


ABSTRACT

Experimental and Numerical Investigations of Novel Architectures Applied to Compressive

Imaging Systems

by

Matthew Adam Turner

A recent breakthrough in information theory known as compressive sensing is one com-

ponent of an ongoing revolution in data acquisition and processing that guides one to acquire

less data yet still recover the same amount of information as traditional techniques, meaning

less resources such as time, detector cost, or power are required. Starting from these basic

principles, this thesis explores the application of these techniques to imaging. The first labo-

ratory example we introduce is a simple infrared camera. Then we discuss the application of

compressive sensing techniques to hyperspectral microscopy, specifically Raman microscopy,

which should prove to be a powerful technique to bring the acquisition time for such mi-

croscopies down from hours to minutes. Next we explore a novel sensing architecture that

uses partial circulant matrices as sensing matrices, which results in a simplified, more robust

imaging system. The results of these imaging experiments lead to questions about the perfor-

mance and fundamental nature of sparse signal recovery with partial circulant compressive

sensing matrices. Thus, we present the results of a suite of numerical experiments that show

some surprising and suggestive results that could stimulate further theoretical and applied

research of partial circulant compressive sensing matrices. We conclude with a look ahead

to adaptive sensing procedures that allow real-time, interactive optical signal processing to

further reduce the resource demands of an imaging system.
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Chapter 1

Motivation and Introduction

1.1 Overview

The physical sciences, like the all aspects of society, are strained under the effects of the

“data deluge,” which could be described as our species’ overwhelming ability to acquire

or create data coupled with our relatively weak skill in extracting useful information from

that data. In a raster scanning, hyperspectral microscope, such as a darkfield, Raman, or

Fourier-transform infrared microscope, large amounts of data are collected, and oftentimes

acquisition is either time-intensive, or in the case of infrared microsocopy and spectroscopy,

monetarily expensive because exotic, non-silicon based detectors are required. This thesis is

a description, exploration, and exposition, of how a new theory in signal processing, known

as compressed sensing, can be applied to microscopy and other imaging systems in order to

minimize these and other costs. Compressed sensing (CS) is a mathematical jewel itself. A

groundswell of mathematical and engineering work has risen exploring the implications and

theoretical applications of this theory. Based on the applications it has already found, CS

could prove to be one of the most useful developments in mathematics so far this century.

In this chapter, we introduce some notation we will need to describe compressive imaging

systems, followed by the introduction of our compressive infrared imaging system where we

will further illustrate the connection between the measurement formalism and the physical

camera system. We will see that compressive imaging reduces to solving an underdetermined

set of equations, unsolvable by elimination methods. In order to solve these equations, we
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regularize the problem, in other words, we apply a priori information so that the deficit of

information is sufficiently reduced, and we recover an image as we would have otherwise.

1.2 Introduction to the Mathematics of Compressive Sensing

1.2.1 Matrix representation of a system of equations

In order to describe our measurement systems mathematically, we need to be able to ef-

ficiently write large systems of equations. In the sequel, signal and image will be used

interchangably. Although there are philosophical differences, mainly that a signal can be

exactly known and recovered, but an image will always be an approximation to “true real-

ity,” reality itself being an point of philosophical debate. Generally, we use the word ‘signal’

when referring to an arbitrary x ∈ Rn and ‘image’ when referring specifically to a signal

approximated by an imaging system.

We now demonstrate how to compactly write large systems of equations in matrix nota-

tion by means of a simple example. Consider the system of equations

3x1 + 2x2 = −5

3x1 − 9x2 = 3

with x1, x2 ∈ R.

This is represented in matrix form by

y = Φx (1.1)

where

y =

−5

3

 , x =

x1

x2

 , and Φ =

3 2

3 −9
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This allows us to efficiently describe an arbitrary number of equations and arbitrary

number of unknowns,

y ∈ Rm





y1

y2

...

ym


=



ϕ11 ϕ12 . . . ϕ1n

ϕ21 ϕ22 . . . ϕ2n

...
...

. . .
...

ϕm1 ϕm2 . . . ϕmn


︸ ︷︷ ︸

Φ ∈ Rm×n



x1

x2

...

xn




x ∈ Rn (1.2)

is still just y = Φx. Using this matrix notation for a system of equations, we can describe

the acquisition of data that results in an image. For pixel-array or raster scan imaging,

Φ = I = δij, with δij =

 1 if i = j

0 otherwise
,

or

I =



1 0 0 · · · 0

0 1 0 · · · 0

...
...

. . . . . .
...

0 0 · · · 0 1


By simply reshaping the resulting vector y to be a rectangular 2D array, we recover an image

of the scene. Each row of Φ, which we denote ϕ(i), probes the ith discretized point of x. If

we regard x as the scene to be imaged, note that x is not discrete until we impose some grid

on it. The value yi =
〈
ϕ(i), x

〉
measures the brightness corresponding to each pixel. We call

ϕ(i) is the ith measurement vector. If we write a column of Φ as ϕci ∈ Φ = (ϕc1, . . . , ϕ
c
n), then
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we get the representation of the signal x,

y = ϕc1x1 + ϕc2x2 + . . .+ ϕcnxn =
n∑
i=1

ϕcixi. (1.3)

If Φ = I, 

y1

y2

y3

...

ym


=



1

0

0

...

0


x1 +



0

1

0

...

0


x2 + · · ·+



0

0

...

0

1


xn. (1.4)

Thus we see that the measurements y may be viewed as a weighted sum of the coumns of Φ

where the weights are the discretized points of the scene, x.

In this work, compressive imaging is achieved through techniques deriving from transform

imaging, where more than one pixel is probed at a time, or, in other words, each measurement

vector ϕ(i) has many 1s in it. In the example to follow,
∑n

j=1 ϕ
(i)
j = n

2
, i = 1, . . . ,m and

ϕ(i) ∈ {0, 1}n. For compressive imaging, however, we do not have Φ ∈ Rn×n, but instead

Φ ∈ Rm×n with m < n. In other words we have less equations than unknowns. To quantify

the amount of undersampling, define the undersampling, or equivalently compression, ratio

δ =
m

n
.

