiling

the CMM files. If the LLVM backend is not used when compiling the CMM files then

104

1 Apply.cmm

2 AutoApply.cmm

3 Exception.cmm

4 HeapStackCheck.cmm

5 PrimOpts.cmm

6 StgMiscClosures

7 StgStartup.cmm

8 StgStdThunks.cmm

9 Updates.cmm

Figure 6.10: GHC rts CMM files used in building traces.

1 rts/Apply_HC_OPTS += -fllvm -keep-llvm-files

2 rts/dist/build/AutoApply_HC_OPTS += -fllvm -keep-llvm-files

3 rts/Exception_HC_OPTS += -fllvm -keep-llvm-files

4 rts/HeapStackCheck_HC_OPTS += -fllvm -keep-llvm-files

5 rts/PrimOps_HC_OPTS += -fllvm -keep-llvm-files

6 rts/StgMiscClosures_HC_OPTS += -fllvm -keep-llvm-files

7 rts/StgStartup_HC_OPTS += -fllvm -keep-llvm-files

8 rts/StgStdThunks_HC_OPTS += -fllvm -keep-llvm-files

9 rts/Updates_HC_OPTS += -fllvm -keep-llvm-files

Figure 6.11: GHC rts/ghc.mk file used to generate the LLVM IR for the CMM files
used by the GHC runtime.

the programs compiled by GHC have an unfair advantage from this known issue.

Using the integer-simple Library

The Haskell Integer type represents arbitrary precision integers, as opposed to the

machine sized integers of the Int type. GHC implements the Integer type using

GMP, which is the GNU Multiple Precision Arithmetic Library GMP [2011]. The

GMP library provides a fast implementation of muli-precision arithmetic, but it is

an external library that requires a tight integration with GHC’s allocator. We chose

to use an alternate library for integer arithmetic that is provided by GHC. The

integer-simple library is written in pure Haskell and provides an alternative to

GMP. Because it is written in Haskell we can more easily gain access to the LLVM

105

IR using the same mechanisms described above for the other library code.

The disadvantage of the integer-simple library is that it is much slower than

GMP, particularly when the integers grow large. We could have used the GMP library,

but it would have required more e↵ort to gain access to all of the LLVM IR needed

for integer operations. Using the simple library allowed us to quickly have access to

all the LLVM code used for integer operations.

One advantage of our overall approach to building traces using LLVM IR is that

any code for which we have LLVM IR can be integrated into the program traces. Our

design opens the door to building and optimizing traces across multiple languages.

In this thesis we keep it simple and use the easily accessible integer implementation.

We can use the simple library by setting the INTEGER LIBRARY variable as shown in

Figure 6.9.

Disabling Tables Next To Code

Tables next to code is an optimized closure layout used by GHC to reduce the overhead

of jumping to a closure to evaluate it. As described in Chapter 3, GHC represents a

closure by a pointer to the code to evaluate it along with the free variables needed by

the evaluation. In addition to the evaluation code there are several more data fields

that are stored for each closure. For example, the layout of the closure is needed by

the garbage collector to distinguish the pointers from the non-pointers stored in the

closure. These extra data fields can be shared by all closures of the same type. The

combination of the evaluation code and extra data fields is called an info table.

Closures in GHC actually contain a pointer to the info table rather than just a

pointer to the evaluation code. To optimize for the common case where we need to

evaluate a closure, GHC uses a layout called tables next to code (TNTC) that places

the data fields for the closure type directly before the code to evaluate the closure.

The info pointer store in the closure can then point directly to the evaluation code

106

Info Pointer Payload

Type-specific fields

Info table

Object type
Layout info

(for GC)

Eval Code Pointer

Info Pointer Payload

Info table

Type-specific fields

Object type
Layout info

(for GC)

Eval Code

Eval
Code

STG closure layout STG closure layout (TNTC)

Figure 6.12: The tables next to code (TNTC) layout. The figure shows the di↵erence
between the non-TNTC layout (left) and the TNTC layout (right). We have disabled
TNTC in this thesis because its implementation in the LLVM backend prohibits the
merging of multiple LLVM IR files.

and the garbage collector can access the fields that it needs by using negative o↵sets

from the info table pointer.

Figure 6.12 shows the di↵erence between a non-TNTC and a TNTC layout of

closures. In the non-TNTC layout the closure stores a pointer to the info table which

then has another pointer to the evaluation code. The TNTC version stores a pointer

directly to the evaluation code and places the other data fields directly before the code.

The TNTC layout allows closure evaluation with a single indirection, compared to

the double indirection need for the non-TNTC version.

Unfortunately, we cannot use TNTC for our trace implementation. The LLVM

compiler does not directly support the layout of data next to code. The LLVM back-

end of the GHC compiler places the data and code in specific named sections and

relies on the platform linker to order the sections correctly. These named sections

conflict when we try to merge multiple LLVM IR files generated by the LLVM back-

end. While we could modify the backend to work across multiple IR files, the easy

107

and direct solution is to disable TNTC. Figure 6.9 shows how we disable TNTC by

setting the GhcEnableTablesNextToCode variable.

Exposing More RTS Functions to the Dynamic Linker

A final change we had to make to GHC involved minor modifications to the source

code for the runtime. The code for the runtime uses a GCC compiler extension that

allows functions to be declared with hidden visibility, which means that they will not

be public symbols in the final library. The Htrace system runs a Haskell program

through the LLVM interpreter which needs to dynamically link with functions from

the GHC runtime shared library. Several of these functions were declared with hidden

visibility which was causing the dynamic linker not to find these functions in the

shared library. We had to remove the hidden attribute from these function to enable

the dynamic linker to find them when interpreting the Haskell program.

6.2.2 LLVM Modifications

We used the LLVM compiler framework to implement the Htrace system design de-

scribed in Section 6.1. The implementation diagram is shown in Figure 6.13. We

implemented the three components shaded with the Htrace color, and slightly modi-

fied the lli program. lli is an interpreter that can directly execute LLVM bitcode

files. Bitcode is the external representation of the LLVM IR, which is a low-level (e.g.

near-machine level) code in SSA form. Section 6.2.3 describes how we get access to

all the bitcode files through which we want to build traces. For now we assume that

we have access to all the necessary files.

We start by running the llvm-link tool to combine all the bitcode files into a

single module. The linked bitcode is read by the trace instrumentation pass and

instrumented to insert callbacks to the trace runtime. We then use the lli tool to

execute the linked bitcode. The bitcode will be JIT compiled by lli to speed up the

108

lli
JI

Te
d

Co
de

G
en

er
at

e
&

Ex
ec

ut
e

Re
ad

W
rit

e

Re
ad

at
ex

it
W

rit
e

T
r
a
c
e

i
n
s
t
r
u
m
e
n
t
a
t
i
o
n

c
a
l
l
b
a
c
k
s

Dy
na

m
ica

lly
Lo

ad

Re
ad

Re
ad

llv
m

-li
nk

op
t

llc

Pr
og

ra
m

RT
S

Li
br

ar
y

bi
tc
od
es

In
st

ru
m

en
te

d
Bi

tc
od

e

Tr
ac

ed

Bi
tc

od
e

O
pt

im
ize

d
Bi

tc
od

e

Li
nk

ed

Bi
tc

od
e

gh
c

As
se

m
bl

y
Co

de

Tr
ac

eB
ui

ld
er

Pa

ss

Tr
ac

e
In

st
ru

m
en

ta
tio

n
Pa

ss

Ha
sk

el
l

dy
lib

s

Tr
ac

e
Fi

le

Dy
na

m
ica

lly
Lo

ad

J
I
T

c
a
l
l
b
a
c
k
s

Fi
le

Dy
na

m
ic

Li
br

ar
y

M
em

or
y

LL
VM

Pa

ss

Ex
te

rn
al

To
ol

Le
ge
nd

W
rit

e

W
rit

e
Re

ad

W
rit

e

Re
ad

Re
ad

W
rit

e

EX
E

Li
nk

St
ar

t

LL
VM

Bi
tc

od
e

G
HC

M
ac

hi
ne

Co
de

Tr
ac

e
Fo

rm
at

Ht
ra

ce

Tr
ac

e
Ru

nt
im

e

F
ig
u
re

6.
13
:

H
tr
ac
e
L
LV

M
im

p
le
m
en
ta
ti
on

.

109

execution time by translating the bitcode into machine code the first time a function

is called. Any calls to functions not found in the bitcode will cause the JIT to look

for the function with the dynamic linker. When those functions are called they will

cause the program to execute from the appropriate library at full speed. As the

program executes the JITed bitcode, it will callback to the trace runtime with the

function calls inserted by the trace instrumentation pass. When the program finishes

executing, the trace runtime writes out the traces to an external file.

Once the traces have been found and written to disk, we use another LLVM pass

that modifies the original linked bitcode by building the traces found in the training

run. The modified bitcode is then sent through the opt and llc tools to optimize

the code. The opt program is llvm’s static optimizer and llc is the native backend

that translates the optimized bitcode into assembly code. The llc tool writes out

the final assembly code for the program. The assembly code is then fed into GHC,

which uses the system assembler to produce object code, which is then linked with

the appropriate Haskell libraries.

The primary modifications made to LLVM are the two new passes for inserting

trace instrumentation and building traces, and a change to the lli tool for adding

callbacks to the trace runtime. The Trace Runtime is implemented as a dynamic

library that is loaded by the lli tool. Each of these components is described in more

detail below.

Trace Instrumentation Pass

The trace instrumentation pass is implemented as a ModulePass in the LLVM com-

piler. The algorithm for inserting instrumentation closely follows the design given in

Figure 6.2 on page 92. We begin by building a map that maps each function and

basic block to a unique number. It is important that the numbering computed here

be repeatable so that when we process the module again we will get the same num-

110

bering. To achieve a consistent numbering, we rely on LLVM to produce a consistent

iteration order of all the functions in a module, and all the basic blocks in a function.

A consistent numbering can then be achieved by incrementing counters for the func-

tion and basic-block numbers as we walk over the bitcode of the module. As long as

we use the same bitcode for both instrumentation and trace building, we will have

a consistent numbering. The numbering we compute for instrumentation is used by

the Trace Runtime callbacks to identify the basic blocks as they execute. To rebuild

the traces later we must map the block numbering back to the corresponding basic

block.

Once the numbering has been computed, we can insert the annotations and call-

backs needed by the trace runtime. For each function in the program we insert an

llvm.annotation that records the function number. This annotation will be read by

the lli JIT and used to notify the Trace Runtime about the mapping between the

JITed function and its function number.

Next, we add instrumentation to each basic block. For each block we determine if

it should be a trace header and if so we insert a call to the llvm tracer trace head

function passing the basic block number as a parameter. If the block is not a header

then we insert a call to the llvm tracer trace path function, once again passing

the block number of the current basic block.

As described in Section 6.1.1, we have considerable latitude on what to mark as

a potential trace header. We use a simple strategy based on naming conventions

to decide which blocks are trace headers. GHC su�xes all function entry points

with entry and su�xes all continuation points with the string ret. We mark as

trace headers any function named with an entry su�x. However, we exclude all

functions beginning with stg , since these are GHC runtime functions. We want to

trace through the runtime functions, but not start traces with a runtime function

because they can be called from many places.

111

We instrument function calls di↵erently depending on whether they are direct or

indirect calls. A direct call needs instrumentation only if it invokes a function outside

the current bitcode module. We check this condition using the F->isDeclaration()

predicate to see if the function is only a declaration with no body. If it is only

a declaration then we will insert a llvm tracer trace break callback before the

function call.

We make one exception to the rule for instrumenting direct function calls. If the

function is an intrinsic function, such as llvm.sqrt, then we will not insert a trace-

break callback. Although we do not have the function bodies of the intrinsics we

do not need to break the trace on these functions because they will not corrupt the

control flow of the trace. We assume that the intrinsic functions do not re-enter the

program except to return to the call point.

All indirect calls in the program need a callback to check that the call in-

vokes a known function. For each indirect call in the program we insert a

llvm tracer check trace break callback. We pass the address of the called function

as the only parameter to the callback.

One final callback function is needed to complete the instrumenta-

tion pass. We insert a callback to initialize the trace runtime. The

llvm start trace profiling runtime callback is added to the main function of the

program. This callback allows the trace runtime to initialize itself before any code

from the program is executed.

All of the callback functions described in this section are listed in Table 6.1.

The trace instrumentation pass inserts all of the necessary callbacks except for

the address mapping callback needed to handle indirect function calls. The

llvm add target address callback is described in the next section.

112

lli

The lli tool is the interpreter for bitcode files. We made a slight modification to

it so that we could notify the trace runtime about the association between function

addresses and function numbers. The runtime needs this information when deciding

whether or not to break a trace at an indirect function call. The majority of the

implementation of lli is contained in the ExecutionEngine library. Our changes

were primarily made in the library, but we also added a flag to the lli tool to enable

our callback changes.

In order to decide when to break a trace on an indirect call, we needed to build a

mapping from function addresses to function numbers. Fortunately, the LLVM JIT

already provides an event system that lets us listen for certain events and take actions

when they occur. Our first attempt listened for the NotifyFunctionEmitted emitted

event which is sent when the JIT compiles the code for a function. Once the function

was emitted, we could see both the function body and its address. Unfortunately, the

address we see at this event is an address in the code cache which turns out to not

be the address we need.

When first loading a bitcode module, the JIT will emit a stub for each function

in the module. The stub address is used by other functions that need to call the

function. When the stub is first called, the function will be compiled and emitted to

the code cache. The NotifyFunctionEmitted event sends the code cache address,

but we actually need the stub address since that is the address used for all of the

indirect function calls we are monitoring.

We added a new event called NotifyResolvedLazyStub and send the event when

the function is compiled for a stub address. We have a custom listener that handles

the event. When the event is received we have access to the bitcode for the function

and the stub address that was just resolved. We read the function number annotation

from the bitcode and then call the llvm add target address callback passing the

113

Callback Purpose Location
llvm start trace profiling runtime Initialize runtime main function
llvm tracer trace head Trace header Select functions
llvm tracer trace path Trace basic block Every basic block
llvm tracer check trace break Check indirect calls All indirect calls
llvm tracer trace break Explicit trace break All external calls
llvm add target address Update address map lli JIT

Table 6.1: List of callback routines for the trace runtime

function number and stub address. The Trace Runtime will maintain the mapping

and use it for deciding when to break the traces.

Trace Runtime

The Trace Runtime is a dynamic library that gets loaded by lli and provides an

implementation for all of the callbacks listed in Table 6.1. The implementation of the

callbacks closely follow the algorithm given in Section 6.1.1.

The runtime starts when the llvm start trace profiling runtime function is

called. The Trace Runtime creates a new Tracer object that is used to encapsulate

the tracing state and handle all the callbacks. Each time a callback function is ex-

ecuted, a corresponding method is called on the Tracer object. The Tracer object

implements the state transitions shown in Figure 6.3. The reason for using an object

to maintain state and record traces is so we can support concurrent callbacks from

multiple threads. Each thread can maintain its own Tracer object in thread local

storage. Although we currently only have single-threaded benchmarks, the imple-

mentation is flexible enough to support multi-threaded applications. In addition to

initializing the tracer object, the startup function also registers a callback with the

atexit function to dump the traces to a file.

Traces are stored in memory as a vector of Trace objects. Each trace contains a

sequence of basic blocks along with any breaks in the trace. The traces are added to

the vector when we take the CommitTrace transition out of the Record state. When

114

Trace Header
Record 1
Record 2

Record N

.

.

.

Trace Header

N

Record 1
Record 2

Record M

.

.

.

M

Tag # of Records # of Trace Executions

4 4 8

Trace Header

Tag Payload Exit Count

4 4 8
Trace Record

Trace Profile

Figure 6.14: External format of trace records. Each trace has a trace header followed
by a number of records as indicated in the header. The details of the trace header
and trace records are shown in the right side of the figure. The numbers above the
fields are the size in bytes.

entering the Shadow state, we lookup the corresponding trace in our vector of Trace

objects. When the program completes the exit handler that we installed at startup

is called and we use it to dump the traces to disk.

The traces are stored to disk in a compact binary format. The external trace

format is shown in Figure 6.14. Each trace is stored with a header that indicates

the number of records in the trace and the number of times that trace was entered

during profiling. The trace records are tagged by the type of the record and contain

a payload of data along with an exit counter for the number of times the trace was

exited at this point. There are essentially two di↵erent types of trace records: breaks

and blocks.

Figure 6.15 shows the C definitions for the trace record types. The TraceGapRecord

is used to indicate a break in the trace. Its payload will be a function number if it was

broken by a direct function call. The TraceBlockRecord and TraceHeaderBlockRecord

115

1 typedef uint64_t BigCounter;

2 struct TraceProfileHeader {

3 int TraceSize;

4 BigCounter NumHits;

5 };

6

7 struct TraceProfileRecord {

8 TraceProfileRecordType Tag;

9 union {

10 BasicBlockNumber BlockNumber;

11 FunctionNumber FunctionNumber;

12 };

13 BigCounter ExitCount;

14 };

15

16 enum TraceProfileRecordType {

17 TraceGapRecord,

18 TraceBlockRecord,

19 TraceHeaderBlockRecord

20 };

Figure 6.15: C type definitions for external trace format.

tags are used to record the blocks along the trace. Their payload is a basic block num-

ber. We tag the records di↵erently depending on whether the block was a header block

or not, but currently do not make use of this information.