The magic of compressive sensing is that we are still able to recover at least a good approx-

imation to x, if not x exactly, from the underdetermined set of equations arising from our

measurements y = Φx. Before explaining how to recover an image from these underdeter-

mined equations, here is an example of compressive imaging in action that also serves to

further solidify the notation to be used throughout the rest of this thesis.
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1.3 Infrared Imaging via Compressive Sampling

As an example to prepare for the sequel in which we explore more advanced imaging systems,

we introduce the ‘Rice single-pixel camera.’ Specifically this camera is an infrared camera,

one of the useful applications of compressive sensing, especially for remote sensing and data-

fusion applications of compressive sensing where detector cost is not the only one to be

mitigated. Infrared imaging has important applications in missile technologies as is well-

known, and also for night vision and surveillance techniques. Predator drones, for example,

routinely acquire their targets for assassination with highly advanced infrared cameras [1]. A

more interesting application may be to combine multiple views for enhanced video sensing via

multiple compressive streams [2], and perhaps even do some sort of compressive data fusion

with radar imaging systems on drones to develop a full view of a scene, both indoors via

“through-the-wall radar imaging” [3] and outdoors. A further bonus is that data collected

via compressive imaging is naturally encrypted as well as copmressed with no on-board

computing. This will become more clear once we better understand compressive imaging.

1.3.1 Single-Pixel Camera General Setup

Here we begin our introduction of the infrared camera system by introducing the optical

element that displays the measurement vectors ϕ(i). This is the digital micromirror device

(DMD) from Texas Instruments, Inc., shown in Figure 1.1 displaying one measurement vector

with an illustration of a series of m measurement vectors, again corresponding to the m rows

of the measurement vector Φ. The white pixels correspond to ϕij = 1, or we say this is an

‘on’ pixel, and black corresponds to ϕij = 0, or an ‘off’ pixel.

As in Figure 1.2, we focus our target scene, in this case the blue painted card as in

Figure 1.3, onto the digital micromirror device (DMD). The DMD, has 1024 × 768 mirrors

with a diagonal length of 13.6µm, so the maximum resolution in pixels one can attain in
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Figure 1.1 : Detail of the DMD along with a photograph of a DMD displaying a 32 × 32
permuted Walsh-Hadamard measurement vector, and a series of M 128× 128 measurement
vectors above it.
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this setup is n = 768× 1024. The size of the mirrors is compared with an ant leg in Figure

1.2. To acquire images at other resolutions, we operate mirrors in blocks to constitute one

pixel. The light from the scene is collected by a lens and focused onto the DMD. The DMD

displays reshaped rows of the measurement matrix Φ, the photodetector measures converts

light intensity to a voltage that is sent and stored on computer. The ith voltage measurement

serves as the inner product yi =
〈
ϕ(i), x

〉
to yield the set of measurements y = Φx. An ‘on’

pixel, or ϕij = 1, directs light towards the detector, and an ‘off’ pixel directs light away from

the detector. The mirrors are fixed to only flip ±12◦ away from parallel with the face of the

DMD. Thus, as in the transform imaging case described above, the DMD encodes the scene,

and the photodetector measures the total intensity of light reflected towards the detector

from the DMD for each measurement vector.

Our measurement matrix is a partial permuted Hadamard measurement matrix, which

we write as

Φ = RΩ PSn (1.5)

where

Sn = f(Hn) (1.6)

where Hn is the Hadamard matrix of order n and f is a function on A ∈ Rn×n, aij being the

elements of A such that

f(aij) =


1 if aij = 1

0 otherwise

(1.7)

This follows, but is not identical to, the construction of “S matrices” in Harwit and Sloane [4].

The purpose is to allow us to use Hadamard matrices with a single detector, meaning our

measurement system can only implement measurement matrices Φ with elements ϕij ∈

{0, 1}. P is an operator that permutes the columns of Sn and RΩ selects a set of rows
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Figure 1.2 : Illustration of imaging system with DMD detail
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indexed by the entries of the set Ω. We take |Ω| = m which determines the number of

measurements we acquire, and traditionally we have set Ω to be m integers taken at random

from the set of natural numbers less than or equal to n without replacement. Compressive

sensing theory so far yields stronger guarantees for signal recovery when there is some element

of randomness in the measurement vectors, thus the random permutations of the columns

and then random selection of the rows [5, 6].

Once we have the measurement matrix Φ we sequentially display each row, or measure-

ment vector, from Φ, collecting a measurement yi for each measurement vector. Once we

have displayed all m ϕ(i) to acquire the set of equations y = Φx, we employ the TVAL3 re-

construction algorithm to recover an image. We implement this scheme as shown in Figure

1.3 and as illustrated in Figure 1.2.

As in Figure 1.2, we focus our target scene, in this case the blue painted card as in

Figure 1.3, onto the digital micromirror device (DMD). The blue square on the card is acrylic

paint. Below the acrylic paint are the letters “IR” in charcoal. We illuminate the card with

an array of 1450nm infrared light emitting diodes. Some of that light is able to penetrate

the acrylic paint to either reflect off the card or be absorbed by the charcoal letters. The

light reflecting from the scene is imaged onto the DMD, then collected by another lens and

the total intensity of light coming from the DMD is measured for m different measurement

vectors by a Hamamatsu photodetector (model no. G6122) sensitive to wavelengths from

1–2 µm and peak sensitivity at λ = 1.95µm.