After the traces have been dumped to an external file, we can read them later in

the LLVM pass that uses the profile data to build an increased optimization scope.

Trace Builder Pass

The final modification we made to LLVMwas the inclusion of a new pass to restructure

the program based on the trace profiling data. We follow the algorithm given in

Figure 6.8. The most onerous part is maintaing the mapping between the blocks

in the cloned trace functions and the blocks in the original trace. Maintaining the

mapping requires some bookkeeping, but is otherwise manageable.

The first step of building traces is to find all of the functions that we need to clone.

116

We can do this by walking the trace and noting the places where two consecutive

blocks come from di↵erent functions. Each time we see such a transition, we must

clone the target function.

LLVM has direct support for cloning functions which makes it very easy to imple-

ment the cloning. After we clone a function we build a mapping between the blocks

in the old function and the new function. This mapping allows us to get a handle on

the basic block in the cloned function that corresponds to the basic block from the

original function. Each time we have a transition between functions on the trace, we

replace the call instruction in the cloned function so that it calls the newly cloned

function that contains the next block on the trace.

To get all of the trace functions inlined into a single function in LLVM we mark

the cloned functions with the internal linkage and the alwaysinline attribute.

The LLVM inliner will always inline functions with the alwaysinline attribute. The

internal linkage allows LLVM to delete the function once it has been inlined into

all of its call sites.

After all the calls have been cloned for the trace we replace uses of the trace

header function with the cloned version. The replacement is straightforward given

the def-use chains automatically maintained by LLVM.

After the traces have been instantiated we optimize them using the standard

LLVM optimizations in the opt and llc tools. The next section describes some

of the details in how we put all of the di↵erent parts together to make the Htrace

optimizer.

6.2.3 Putting It All Together

In this section we describe how we bring together all of the components to go from a

Haskell program to an executable that has been optimized by Htrace. The procedure

can be largely automated by scripting the interaction between all of the tools. There

117

Library DirectoriesOriginal Program Directory

Htrace-Program Directory

Generate
Makefile

Haskell
Program

Source
Bitcode
File List

Extern
Library

List

Copy Files

Standard
Library
Bitcode
File List

Makefile

Source&
Library
Bitcode

Files

Source
Bitcode

Files

Standard
Library
Bitcode

Files

Parse Build
LogBuild Build

Log

Read Write

Write Parse

Write

Read Write

Read

Copy

Write

ReadWrite

Start

Copy

Figure 6.16: Preparing a Haskell program to use Htrace.

are four primary tasks we need to perform: gather the LLVM bitcode for the program

source, gather the LLVM bitcode for the Haskell libraries, determine the external

libraries used by the program, and generate a makefile to perform the build. The

entire process is shown in Figure 6.16.

We start by assuming we have a Haskell program in its own directory. We build

the program using ghc -v --make -fllvm --keep-llvm-files so that GHC will

generate a LLVM bitcode file for each Haskell source file. The -v option is used to

get verbose output from GHC which we save as a build log. The build log from the

verbose output is parsed to get an explicit list of all the bitcode files generated and

the external libraries that are linked into the program. These lists are recorded in

temporary files that will be read by later tools.

We use a separate Htrace directory to contain all of the build artifacts. We copy all

of the bitcode files that were generated from the source program to this new directory.

Additionally, we need to copy bitcode files for libraries through which we want to be

118

able to collect traces. We can gather the required libraries by parsing the build log.

In the case of the Fibon benchmarks, the source directories contain the source for all

the libraries they use, except for some standard Haskell libraries. We keep a fixed

list of the standard Haskell library files that are copied when initializing an Htrace

program.

The list of standard library files is shown in Figure 6.17. We copy the entire im-

plementation of the prim, containers, and integer libraries. From the base library

we include the files that make up the Haskell Prelude, which is a module containing

many useful functions that are automatically available to all Haskell programs.

The final step in Htrace preparation is the generation of a makefile. The makefile

is a convenient way to orchestrate all of the various steps needed to go from a set of

LLVM bitcode files to an executable that has been optimized to take advantage of the

common program traces. Essentially, the makefile encodes the dependencies depicted

in Figure 6.13 so that we can simply type make in the program’s Htrace directory

and have it run the correct sequence of commands that will profile, restructure and

optimize the code. To correctly generate the makefile we need to know which external

libraries are used by the program. These libraries are added to the dynamic linker’s

search path when running lli and also used in the final linking of the executable.

6.3 Results

In this section we present the data we collected to assess the e↵ectiveness of Htrace.

The results are presented in three areas. First, we examine the performance gain we

achieve by restructuring the program to take advantage of the program traces. Next

we look at properties of the traces found when using our trace heuristics. Finally, we

discuss the e↵ect of varying the hotness threshold that triggers a new trace.

Our results show that we can achieve a speedup of up to 86% over an optimized

119

1 packages = {

2 ’base’ :

3 [’libraries/base/GHC/Base.ll’,

4 ’libraries/base/Data/Tuple.ll’,

5 ’libraries/base/GHC/Show.ll’,

6 ’libraries/base/GHC/Enum.ll’,

7 ’libraries/base/Data/Maybe.ll’,

8 ’libraries/base/GHC/List.ll’,

9 ’libraries/base/GHC/Num.ll’,

10 ’libraries/base/GHC/Real.ll’,

11 ’libraries/base/GHC/ST.ll’,

12 ’libraries/base/GHC/Arr.ll’,

13 ’libraries/base/GHC/Float.ll’,],

14

15 ’prim’ :

16 [’libraries/ghc-prim/GHC/Classes.ll’,

17 ’libraries/ghc-prim/GHC/CString.ll’,

18 ’libraries/ghc-prim/GHC/Debug.ll’,

19 ’libraries/ghc-prim/GHC/Generics.ll’,

20 ’libraries/ghc-prim/GHC/IntWord64.ll’,

21 ’libraries/ghc-prim/GHC/Magic.ll’,

22 ’libraries/ghc-prim/GHC/Tuple.ll’,

23 ’libraries/ghc-prim/GHC/Types.ll’,],

24

25 ’containers’ :

26 [’libraries/containers/Data/Graph.ll’,

27 ’libraries/containers/Data/IntMap.ll’,

28 ’libraries/containers/Data/IntSet.ll’,

29 ’libraries/containers/Data/Map.ll’,

30 ’libraries/containers/Data/Sequence.ll’,

31 ’libraries/containers/Data/Set.ll’,

32 ’libraries/containers/Data/Tree.ll’,],

33

34 ’integer’ :

35 [’libraries/integer-simple/GHC/Integer/Logarithms/Internals.ll’,

36 ’libraries/integer-simple/GHC/Integer/Logarithms.ll’,

37 ’libraries/integer-simple/GHC/Integer/Simple/Internals.ll’,

38 ’libraries/integer-simple/GHC/Integer/Type.ll’,

39 ’libraries/integer-simple/GHC/Integer.ll’,],

40 }

Figure 6.17: Standard library files used for Htrace programs. The string on the top
is the name of the Haskell library. The list below are the files that are copied for that
library.

120

LLVM version. We get an average (geometric mean) speedup of 5% for the Fibon

benchmarks. The hotness threshold for building traces can have a large impact on

the quality of the traces found. In general, higher hotness thresholds are better but

there is a significant amount of variation for the best threshold across all benchmarks.

The results show that Htrace can be very e↵ective at improving performance when

operating with the existing settings. The performance can likely be further improved

by exploring di↵erent trace paramaters and developing optimizations that specifically

operate on traces.

6.3.1 Performance

In this section we discuss the performance impact of Htrace. The baseline for com-

parison is GHC using the LLVM backend. GHC has been modified as described in

Section 6.2.1. We are measuring the performance impact that can be attributed to

Htrace, so we compare against an equivalent GHC using the standard LLVM back-

end. The speedup measurements compare the CPU time used by the mutator. Recall

that the mutator is the portion of the execution outside of the storage management

code in the runtime. The CPU time provided a more consistent measurement than

wall clock time on the MacBook Pro that was used to collect the results. The details

of the machine are described in Table 2.2 on page 15. We measured the change in

mutator time so that we could detect performance improvements even in GC-heavy

benchmarks. Also, the low-level optimizations we are investigating do not typically

change the time spent in the garbage collector because they do not change the amount

of data allocated in the heap. The absolute performance improvement will depend

on how much time is spent in the mutator.

We used the same data set for both the profiling run used to build traces and the

performance run used to collect results. Using the same input for training and per-

formance shows the limits of the performance improvement we can expect to achieve.

121

M
ut

at
or

 S
pe

ed
up

1.0

1.2

1.4

1.6

1.8

Dph

●●

●● ●●

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

●● ●● ●●
●●

●●

●●

●● ●●

●● ●●

●●
●●

●●
●●

●●

●●

●●

Ag
um

Bz
lib

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
Fu

ns
at G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

●● ●●

●●

●● ●●

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

●● ●●

●●

●●
●●

●●

●●

Bi
na

ry
Tr

ee
s

C
ha

m
en

eo
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Impact
● − <10%
● − 5:10%
● ± 5%
● + 5:10%
● + >10%

Figure 6.18: Performance of benchmarks under Htrace with a hotness threshold
100, 000. The geometric mean speedup is 5%.

The improvement we get with di↵erent training and performance sets will depend on

how much the control flow is driven by the program input.

Figure 6.18 shows the impact of running the Fibon benchmarks under Htrace. A

hotness threshold of 100, 000 was used to collect these results. Eight of the thirty

two benchmarks (25%) show a speedup of 5% or greater, with five of those bench-

marks showing a speedup of more than 10%. Only two of the benchmarks show a

performance degradation of more than 5% with one benchmark (Fannkuch) showing a

slowdown of 12%. The remaning benchmarks showed little di↵erence in performance

and were all within 5% of the non-Htrace version.

Htrace does a decent job at improving the performance of some benchmarks, but

it is largely ine↵ective for others. To understand the performance numbers we need to

take a detailed look at where the programs spends their execution time. Figure 6.19

shows the speedup numbers with the benchmarks grouped based on time spent on

122

M
ut

at
or

 S
pe

ed
up

1.0

1.2

1.4

1.6

1.8

Bad Opt

●●
●●

●● ●●

●●

C
ps

a
H

ga
lib

M
M

ul
t

Pa
lin

dr
om

es
Si

m
gi

Bad Trace

●●

●●

●●

●●

●●

●●

●●
●●

C
ry

pt
o

Fa
nn

ku
ch

FF
T2

d
FF

T3
d

Fu
ns

at
H

aL
eX

Pa
pp

y
R

eg
ex

Good Trace

●●

●●

●●

●●

●●

●●

D
ot

p
Fs

t
H

ap
py

Pi
di

gi
ts

Sp
ec

tra
lN

or
m

Te
rn

ar
yT

re
es

Local

●●
●●

●●
●● ●●

Bl
ur

La
pl

ac
e

M
an

de
lb

ro
t

N
bo

dy
Q

so
rt

No Hot Trace

●●
●●

●●
●● ●●

●● ●●
●●

Ag
um

Bi
na

ry
Tr

ee
s

Bz
lib

C
ha

m
en

eo
s

Fg
l

G
f

Q
ui

ck
H

ul
l

Xs
ac

t

Impact
● − <10%
● − 5:10%
● ± 5%
● + 5:10%
● + >10%

Figure 6.19: Performance of benchmarks under Htrace with a hotness threshold
100, 000 grouped by disposition. The disposition categories are described in Table 6.2

Category Description
Bad Optimization Spends time on trace, but optimization is ine↵ective

Bad Trace Spends time on a trace, but has poor completion rate
Good Trace Spends time on trace and optimization is e↵ective
Local Trace Spends time on local (one function only) traces
No Hot Trace Does not spend time on traces

Table 6.2: Benchmark disposition categories

traces and the completion rate of those traces.

The benchmarks are grouped into five categories based on profiling results. Each

benchmark was run with a sampling-based profiler to get an understanding of where

the program was spending its execution time. The dynamic profile was combined

with the trace completion statistics gathered during shadow tracing to categorize the

benchmarks according to their profiling and trace statistics. The di↵erent categories

are listed in Table 6.2 and described below. Table 6.3 displays the data used to

123

categorize the benchmarks.

The Bad Optimization category is for benchmarks that spend a good amount of

execution time on a trace we built, but do not get a performance improvement from

the increased optimization scope. The performance of benchmarks in this category

could possibly be improved by implementing some trace-specific or Haskell-specific

optimizations. Most of the benchmarks in this category see little change in perfor-

mance when running with Htrace. The Simgi benchmark is the exception, which has

a slowdown of about 7%.

The Bad Trace category is for benchmarks that spend time on a trace, but have

poor completion rates. These benchmarks generally do not get an advantage from

Htrace because the trace heuristics do not find a good trace. The worst performing

benchmark, Fannkuch, is in this group. It su↵ers greatly because it spends a lot of

execution time on the trace, but often exits by the second function on the trace. On

entry to the trace, the LLVM register allocator spills many of the registers to free

up more registers for allocation in the loop body. These spills must be reloaded at

the trace exit, and because the trace rarely complets the extra stores and loads add

overhead which increases the running time of the benchmark.

Not all benchmarks su↵er a performance penalty for having bad traces. The

FFT3d benchmark achieves a speedup of 12% despite having a poor completion rate

of its top trace. Although the completion rate of the top trace is only about 8%,

the common trace exit points are at the bottom of the trace. Because the common

exits are near the end of the trace the optimizations for a large part of the trace

will still be e↵ective. The result here points out that not just the trace completion

rate is important for judging performance, but also the relative completion rate that

measures how far we typically get through the trace before an early exit.

The Good Trace category is for the benchmarks that spend a good amount of

execution time on a trace, and the trace also has a high completion rate. The com-

124

Bad Optimization

Benchmark Profile Rank Completion Functions Blocks
Crypto 13.8% -1 86.97% 22 55
Hgalib 15.1% 1 100% 4 9
MMult 77.8% 1 65.04% 39 87

Palindromes 4.3% -1 99.73% 3 7
Simgi 16.3% 1 92.65% 23 55

Bad Trace

Benchmark Profile Rank Completion Functions Blocks
Cpsa 13.0% 1 3.56% 20 52

Fannkuch 16.6% 1 0.22% 19 53
FFT2d 10.6% 1 0.09% 12 30
FFT3d 19.7% 1 8.04% 30 71
Funsat 2.2% -1 0.15% 13 27
HaLeX 8.1% 4 3.64% 14 31
Pappy 1.5% -1 0.03% 43 101
Regex 7.8% 2 15.27% 38 101

Local Trace

Benchmark Profile Rank Completion Functions Blocks
Blur 49.7% 1 97.19% 1 7

Laplace 68.8% 1 98.02% 1 8
Mandelbrot 80.4% 1 97.20% 1 4

Nbody 55.3% 1 66.67% 1 3
Qsort 3.1% -1 60.97% 1 5

Good Trace

Benchmark Profile Rank Completion Functions Blocks
Dotp 34.9% 1 100% 4 10
Fst 51.9% 1 92.78% 13 27

Happy 21.4% -1 95.12% 13 27
Pidigits 64.7% 1 95.66% 4 9

SpectralNorm 23.5% 1 99.92% 15 33
TernaryTrees 9.2% -1 86.35% 12 28

Table 6.3: Disposition of benchmark traces. The Profile column lists the absolute
percent of execution time the program spent on the top trace. The Rank column
lists the position of the top trace in the overall profile results for that benchmark. A
negative number indicates the position is relative to the first profile entry that does
not come from the garbage collector. The Completion column lists the completion
rate of the top trace. The last two columns give the size of the trace in functions and
blocks.

125

bination of finding the right program traces and having e↵ective optimizations make

this the best performing category. All the benchmarks in this group have a speedup

of more than 5%.

The Local Trace category contains all of the benchmarks that spend time on traces

that span only a single function. The traces will be simple tail recursive functions,

which LLVM can turn into a loop. The benchmarks in this group will not show a great

performance improvement because LLVM can already see and optimize the loop. The

Qsort benchmark is unique in this group because it does not get a big speedup from

the LLVM backend (see Figure 2.4). The reason for the lack of speedup on Qsort

is because its execution time is spread across many small traces. There is no single

piece of code that dominates execution time and is amenable to optimizations.

Finally, the No Hot Trace category identifies the benchmarks that spend no time

on the traces we build. These benchmarks either have no traces that are hot enough

to show up in a profile, or we could not identify traces for them at all (e.g. Bzlib,

Chameneos). We see no real benefit or detriment in these benchmarks because our

tracing scheme has no impact on the code that actually executes. These programs

are unlikely to benefit from trace-based optimization because of their lack of good

hot traces.

Table 6.3 shows the detailed data used to categorize the benchmarks. The No

Hot Trace category is omitted from the table because the trace data is irrelevant

since there were no hot traces in those benchmarks. The Bad Optimization group

has two distinct subgroups. The Hgalib and Palindromes benchmarks have small

loop traces that we would expect LLVM to be able to optimize. The traces from the

other benchmarks are much larger and it is likely that LLVM has trouble optimizing

the function that results from inlining all of the constituant trace functions. We

could probably improve the performance of the Bad Optimization benchmarks that

have large traces by improving our trace builder to prune away the cold paths in

126

the cloned function. The Bad Trace group contains benchmarks with top traces that

are generally quite large. The large trace size combined with a poor completion rate

generally eliminates the performance benefits we might hope to see. The Good Trace

benchmarks have top traces that are on the smaller side. The smaller trace size and

high completion rate provides the opportunities for LLVM’s optimizations to improve

performance.

To understand why we get good performance on the Good Trace benchmarks we

can take a detailed look at what happens in the Dotp benchmark. Dotp is a nice

example because the traces are fairly small and easy to understand what is happening.

The majority of the time is spent on two traces, one of which is local. We will discuss

the non-local trace because that is the source of all improvements and it is also the

function where the benchmark spends the most time.

Figure 6.20 shows the trace control flow in the original code compared to the

control flow in the restructured code. The hot trace occurs at a point where we are

copying data from one array to another using a modular index variable. The entry

to the trace saves the live variables to the stack and calls the mod function passing an

index variable. At the return from the mod function we reload the index variables from

the stack and use them along with the value returned from mod to perform the copy.

Finally, we updated the index variables and call back to the trace entry function.

After restructuring the code around the trace, we have a single function with a

loop that performs the copy. Table 6.4 lists five major benefits from the increased

scope of our trace function. One of the most important benefits is that the register

allocator can allocate the index variables to registers which eliminates one reload

from the stack on every iteration. In the original function, the updated index values

computed at the bottom of the loop in the f ret function are stored and reloaded

from the stack. In the trace function we only store the updated values to the stack

and then keep them in registers until they are needed again at the bottom of the

127

f_ret

reload index vars
update mem

update index vars

f_entry

save index vars

mod_entry
compute mod#

save index vars
compute mod#

trace target check

update mem
update index vars

f_trace_entry

Direct Jump

Indirect Jump Basic Block
Function

Figure 6.20: Trace code shape for the Dotp benchmark. The original code (Left)
includes three separate functions, one of which is reached by an indirect jump. The
restructured code (Right) is contained in a single function. The improved scope
allows the register allocator to allocate the index variables to registers across the
computation of mod.

1. Register allocation of variables around loops
2. Reduced stack pointer manipulations
3. Hoisted loop invariant code
4. Compact loop code
5. Improved instruction scheduling

Table 6.4: Sources of improvement for restructured low-level code

loop. The original code could not see through the mod function call and so it had to

reload them on each entry to the f ret function. The improved register allocation in

the trace function saves four extra loads per iteration.

In addition to the register allocation benefits, we see several other improvements.

Collapsing the control flow into a single function reduces the number of stack pointer

manipulations. In the original version the stack pointer will be incremented and

decremented on each iteration of the loop. In the combined code, we only have one

increment and decrement for all the iterations. We also see opportunities for moving

loop invariant code out of the loop. In the Dotp benchmark, the stack limit and

128

heap limits can be computed once and stored in a register. We would prefer entirely

eliminating the stack check in the loop body, but currently LLVM does not hoist the

stack check control flow. Collecting the code into a single function also improves the

locality for the instruction cache. In the original version of Dotp, the call to mod

will jump to distant code. The improved version keeps all of the code close together

and will have better cache behavior. Finally, the traced code has more opportunity

for better instruction scheduling. Tracing through the mod function provides many

more arithmetic instructions that can be scheduled in the latency of the memory

operations. These extra instructions can essentially execute for free in the traced

version.

Although we see a great performance gains in the Dotp benchmark, there is still

much room for improvement in the low-level code. The greatest source of overhead

that still remains is the stores and loads of values to the Haskell stack even after the

tail call elimination optimization has run. There are two issues that cause the stores

to remain. The first issue is that the stores to the Haskell stack look like writes to

memory so LLVM is unable to remove them because it does not realize the stores are

dead after the function call returns. The second issue is that LLVM is not moving the

stores out of the loop down to the trace exit paths. The stores are not entirely dead

since they may be used on paths o↵ the trace. We would like LLVM to move the stores

o↵ the hot path, but it is unable to prove that it is safe to do so. Teaching LLVM

about the Haskell stack would help improve the code generated for the restructured

code.

6.3.2 Trace Statistics

In this section we examine several characteristics of the traces found by Htrace. We

first look at the number of traces found and compare it to the number found by

DynamoRIO. Next we look at the number of broken traces and how increasing the

129

Quartile Number of Traces
Q1 4.75

Q2 = Median 12.50
Q3 33.00

Table 6.5: Number of traces found by Htrace. The median number of traces (e.g.
Q2) found for the Fibon benchmarks is 12.5. Compare to Table 5.3 which shows a
much higher number of traces found by DynamoRIO.

scope available to Htrace impacts the broken traces count. Finally, we examine the

completion rate of traces.

Number of Traces

The number of traces found by Htrace is shown in Figure 6.21. We can see that there

is considerable variation in the number of traces found for each benchmark. The

distribution of trace counts is summarized in Table 6.5. Compared to DynamoRIO,

the number of traces found for each benchmark is quite small. DynamoRIO found

a median of 634 traces for each benchmark, compared to the 12.5 found by Htrace.

The small number of traces found for most benchmarks indicates that the tracing

heuristics used by Htrace are better suited for Haskell.

The Shootout, Dph, and Repa benchmarks typically have fewer traces than the

Hackage benchmarks. The Hackage benchmarks are larger programs, so it makes

sense that they would have a greater number of hot traces than the smaller programs

from the other groups. The major exception is Qsort, which has the most traces of

any benchmark. The large number of traces in Qsort are because the code path is

highly dependent on the data (because it is a sorting routine) which leads to a large

number of frequently executed trace headers since the data is driving the trace down

di↵erent execution paths.

130

Benchmark

Tr
ac
es

0

20

40

60

80

100

120

Dph

D
ot
p

Q
so
rt

Q
ui
ck
H
ul
l

Hackage

Ag
um

Bz
lib

C
ps
a

C
ry
pt
o

Fg
l

Fs
t

Fu
ns
at G
f

H
aL
eX

H
ap
py

H
ga
lib

Pa
lin
dr
om

es
Pa
pp
y

R
eg
ex

Si
m
gi

Te
rn
ar
yT
re
es

Xs
ac
t

Repa

Bl
ur

FF
T2
d

FF
T3
d

La
pl
ac
e

M
M
ul
t

Shootout

Bi
na
ry
Tr
ee
s

C
ha
m
en
eo
s

Fa
nn
ku
ch

M
an
de
lb
ro
t

N
bo
dy

Pi
di
gi
ts

Sp
ec
tra
lN
or
m

Figure 6.21: Number of traces found by Htrace with a hotness threshold of 100, 000.

Trace Types

Figure 6.22 shows the di↵erent types of traces found by Htrace. The traces are

categorized into three types: Loop, Long, and Local. Loop traces start and end at

the same block and include at least one other block in between. Long traces are the

the traces that we stop recording because they have reached the length limit. Local

traces are the traces that contain only a single block.

The trace types show a distinct trend among the Hackage group. These bench-

marks tend to have a greater number of Long traces. We can attribute this di↵erence

to the non loop-based nature of these bencharks. The Hackage benchmarks are more

likely to have complex control flow which results in the larger number of Long traces.

Both the Dph and Repa benchmarks have a larger number of Local traces. These

Local traces are actually showcasing the ability of GHC to manifest program loops

as tail recursive functions. We would expect to see more Local traces in these groups

131

Benchmark

Pe
rc
en
t

0%

20%

40%

60%

80%

100%
Dph

D
ot
p

Q
so
rt

Q
ui
ck
H
ul
l

Hackage

Ag
um

C
ps
a

C
ry
pt
o

Fg
l

Fs
t

Fu
ns
at G
f

H
aL
eX

H
ap
py

H
ga
lib

Pa
lin
dr
om

es
Pa
pp
y

R
eg
ex

Si
m
gi

Te
rn
ar
yT
re
es

Xs
ac
t

Repa

Bl
ur

FF
T2
d

FF
T3
d

La
pl
ac
e

M
M
ul
t

Shootout

Bi
na
ry
Tr
ee
s

Fa
nn
ku
ch

M
an
de
lb
ro
t

N
bo
dy

Pi
di
gi
ts

Sp
ec
tra
lN
or
m

Type
Loop
Long
Local

Figure 6.22: Types of traces found by Htrace with a hotness threshold of 100, 000.

since they tend to be loop-based benchmarks. The distribution of trace types we have

examined so far has been over all the traces found by Htrace. We can also look at

the distribution of trace types weighted by the execution frequency.

Figure 6.23 shows the distribution of trace types weighted by the number of entries.

The trace entry counts were collected by the shadow tracing described in Section 6.1.

Although the entry counts do not necessarily correspond to execution time, we can

get a sense of the relative frequency of what kind of traces are entered most frequently.

The major change that we see is the large reduction in the percent of Long traces.

The reduction occurs across all the benchmark groups. The Long traces are nearly

eliminated from the Repa and Shootout groups. The Hackage group still has a few

benchmarks with a large percent of Long traces.

132

Benchmark

W
ei

gh
te

d
(b

y
tra

ce
 e

nt
rie

s)
 P

er
ce

nt

0%

20%

40%

60%

80%

100%
Dph

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

Ag
um

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
Fu

ns
at G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

Bi
na

ry
Tr

ee
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Type
Loop
Long
Local

Figure 6.23: Types of traces found by Htrace weighted by number of trace entries.
Hotness threshold is 100, 000.

133

Benchmark

W
ei

gh
te

d
Av

er
ag

e
Tr

ac
e

Si
ze

 (i
n

Fu
nc

tio
ns

)

0

5

10

15

20

25

30

35

Dph

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

Ag
um

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
Fu

ns
at G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

Bi
na

ry
Tr

ee
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Figure 6.24: Length of traces found by Htrace with a hotness threshold of 100, 000.
The average weighted trace size is 13.6 functions with a standard deviation of 9.3.

Trace Length

Figure 6.24 shows the average length of traces found by Htrace. The average is

a weighted average where the weights are the trace entry counts recorded by the

shadow tracing technique. The length of the trace is measured in the number of

di↵erent functions that appear along the trace.

The trace lengths very quite a bit across the benchmarks. The Dph group tends

to have smaller traces compared to the other groups. The Hackage benchmarks

tend to have large average trace lengths. The longest average length is the MMult

benchmark where the average trace contains 38 functions. The large size of the MMult

trace points to a reason why it is not gaining much benefit from Htrace. Htrace

restructures the program around a trace by inlining the functions on the trace, and it

is likely that the standard LLVM optimizer is overwhelmed when trying to optimize

134

Benchmark

Pe
rc
en
t

0%

20%

40%

60%

80%

100%
Dph

D
ot
p

Q
so
rt

Q
ui
ck
H
ul
l

Hackage

Ag
um

C
ps
a

C
ry
pt
o

Fg
l

Fs
t

Fu
ns
at G
f

H
aL
eX

H
ap
py

H
ga
lib

Pa
lin
dr
om

es
Pa
pp
y

R
eg
ex

Si
m
gi

Te
rn
ar
yT
re
es

Xs
ac
t

Repa

Bl
ur

FF
T2
d

FF
T3
d

La
pl
ac
e

M
M
ul
t

Shootout

Bi
na
ry
Tr
ee
s

Fa
nn
ku
ch

M
an
de
lb
ro
t

N
bo
dy

Pi
di
gi
ts

Sp
ec
tra
lN
or
m

Broken
FALSE
TRUE

Figure 6.25: Percent of broken traces found by Htrace with a hotness threshold of
100, 000.

a single function that has been constructed from 38 individual functions which are

inlined at their call sites.

Overall the size of the traces is encouraging. The heuristics used by Htrace show

that we can recover scope an optimization scope that spans a large number of func-

tions. The same scope would be hard for an optimizer to discover statically.

Broken Traces

Figure 6.25 shows the number of broken traces found by Htrace. As described in

Section 6.1 a broken trace is a trace that jumps to code that we cannot see. The

external code will be either a Haskell library for which we do not have source code,

the GHC runtime library, or an external C library.

We can see that the Hackage benchmarks contain the largest number of broken

traces. These broken traces are largely from traces that enter Haskell libraries that we

135

did not include in the standard library files we copy for tracing purposes as described

in Section 6.2.3. For example, we do not trace through any code for performing I/O.

The remaning benchmark groups tend to have a small number of broken traces. These

results suggest that we can capture most traces by including a small set of library

and runtime files. The Hackage benchmarks stand to benefit most from increasing

the number of library files that we include for tracing purposes.

Figure 6.26 shows a detailed look at how the tracing scope e↵ects the number

of broken traces. The scope is broken down into the P, PR, and PRL levels. The

di↵erent scopes were constructed by copying di↵erent amount of LLVM bitcode files

to the Htrace directory used for collecting program traces. The P scope copies only

the bitcode files for the program source code. The PR scope copies both program

code and the GHC runtime files listed in Figure 6.10. The PRL scope includes the

same program and runtime files, and it also includes all of the library files listed in

Figure 6.17.

The results in Figure 6.26 were collected using a hotness threshold of 10. The

di↵erent threshold means that the broken percent will not match that found in Fig-

ure 6.25. The main trend we want to check is that increasing the scope reduces the

number of broken traces. For the most part, when we increase the scope we do see

an increase in non-broken traces. It can also be the case that increasing the scope

reduces the percent of non-broken traces. The percent of non-broken traces will de-

crease if we find a lot of broken traces in the newly available scope. Although a few

benchmarks exhibit a decreasing percent of non-broken traces, the general trend is

the increased non-broken rate that we would expect.

Overheads

Table 6.6 shows several overheads associated with Htrace along with several raw

size measurements of the storage needed for the profiling data and bitcode files.

136

Benchmark

Pe
rc
en
t

0%
20%
40%
60%
80%
100%

0%
20%
40%
60%
80%
100%

0%
20%
40%
60%
80%
100%

Dph

D
ot
p

Q
so
rt

Q
ui
ck
H
ul
l

Hackage

Ag
um

Bz
lib

C
ps
a

C
ry
pt
o

Fg
l

Fs
t

Fu
ns
at G
f

H
aL
eX

H
ap
py

H
ga
lib

Pa
lin
dr
om

es
Pa
pp
y

R
eg
ex

Si
m
gi

Te
rn
ar
yT
re
es

Xs
ac
t

Repa

Bl
ur

FF
T2
d

FF
T3
d

La
pl
ac
e

M
M
ul
t

Shootout

Bi
na
ry
Tr
ee
s

C
ha
m
en
eo
s

Fa
nn
ku
ch

M
an
de
lb
ro
t

N
bo
dy

Pi
di
gi
ts

Sp
ec
tra
lN
or
m

P
PR

PR
L

broken
FALSE
TRUE

Figure 6.26: E↵ect of trace scope on percent of broken traces found by Htrace. The
data from this graph uses a hotness threshold of 10. The di↵erence scopes are denoted
by the P, PR, and PRL labels. The P scope is program source code only. The PR
scope is source code and runtime files. The PRL scope allows tracing through the
source code, runtime and library routines.

137

Minimum Average Maximum
Profiling Time Overhead 1.4⇥ 7.68⇥ 116.9⇥
Bitcode Space Overhead 1.0⇥ 1.02⇥ 1.09⇥
Baseline Bitcode Size 15.33 MB 21.55 MB 68.85 MB
External Trace Size 92 Bytes 27.69 KB 111.70 KB

Table 6.6: Htrace overheads and file sizes. The Profiling Time Overhead measures the
slowdown we see when collecting the profile data to find program traces. It compares
against a normal non-profiled execution time. The Bitcode Space Overhead measures
the code expansion that comes from cloning functions to build traces. It compares
to the Baseline Bitcode Size that comes from combining the original LLVM bitcode
files for the program, library, and runtime bitcode. The External Trace Size shows
the size of the profile data written out by the Trace Runtime.

The Profiling Time Overhead shows the slowdown we see by running the program

through Htrace to find program traces. The overhead comes from interpreting the

bitcode files using lli and the callbacks to the Trace Runtime that are used to find

and record program traces. The average profiling time overhead is 7.7⇥, with a

maximum slowdown of 117⇥ on the Dotp benchmark. Although the overhead may

seem large, it only occurs in the profiling step. Once the traces are found and written

to the external format, they can be built and optimized without incurring further

time penalties in the compilation process.

The Bitcode Space Overhead shows the increase in the size of the bitcode due

to trace instantiation. The increase is measured against the baseline bitcode size

that comes from combining the bitcode files for the program, library, and runtime

bitcode as described in Section 6.2.3. In most cases the overhead is very small with a

maximum increase of 9%. Finally, the External Trace Size is the size of the profiling

data written by the Trace Runtime after finding traces. The external trace files are

very small with the largest file measuring only 112 kilobytes.

Trace Completion Rate

Figure 6.27 shows the weighted average completion rate of the traces found by Htrace.

The completion rates for individual traces were gathered during the shadow tracing

138

Benchmark

W
ei

gh
te

d
C

om
pl

et
io

n
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0
Dph

D
ot

p
Q

so
rt

Q
ui

ck
H

ul
l

Hackage

Ag
um

C
ps

a
C

ry
pt

o
Fg

l
Fs

t
Fu

ns
at G

f
H

aL
eX

H
ap

py
H

ga
lib

Pa
lin

dr
om

es
Pa

pp
y

R
eg

ex
Si

m
gi

Te
rn

ar
yT

re
es

Xs
ac

t

Repa

Bl
ur

FF
T2

d
FF

T3
d

La
pl

ac
e

M
M

ul
t

Shootout

Bi
na

ry
Tr

ee
s

Fa
nn

ku
ch

M
an

de
lb

ro
t

N
bo

dy
Pi

di
gi

ts
Sp

ec
tra

lN
or

m

Impact
− <10%
− 5:10%
± 5%
+ 5:10%
+ >10%

Figure 6.27: Weighted trace completion rate of traces found by Htrace. The average
trace completion rate is weighted by the relative execution frequency of the trace for
a given benchmark. The Impact percent is the performance impact from Figure 6.18.
The average completion rate is 50% with a standard deviation of 30%.

portion of the trace finding technique used by Htrace. A trace is considered to run to

completion if it reaches the last basic block in the trace. The average completion rate

is computed as a weighted average where the completion rates of individual traces

are weighted by the number of times that trace was entered.