The results of some compressive measurements for δ = .1 and δ = .075 are shown in

Figure 1.4.
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Figure 1.3 : Infrared camera setup on the optical table
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δ ≈ .1, m = 6550 δ ≈ .075, m = 4900

Figure 1.4 : n = 256× 256 images of charcoal-painted “IR” behind acrylic paint as imaged
by our compressive imaging system with λ = 1450 nm

1.3.2 Image Recovery with TVAL3

After we acquire the measurements, y, the challenge is to recover an image x∗ that represents

the scene x. To do so we regularize the problem, in this case by solving

(TV) min
x

n∑
i=1

‖Dix‖2 subject to y = Φx (1.8)

where Di is a “local finite-difference operator” such that Dix ∈ R2. Regularization is the

mathematical process of applying a priori information, in this case knowledge that the

solution x∗ should have a small total variation (TV),
∑n

i=1 ‖Dix‖2. This is one of many

possible methods of regularization. We will explore two alternative methods in Chapter 4.

To solve this we use TVAL3 of Li, Yin, and Zhang, which stands for total variation

minimization by augmented lagrangian and alternating direction algorithms [7]. TVAL3

traces its roots back to a seminal paper by Courant in 1943 on the quadratic penalty method
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[8]. Physicists will be familiar with the general principle of TVAL3, namely the augmented

Lagrangian, which is virtually identical to the Lagrangian formalism of dynamics. The

augmented Lagrangian method is used to solve the problem of Equation 1.8, (TV), as follows.

First, rewrite (TV) in the equivalent form

min
x,wi

n∑
i=1

‖wi‖2 subject to y = Φx and Dix = wi. (1.9)

The augmented Lagrangian for the rewritten problem is given by

L(x, λ, ν) =
n∑
i=1

(
‖wi‖2−νTi (Dix−wi)+

βi
2
‖Dix−wi‖2

2

)
−λT (Φx−y)+

µ

2
‖Φx−y‖2

2. (1.10)

TVAL3 solves this problem through a so-called “alternating direction algorithm” developed

by Wang, Yang, Yin, and Zhang specifically designed to solve TV minimization problems

in imaging [9]. For further discussion of TVAL3 including the augmented Lagrangian for-

malism, see [10] and [11]. Briefly, the algorithm finds a new approximation for x given

Lagrange multipliers λ and ν, and then finds optimal Lagrange multipliers with the updated

x, which then are used in another iteration to find a new approximation for x, and so on

until ∇L(x, λ, ν) < εtol, where εtol is a user-defined tolerance parameter, which says that

L(x, λ, ν) has reached its global minimum, guaranteed by a global convergence theorem [11].

We used the TVAL3 algorithm with the default options for the coefficients βi and µ in

Equation 1.10, and default stopping tolerance εtol to obtain the 256× 256 images in Figure

1.4. We achieve very high compression ratios, with subsampling ratios δ = .1 and δ = .075,

corresponding to m = 6550 and m = 4900 respectively.
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1.4 Other Applications and Outline of the Thesis

By way of the above example, it should be clear that compressive sensing is a powerful

method to reduce the resources required to acquire information. There are many applications

for compressive sensing outside of imaging. Much of the groundwork for compressive sensing

had been laid down before the breakthroughs by Candès, et al [5] and Donoho [6]. The

paradigm shift came out of the recognition that successful recovery of a signal depends on

a quantifiable dependence between how we acquire a signal and the structure of that signal.

Compressive sensing grew out of efforts to find the simplest accurate representation of a

signal.

Since CS guides one to acquire more information with less resources, it has found a wide

range of applications in science and engineering. Because measurements are already in a

compressed form no on-board compression is required. As such, there have been proposed

CS systems for astronomy [12] and hyperspectral remote sensing [13,14]. Other examples in

physics include radio astronomy-based cosmology [15], and quantum state tomography [16],

which allows one to more accurately determine the state of a collection of, for example,

electron spins, which has applications in quantum computing.

Compressive sensing has also been applied to medicine and biology. CS holds much

promise to improve magnetic resonance imaging because of the greatly reduced acquisition

time it allows [17, 18]. Thus, when the patient is less able to control their movements, as

with children, or if time is of the essence as it often is in medicine, CS techniques could be

of immense benefit.

Shental, et al [19], identify carriers of “rare variants” of disease via CS techniques applied

to group testing. Erlich, et al [20], applied a similar method to identify genetic disease

in Ashkenazi Jews, and then extended this work to “Compressed Genotyping” to identify

genetic variation of any sort in any number of individuals [21]. Machines known as DNA
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microarrays determine the sequence of base pairs in DNA. Dai, et al., [22] and Sheikh,

et al., [23] both explore the application of compressive sensing to DNA sequencing with

DNA microarrays. One of the most interesting applications of compressive sensing straddles

the disciplines of biology and physics. AlQuarishi and McAdams suggest a method for using

compressive sensing to effectively learn a physical model for protein-DNA interactions, which

could have important applications in drug delivery, disease treatment, and fundamental

genomics [24].

In the sequel, we explore the application of compressive sensing to microscopic imaging

in Chapter 2, introduce a novel compressive imaging system based on circulant matrices in

Chapter 3, and then study numerically the efficacy of circulant matrices for general com-

pressive sensing in Chapter 4. The final chapter will be dedicated to final thoughts and

future directions with some preliminary data from adaptive sensing experiments, where the

ith measurement vector depends on the result yi−1 =
〈
ϕ(i−1), x

〉
. Although the work here is

dedicated to imaging, many of the results might have parallel applications or provide insight

into problems from the varied fields of application mentioned above, espeically Chapter 4.
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Chapter 2

Compressive Microscopy

Now we turn our focus from novel imaging architectures and their characterization to con-

crete applications to real-world imaging systems. Raman imaging is a prototypical example

of a measurement system that benefits substantially from reducing the time required to ac-

quire a Raman microscopic image. In our lab, and as is common in other laboratories as

well, high-resolution raster scan Raman images require a few to tens of hours of acquisition

time. Each location must be probed individually, resulting in a measurement akin to that

described in . Below we will discuss in more detail the nature of acquiring data for Raman

microscopy.

2.1 Compressive Microscopy

In this section, we describe some various forms our microscope system could take, as well

as the measurement formalism we’ll need to describe them. To do that we first introduce

the standard, non-compressive raster scanning system. Then we will introduce compressive

microscope systems, including a simple method to choose the best parameters for TVAL3,

first introduced in Section 1.3.2, that can easily be extended to other imaging systems.