The completion rates shown in Figure 6.27 are shaded according to their per-

formance impact from Figure 6.18. We shade the completion rates by performance

data to see how completion rate impacts performance. The best performing bench-

marks generally have a high completion rate, although a high completion rate is not

a guarantee of success. The Laplace, Mandelbrot, and Nbody benchmarks have a

high completion rate because they have a large proportion of Local traces, which

do not translate into a performance improvement through Htrace. The Palindromes

139

benchmark also has a very high completion rate, but it does not gain a performance

boost because LLVM is unable to e↵ectively optimize the restructured code. The

Fannkuch benchmark is the worst performing benchmark and it has the lowest com-

pletion rate. The performance degradation we see on that benchmark is because of

the extra overhead introduced by constantly exiting early from its traces.

The trace completion rate varies according to the path that was recorded when

the trace header became hot. If we record the trace too early or too late, then we

might record a non-representative path from that trace head. Since trace completion

rate can have an e↵ect on performance, we want to choose a good hotness threshold

for when to record a trace. Next we examine the e↵ect of modifying the threshold for

considering when a trace is hot.

6.3.3 The E↵ect of Hotness Thresholds

The hotness threshold dictates the number of times a trace header will be entered

before we record a trace starting from that block. The hotness threshold should be

set to a level that allows us to record a trace that represents the most common path

from the trace header.

The hotness threshold has two primary e↵ects. First, it has a direct e↵ect on the

number of traces we find. A low threshold will start tracing much earlier and as a

result will tend to find many more traces. However, since we only start tracing on a

header that is not already part of a trace a low threshold may cause us to find fewer

traces by covering other potential trace heads with an early trace through them.

The second e↵ect the threshold has is to change the trace paths found by Htrace.

A program may have distinct phases and di↵erent thresholds will capture di↵erent

traces according to the current program phase.

In this section we measure the e↵ect that the hotness threshold has on the traces

we find. Our results show that Haskell programs generally do better with a higher

140

Benchmark

Sp
ee
du
p

0.8

1.0

1.2

1.4

1.6

1.8

Dph

●●●●●

●●●●● ●●●●●

D
ot
p

Q
so
rt

Q
ui
ck
H
ul
l

Hackage

●●
●●● ●●●●●

●

●
●

●● ●
●●●
●

●●
●●
● ●

●

●

●

●

●●●●● ●

●●

●●

●●●

●

●

●

●

●
●

●

●●
●●
●

●●●●●

●●
●
●
●

●●●
●●

●
●
●
●
●

●
●●
●●

●●●●●

Ag
um

Bz
lib

C
ps
a

C
ry
pt
o

Fg
l

Fs
t

Fu
ns
at G
f

H
aL
eX

H
ap
py

H
ga
lib

Pa
lin
dr
om

es
Pa
pp
y

R
eg
ex

Si
m
gi

Te
rn
ar
yT
re
es

Xs
ac
t

Repa

●●●●
●

●●●●
●

●
●●●

●

●●●●● ●●●

●

●

Bl
ur

FF
T2
d

FF
T3
d

La
pl
ac
e

M
M
ul
t

Shootout

●

●●

●

●
●●●●●

●

●

●
●

●

●●●●● ●●●●●

●●

●

●

●

●●●●●

Bi
na
ry
Tr
ee
s

C
ha
m
en
eo
s

Fa
nn
ku
ch

M
an
de
lb
ro
t

N
bo
dy

Pi
di
gi
ts

Sp
ec
tra
lN
or
m

Hotness
● 10
● 100
● 1k
● 1Ok
● 1OOk

Figure 6.28: Fibon speedup by hotness threshold.

threshold, although the best threshold varies quite a bit among programs.

Speedup by Hotness Threshold

Figure 6.28 shows the speedup of the Fibon benchmarks for various hotness thresh-

olds. There appears to be considerable variation in the benchmark performance for

di↵erent thresholds. Among the Dph and Repa benchmarks, the thresholds seem to

have less of an e↵ect. The reduced e↵ect is likely because these benchmarks have

more local traces and because the hot execution paths tend to be loops that do not

have great variation in control flow. The Hackage and Shootout benchmarks tend to

show a greater response to the change in hotness threshold. These benchmarks are

more control-oriented, and the di↵erent hotness thresholds pick out di↵erent traces.

The Pidigits benchmark in particular has a dramatice response to the hotness

threshold. It goes from the worst slowdown of nearly 67% to one of the best perform-

141

ing benchmarks. The reason for the change is that the lower thresholds are not finding

the hot path in the benchmark and the traces are exited early. These early exits cause

the degradation in performance. The benchmark uses multiprecision arithmetic to

compute the digits of ⇡. The multi-precision integers are represented by an algebraic

data type that has cases for word sized integers and greater-than-word-sized integers.

Starting the traces too early results in traces going through the case for smaller inte-

gers while the majority of the execution time is spent in the case for larger integers.

Distribution of Best Hotness Thresholds

Figure 6.29 shows the distribution of the best hotness thresholds across all bench-

marks. In general, the larger hotness thresholds work better for most benchmarks.

The reason that larger thresholds work better is twofold. First, the higher thresholds

produce fewer spurious traces that simply add overhead. Eliminating these traces

allows for more productive traces to be built. Second, the larger thresholds allow

traces to occur along the common paths, which take some time to manifest.

The high threshold hotness threshold is quite a contrast to the results reported by

Duesterwald and Bala [2000] for the Dynamo trace-based optimizer. They found that

a small threshold of 50 produced good traces. The di↵erences are likely due to lazy

evaluation obscuring the common path at low thresholds and the fact that Dynamo

is tracing at runtime, which means they need to quickly find the traces. Our o✏ine

tracing system can be more patient and wait for the hot path to develop without losing

any performance because of time spent not executing on a trace. Another potential

reason for the di↵erence our hotness levels and those reported by Duesterwald and

Bala is the nature of the codes under study. They experimented primarily with

C/C++ codes from SPECint. Our Fibon benchmarks should capture a more diverse

set of program behaviors, and these behaviors might suggest a need for larger hotness

thresholds.

142

Hotness

C
ou
nt

0

2

4

6

8

10

10 10
0 1k

1O
k

1O
O
k

Figure 6.29: Distribution of hotness thresholds for best speedup.

Best Speedup by Hotness Threshold

Figure 6.30 shows the speedup of each benchmark using the best hotness threshold.

We can see that there is no clear winner as to the best threshold. Compared to

the fixed threshold results in Figure 6.18, we have added FFT2d to the benchmarks

that improve by more than 5%. The geometric mean speedup is about 7% across all

benchmarks. Among the benchmarks that improve by more than 5%, 8 out of 9 work

best with the hotness threshold of 1000 or greater.

The great variety of hotness thresholds points to a potential area for improvement

in our tracing scheme. Currently we use a fixed hotness threshold and then record

a single trace after the threshold is met. We could take advantage of the shadow

tracing to actually build alternate traces when the exit paths of the original trace

become hot. These alternate traces may do a better job of covering the actual hot

path.

143

Benchmark

M
ut

at
or

 S
pe

ed
up

1.0

1.2

1.4

1.6

1.8

− 5:10%

●

Si
m

gi

± 5%

● ● ●
●

●
● ●

● ●
●

● ● ●
●

● ●
●

●
●

● ● ●

Ag
um

Bi
na

ry
Tr

ee
s

Bl
ur

Bz
lib

C
ha

m
en

eo
s

C
ps

a
C

ry
pt

o
Fa

nn
ku

ch Fg
l

Fu
ns

at G
f

H
ga

lib
La

pl
ac

e
M

an
de

lb
ro

t
M

M
ul

t
N

bo
dy

Pa
lin

dr
om

es
Pa

pp
y

Q
so

rt
Q

ui
ck

H
ul

l
R

eg
ex

Xs
ac

t

+ 5:10%

●
● ● ●

FF
T2

d
H

aL
eX

H
ap

py
Te

rn
ar

yT
re

es

+ >10%

●

●
●

●

●

D
ot

p
FF

T3
d

Fs
t

Pi
di

gi
ts

Sp
ec

tra
lN

or
m

Hotness
● 10
● 100
● 1k
● 1Ok
● 1OOk

Figure 6.30: Best speedup for any hotness threshold.

Our static approach to tracing will have problems if the performance variety due

to hotness thresholds is caused by actual phase changes in the behavior of the appli-

cation. In this case, the runtime trace systems have an advantage because they can

respond to the phase change by throwing out the current trace and building a new

one. Static systems like as Htrace will have more di�culty coping with such a phase

change.

6.4 Conclusion

In this section we described the design and implementation of Htrace, a system for

optimizing Haskell programs by restricting the code around program traces. We found

that we could achieve a maximum speedup of 86% and an average speedup of 5%

across 32 benchmarks by running low-level optimizations on Haskell code restructured

144

Parameter Setting Explored
Trace header policy Function/thunk entry points No

Allow headers in libraries Yes No
Hotness threshold setting 100,000 Yes

Hotness threshold granularity Coarse No
Trace entry replacement Global No

Trace scope Program & Runtime & Libraries Yes
Trace phase detection None No

Instantiate non-loop traces Yes No
Allow headers in trace Multiple trace bodies & one root No

Table 6.7: Trace parameters used in the Htrace design.

to take advantage of the program traces. Our best results are produced for programs

that contain frequently executed loops that span a number of functions. When the

program is restructured around the program traces the loop is visible to the compiler

which makes it possible to perform beneficial optimizations such as register allocation

and invariant code motion.

The design space for building a system like Htrace is quite large. We identified

a number of deliberate choices that must be made when designing such as system.

Table 6.7 lists the parameters we considered when building Htrace. There is a con-

siderable amount of room for future exploration of the design space. A few ideas are

sketched below.

Trace header policy Our current policy is to mark all function and thunk entry

points as potential trace headers. We could use many alternate policies includ-

ing the use of profiling data to find hot candidates and allowing trace headers

on the ret function return points generated for lazy evaluation continuation

points.

Allow headers in libraries Currently we mark potential trace headers in all li-

braries. Alternately, we could limit trace headers to the program source code

or a subset of the libraries.

145

Hotness threshold setting We set the threshold to 100,000 entries to a trace

header before we start recording. The limit was chosen after experimenting

with a variety of thresholds. We saw that the best threshold varied across the

benchmarks and we could modify the design to try and take advantage of that

fact. One possibility is to use a more heavyweight profiling algorithm such as

Ball and Larus [1996] to find potential trace paths.

Hotness threshold granularity The hotness threshold is uniform across all trace

headers. We could set the threshold separately depending on the location of the

trace header. For example, we could set the threshold higher for trace headers

in frequently used library code.

Trace entry replacement After instantiating a trace by inlining all of its compo-

nent functions we replace all uses of the trace header function with the newly

created trace. An alternate policy would be to selectively replace the header.

We could do a selective replacement by keeping track of the locations where the

trace is commonly entered and replacing only the uses at those locations.

Trace scope We explored varying the trace scope over the program, runtime, and

library code. The libraries were limited to a hand-selected set of frequently

used libraries. We may be able to improve performance by further widening or

narrowing the selected set of library codes.

Trace phase detection Once a trace is built we no longer start new traces from that

header. If the program exhibits di↵erent behavior in di↵erent phases our trace

will not capture these changes. We can take advantage of the shadow tracing

to try and detect phase changes and build new side traces to take advantage of

the alternate exit paths leading from the trace.

Instantiate non-loop traces Currently we instantiate non-loop traces. It may be

146

better to ignore the traces and only instantiate the loop traces.

Allow headers in trace When we build a trace we include both header and non-

header blocks. Once a header block is included in a trace it will not be the root

of a new trace. There are a couple of di↵erent policies that can be used here,

including stopping a trace when it hits a trace header and allowing a header to

both be a trace and act as a trace root.

As we can see there are many choices we can make about how to find and build

traces in Haskell programs. Exploring these tradeo↵s and alternate design points is

an interesting area of future work.

Our current design choices allowed us to explore the opportunities of trace-based

optimization for Haskell. The results are promising and can serve as a foundation

for future explorations. The primary areas for future research are refining the trace

building mechanism and building low-level optimizations specifically tailored to the

Haskell program traces.

147

Chapter 7

Related Work

Our work draws connections to three related areas: static optimization of Haskell,

dynamic optimization techniques, and feedback directed optimization. Each of these

areas has its own rich history.

Static optimization of Haskell has been researched for many years and has yielded

great advances in runtime performance. While this thesis does not focus on static

Haskell optimizations, the choices made in these high-level optimizations greatly af-

fects the low-level code whose optimization is the focus of our work.

Dynamic optimizers run compiler optimizations at runtime instead of at compile

time. They are able to take advantage of additional runtime context to improve the ef-

fectiveness of the optimizations. There are two main flavors of dynamic optimization:

virtual machine and binary based optimization.

Dynamic optimization in virtual machines has gained a lot of favor in recent

years with the widespread adoption of managed runtime languages such as Java and

C#. While we are not working in the context of a virtual machine, our work can

benefit from some of the same techniques used in these virtual machines. Dynamic

binary optimization is a more recent addition to the compiler optimization arsenal.

It has yet to see wide scale adoption in commercial compilers and there are still many

148

opportunities to make significant contributions to this young field. These works are

more closely related to the work in this thesis because we have experimented with

DynamoRIO, which is a binary-based optimization framework.

Feedback directed optimization (FDO) 1 are techniques that combine both dy-

namic and static approaches. FDO uses a separate profiling run to collect informa-

tion about the runtime behavior of the application. It then uses the profiling data to

statically optimize the program. The optimization is done completely ahead of time

so that it incurs no runtime penally. The optimizations use the profile to take ad-

vantage of dynamic information without any runtime overhead. The disadvantage of

FDO compared to dynamic optimization is that FDO relies on a fixed set of program

inputs so it has more di�culty responding to changes in program behavior. Htrace

is an example of a feedback directed optimization framework.

7.1 Static Haskell Optimization

The Haskell language was created out of the desire to have a common lazy functional

programming language to focus the e↵orts of the community [Hudak et al., 2007].

The first Haskell standard was published in 1990 and the standardization process

continues to publish o�cial accounts of the language. The latest version at the

time of this writing is the Haskell 2010 standard. Although the Haskell language

itself is standardized by a committee, the actual implementation of the language can

vary considerably from compiler to compiler. In this work we focus mainly on the

implementation techniques used in the GHC compiler [Peyton Jones and Marlow,

2011], which is the fastest and most widely used implementation of Haskell currently

available. For a general overview of the issues with implementing lazy functional

languages, see the books by Peyton Jones [1987] and Peyton Jones and Lester [1992].

The seminal paper that describes GHC’s strategy for implementing Haskell is

1We consider FDO and profile guided optimization (PGO) as two terms for the same concept.

149

Peyton Jones [1992]. In that paper Peyton Jones describes the Spineless Tagless G-

Machine (STG machine) which is an abstract machine for implementing Haskell and

shows how the STG machine can be implemented on standard hardware. Although

the paper was written in 1992, the approach described is still used in GHC with the

major exceptions being the handling of unknown function application [Marlow and

Peyton Jones, 2006] (now eval/apply instead of push/eval) and the tagging of pointers

[Marlow et al., 2007].

Haskell is implemented in GHC by first translating it to a core language (often

just called core) which is a small functional language. Many transformations are

performed on this representation that take advantage of the fact that core is a func-

tional language. The core language is then translated to the STG language. The

STG language is similar to core except that it has an explicit operational semantics

which describes how it can be evaluated. The STG language is then translated to

CMM, which is a low-level assembly-like language which can be fed to a native code

generator.

The STG machine provides the framework for executing Haskell programs and

has a strong influence over the final machine code that is produced. It dictates the

opportunities that we can expect to find when performing the low-level optimizations

described in this thesis.

One important performance improving transformation for Haskell that is per-

formed on the core language is changing accesses of boxed data into accesses of un-

boxed data. A boxed data type is stored in the heap and is passed to functions as a

pointer to the data. An unboxed value does not have this extra layer of indirection

and can be accessed directly.

Peyton Jones and Launchbury [1991] describe a technique for handling unboxed

data types in a Haskell compiler. They add unboxed data as separate types in the

core language to allow them to transform the code to directly pass the unboxed val-

150

ues. One of the most important transformations they describe is the worker/wrapper

transformation that changes a recursive function operating on boxed data into two

separate functions: a worker that operates on unboxed data and a wrapper that takes

the boxed data, unboxes it and then calls the worker function.

Unboxed values and the worker/wrapper transformation can greatly a↵ect what

the generated machine code looks like. For example, a tail recursive worker function

that passes unboxed values can be translated to machine code that resembles a loop

in a traditional language.