2.1.1 Raster Scanning Microscope Systems

A typical, simplified raster scanning microscope setup is shown in Figure 2.1. A laser is sent

through a beamsplitting mirror through the back of an objective lens which focuses the laser

light ideally to a diffraction-limited point, reflected and/or scattered light is collected by the
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Figure 2.1 : Raster Scanning Hyperspectral Microscopy Setup

same objective lens, then directed back through the beamsplitter to either a photodetector

in the case of standard imaging, or a spectrometer for hyperspectral (i.e. beyond only three,

red, green, and blue, color channels) imaging. We use the same idealized measurement

formalism as before. In the simple raster scan imaging system we have the measurements,

y, given as

y = Ix, (2.1)

where I is the n × n identity matrix. As in a pixel array, each discretized point in the

scene is sampled by the measurement vector Φ = I, the measurement yi is proportional

to the number of photons registered by the detector during the acquisition time, tacq . In

reality it is stored on computer as the voltage reading from a photodetector caused by the

dislocation of electrons by incident photons. To physically sample each point in the image,

the sample stage moves in the “x-y” directions (not to be confused with x and y vectors
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from our measurement formalism) in discrete steps, the size of which determine the spatial

resolution of the image. All that is needed to recover an image from the set of measurements

y = Φx when Φ is the identity is a proper accounting of what point was illuminated when.

If instead we are performing hyperspectral microscopy, instead of y ∈ Rn , we have y ∈

Rn×nspec , where nspec is the resolution of the spectrometer. The spectrometer works like a

prism to disperse the incoming light scattered or reflected by the sample, and then measure

how much light at a set of discrete wavelengths is present at each point. However, in fact

the light is dispersed by a diffraction grating, a reflective optical element cut with grooves.

Each wavelength of light reflects at a different angle, causing the prism-like dispersion. A

highly rectangular CCD pixel array is calibrated so that the light striking a portion of it is

registered as, for example, λ = 632.5nm. The Ocean Optics USB4000 spectrometer we use

is sensitive to light from 200-1100 nm with a Toshiba TCD1304AP Linear CCD array that

has a resolution of 3648 pixels, or 3648 possible wavelength bins. Although the spectrometer

is sensitive to light in this wide wavelength range, oftentimes a higher resolution in λ is

exchanged for a smaller range of wavelength values to be probed. This technique is useful for

Raman imaging, discussed below, but also for fluorescence microscopy, a popular technique

used extensively in biological and medical research that allows for identification of various

parts of a cell by functionalizing fluorophores, proteins that absorb then emit at specific

wavelengths, to attach to specific parts of a cell. Before we discuss the Raman effect and its

usefulness in more detail, we describe how we modify a white-light illumination microscope

to employ compressive sensing, as well as some calibration data. We will introduce two

options for a microscope setup for laser-illumination in Section ??.
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Figure 2.2 : A simple addition of our single-pixel camera to a standalone Zeiss microscope
system.

2.1.2 Compressive Microscopy Setup

As introduced in the introduction, we will acquire measurements y = Φx with Φ being

a randomly permuted and subsampled Hadamard matrix as given in Equation 1.5. The

experimental setup is essentially the same, except our image is collected using microscope

optics. The simplest method for implementing compressive microscopy is to simply collect

light from a prebuilt microscope, as shown in Figure 2.3. Here, an image collected by the

internal optics of the microscope are projected out from the exit aperature, collected by

a lens, then sent to the DMD via a rotated mirror. Then an eyepiece collects the light
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corresponding to yi =
〈
φ(i), x

〉
and focuses it down the photodetector, which, as discussed

previously, converts light intensity to an analog voltage signal, which is then converted to

digital at the analog-to-digital converter (ADC), and saved on the computer.

Some calibration images of the standard Air Force test target AF-1951 taken with this

setup are shown below. With δ = .95 and again the default parameters for β and µ we

acquired the image in Figure ??. The smallest bars are 2.2µm wide, which sets the field

of view to about 40µm2. The image is fair quality, at best. In fact, especially in low-

light situations, the default, or even the recommended range, of parameters is not optimal.

To determine the best choice of β and µ, we solve and plot a series of solutions x∗ to the

optimization problem (TV) in Equation 1.8. Then, either using some mathematical heuristic

or simply by visual inspection, one may choose the optimal parameters.

2.2 Raman Imaging

2.2.1 The Raman Effect

The Raman effect was first discovered by Indian physicist C.V. Raman in 1929. Briefly, the

Raman effect is an optical, quantum mechanical effect that probes the vibrational properties

of a material, be it in the gas, liquid, or solid phase. As is common knowledge, some of the

light reflected from a material is the same wavelength as the incident light; the technical

term is Rayleigh scattering. However, if the material is ‘Raman-active,’ there will also be

other wavelengths of light ‘reflected’ as well. More accurately, this light is scattered instead

of reflected, and we say it is Raman-scattered light. For readers familiar with fluorescence,

this may sound like fluorescence, but it is not the same effect. The only true similarity is

that both effects are mediated by the absorption of quanta of light, photons, by the negative

charge carriers of a material, electrons.

One of the most basic principles of physics, the conservation of energy, is the route by
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Figure 2.3 : Reconstruction of n = 128 × 128 image of AF Test Target 1951 with δ = .95
and default TVAL3 parameters β, µ.
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Figure 2.4 : Method for determining best parameters for TVAL3 reconstruction. We see that
various choices for β, µ result not only in different quality reconstructions, but also different
reconstruction times (in seconds) for each, as indicated below each reconstruction.
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which Raman scattering occurs. Photons of varying wavelength correspond to photons of

different energy. A beam of light consisting of 100 ultraviolet photons is more energetic

than a beam of light with 1,000 infrared photons. However, in optics we would say that

the infrared beam is more intense, since there are more photons. The energy E of a single

photon is directly proportional to the frequency of the photon, ω,

E = ~ω (2.2)

In the Raman effect, we have that a beam of incident light of a certain energy, i.e. ‘color’,

enters the material and light of a different energy enters. Therefore, energy was lost or

gained. With the Raman effect it is more likely to observe a lower energy, or red-shifted,

photon, so let’s assume energy was lost. Where did this energy go?