The worker/wrapper transformation works best on functions that always evaluate

their arguments so that the values in the worker function can be passed around in

evaluated form. Strictness analysis computes (an approximation of) which arguments

to a function are always evaluated and thus which functions can be subjected to the

worker/wrapper transformation. Peyton Jones and Santos [1998, Section 6.3] provide

a description of a simple implementation of strictness analysis.

The worker/wrapper transformation is just one example of a transformation that

can be performed on the core code of a Haskell program. Peyton Jones and Santos

[1998] describe an approach to optimizing Haskell that they call a “transformation-

based optimizer”. They advocate using repeated application of a large number of

small transformations to optimize the Haskell core code. Their transformations en-

compass a number of traditional compiler optimizations such as function inlining,

dead code elimination, and code motion. One of their most relevant findings for our

work is that cross-module optimization is very important and they go to great lengths

to be able to inline functions from other modules. Even though GHC inlines functions

across modules, we found that we still need to build program traces through functions

coming from multiple modules (e.g. from the standard libraries) in order to archive

the most benefit from low-level optimizations.

While a Haskell compiler may contain many transformations, there will always be

151

some transformations that a programmer can prove are safe that the compiler can-

not. Peyton Jones et al. [2001] describe a method that allows a programmer to specify

“rewrite rules” that the compiler can use to automatically transform the program.

The rules can be used to implement domain specific optimizations along with tradi-

tional optimizations such as specializing functions for a given type and specializing

functions for evaluated arguments so that the worker/wrapper transformation can be

applied. One important use of rewrite rules in GHC is to implement the deforestation

optimization.

Wadler [1990] describes deforestation as a transformation for removing intermedi-

ate data structures. For example if we want to map two functions f and g over a list

xs, a deforestation transformation would change map f (map g xs) into map (f.g)

xs (where f.g is the function composition of f and g). This transformation removes

the temporary list that is allocated for the map g operation.

Gill et al. [1993] introduce a technique for deforestation called foldr/build. The

idea is to write the basic list processing functions (e.g. map, filter, concat) in terms

of two functions called foldr and build. They then use a rewrite rule that transforms

combinations of foldr/build into a form where no intermediate list is created.

The foldr/build transformation is fairly easy to implement, but it cannot get rid

of intermediate data structures for all list processing functions. Coutts et al. [2007]

introduce stream fusion that uses a more powerful technique that works over a wider

range of functions including zip, foldl, and functions working with nested lists. These

deforestation algorithms are important examples of transformations that must be

done at the high level – there is no hope of performing these optimizations after the

code has been lowered to the machine code level. Deforestation is designed to get rid

of intermediate data structures, which are an important source of overhead in Haskell.

Another source of overhead in Haskell is the calling of statically-unknown functions.

One of the di�culties with implementing functional languages is handling the

152

application of an unknown function to its arguments. When an unknown function

is applied, the compiler cannot simply generate code for a function call. Since we

are in a functional language (which can return functions as results), the function

could take greater or fewer than the number of arguments to which it is applied. If a

function is applied to more arguments than its arity, it should consume as many as it

needs and leave the rest for the function it will return as a result. If it is applied to

fewer arguments than its arity it should consume those arguments and build partial

application as the result (e.g. the result will be a function that will consume the

remaining arguments). Either way, the compiler cannot statically generate code for

the function call because the function is unknown at compile time.

Marlow and Peyton Jones [2006] evaluate two competing methods for calling un-

known functions. The first, called push/eval, simply pushes the arguments on the

stack and lets the function consume as many arguments as it needs. The second,

called eval/apply, first evaluates the function to see how many arguments it needs

and then calls it with the correct number of arguments. Marlow and Peyton Jones

conclude that the eval/apply method is better because it is easier to implement and

the performance is slightly better. Unknown function calls are one area where the

trace-based optimization techniques used in Htrace would be able improve perfor-

mance because on the trace, the function is no longer unknown and we could generate

a direct call to the function which will be cheaper than using the generic eval/apply

method. The authors also measured the frequency of unknown calls which they found

to be around 20%, so the optimization opportunity does exist.

Another di�culty with implementing a lazy functional language is that values are

only created on demand. When executing the program there will be unevaluated

values (called thunks) interspersed with fully materialized values. The original STG

machine used a uniform representation for both thunks and normal values. The

representation is called a closure and consists of a pointer to a piece of code for

153

evaluating the value along with the free variables needed to perform the computation.

To evaluate any closure (also called scrutinizing the closure) the STG machine will

enter the closure by jumping to the code pointed to by the closure. For thunks, the

code will evaluate the thunks and then return to the caller. For an already evaluated

value, the code will simply return to the caller immediately. For evaluated values,

the two indirect jumps are pure overhead.

Marlow et al. [2007] describe a technique called pointer tagging that reduces the

overhead when scrutinizing already evaluated closures. They modify the uniform

representation of closures so that a closure is now tagged with some extra information

in the lower bits of the pointer to the closure. These extra bits indicate whether a

value has been evaluated and if so what kind of value it points to (e.g. the data

constructor). Tagging the pointers to closures reduces the number of indirect jumps,

thereby improving the branch prediction for code that scrutinizes closures.

An interesting entry in the Haskell optimizing literature that can take advantage of

pointer tagging is the optimistic evaluation of Ennals and Peyton Jones [2003]. They

use a combination of static code generation and dynamic profiling to optimistically

evaluation lazy expressions (thunks). Statically, they arrange for each expression to

either be speculatively evaluated or lazily evaluated based on a dynamic flag for that

expression. When the program executes, the Haskell runtime monitors the execution

and aborts any speculative evaluation that takes too long. They are trying to exploit

the fact that most thunks will be evaluated and so it will be cheaper to evaluate the

expression immediately rather than build a thunk and evaluate it later. They achieve

an average speedup of 20% over the baseline GHC.

As a final stop on our tour of Haskell optimizations we will look at the work done

to optimize the low-level code generated for Haskell programs. These optimizations

are performed late in the compilation process after the code has been lowered to

an imperative representation of the functional code. Since they work on the low-

154

level code, they cannot rely on the same semantic information used by the high-level

optimizations described earlier. However, these low-level optimizations are important

for the overall e�ciency of executing Haskell programs and are the focus of this thesis.

The work of Boquist [1999] and Boquist and Johnsson [1997] represent some early

attempts to focus on the impact of low-level optimization for Haskell. Boquist devel-

oped the GRIN language for the purpose of performing these optimizations. GRIN

is a low-level language that is intended to be used as an intermediate representation

when compiling Haskell. One of the main goals of the work was to get rid of overheads

from unknown control flow due to application of unknown functions and evaluation of

thunks. Boquist developed a heap analysis that reduces the amount of unknown con-

trol flow. The GRIN compiler relies heavily on inlining and requires whole program

analysis. While he was able to show good performance for some simple benchmarks,

it is not clear that the approach would scale to large programs since his compiler re-

quires access to the whole program at compile time. The approach we take in Htrace

is to only include the parts of the program and libraries through which we want to

be able to trace. We can manage the overhead by only focusing on the hot parts of

the program.

More recently, Ramsey et al. [2010] developed the Hoopl optimization framework

for writing low-level optimizations in GHC. Hoopl is based on the idea that combining

analysis and transformation can produce better results than iterating analysis passes

followed by transformation passes. It uses standard compiler data flow techniques

to optimize code. One of the novel contributions of Hoopl is its strongly typed

representation of control flow graphs that make it more di�cult for the programmer

to write invalid program transformations. Although the approach is interesting, they

do not actually implement any optimizations for the GHC back end so it is unclear

if many opportunities exist for performing these optimizations.

Terei and Chakravarty [2010] present another approach to low-level optimization

155

of Haskell. Instead of implementing all of the optimizations themselves, they tar-

get the LLVM compiler infrastructure which performs many classical optimizations

[Lattner and Adve, 2004]. By targeting LLVM and reusing its optimizations they

were able to quickly add a large number of optimizations to the GHC back end. For

Haskell programs that resemble loops they show that they get a 2-170% improvement.

Unfortunately, for typical Haskell codes their results show only an average improve-

ment of 2.4% over the existing native back end that does very little optimization.

The lack of e↵ectiveness of the LLVM optimizations for typical Haskell codes was a

major motivation for using the more aggressive trace-based optimization techniques

presented in this thesis.

Next we survey the major work in runtime optimization. In this thesis, we explored

runtime optimization using DynamoRIO and designed Htrace so that it could benefit

from the same techniques used by runtime optimizers. We break the presentation into

two main pieces: runtime optimization in virtual machines and runtime optimization

for native binaries.

7.2 Dynamic Optimization

7.2.1 Virtual-Machine Based Optimizers

Dynamic optimization has been successfully used in virtual machines for object ori-

ented languages for many years. Virtual machines are interpreters for low-level byte-

code languages and are an attractive implementation technique because they simplify

the porting of languages to new hardware because they provide a stable target across

the di↵erent hardware platforms. Instead of writing a new code generator for each

target platform, we can simply generate byte code for the virtual machine. However,

the portably comes at the price of performance because the byte codes are interpreted

instead of executed natively on the hardware. To improve performance, compilers can

156

dynamically generate and optimize machine code for these byte codes. The compilers

that operate inside the virtual machines are the focus of this section. We categorize

the compilers into two broad categories depending on the basic unit of compilation

which can be either a whole method or a program trace.

Method-Based Optimizers

Method-based dynamic compilers use object methods (or functions) as the unit of

translation. When a method is selected for dynamic translation to machine code

the runtime compiler will generate code and optionally perform optimizations such

as inlining and code motion. In this section we survey a variety of method-based

dynamic optimizers for Smalltalk, Self, Haskell, and Java.

Dynamic optimization was pioneered by Deutsch and Schi↵man [1984] in their

implementation of Smalltalk. The key contributions of their design were keeping

multiple representations of the program and using an inline method cache. By keeping

both the byte code and native code representations simultaneously, they could use

the native code when available or simply regenerate it from the byte code when

necessary. The inline method cache is an optimization that changes a method lookup

to a direct jump to its last destination along with a test to ensure the receiver has

not changed. The Smalltalk system showed how to e�ciently implement dynamically

typed languages in a virtual machine. The implementation of the Self language took

this basic design and added several important optimizations.

Self is a dynamically typed object oriented language that uses object prototypes

instead of inheritance for code sharing [Chambers et al., 1991]. An important new

optimization implemented for Self is the addition of polymorphic inline caches [Hölzle

et al., 1991]. These caches are similar to the inline cache of Smalltalk except that

instead of caching only the last destination for a method call, they cache multiple

destinations and perform a type test and direct jump based on the type. These caches

157

are expanded dynamically as new method targets are found. A side e↵ect of these

polymorphic inline caches is that type information is collected at method call sites.

Hölzle and Ungar [1994] exploit the type information by dynamically recompiling

methods and using the type information to guide the optimizer. The Self language

implementation was an important step in the development of dynamic compilers,

but it was not until Java became popular that the virtual machine implementation

technique really gained a lot of attention.

Java is an object oriented language that supports dynamic code loading which lim-

its its ability to be compiled ahead of time. It has been a rich source of research for

virtual machine implementations. Early e↵orts include the compiler of Adl-Tabatabai

et al. [1998], which focused on fast code generation by directly generating machine

code from the Java byte code instead of building a separate intermediate representa-

tion as is common for static compilers of other languages. Burke et al. [1999] built

the Jalapeno Java compiler that focuses on adaptive compilation, similar to the Self

system of Hölzle and Ungar [1994]. Jalapeno includes a fast code generator for the

first-time compilation along with an optimizing compiler that is invoked to recom-

pile frequently executed methods. Java virtual machines remain an active area of

research with recent dynamic compilers implementing a variety of advanced analyses

and optimizations including escape analysis, object inlining, and array bounds check

elimination [Kotzmann et al., 2008]. Although Java is among the most successful lan-

guages implemented on a virtual machines, the technique has been used on a variety

of other languages including Haskell.

Wakeling [1998] describe a virtual machine implementation for running Haskell on

embedded systems. Unlike our work, his work focuses on reducing code size rather

than on improving performance. They show that by dynamically compiling byte-code

instructions they can reduce the code size by 67% while only slowing down the code

by 25%.

158

All of the virtual machines described in this section compile byte codes at the

resolution of a method (or a function in the case of Haskell). In the next section we

discuss virtual machine implementations that work on program traces as the basic

unit of compilation.

Trace-Based Optimizers

Trace-based compilers change the unit of optimization from a function or method to a

sequence of instructions called a trace. The motivation behind compiling instruction

traces instead of functions is to expose the new opportunities that appear based on

the actual control flow in the program. Early work on optimizing traces include the

trace scheduling algorithm of Fisher [1981] for instruction scheduling. Hank et al.

[1995] were early advocates of changing the compilation focus from the programmer

defined functions to compiler designated regions. These two works are exemplar of

much of the early work on trace-based compilation that focus on building traces in a

static compiler. In this section we will limit the discussion of trace-based compilers

to the dynamic compilers found in virtual machines.

Suganuma et al. [2006] describe a dynamic region-based compiler for Java. Their

regions are slightly di↵erent from traces because the regions are not necessarily a

linear sequence of instructions. A region may still contain internal control flow, but

they are constructed using runtime profiling data so that rarely executed code is not

included in the region. Using the region based approach, they were able to achieve an

average performance improvement of 4% and a reduction in compilation time of 10-

30%. The region-based approach to compilation is similar to trace-based compilation,

but the trace-based approach builds traces that contain only linear control flow. The

remainder of this section surveys trace-based compilers in virtual machines.

Gal [2006] describes a trace-based Java compiler for resource constrained devices

such as cell phones. His compiler focuses on e�cient runtime code generation and was

159

able to generate code much faster than existing compilers while producing code that

was competitive with heavyweight desktop virtual machines. A major contribution

of his work was the introduction of trace trees [Gal and Franz, 2006] for building

and optimizing program traces. The trace tree is initially constructed using the Next

Executing Tail (NET) heuristic of Dynamo [Duesterwald and Bala, 2000] and then

extended by keeping track of frequent side exits from the trace. If a side exit is

taken frequently, the trace tree is rebuilt to include a path for the (former) side exit.

The advantage of trace trees over NET traces is that trace trees build longer traces

because the trace prefixes are shared among many traces. Sharing the trace prefixes

allows him to build traces that flow through nested loops, unlike NET which would

build a separate trace for each loop. We could extend Htrace to support trace trees

by using shadow tracing to find the hot side exits. Gal’s work focused on trace-based

compilation as a way to overcome limitations of embedded architectures, but more

recent work embraces trace-based compilation as a way to improve performance on a

variety of architectures.

Recent virtual machines implementations have adopted trace-based compilers for

several languages including compilers for JavaScript, Microsoft’s Common Intermedi-

ate Language (CIL), and Java. Gal et al. [2009] describe the TraceMonkey JavaScript

compiler. In this work, they describe an improved algorithm for generating trace trees

for nested loops and show how to generate type-specialized code for these traces. Us-

ing their compiler they can achieve speedups of up to 20x. Bebenita et al. [2010b]

describe the SPUR trace compiler for CIL. They show that targeting JavaScript to

the CIL and then trace compiling the CIL is just as e↵ective as directly trace com-

piling the JavaScript. They also describe several optimizations for traces including

a store-load propagation that uses alias analysis to avoid writes to the heap inside

the trace. Dalvik is a virtual machine with a trace-based compiler for Java [Cheng

and Buzbee, 2010] used for running applications on Android cell phones. The trace

160

compiler is in the early stages, but initial results show a performance gain of up to 5x.

These works show the continued interest in improving the performance of trace-based

compilers. The final works we survey describe e↵orts to adapt trace compilers to

work with existing systems.

Inoue et al. [2011] describe their e↵ort to add a trace compiler to the existing

method-based compiler in the IBM production JVM. The work is particularly inter-

esting because it allows a direct comparison of a trace-based compiler with a mature

method-based compiler. They found that the trace compiler was able to generate bet-

ter code than the method compiler, but that it incurred larger overhead from recording

and monitoring traces. The overall result was that they saw the performance range

from 21.5% slower to 26.4% faster compared to the method-based compiler. They

conclude that trace-based compilation is viable, and it probably is best paired with

a traditional method-based compiler to achieve the best of both techniques. Like

the IBM compiler, many of the compilers we have seen so far are able to achieve a

great performance improvement over the interpreted code because the eliminate the

overhead of interpretation. In the next work, the trace compiler is added to a sys-

tem that uses no interpreter at all making it more di�cult for them to get the easy

performance boost.

Bebenita et al. [2010a] describes the Maxpath Java compiler. Maxpath is a trace-

based compiler that builds and optimizes program traces without the help of an

interpreter for introspection of the executing code. They identify two main di�culties

with using a trace-based compiler without an interpreter. First, building the traces

is more di�cult because they do not have an interpreter that can introspect the code

as it executes and record the traces. Second, because they are using a system that

performs compilation instead of interpretation as a baseline, the trace compiler must

be much more aggressive to get a performance improvement. Their results show that

for small kernels the technique did well, but did not work as well on large programs.

161

They speculate it is because the large programs do not have loop kernels that are

amenable to their trace optimization. Their problems are similar to the di�culties

we encountered with improving performance and building traces on many of the

Hackage benchmarks.

In this section we looked at optimizing compilers that work in the context of a

virtual machine. These compilers are the most common type of dynamic optimizers

and have an advantage over binary optimizers because they can take advantage of the

high-level semantic information from the byte code. In the next section we review

compilers that dynamically optimize programs directly on the binary level.