The answer is that the light stimulated vibrations in the material. To understand this

better, let’s consider the diatomic molecule, say O2 for example, as a pair of weights on a

spring. The nuclei are the weights, and the chemical bond (sharing of two electrons between

the nuclei) is the spring. The spring has a stiffness, K, corresponding to the strength of the

chemical bond. Assume that light, written as an electric field

E(t) = E0 cos(ωt+ δk), (2.3)

is incident on the molecule. In general the polarization vector of a diatomic molecule may

be written as

p = αE (2.4)

where α is the polarizability, or susceptibility to a change in polarization. In general it is an

arbitrary tensor, however in this case we assume it acts in only one dimension and we take



2.2. RAMAN IMAGING 23

it to only linear order,

α(x) = α(0) +

(
dα

dx

) ∣∣∣∣
x=0

x (2.5)

We assume that x is the solution of a simple harmonic oscillator, so that

x(t) = A cos(ω1t) (2.6)

where

ω1 =

√
K

µ
(2.7)

and µ is the reduced mass of the two nuclei. Combining Equations (2.3), (2.4), and (2.5),

we get

p(t) = α0E0 cos(ωt+ δk) + Aα′(0)E0 cos(ωt+ δk) cos(ω1t) (2.8)

Using a trigonometric identity we write

p(t) = α0E0 cos(ωt+ δk) +
1

2
Aα′(0)E0{cos

(
(ω − ω1)t+ δk

)
+ cos

(
(ω + ω1)t+ δk

)
} (2.9)

Thus the polarization changes as a function of time, meaning that we have the acceleration of

charge with at two natural frequencies, ω, corresponding to the Rayleigh scattering (common

reflection) and the Raman scattered light at frequency ωR = ω ± ω1 [25]. The minus sign

says that light is scattered at a frequency less than the incident frequency, so with energy

E = ~(ω − ω1).

Since in terms of color, this is a shift towards the ‘red’ end of the electromagnetic spectrum,

we call this photon red-shifted. The plus sign corresponds to a blue-shift, or equivalently a
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gain in energy for the incident photons,

E = ~(ω + ω1).

The photons red-shifted via the Raman effect are called Stokes-shifted, and the blue-shifted

photons are called anti-Stokes, after the famous English nineteenth century physicist Sir

George Stokes. There is a roughly 10−6 chance that the incident photon will be Stokes-

scatterd, and about a 10−8 chance that an incident photon will be anti-Stokes scattered.

Thus, the fact that Raman originally observed this previously anomolous effect with modest

optics and sunlight is quite amazing. Today, Raman spectroscopy and microscopy is per-

formed with nearly single-frequency laser light, an array of precision optics, and cooled CCD

spectrometers. Although it is such a weak effect, it is a very powerful method for probing

the chemical structure of a sample, as we will see in the following section.

2.2.2 Determining Chemical Structure from the Raman Spectrum of a Material

The astute and informed reader will note that in order for the above derivation to be valid,

the first derivative of the polarizability, α′(0) = dα
dx
|x=0 6= 0. This defines a so-called selection

rule for Raman scattering—the first derivative of the polarizability with respect to space

must be nonzero. In the case of vibration of the O2 molecule, α′(0) = 0 and so there

actually is no Raman scattering from vibrations of O2. However, one of the first important

applications of Raman scattering was to show that there are other carbon dioxide, CO2,

had hitherto unknown vibrational modes, or in terms of Equation 2.9, unknown ω1 [26, 27].

Our above derivation accounted only for vibrations in one dimension, but as also mentioned

above, polarizability, α is a tensor in general, so there could be nine total nonzero partial

first derivatives with respect to space, and rotational modes are also allowed, so that if

an incident photon causes a molecule to rotate, that might also be reflected in the Raman
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spectrum through a blue- or red-shifted peak in the Raman spectrum.

The example of CO2 is also important for us because before the Raman spectrum was

acquired for that molecule, its infrared (IR) spectrum, which also tells us about vibrational

modes, but for a different set of selection rules, was known. The vibrational modes discovered

by Raman spectroscopy differed from those discovered by infrared spectroscopy, but the

vibrations were on the same order of energy. This illustrates how Raman spectroscopy

allows one to use light in the visible part of the electromagnetic spectrum, with wavelength

λ ≈ 400 − 700nm, to probe energies in that would correspond to photons in the infrared,

corresponding to .8µm ≤ λ ≤ 100µm and larger. To detect such photons requires more

exotic light sources as well as more exotic detectors compared to visible light. Thus, Raman

spectroscopy provides a simpler, complementary, method for investigating the vibrations of

molecules.

Raman spectroscopy is not limited to probing vibrations of molecules. It is also possible

to determine the vibrational modes of solids, known as phonons, as in quanta of sound, just

like the photon is a quantum of light. We model a solid as a lattice of masses connected by

springs instead of just two or three masses connected by springs in the case of molecules in

either the gaseous or liquid state. When light is incident on the lattice, it either reflects as in

Rayleigh scattering, or it creates a phonon, which again is a vibration that travels through

the solid, and a lower-energy phton. It is sensible to call this a quanta of sound, because it

is precisely vibrations of nuclei, transmitted through electron-electron interactions, that is

responsible for the majority of thermal conductivity and transmission of sound in materials.

Among the many important applications of Raman scattering in solids are stress and

strain analysis for silicon technologies and for investigating the properties of graphene and

carbon nanotubes, including how many layers of graphene are present in a graphene sample

and also how many layers comprise a nanotube or what diameters of nanotubes are present
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in a sample. We choose these two examples because, as a proof of concept of the applicability

of compressive sensing techniques to Raman microscopy, we show that compressive sensing

is indeed effective for laser-illumination based microscopy, and that through simulations on

actual Raman microscopy data, compressive sensing may be used to discriminate graphite

from silicon, which suggests it might be effective for more complex samples.

2.2.3 Raster Scanning Raman Microscopy

Raman microscopy is a powerful experimental technique to determine the spatial distribution

of substances in a sample. We will show a simple example of this with experimental data

acquired on the commercial Renishaw Raman microscopy system, followed by two proposed

architectures for laser-illuminated microscopy with the DMD. The example is graphite on

silicon dioxide, which is a toy model for a more interesting system, graphene on silicon

dioxide. Graphene is a single layer of carbon atoms in a 2D lattice, however the term graphene

is also used to describe more than one layer stacked on top of one another. It seems that

it is graphene until about ten layers, then graphene just becomes graphite. Graphite and

graphene share similar features in their Raman spectrum since both are carbon allotropes,

and in fact Raman spectroscopy is one method for determining whether a carbon sample

is single-layer, double-layer, or more-layered graphene or just simply graphite. Graphene is

a widely-studied material because of its novel conduction properties, strength, and overall

novelty, and was the subject of a recent Nobel prize in Physics. Silicon also has two prominent

peaks in its Raman spectrum, and both the Raman spectrum of silicon and of graphite are

shown in Figure 2.5. We focus only on the so-called ‘G’ peak of graphite with wavenumber

k ≈ 1590 cm-1, and the well-known silicon peak at k = 520 cm-1.

We image the boxed region with graphite flake shown in Figure 2.6 by sensing how intense

the Raman ‘G’ peak is. If the peak is not there, then we know that it is the silicon substrate
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Silicon Raman spectrum, k = 520 cm-1 peak Graphite Raman spectrum, ‘G’ peak

Figure 2.5 : The Raman spectrum of silicon dioxide substrate and graphite. A typical mea-
surement (compressive or not) in hyperspectral microscopy could be like either one of these,
or have two peaks together, or possibly contain many any number of peaks corresponding
to different materials present in the sample.

at that point, and if we observe the ‘G’ peak then we know it is graphite. By raster scanning

over the sample and acquiring a spectrum as in Figure 2.5, as explained in Section 2.1.1, we

can build a Raman image of the region of interest. The Raman image acquired by raster

scanning is shown in Figure 2.7. The brighter the pixel, the larger the maximum value of

the ‘G’ peak. To test the efficacy of compressive imaging for Raman imaging, we simulate

compressive acquisition where Φ 6= I and Φ ∈ Rm×n where m < n. Instead of having Φ be

randomly permuted Walsh-Hadamard vectors, Φ are partial circulant matrices as explained

in Chapter 3. We hold off further discussion of the details of partial circulants for now. To

reconstruct an image from measurements taken with partial circulant Φ, we use the Rec PC

algorithm of Yin, et al., [28], also to be futher discussed in Chapter 3. We only need to say

here that we used default settings for user-defined parameters and that the reconstruction

algorithm recovers the solution x∗ according to the same problem (TV) in Equation 1.8.

We look at the reconstruction of x∗ the compressive measurements for a few values of δ in

Figure 2.8. Data on convergence across a range of δ values is given in Figure 2.9. We see
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Figure 2.6 : Visible light view of the graphite flake on silicon substrate to be imaged via the
Raman effect.

that computational resources increase non-linearly with δ, as expected.

2.2.4 Laser-illuminated Compressive Sensing Microscope System

To finish this chapter, we present preliminary data from our home built copmressive sensing

microscope system, the optics on the table in Figure 2.10. With this setup we obtained the

images shown in Figure 2.11.

With the proper equipment, it is clearly possible to acquire Raman microscopic images

in a fraction of the time it would take with traditional methods. Because of some not yet

understood spectral phenomena arising from the diffractive properties of the DMD, it may

be better to construct the microscope as we have, shown in Figure 2.12, where instead of

implementing the measurement vectors by patterning light coming from the scene, the DMD

structures laser light sent to illuminate the scene, which is totally mathematically equivalent.
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Figure 2.7 : Visible light view of the graphite flake on silicon substrate to be imaged via the
Raman effect. The resolution is n = 33× 33
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Figure 2.8 : Raman image recovered from simulated compressive measurements for some
values of δ = m/n.
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Figure 2.9 : Time for Rec PC to recover solution x∗ as a function of 1 - δ where δ is the
subsampling ratio. The dependence is non-linear.
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Figure 2.10 : Laser-illuminated compressive sensing experimental setup

AF Target Bars, n = 128× 128 AF Target Bars, n = 256× 256

Figure 2.11 : Images of the smallest target on the AF Test Target 1951-A. The bars are
2.2µm wide. Images taken with 100x/.9NA Zeiss EC Epiplan/Neofluoar lens. Small field of
view, high magnification.
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Figure 2.12 : An alternative laser-illuminated compressive sensing experimental setup
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Studer, et al. [29], employ essentially the same setup for fluorescence microscopy for biology.
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Chapter 3

Circulant Matrices for Compressive Imaging

In this chapter we explore the use of circulant matrices for imaging. By employing measure-

ment matrices Φ whose m rows are taken from an n× n circulant or block-circulant matrix

we will denote Φ◦. We will define a circulant matrix mathematically, explain their utility,

and show how circulant matrices can result in a more versatile, efficient imaging system.

Much of this material will also serve as an introduction for Chapter 4. The work presented

in Chapter 4 was motivated by the results of our imaging experiments presented in this

chapter.

3.1 Theory of circulant matrices for imaging

3.1.1 Properties of circulant matrices

Circulant matrices “underpin elementary harmonic analysis” (Aldrovandi, 2001 [30]) because

of their special relationship to the Fourier transform. This relationship enables us to more

carefully design our measurement matrices, but maintain a fast matrix-vector multiply in

the form of the Fourier transform. To see why, let us explicitly write a circulant matrix.