7.2.2 Dynamic Binary Optimizers

Dynamic binary optimization is a technique for optimizing a program by rewriting

the machine code at runtime. It is a relatively new technique that has yet to see

adoption in production compilers. In this section we discuss the major advances in

binary optimization and some of the common issues involved.

The Dynamo compiler of Bala et al. [2000] is the genesis of dynamic binary opti-

mization systems. Dynamo works by interpreting the machine code of a program and

building traces of the frequently executed portions of the program. The traces are

linked together in a fragment cache where they can be directly executed as machine

code instead of interpreted by software. Several optimizations are performed on the

traces including redundancy removal, copy propagation, constant propagation, and

code motion. Dynamo also included a ‘bail out’ option that will stop all optimization

attempts and fall back to native execution. They report results that show a an average

speedup of 9% over heavily optimized binaries on the SPECInt95 benchmarks. The

performance improvement comes largely from the indirect branch removal and code

layout that occurs when building traces. Dynamo showed a novel way of optimizing

programs that was expanded on by the DynamoRIO system.

162

Bruening [2004] describes the DynamoRIO system that builds on the ideas found

in Dynamo. As with Dynamo, DynamoRIO is a dynamic binary optimizer that builds

program traces at runtime. Its main contribution over Dynamo is to provide a general

framework for optimizing a program as it executes. DynamoRIO works with modern

programs that use multiple threads, dynamic liking and even self modifying code.

In contrast with Dyanamo, the performance results for the SPEC benchmark suite

show that DynamoRIO does not perform well on the SPECInt benchmarks, but does

get a 12% average improvement on the SPECFp benchmarks. The reason for this

di↵erence is likely the variance in the cost of basic operations (e.g. indirect branches)

on the hardware platforms used for the two experiments: Dynamo was run on a PA

RISC chip, but DynamoRIO was run on an x86 processor. DynamoRIO was used

for some of the work in this thesis, but there are several other binary optimization

systems worth mentioning.

Adore is a trace-based optimizer that uses hardware performance counters to

selectively optimize a running program [Lu et al., 2004, 2003]. Adore periodically

samples a program to record the most recent branches taken. Once a path has been

sampled enough times it will be used as the starting point of a trace. It also includes a

mechanism to detect phase changes in a program that is used as a signal to throw out

the old and build new traces. Once a trace is built they perform a few optimizations,

the most important one being data cache prefetching. To insert the prefetches they

use performance counters to track the locations of the loads that cause L2 or L3 cache

misses and insert prefetches for the loads that cause the greatest percentage of overall

latency. Their results show that they can achieve a performance improvement from

3% to 107%, while keeping the minimum performance degradation to -3%. Their

overheads are generally lower than DynamoRIO because they limit the interference

with the original application by using sampling and hardware performance counters to

build the traces. However, they only show results for Itanium and we have see with

163

Dynamo and DynamoRIO that the underlying architecture can have a big impact

on the performance results of binary optimizers. To further verify the usefulness of

binary optimization, Adore was used to optimize the BLAST application.

Das et al. [2005] describe their experience optimizing the Basic Local Alignment

Search Tool (BLAST) application using the Adore dynamic optimizing compiler.

They found that the static compilers were degrading performance by aggressively

inserting data prefetches that were interfering with the real data loads. They were

able to improve the performance of BLAST by up to 58% by only inserting data

prefetches where they were needed which was determined by monitoring hardware

performance counters during runtime. Their results show that dynamic optimization

has a benefit over static optimization because the compiler can make decisions based

on how the program data interacts with the actual hardware. The next example shows

how the dynamic prefetching optimization can be applied to improve the performance

of parallel programs.

Kim et al. [2007] describe the COBRA system for dynamic binary optimization of

multi-threaded programs. Their system is similar to Adore because they use hardware

events to selectively optimize a program at runtime. They focus on two optimizations:

providing the correct prefetch hints for cache coherent memory accesses and reducing

the aggressiveness of prefetching to reduce memory bus contention. Their results

show that on an Itanium system they can achieve a speedup of up to 15% on the

NAS parallel benchmarks with an average speedup of 4.7%.

Now that we have introduced the major binary optimization systems, we will take

a look at a few works that focus specifically on techniques to improving the quality

of traces used by these systems.

Selecting traces is an important component in dynamic binary optimizers because

the quality of the traces ultimately determine the performance of program. Hiniker

et al. [2005] describe a new algorithm for building traces that improves on the Next

164

Executing Tail (NET) algorithm used in Dynamo [Duesterwald and Bala, 2000]. They

identify two problems with existing trace generation algorithms: trace separation

and code duplication. Trace separation is the problem that occurs when related

code paths in the original application are placed far apart in the code cache. Code

duplication is the problem that occurs when code is replicated across many traces. To

combat these two problems the authors present a new algorithm for building traces

called Last-Executed Iteration (LEI) and an algorithm for combining traces. The LEI

algorithm uses a circular bu↵er to keep track of the branches taken in the machine

code interpreter. When it detects that a loop has occurred a certain number of times,

it will build a trace for the iteration that just occurred. Using a simulator they find

that their algorithm builds traces that contain more full cycles and they require fewer

traces to cover 90% of the instructions executed.

Zhao et al. [2008] propose that traces can be improved by increasing their length

and present a technique for lengthening traces without increasing early exits from the

trace. They classify traces by the most frequent way that the trace is exited. If the

trace exits to another hot trace it is called a hot-trace exit and if the trace jumps

back to itself it is called a self exit. They lengthen the self-exit traces by unrolling the

trace and they lengthen the hot-trace-exit traces by creating a new trace that is the

concatenation the two traces. They find that lengthening traces increase the number

of opportunities for local value numbering optimization by between 16-23% depending

on how aggressively they unroll the traces. These results show the importance of

longer traces for finding optimization opportunities.

All of the systems described in this section perform the trace building and opti-

mization at runtime. After an initial attempt at runtime optimization, we decided

that building traces at runtime was too expensive for Haskell programs. In Htrace,

we use a separate profiling run to find the traces and then build and optimize the

traces o✏ine. Using profiling data to optimize a program is called feedback directed

165

optimization, and we survey the important works from that area in the next section.

7.3 Feedback Directed Optimization

Feedback directed optimization (FDO) is an optimization technique that uses profiling

data to improve the e↵ectiveness of compiler transformations. In this section we

survey techniques for collecting profile data – with an emphasis on path profiles –

and related work on how to optimize a program based on profile data.

7.3.1 Collecting Profile Data

In this section we survey the major works on how to collect profiling data. There are

two primary techniques for collecting profiles: instrumentation and sampling based

profiling. The instrumentation-based approach has the advantage that the profiles

are exact because the instrumentation is inserted at each desired sample point. The

sampling-based approach periodically measures the program to collect the profiling

data. The advantage of a sampling-based profiler is that it can control the overhead

it introduces by modulating the sampling frequency. Another di↵erence between the

approaches is that instrumentation-based profiling has been used to collect execution

path profiles, while the sampling based approach has frequently been used for col-

lecting call path data without the details of the execution path inside the function.

Our focus is on instrumenation-based path profilers, but we will briefly discuss the

sampling-based approach as well.

The seminal algorithm for recording path profiles is the work of Ball and Larus

[1996]. In this paper, they show how to e�ciently collect path profiles for a single

procedure. Their key insight is to represent paths by unique integers and insert

instrumentation so that as a path executes it increments a value stored in a register.

The increments are arranged so that every acyclic path through the procedure will

166

leave a di↵erent final value in the register. They have a transformation that will take a

cyclic graph and transform it to eliminate the cycles for profiling purposes. At the end

of each path they increment a counter for that path by using the index value stored in

the register. The path counters are either stored in an array or a hash table depending

on the number of paths in the graph. They optimally arrange the register increments

by using a technique from their earlier work that inserts instrumentation on a subset

of the edges in the procedure based on a spanning tree of the control flow graph [Ball

and Larus, 1994]. They report an average overhead of 30.9% on 18 of the SPEC

benchmarks, compared to an overhead of 16.1% for edge profiling instrumentation.

The Ball-Larus algorithm is the basis of many path profiling systems. We review

several of the major works that build o↵ of this algorithm.

Targeted Path Profiling (TPP) is an extension by Joshi et al. [2004] to the Ball

and Larus algorithm described above. They developed the algorithm with the idea

that it would be used in a dynamic compiler and assume that they already have

some initial edge profiling data that was collected before inserting the path profiling

instrumentation. The edge profile data allows them to reduce the number of paths

they will profile by omitting counters updates for the cold edges. Reducing the

number of paths is a big win for functions with many paths because the counter

updates change from an expensive hash-table lookup to a much more e�cient array

indexing operation. Compared to the standard Ball-Larus algorithm, they report a

reduction in overhead of one-half on the SPEC95 benchmarks and one-third on the

SPEC2000 benchmarks.

The Practical Path Profiling (PPP) algorithm Bond and McKinley [2005] is an

extension of TPP by that further reduces the overhead of the original Ball-Larus

algorithm. Similar to TPP, the PPP algorithm uses path profile data to reduce the

number of paths they must instrument. They further reduce overhead by inserting

less instrumentation on the hot paths in the function. As a final contribution, they

167

define a new metric for measuring the accuracy and coverage of their path profiling

algorithm.

All of the algorithms presented so far operate on a single function. They must

build the control flow graph for the function in order to correctly insert instrumenta-

tion. While it would be interesting to try and apply these algorithms to Htrace, the

major di�culty is that Htrace must build paths across multiple functions. Then next

references discuss techniques for building profile paths across procedure boundaries.

Melski [2002] extends the Ball-Larus algorithm to handle inter-procedural pro-

gram paths. He calls his algorithm the “functional” approach to path profiling. The

“functional” name is used because the counter updates that are inserted on the edges

to keep track of the path number are linear functions instead of simple increments.

To label all the paths in the program he must build the program supergraph, which is

a collection of procedure control-flow graphs that have been connected according to

the call graph. He reports that his algorithm finds 2508 paths on average across six of

the SPECint95 benchmarks, although for most benchmarks 50 paths are su�cient to

cover 80% of the programs execution time. The profiling overhead for his technique

is 235% on average. The main drawback of his approach from the perspective of

Htrace, is that he needs an inter-procedural control-flow graph in order to label paths

in the program. In addition to the memory overhead, the supergraph is di�cult to

build precisely in the presence of indirect calls, which are very common in Haskell

programs.

Larus [1999] introduces an algorithm for finding Whole Program Paths (WPP).

A WPP is a description of the entire control flow of a program. To make the descrip-

tion usable, Larus compresses the program trace with the SEQUITUR compression

algorithm, which uses a grammar to generate the textual representation of the trace.

The result is a representation of the program trace as a DAG, where interior nodes

represent repeated sequences and leaf nodes represent the actual acyclic paths in the

168

program. The acyclic paths in the leaf nodes are numbered according to the same

scheme given in the original path profiling algorithm of Ball and Larus [1996]. He

presents an algorithm for finding hot paths in the WPP. These paths can span across

multiple functions and would be the targets of path-based compiler optimizations.

Unlike the supergraph used by Melski, the WPP does not require complete inter-

procedural control-flow knowledge so the WPP could possibly be used as a trace

finding technique in Htrace.

All of the work we have seen so far are based o↵ of the Ball-Larus algorithm

to some extent. The next work is a break with that tradition, and it is important

because it was the basis of the trace finding algorithm for Htrace.

Duesterwald and Bala [2000] proposed the Next Executing Tail (NET) scheme

for for finding hot paths in a program. This scheme was used by Dynamo2 and

DynamoRIO for finding hot paths. It is also the basis used in this thesis for finding

hot traces with Htrace. The NET algorithm finds paths by only using counters for

trace header blocks, which are the targets of backward branches. Once the header

becomes hot, the next execution leaving that header is recorded as the trace. Their

primary motivation was to find an inexpensive profiling technique that could be used

in a dynamic optimizer. They experimented with a variety of hotness thresholds

(which they call prediction delay) and found that a small threshold of 50 gave the

best performance. With the small hotness thresholds used in a dynamic compiler, they

found that NET gave comparable coverage of hot traces to the more expensive Ball-

Larus algorithm. They were less clear about the benefits of NET compared to Ball-

Larus when using larger thresholds, but their results seem to suggest the algorithms

produces similar hot-trace coverage. We used a variant of the NET algorithm in this

thesis because it works well for inter-procedural traces and is easy to implement. It is

possible that a more heavyweight algorithm based on Ball-Larus would allow Htrace

2It was called MRET in the original Dyanamo paper [Bala et al., 2000]

169

to produce better traces, but we leave that for future work.

Ammons et al. [1997] describe how to extend the basic Ball-Larus algorithm to

account for calling context. They introduce the calling context tree (CCT) which is

a data structure that represents the context in which a procedure was called. The

CCT is used to collect separate intra-procedural path profiles for each unique calling

context. They argue that the calling context may reveal important di↵erences in the

hot paths, and that these di↵erences will be blurred when path profiles are aggregated

over all calling contexts. Although they call the CCT a tree, they do allow back edges

in the tree to handle recursive calls. They report an average overhead of 70% when

combining the CCT with path profiling. This paper is important because it introduces

the idea of the CCT, which allows a limited form of inter-procedural paths because

the per-context path profiles can be combined with the CCT to build a path through

multiple procedures. The calling context tree has become an important tool for many

profiles, but collecting the CCT using instrumentation may have too high an overhead

for some applications.

Froyd et al. [2005] describe a sampling based approach to finding the calling

context tree. They built a tool called csprof to sample the program at repeated

intervals and walk the call stack to build the CCT. To make the stack walking e�cient,

they cache the current state of the stack at each sample point. Then, at the next

sample point they only have to walk up the part of the stack that has changed since

the last sample. They are able to collect profiling data for unmodified and fully

optimized binary programs. Because they work with binaries, they are able to collect

call path profiles through libraries. It would be interesting to try and apply the

sampling based approach of collecting profile data to Htrace. One problem is that it

may be di�cult to turn a CCT into a realized trace, because the CCT is a summary

of the observed behavior rather than an actual path through the code. Another issue

is the frequent use of tail calls and recursion in Haskell could make it di�cult for the

170

sampling-based approach to correctly elucidate the entire CCT. Exploring the use of

sampling-based profiles to build traces with Htrace is an interesting area of future

work.

7.3.2 Optimizing with Profile Data

One of the first entries in the feedback directed optimization literature is the work of

Chang et al. [1991], who describe an optimizer that uses profile information to assist

with classic compiler optimizations. They first profile a program to collect basic block

and edge counts. The counts are then used to build program traces that they call

super blocks, which are linear sequences of blocks that can only be entered from the

top block. The super blocks are formed based on edge counts, which was shown by

Ball and Larus [1996] to be inferior to path profiles. The inferiority of edge profile

counts to path counts is why we use path profiles for Htrace. After giving an algorithm

to build super blocks, they then describe several optimizations that operate over the

increase scope, such as redundant store elimination and loop invariant code removal.

They report an average speedup of 15% on 13 benchmarks with a maximum speedup

of 42%. The Htrace system we built could take advantage of this work by forming

super blocks from the traces we find and implementing the super-block optimizations

described in this paper.

Pettis and Hansen [1990] describe a code placement algorithm that uses profile

data to place frequently executed instructions close together. They investigated code

layout at two di↵erent scopes: procedure and basic block. The procedure layout

algorithm uses the linker to place functions that frequently call each other close

together in the code. The basic block layout algorithm uses edge profiling data to

build long chains of basic blocks whose common path uses the fall-through case on

the branch instructions. The layout improves instruction cache usage and reduces the

number of taken branches. They also describe a technique called procedure splitting

171

that moves blocks that were not executed in the profiling run to a far away location

in the code so that the frequently executed code across all procedures is located close

together. The layout algorithms described in this work could definitely be applied

as optimizations in Htrace after all the functions on the trace have been inlined to a

single procedure.

Arnold et al. [2000] describe a study of inlining heuristics that compares a static

inlining strategy to ones that makes use of profiling data. The static heuristic at-

tempts to inline the methods with the least cost, where the cost is measured in code

size. The two dynamic heuristics use either node weights or edge weights collected

from a profiling run to weight the benefit of inlining a particular function. They

found that using edge weights produces an inlining heuristic that has a much greater

benefit than both the static and node-weighted heuristics. Additionally, the edge

weights allow for inlining a larger number of dynamic calls with a smaller increase in

code size. Our Htrace system essentially uses node counts to find the hot functions,

and uses one pass to find the functions to inline starting from the trace header. Using

a global notion of edge counts as in this work could possibly allow for better trace

formation, but more study is needed because the most frequently weighted edges will

not necessarily correspond to an actual execution trace.

Li et al. [2010] implement a system called LIPO, which stands for lightweight

inter-procedural optimization. Their main contribution is a lightweight integration

of feedback directed optimization with inter-procedural optimization. LIPO di↵ers

from existing systems, of which Htrace is one example, where the inter-procedural

optimization is performed by aggregating di↵erent modules into a large single module

and feeding that module to the compiler. Instead, LIPO runs an inter-procedural

analysis (IPA) to the end of the profiling run and includes the analysis result with

the profiling data. The analysis builds the weighted call graph based on the profiling

run. The program source modules will be grouped into clusters based on their a�nity

172

in the call graph. When the compiler goes to optimize the program based on the

FDO data, it also uses the IPA data to read in the other source modules and apply

existing inter-module optimization on the increased scope. Their results show that

they achieve an average improvement of 2.4-4.4% over standard FDO, and their time

and space overhead is much reduced compared to existing systems.