A circulant matrix is a matrix C ∈ Rn×n with entries ti ∈ R, i = 0, 1, · · · , n − 1 such
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that

C =



t0 tn−1 tn−2 · · · t1

t1 t0 tn−1 · · · t2

t2 t1 t0 · · · t3
...

...
...

. . .
...

tn−1 tn−2 tn−3 · · · t0


. (3.1)

Such a matrix is also sometimes referred to as a convolution matrix. To see why, consider

c = (t0, tn−1, . . . , t1)

so that c ∈ Rn . Define the (circular) convolution operator for vectors a, b ∈ Rn to be

(a ∗ b)k =
n−1∑
i=0

aibk−i, k = 0, 1, . . . , n− 1 (3.2)

then we see that for x ∈ Rn

Cx = c ∗ x (3.3)

This fact allows a fast matrix-vector multiply on a binary computer via the fast Fourier

transform (FFT). Let F ∈ Rn×n be the Fourier transform matrix

Fjl =
1√
n
e 2πi (j−1)(l−1)/n (j, l = 1, 2, . . . , n).

Now apply the identity I = F−1F to the right hand side of Equation 3.3 and use the

convolution rule for the Fourier transform to obtain
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Cx = c ∗ x

= F−1F (c ∗ x)

= F−1(Fc)(Fx)

= F−1DFx

where D = diag(λ1, λ2, . . . , λn) = diag(λ) is not only the Fourier transform of the vector c,

but also the eigenvectors of the matrix C, which reveals one more remarkable property of

circulant matrices, namely they are diagonalized by the Fourier transform, or, equivalently,

the eigenvectors of a circulant matrix are the columns of the Fourier matrix, F . For more

details see [30–32]. For an interesting application to machine multiplication for two numbers

with arbitrary digits and precision, see Knuth, 1981 [33].

So, the utility of circulant matrices for compressive sensing should now be clear. All we

need to do is define a seed vector c, compute its Fourier transform which gives us λ, and

perform two FFTs modulated by the entries of λ. Thus, the computation of the matrix-vector

multiply Cx will not take O(n2) operations, but instead O(n log(n)) operations. Even just

for n = 128×128 = 16384, the resolution of the images we present below, we see a substantial

decrease in the number of operations since n2 ≈ 2.7 × 108 and n log(n) ≈ 2.3 × 105, three

orders of magnitude difference. This savings is essential for an efficient recovery algorithm.

3.2 Imaging with Partial Circulant Measurement Matrices

In this section we follow the structure of Chapter 1 and introduce the imaging system before

diving too deeply into the mathematics. The advantage we gain from circulants for imaging

is that we may pattern four copies of the first row, or seed vector, ϕ(1), of the measurement
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Figure 3.1 : ϕ(1) ∈ R1024 reshaped to 2D. White squares represent ϕ
(1)
k = 1, black squares

represent ϕ
(1)
k = 0, k = 1, . . . , n.

matrix Φ onto an optical plate. An n = 32 × 32 example of ϕ(1) is shown in Figure 3.1.

By shifting the plate, we generate rows of a block circulant matrix, to be explained in more

detail below.

3.2.1 Imaging Setup

The imaging setup is identical to those introduced in the previous chapters, except now

instead of the DMD directing light towards or away from a photodetector via reflection, we

have a optical plate patterned with a mask to either allow the light to pass through or block

light from a pixel. This corresponds to ϕij ∈ {1, 0}, again with a 1 being represented by

white in Figures 3.1 and 3.3, and furthermore, as before, ϕij = 1 is an element that allows

light to pass to the detector, and ϕij = 0 is an element that blocks light.

On a single optical plate we pattern four copies of ϕ(1) to make a 2N ×2N pixel grid. By

overlaying an N ×N selection mask, shown in dashed green in Figure 3.2, we can generate

all n measurement vectors by moving the selection mask. Each selected N × N square

corresponds to a row of Φ◦, as illustrated in Figure 3.2. In practice, we would not actually

move the selection mask since this would also entail moving the photodetector. Instead we
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move the optical plate itself, as illustrated in Figure 3.3.

ϕ(1) ϕ(14) ϕ(32)

Figure 3.2 : Four copies of the seed vector ϕ(1) patterned onto an optical plate. By shifting
a selection mask (represented by the red box) to select one measurement vector at a time,
we generate, or ‘select,’ measurement basis vectors from Φ◦, reshaped to 32× 32.

We define

Ω ⊆ {0, 1, . . . , N − 1} × {0, 1, . . . , N − 1} = Ω◦ (3.4)

to represent the number of column shifts and row shifts of the optical plate used to acquire

the measurements y. If we acquire m measurements yi =
〈
ϕ(i), x

〉
, then |Ω| = m. There are

four different methods of creating Ω that we explore in this work,

1. Sequential: Starting with the selection mask in the lower left corner, shift the selection

mask one row at a time, N − 1 times. Then shift by one column and again perform

N − 1 row shifts. Repeat until m unique regions are selected by the selection mask.

This is illustrated in Figure 3.2.

2. Box: Do an equal number (≈ d
√
m e) of row and column shifts.

3. Random: Select m ωi ∈ Ω◦ at random.
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column
shift

row
shift

photodetector

L1
L2

column
shift

row
shift

photodetector

L1
L2

Figure 3.3 : By shifting one row or column of the mask at a time, we can generate all
n = N × N rows of a block circulant matrix Φ◦. The optical system is identical to the
DMD-based setup, where a lens L2 focuses an image of the scene, represented by the arrow,
onto the mask. The light that allows to pass, corresponding to an ‘on’ pixel, or ϕij = 1, is
collected by the lens L1 and directed towards the photodetector for measurement.
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4. Random Walk: Restrict the plate to shift one row or column at a time, but take the

step at random. The result is a random walk. At this time we do not optimize for

self-crossings and require that m unique points are generated isntead of m steps taken.