Many of the works we have surveyed so far use profiling information based on

basic block or edge counts. Several works have focused on profiling actual paths in

an application and performing optimizations on those paths. Young [1998] describes

an approach to path based compilation that profiles a program to find the paths and

then optimizes along those paths. He gives an algorithm for profiling paths that is

asymptotically as e�cient as edge and node profilers. He then shows how to use

path profiles in two optimizations. The first optimization seeks to improve branch

prediction by cloning separate paths through a group of conditional branches. The

second optimization is a instruction scheduling algorithm that creates super blocks

based on the path profiles and schedules the instructions in the super block.

Two other examples of path-based optimization are the works of Gupta et al.

[1997] and Gupta et al. [1998]. They describe two di↵erent algorithms that take

advantage of path-profile data. The first optimization is partial dead code elimination

using prediction. They find expressions that are partially dead (meaning they is

killed on some, but not all paths) and where possible move the dead computations

o↵ the hot paths. Their second optimization is a partial redundancy elimination

algorithm (PRE) that uses path profiles to decide where to speculatively evaluate

expressions. The speculative evaluations are placed in the cold path at points that

will make the expression fully redundant along the hot path. The fully redundant

expression can then be removed in the hot path. These algorithms are good examples

of optimizations we could implement for Htrace that would enhance the benefits we

get from low-level optimizations after we have built the program traces.

173

Chapter 8

Conclusion

This thesis focuses on improving the e↵ectiveness of low-level compiler optimizations

for Haskell. We claim three major contributions. First, we examine the low-level

behavior of Haskell programs from the Fibon benchmark suite and compare them to

C, C++, and Fortran programs from the SPEC benchmark suite. Our results showed

that the Haskell programs contain many more indirect jumps than the SPEC pro-

grams which gave us the idea to use trace-based optimization techniques to improve

the opportunities for the low-level optimizer. Our second contribution was to explore

using a runtime binary trace-based optimizer on Haskell programs. We discovered

that the trace-based optimizer was able to find many traces in Haskell programs, but

the traces were of poor quality and building and maintaining the traces at runtime

induced a tremendous amount of overhead. The large runtime overhead led us to de-

velop a static trace-based optimizer that uses profiling runs to find the hot program

traces. The static optimizer restructures the code around the trace and performs

traditional compiler optimizations over the increased scope. Our final results show

that we can improve the e↵ectiveness of low-level optimizations by up to 86%, with

an average speedup of 5% across 32 benchmarks.

We became interested in the applicability of low-level optimizations to Haskell

174

code when we noticed that many of the Fibon benchmarks did not benefit from the

LLVM backend. To understand why the low-level optimizations did not help we

attempted to quantify the di↵erence between Haskell programs and C/C++/Fortran

programs in terms of the low-level code. Our measurements found that while the

Fibon benchmarks are similar to the SPECint benchmarks in terms of instruction-type

mix and basic block length, they tend have many more indirect jumps. We believe

it is these indirect jumps that are partially responsible for the general failure of low-

level optimizations to improve the performance of Haskell programs. We proposed

using trace-based optimization techniques to improve the e↵ectiveness of low-level

optimizations for Haskell by increasing the scope available to the optimizer.

Our first attempt at building program traces for Haskell used the DynamoRIO

runtime binary optimizer. DynamoRIO was able to find many traces in the Haskell

programs, but it caused a large hit in performance. The main cause of the overhead

was the hash table lookups that occurred at many of the indirect branches. We saw

that Haskell has many indirect branches, so these table lookups can be very expensive.

Additionally, the traces found by DynamoRIO include many paths through the GHC

runtime functions, such as the garbage collector, and there is no easy way to only

build traces that specifically target only the unknown control flow that come from

the way Haskell source code is lowered to machine code. Our observations with

running Haskell programs through DynamoRIO led us to design our own trace-based

optimization system that works to overcome the low-level ine�ciencies of GHC’s

execution model.

We built and evaluated Htrace, a system for restructuring low-level Haskell code

around program traces. The implementation of Htrace allowed us to experiment with

the e↵ectiveness of trace-based optimization for Haskell. The design of the system

allows for a variety of trace-finding and trace-building heuristics. Even with the

simple set of heuristics we selected for our experiments we found that we see consid-

175

erable performance benefits. The primary improvement we make is to increase the

scope available to the low-level optimizer by restructuring the program around com-

mon execution paths. The performance benefit is greatest when we reveal hot loops

through traces that often run to completion. Programs that spread their execution

across many traces or for which the trace building heuristics fail will not see any

benefit from our technique. We also have a number of programs where we do not see

a great benefit because of a failure in the low-level optimizer to improve the code.

These programs have potential for a performance increase with an improvement to

the trace-building heuristics and the low-level optimizer.

The work in this thesis builds a foundation for future exploration of low-level

optimization for Haskell code. Future avenues for further research include refining

the trace-finding heuristics and exploring low-level optimizations tailored to the code

contained in the Haskell traces. Finding the correct program traces is important for

reducing overhead and increasing the e↵ectiveness of the optimizations. We presented

a simple scheme for finding traces and found that it is e↵ective for a good number of

programs, but there is still much room for improvement. For low-level optimization,

we simply used the existing optimizations found in LLVM. Now that we have shown

we can e↵ectively increase the optimization scope by building program traces, it

would be worthwhile to explore optimizations that are profitable for the code patterns

seen in Haskell programs. In particular, we should develop optimizations that target

redundant loads and stores from the separately managed call stack.

Although we have focused exclusively on Haskell in this thesis, we can place the

work in a broader context. Our trace-based optimization technique was predicated on

the notion that the natural control flow was obscured by indirect jumps. Because we

operate on language agnostic low-level code, our technique could work with any code

that exhibits the same code shape as Haskell. The e↵ectiveness of this technique will

depend on the degree to which the obscured control flow is unraveled by the program

176

trace. The applicability of our technique will vary according to how the high-level

language features are manifested in the low-level code. The defining features of Haskell

that cause the unknown control flow are higher order functions, lazy evaluation, and

a separately managed call stack. A language with some combination of these features

is certainly a candiate for improvement by the technique presented in this thesis.

We have made a case for trace-based optimization of Haskell programs. The

main insight that made this work is that we can only optimize what we can see.

Program traces allow us to see more of the code and increases the scope over which

we can apply our optimizations. In many ways optimizing low-level Haskell code is no

di↵erent than optimizing traditional languages. We look for the part of the program

that are executed frequently, such as a loop, and reduce the redundant computation

in that area of the code. Optimizing loops is just as important for Haskell as it is for

traditional languages. The main di↵erence for Haskell is that the loops can be quite

hidden at compile time. Our goal is to bring the low-level loops back to Haskell.

177

Bibliography

A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. M. Stich-
noth. Fast, e↵ective code generation in a just-in-time java compiler. In Pro-
ceedings of the ACM SIGPLAN 1998 conference on Programming language de-
sign and implementation, PLDI ’98, pages 280–290, New York, NY, USA, 1998.
ACM. ISBN 0-89791-987-4. doi: http://doi.acm.org/10.1145/277650.277740. URL
http://doi.acm.org/10.1145/277650.277740.

G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. In Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and implementation, PLDI ’97,
pages 85–96, New York, NY, USA, 1997. ACM. ISBN 0-89791-907-6. doi: 10.1145/
258915.258924. URL http://doi.acm.org/10.1145/258915.258924.

M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney. A comparative study of static
and profile-based heuristics for inlining. In Proceedings of the ACM SIGPLAN
workshop on Dynamic and adaptive compilation and optimization, DYNAMO ’00,
pages 52–64, New York, NY, USA, 2000. ACM. ISBN 1-58113-241-7. doi: 10.1145/
351397.351416. URL http://doi.acm.org/10.1145/351397.351416.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimiza-
tion system. In Proceedings of the ACM SIGPLAN 2000 conference on Program-
ming language design and implementation, PLDI ’00, pages 1–12, New York, NY,
USA, 2000. ACM. ISBN 1-58113-199-2. doi: http://doi.acm.org/10.1145/349299.
349303. URL http://doi.acm.org/10.1145/349299.349303.

T. Ball and J. R. Larus. Optimally profiling and tracing programs. ACM Trans. Pro-
gram. Lang. Syst., 16(4):1319–1360, 1994. ISSN 0164-0925. doi: 10.1145/183432.
183527. URL http://doi.acm.org/10.1145/183432.183527.

T. Ball and J. R. Larus. E�cient path profiling. In Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture, MICRO 29, pages 46–
57, Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7641-8.
URL http://dl.acm.org/citation.cfm?id=243846.243857.

M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Tillmann, and
H. Venter. Spur: a trace-based jit compiler for cil. In Proceedings of the ACM
international conference on Object oriented programming systems languages and

178

http://doi.acm.org/10.1145/277650.277740
http://doi.acm.org/10.1145/258915.258924
http://doi.acm.org/10.1145/351397.351416
http://doi.acm.org/10.1145/349299.349303
http://doi.acm.org/10.1145/183432.183527
http://dl.acm.org/citation.cfm?id=243846.243857

applications, OOPSLA ’10, pages 708–725, New York, NY, USA, 2010a. ACM.
ISBN 978-1-4503-0203-6. doi: http://doi.acm.org/10.1145/1869459.1869517. URL
http://doi.acm.org/10.1145/1869459.1869517.

M. Bebenita, M. Chang, G. Wagner, A. Gal, C. Wimmer, and M. Franz. Trace-
based compilation in execution environments without interpreters. In Proceedings
of the 8th International Conference on the Principles and Practice of Programming
in Java, PPPJ ’10, pages 59–68, New York, NY, USA, 2010b. ACM. ISBN 978-
1-4503-0269-2. doi: http://doi.acm.org/10.1145/1852761.1852771. URL http://
doi.acm.org/10.1145/1852761.1852771.

M. D. Bond and K. S. McKinley. Practical path profiling for dynamic optimizers. In
Proceedings of the international symposium on Code generation and optimization,
CGO ’05, pages 205–216, Washington, DC, USA, 2005. IEEE Computer Society.
ISBN 0-7695-2298-X. doi: http://dx.doi.org/10.1109/CGO.2005.28. URL http:
//dx.doi.org/10.1109/CGO.2005.28.

U. Boquist. Code Optimisation Techniques for Lazy Functional Languages. PhD
thesis, Chalmers University of Technology, 1999.

U. Boquist and T. Johnsson. The grin project: A highly optimising back end for
lazy functional languages. In IFL ’96: Selected Papers from the 8th International
Workshop on Implementation of Functional Languages, pages 58–84, London, UK,
1997. Springer-Verlag. ISBN 3-540-63237-9.

D. Bruening. E�cient, Transparent, and Comprehensive Runtime Code Manipulation.
PhD thesis, MIT, 2004.

D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization, CGO ’03, pages 265–
275, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1913-X.
URL http://portal.acm.org/citation.cfm?id=776261.776290.

M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J. Serrano,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The jalapeno dynamic optimizing
compiler for java. In Proceedings of the ACM 1999 conference on Java Grande,
JAVA ’99, pages 129–141, New York, NY, USA, 1999. ACM. ISBN 1-58113-161-5.
doi: http://doi.acm.org/10.1145/304065.304113. URL http://doi.acm.org/10.
1145/304065.304113.

M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and
S. Marlow. Data parallel haskell: a status report. In DAMP ’07: Pro-
ceedings of the 2007 workshop on Declarative aspects of multicore pro-
gramming, pages 10–18, New York, NY, USA, 2007. ACM. ISBN 978-
1-59593-690-5. doi: http://doi.acm.org/10.1145/1248648.1248652. URL
http://portal.acm.org/ft_gateway.cfm?id=1248652&type=pdf&coll=
GUIDE&dl=GUIDE&CFID=109512594&CFTOKEN=13068509.

179

http://doi.acm.org/10.1145/1869459.1869517
http://doi.acm.org/10.1145/1852761.1852771
http://doi.acm.org/10.1145/1852761.1852771
http://dx.doi.org/10.1109/CGO.2005.28
http://dx.doi.org/10.1109/CGO.2005.28
http://portal.acm.org/citation.cfm?id=776261.776290
http://doi.acm.org/10.1145/304065.304113
http://doi.acm.org/10.1145/304065.304113
http://portal.acm.org/ft_gateway.cfm?id=1248652&type=pdf&coll=GUIDE&dl=GUIDE&CFID=109512594&CFTOKEN=13068509
http://portal.acm.org/ft_gateway.cfm?id=1248652&type=pdf&coll=GUIDE&dl=GUIDE&CFID=109512594&CFTOKEN=13068509

C. Chambers, D. Ungar, and E. Lee. An e�cient implementation of self, a
dynamically-typed object-oriented language based on prototypes. Lisp Symb.
Comput., 4:243–281, 1991. ISSN 0892-4635. doi: 10.1007/BF01806108. URL
http://portal.acm.org/citation.cfm?id=113819.113823.

P. P. Chang, S. A. Mahlke, and W. mei W. Hwu. Using profile information to assist
classic code optimizations. Softw. Pract. Exper., 21(12):1301–1321, 1991. ISSN
0038-0644. doi: http://dx.doi.org/10.1002/spe.4380211204.

B. Cheng and B. Buzbee. A jit compiler for android’s dalvik vm. In Google IO, 2010.

K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kaufmann Publishers
Inc., 2nd edition, 2012.

K. D. Cooper, L. T. Simpson, and C. A. Vick. Operator strength reduction.
ACM Trans. Program. Lang. Syst., 23:603–625, 2001. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/504709.504710. URL http://doi.acm.org/10.1145/
504709.504710.

D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists to streams
to nothing at all. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN in-
ternational conference on Functional programming, pages 315–326, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-815-2. doi: http://doi.acm.org/
10.1145/1291151.1291199. URL http://portal.acm.org/ft_gateway.cfm?id=
1291199&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76302416&CFTOKEN=52389390.

A. Das, J. Lu, H. Chen, J. Kim, P.-C. Yew, W.-C. Hsu, and D.-Y. Chen. Performance
of runtime optimization on blast. In Proceedings of the international symposium on
Code generation and optimization, CGO ’05, pages 86–96, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2298-X. doi: http://dx.doi.org/10.
1109/CGO.2005.25. URL http://dx.doi.org/10.1109/CGO.2005.25.

L. P. Deutsch and A. M. Schi↵man. E�cient implementation of the smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, POPL ’84, pages 297–302, New York, NY, USA,
1984. ACM. ISBN 0-89791-125-3. doi: http://doi.acm.org/10.1145/800017.800542.
URL http://doi.acm.org/10.1145/800017.800542.

E. Duesterwald and V. Bala. Software profiling for hot path prediction: less is more.
In Proceedings of the ninth international conference on Architectural support for
programming languages and operating systems, ASPLOS-IX, pages 202–211, New
York, NY, USA, 2000. ACM. ISBN 1-58113-317-0. doi: http://doi.acm.org/10.
1145/378993.379241. URL http://doi.acm.org/10.1145/378993.379241.

R. Ennals and S. Peyton Jones. Optimistic evaluation: an adaptive evaluation strat-
egy for non-strict programs. In Proceedings of the eighth ACM SIGPLAN inter-
national conference on Functional programming, ICFP ’03, pages 287–298, New

180

http://portal.acm.org/citation.cfm?id=113819.113823
http://doi.acm.org/10.1145/504709.504710
http://doi.acm.org/10.1145/504709.504710
http://portal.acm.org/ft_gateway.cfm?id=1291199&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76302416&CFTOKEN=52389390
http://portal.acm.org/ft_gateway.cfm?id=1291199&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76302416&CFTOKEN=52389390
http://dx.doi.org/10.1109/CGO.2005.25
http://doi.acm.org/10.1145/800017.800542
http://doi.acm.org/10.1145/378993.379241

York, NY, USA, 2003. ACM. ISBN 1-58113-756-7. doi: http://doi.acm.org/10.
1145/944705.944731. URL http://doi.acm.org/10.1145/944705.944731.

Fibon. Fibon. https://github.com/dmpots/fibon, 2010.

J. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers, 30:478–490, 1981. ISSN 0018-9340. doi: http://doi.
ieeecomputersociety.org/10.1109/TC.1981.1675827.

N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call path profil-
ing of unmodified, optimized code. In Proceedings of the 19th annual inter-
national conference on Supercomputing, ICS ’05, pages 81–90, New York, NY,
USA, 2005. ACM. ISBN 1-59593-167-8. doi: 10.1145/1088149.1088161. URL
http://doi.acm.org/10.1145/1088149.1088161.

A. Gal. E�cient bytecode verification and compilation in a virtual machine. PhD
thesis, Irvine, CA, USA, 2006. AAI3243940.

A. Gal and M. Franz. Incremental dynamic code generation with trace trees. Technical
report, Donald Bren School of Information and Computer Science, University of
California, Irvine, 2006.

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan,
G. Hoare, B. Zbarsky, J. Orendor↵, J. Ruderman, E. W. Smith, R. Reitmaier,
M. Bebenita, M. Chang, and M. Franz. Trace-based just-in-time type specialization
for dynamic languages. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages 465–478, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1. doi: http://doi.acm.org/10.
1145/1542476.1542528. URL http://doi.acm.org/10.1145/1542476.1542528.

A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to defor-
estation. In FPCA ’93: Proceedings of the conference on Functional pro-
gramming languages and computer architecture, pages 223–232, New York,
NY, USA, 1993. ACM. ISBN 0-89791-595-X. doi: http://doi.acm.org/
10.1145/165180.165214. URL http://portal.acm.org/ft_gateway.cfm?id=
165214&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76299135&CFTOKEN=14374684.

G. GMP. The gnu multiple precision arithmetic library. http://gmplib.org. Web-
site, 2011.

R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guided partial dead code
elimination using predication. In Proceedings of the 1997 International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’97, pages 102–,
Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-8090-3. URL
http://dl.acm.org/citation.cfm?id=522659.825652.

R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guided partial redundancy
elimination using speculation. In Proceedings of the 1998 International Conference

181

http://doi.acm.org/10.1145/944705.944731
https://github.com/dmpots/fibon
http://doi.acm.org/10.1145/1088149.1088161
http://doi.acm.org/10.1145/1542476.1542528
http://portal.acm.org/ft_gateway.cfm?id=165214&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76299135&CFTOKEN=14374684
http://portal.acm.org/ft_gateway.cfm?id=165214&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76299135&CFTOKEN=14374684
http://gmplib.org
http://dl.acm.org/citation.cfm?id=522659.825652

on Computer Languages, ICCL ’98, pages 230–, Washington, DC, USA, 1998. IEEE
Computer Society. ISBN 0-8186-8454-2. URL http://dl.acm.org/citation.
cfm?id=857172.857261.

Hackage. Hackage. http://hackage.haskell.org/packages/hackage.html, 2010.

R. E. Hank, W.-M. W. Hwu, and B. R. Rau. Region-based compilation: an in-
troduction and motivation. In Proceedings of the 28th annual international sym-
posium on Microarchitecture, MICRO 28, pages 158–168, Los Alamitos, CA,
USA, 1995. IEEE Computer Society Press. ISBN 0-8186-7349-4. URL http:
//portal.acm.org/citation.cfm?id=225160.225189.

J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson. How
do scientists develop and use scientific software? In Proceedings of the 2009 ICSE
Workshop on Software Engineering for Computational Science and Engineering,
SECSE ’09, pages 1–8, Washington, DC, USA, 2009. IEEE Computer Society. ISBN
978-1-4244-3737-5. doi: http://dx.doi.org/10.1109/SECSE.2009.5069155. URL
http://dx.doi.org/10.1109/SECSE.2009.5069155.

D. Hiniker, K. Hazelwood, and M. D. Smith. Improving region selection in dynamic
optimization systems. In Proceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 38, pages 141–154, Washington, DC,
USA, 2005. IEEE Computer Society. ISBN 0-7695-2440-0. doi: http://dx.doi.org/
10.1109/MICRO.2005.22. URL http://dx.doi.org/10.1109/MICRO.2005.22.

U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls with run-time
type feedback. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 con-
ference on Programming language design and implementation, pages 326–336,
New York, NY, USA, 1994. ACM. ISBN 0-89791-662-X. doi: http://doi.acm.
org/10.1145/178243.178478. URL http://portal.acm.org/ft_gateway.cfm?id=
178478&type=pdf&coll=GUIDE&dl=GUIDE&CFID=107683469&CFTOKEN=28437059.

U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In ECOOP ’91: Proceedings of
the European Conference on Object-Oriented Programming, pages 21–38, London,
UK, 1991. Springer-Verlag. ISBN 3-540-54262-0.

P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of haskell: be-
ing lazy with class. In HOPL III: Proceedings of the third ACM SIGPLAN
conference on History of programming languages, pages 12–1–12–55, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-766-X. doi: http://doi.acm.org/
10.1145/1238844.1238856. URL http://portal.acm.org/ft_gateway.cfm?id=
1238856&type=mov&coll=GUIDE&dl=GUIDE&CFID=69896833&CFTOKEN=79663365.

H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-based java jit compiler
retrofitted from a method-based compiler. In CGO ’11: Proceedings of the inter-
national symposium on Code generation and optimization, 2011.

182

http://dl.acm.org/citation.cfm?id=857172.857261
http://dl.acm.org/citation.cfm?id=857172.857261
http://hackage.haskell.org/packages/hackage.html
http://portal.acm.org/citation.cfm?id=225160.225189
http://portal.acm.org/citation.cfm?id=225160.225189
http://dx.doi.org/10.1109/SECSE.2009.5069155
http://dx.doi.org/10.1109/MICRO.2005.22
http://portal.acm.org/ft_gateway.cfm?id=178478&type=pdf&coll=GUIDE&dl=GUIDE&CFID=107683469&CFTOKEN=28437059
http://portal.acm.org/ft_gateway.cfm?id=178478&type=pdf&coll=GUIDE&dl=GUIDE&CFID=107683469&CFTOKEN=28437059
http://portal.acm.org/ft_gateway.cfm?id=1238856&type=mov&coll=GUIDE&dl=GUIDE&CFID=69896833&CFTOKEN=79663365
http://portal.acm.org/ft_gateway.cfm?id=1238856&type=mov&coll=GUIDE&dl=GUIDE&CFID=69896833&CFTOKEN=79663365

R. Joshi, M. D. Bond, and C. Zilles. Targeted path profiling: Lower overhead path
profiling for staged dynamic optimization systems. In Proceedings of the inter-
national symposium on Code generation and optimization: feedback-directed and
runtime optimization, CGO ’04, pages 239–, Washington, DC, USA, 2004. IEEE
Computer Society. ISBN 0-7695-2102-9. URL http://dl.acm.org/citation.
cfm?id=977395.977660.

G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and B. Lipp-
meier. Regular, shape-polymorphic, parallel arrays in haskell. In Proceedings
of the 15th ACM SIGPLAN international conference on Functional program-
ming, ICFP ’10, pages 261–272, New York, NY, USA, 2010. ACM. ISBN 978-
1-60558-794-3. doi: http://doi.acm.org/10.1145/1863543.1863582. URL http:
//doi.acm.org/10.1145/1863543.1863582.

J. Kim, W.-C. Hsu, and P.-C. Yew. Cobra: An adaptive runtime binary optimization
framework for multithreaded applications. Parallel Processing, International Con-
ference on, 0:25, 2007. ISSN 0190-3918. doi: http://doi.ieeecomputersociety.org/
10.1109/ICPP.2007.23.

J. Knoop, O. Rüthing, and B. Ste↵en. Optimal code motion: theory and practice.
ACM Trans. Program. Lang. Syst., 16(4):1117–1155, 1994. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/183432.183443.

T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox.
Design of the java hotspot client compiler for java 6. ACM Trans. Archit. Code Op-
tim., 5:7:1–7:32, 2008. ISSN 1544-3566. doi: http://doi.acm.org/10.1145/1369396.
1370017. URL http://doi.acm.org/10.1145/1369396.1370017.

J. R. Larus. Whole program paths. In Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and implementation, PLDI ’99, pages
259–269, New York, NY, USA, 1999. ACM. ISBN 1-58113-094-5. doi: 10.1145/
301618.301678. URL http://doi.acm.org/10.1145/301618.301678.

C. Lattner and V. Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In CGO ’04: Proceedings of the inter-
national symposium on Code generation and optimization, page 75, Wash-
ington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2102-
9. URL http://portal.acm.org/ft_gateway.cfm?id=977673&type=pdf&coll=
GUIDE&dl=GUIDE&CFID=91639383&CFTOKEN=59109600.

D. X. Li, R. Ashok, and R. Hundt. Lightweight feedback-directed cross-module op-
timization. In Proceedings of the 8th annual IEEE/ACM international sympo-
sium on Code generation and optimization, CGO ’10, pages 53–61, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-635-9. doi: 10.1145/1772954.1772964. URL
http://doi.acm.org/10.1145/1772954.1772964.

LLVM. The llvm compiler infrastructure. http://llvm.org. Website, 2011.

183

http://dl.acm.org/citation.cfm?id=977395.977660
http://dl.acm.org/citation.cfm?id=977395.977660
http://doi.acm.org/10.1145/1863543.1863582
http://doi.acm.org/10.1145/1863543.1863582
http://doi.acm.org/10.1145/1369396.1370017
http://doi.acm.org/10.1145/301618.301678
http://portal.acm.org/ft_gateway.cfm?id=977673&type=pdf&coll=GUIDE&dl=GUIDE&CFID=91639383&CFTOKEN=59109600
http://portal.acm.org/ft_gateway.cfm?id=977673&type=pdf&coll=GUIDE&dl=GUIDE&CFID=91639383&CFTOKEN=59109600
http://doi.acm.org/10.1145/1772954.1772964
http://llvm.org

J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-Y. Chen. The per-
formance of runtime data cache prefetching in a dynamic optimization system. In
Proceedings of the 36th annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 36, pages 180–, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-2043-X. URL http://portal.acm.org/citation.cfm?id=
956417.956549.

J. Lu, H. Chen, P.-C. Yew, and W. chung Hsu. Design and implementation of a
lightweight dynamic optimization system. Journal of Instruction-Level Parallelism,
6:2004, 2004.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, pages 190–200,
New York, NY, USA, 2005. ACM. ISBN 1-59593-056-6. doi: http://doi.acm.org/
10.1145/1065010.1065034. URL http://portal.acm.org/ft_gateway.cfm?id=
1065034&type=pdf&coll=GUIDE&dl=GUIDE&CFID=74340410&CFTOKEN=80130600.

S. Marlow and S. Peyton Jones. Making a fast curry: pushenter vs. evalapply for
higher-order languages. J. Funct. Program., 16(4-5):415–449, 2006. ISSN 0956-
7968. doi: http://dx.doi.org/10.1017/S0956796806005995.

S. Marlow, A. R. Yakushev, and S. Peyton Jones. Faster laziness using dynamic
pointer tagging. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN in-
ternational conference on Functional programming, pages 277–288, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-815-2. doi: http://doi.acm.org/
10.1145/1291151.1291194. URL http://portal.acm.org/ft_gateway.cfm?id=
1291194&type=pdf&coll=GUIDE&dl=GUIDE&CFID=89595348&CFTOKEN=43603062.

D. G. Melski. Interprocedural Path Profiling and the Interprocedural Express-Lane
Transformation. PhD thesis, University of Wisconsin-Madison, 2002.

Z. Merali. Why scientific programming does not compute. In Nature, volume 467,
pages 775–777. Nature, 2010. doi: 10.1038/467775a.

W. Partain. The nofib benchmark suite of haskell programs. In Proceedings of the
1992 Glasgow Workshop on Functional Programming, pages 195–202, London, UK,
1993. Springer-Verlag. ISBN 3-540-19820-2.

K. Pettis and R. C. Hansen. Profile guided code positioning. In Proceedings of
the ACM SIGPLAN 1990 conference on Programming language design and im-
plementation, PLDI ’90, pages 16–27, New York, NY, USA, 1990. ACM. ISBN
0-89791-364-7. doi: 10.1145/93542.93550. URL http://doi.acm.org/10.1145/
93542.93550.

S. Peyton Jones and S. Marlow. The glasgow haskell compiler. http://www.haskell.
org/ghc. Website, 2011.

184

http://portal.acm.org/citation.cfm?id=956417.956549
http://portal.acm.org/citation.cfm?id=956417.956549
http://portal.acm.org/ft_gateway.cfm?id=1065034&type=pdf&coll=GUIDE&dl=GUIDE&CFID=74340410&CFTOKEN=80130600
http://portal.acm.org/ft_gateway.cfm?id=1065034&type=pdf&coll=GUIDE&dl=GUIDE&CFID=74340410&CFTOKEN=80130600
http://portal.acm.org/ft_gateway.cfm?id=1291194&type=pdf&coll=GUIDE&dl=GUIDE&CFID=89595348&CFTOKEN=43603062
http://portal.acm.org/ft_gateway.cfm?id=1291194&type=pdf&coll=GUIDE&dl=GUIDE&CFID=89595348&CFTOKEN=43603062
http://doi.acm.org/10.1145/93542.93550
http://doi.acm.org/10.1145/93542.93550
http://www.haskell.org/ghc
http://www.haskell.org/ghc

S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as a
practical optimisation technique in ghc. In Haskell Workshop, 2001.

S. L. Peyton Jones. The Implementation of Functional Programming Languages
(Prentice-Hall International Series in Computer Science). Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1987. ISBN 013453333X.

S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: The
spineless tagless g-machine. J. Funct. Program., 2(2):127–202, 1992.

S. L. Peyton Jones and J. Launchbury. Unboxed values as first class citizens in a non-
strict functional language. In Proceedings of the 5th ACM conference on Functional
programming languages and computer architecture, pages 636–666, New York, NY,
USA, 1991. Springer-Verlag New York, Inc. ISBN 0-387-54396-1.

S. L. Peyton Jones and D. R. Lester. Implementing Functional Languages. Prentice
Hall, 1992.

S. L. Peyton Jones and A. L. M. Santos. A transformation-based optimiser for haskell.
Sci. Comput. Program., 32(1-3):3–47, 1998. ISSN 0167-6423. doi: http://dx.doi.
org/10.1016/S0167-6423(97)00029-4.

N. Ramsey, J. a. Dias, and S. Peyton Jones. Hoopl: a modular, reusable library
for dataflow analysis and transformation. In Proceedings of the third ACM Haskell
symposium on Haskell, Haskell ’10, pages 121–134, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0252-4. doi: http://doi.acm.org/10.1145/1863523.1863539.
URL http://doi.acm.org/10.1145/1863523.1863539.

Shootout. The computer language benchmarks game. http://shootout.alioth.
debian.org/, 2009.

SPEC. Spec benchmark suite. http://www.spec.org/, 2006.

SPEC CPU Subcommittee. SPEC CPU2006 benchmark descriptions. In Computer
Architecture News, volume 34. ACM SIGARCH newsletter, 2006.

T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation technique for
dynamic compilers. ACM Trans. Program. Lang. Syst., 28:134–174, 2006. ISSN
0164-0925. doi: http://doi.acm.org/10.1145/1111596.1111600. URL http://doi.
acm.org/10.1145/1111596.1111600.

D. A. Terei and M. M. Chakravarty. An llvm backend for ghc. In
Haskell ’10: Proceedings of the third ACM Haskell symposium on
Haskell, pages 109–120, New York, NY, USA, 2010. ACM. ISBN 978-
1-4503-0252-4. doi: http://doi.acm.org/10.1145/1863523.1863538. URL
http://portal.acm.org/ft_gateway.cfm?id=1863538&type=pdf&coll=
GUIDE&dl=GUIDE&CFID=109508826&CFTOKEN=13519482.

185

http://doi.acm.org/10.1145/1863523.1863539
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://www.spec.org/
http://doi.acm.org/10.1145/1111596.1111600
http://doi.acm.org/10.1145/1111596.1111600
http://portal.acm.org/ft_gateway.cfm?id=1863538&type=pdf&coll=GUIDE&dl=GUIDE&CFID=109508826&CFTOKEN=13519482
http://portal.acm.org/ft_gateway.cfm?id=1863538&type=pdf&coll=GUIDE&dl=GUIDE&CFID=109508826&CFTOKEN=13519482

P. Wadler. Deforestation: transforming programs to eliminate trees. Theor. Com-
put. Sci., 73(2):231–248, 1990. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/
0304-3975(90)90147-A.

D. Wakeling. The dynamic compilation of lazy functional programs. J. Funct.
Program., 8:61–81, 1998. ISSN 0956-7968. doi: http://dx.doi.org/10.1017/
S0956796897002955. URL http://dx.doi.org/10.1017/S0956796897002955.

R. C. Young. Path-based Compilation. PhD thesis, Harvard University, 1998.

C. Zhao, Y. Wu, J. G. Ste↵an, and C. Amza. Lengthening traces to improve op-
portunities for dynamic optimization. In 12th Workshop on Interaction between
Compilers and Computer Architectures, Salt Lake City, UT, 2008.

186

http://dx.doi.org/10.1017/S0956796897002955

	Introduction
	Organization
	Motivation

	Benchmarks
	Fibon Benchmark Suite
	SPEC Benchmark Suite
	Compilers
	Machines
	Performance

	Low-Level Haskell Code
	Example Program
	Low-Level Code
	Low-Level Control Flow

	Low-Level Haskell Behaviors
	Low-Level Behaviors
	Measuring Low-Level Behaviors
	Results
	Instruction Mix
	Branch Mix
	Indirect Branch Targets
	Basic Block Length

	Conclusion

	Dynamic Trace-Based Optimization of Haskell with DynamoRIO
	Hand-Coded Trace Case Study
	How DynamoRIO Works
	Performance of Applications with DynamoRIO
	DynamoRIO Program Traces
	Conclusion

	Static Trace-Based Optimization of Haskell with Profile Data
	Design
	Finding Traces
	Building Traces
	Optimizing Traces

	Implementation
	GHC Modifications
	LLVM Modifications
	Putting It All Together

	Results
	Performance
	Trace Statistics
	The Effect of Hotness Thresholds

	Conclusion

	Related Work
	Static Haskell Optimization
	Dynamic Optimization
	Virtual-Machine Based Optimizers
	Dynamic Binary Optimizers

	Feedback Directed Optimization
	Collecting Profile Data
	Optimizing with Profile Data

	Conclusion