3.2.2 Formally Describing How to Build Φ from Φ◦

Recall the restriction operator RΩ from Section 1.3 that selects the rows indexed by the set

Ω, for example if Ω = {1, 2} then

RΩ A = RΩ



a11 a12 · · · a14

a21 a22 · · · a24

...
...

. . .
...

a41 a42 · · · a44


= RΩ



a(1)

a(2)

a(3)

a(4)


=

a(1)

a(2)

 . (3.5)

Thus, we can compactly write building our measurement matrix Φ ∈ Rm×n from a circulant

matrix Φ◦ ∈ Rn×n as

Φ = RΩ Φ◦ . (3.6)

In our application where Ω corresponds to coordinates of row and column shifts of the

optical plate, we cannot directly apply RΩ as above. Here instead the coordinates in Ω define

which row of the block circulant matrix Φ◦ will be taken. To see how this works, let us write

the matrix

M =



a b c a b c

e f g e f g

h i j h i j

a b c a b c

e f g e f g

h i j h i j


, (3.7)
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a 3× 3 analogue of the pattern on the optical plate. In this toy example, then,

ϕ(1) =


a b c

e f g

h i j

 ,

which we have indicated by coloring it red in Equation 3.8. Of course ω1 = (0, 0), no shifts.

If we implement the sequential method beginning with a column shift, the selection mask

would next select the red elements,

M =



a b c a b c

e f g e f g

h i j h i j

a b c a b c

e f g e f g

h i j h i j


, (3.8)

meaning

ϕ(2) =


b c a

f g e

i j h


and ω2 = (0, 1). Continuing on we have

ϕ(3) =


c a b

g e f

j h i

 .
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If we want to reshape these as rows of Φ to implement y = Φx we would have

Φ =


a b c e f g h i j

b c a f g e i j h

c a b g e f j h i

 .

Define

α =


a b c

b c a

c a b

 , β =


e f g

f g e

g e f

 , and γ =


h i j

i j h

j h i


Then

Φ =

[
α β γ

]
Continuing like this we can write the matrix of all reshaped measurement vectors generated

by such shifts as

Φ◦ =


α β γ

γ α β

γ β α

 . (3.9)

Just as C was called a convolution matrix in 1D, this matrix Φ◦ is a 2D convolution matrix.

Φ◦ is not circulant as with 1D, but block circulant. We still have

Φ◦ x = F−1DFx

as discussed above, however now F and F−1 are the 2D Fourier and inverse Fourier transform

[34].
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Sequetial Box

Random Path Random

Figure 3.4 : Filled points in these plots indicate the location of the selection mask for
individual measurements in terms of row and column shifts. Thus, there are more row shifts
than column shifts for the sequential method and an equal number of row and column shifts
for the box method. The random path shows some structure since the mask is only allowed to
step one row or column shift to generate the next measurement basis vector in the sequence,
and random is just that.
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3.3 Imaging Results

In this section we show results from imaging with each of those four methods. Our imaging

system is the same as in Section 1.3, except the illumination source is different. We use a

broadband lamp here. The Hamamatsu detector is the same. We use the digital micromirror

device (DMD) to simulate the mask motions as a proof-of-concept for this imaging scheme.

In order to recover an image from the measurements y = Φx, we use the Rec PC (PC

stands for ‘partial circulant’) algorithm of Yin, et al., [28]. Essentially it is the same as

TVAL3, but with some modification, most notably to accommodate the circulant measure-

ment matrices. One other difference is it offers an explicit handling of both total variation

minimization and `1 minimization, along with the usual fidelity constraint. Rec PC finds x∗

such that

(Rec PC) x∗ = min
x

α
n∑
i=1

‖Dix‖+
µ

2
‖Φx− y‖2. (3.10)

For the images below, we set α = 10−2 and µ = 1. Again, the operator Di ∈ R2×n is a

discrete gradient operator.

As shown in Figure 3.5, random Ω outperforms the sequential one. Furthermore, on

comparison of all four methods introduced here, the relative error, defined as

Relative Error =
‖x∗δ=1 − x∗δ‖2

2

‖x∗δ=1‖2
2

, (3.11)

where x∗δ=1 is the solution when m = n, or δ = 1, declines equally quickly for both random

and random walk, converging nonlinearly, while sequential and box converge approximately

linearly with increasing δ. Furthermore, it appears that the computational problem (Rec PC)

in Equation 3.10 is more difficult for box or sequential patterns than the randomized patterns

since the algorithm takes longer to converge in these cases, as shown in Figure 3.7.
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Figure 3.5 : Difference between taking measurement vectors from Φ◦ sequentially (left col-
umn) and according to a random path (right column) for a few subsampling ratios. Note
the reconstruction with random path measurement vectors is relatively high quality even at
a very low subsampling ratio δ. Data acquired by Lina Xu.
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Figure 3.6 : Relative mean square error (normalized squared difference between reconstructed
image for a given δ and the one reconstructed with δ = 1) for the four methods of generating
the measurement basis Φ

Figure 3.7 : Time to solve the underlying optimization problem and recover an image for
various undersampling ratios, δ, for the four methods of generating the measurement basis
Φ
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3.4 Conclusion and Discussion

In this chapter we have demonstrated the feasibility and utility of circulant matrices for

imaging. Apparently, when the measurement vectors are chosen in a sequential fashion,

the recovery problem is more difficult than if the measurement vectors are chosen with an

element of randomness. We may be tempted to generalize this phenomenon and say that

in all cases, a sequentially-built Φ results in worse recovery than randomly-generated Φ.

However results in Chapter 4 suggest this is not the case.

The dependence on shift type we see here may be due to the fact that our figure of

merit is the magnitude of the derivative, the total variation. When we minimize a cost

function that includes total variation, we are asking the recovery algorithm to maximize

piecewise constancy. Thus, we acquire more information with a new measurement only

if the measurement vector is not probing the same piecewise constant areas. By shifting

sequentially, we probe the same piecewise constant area with the same set of measurement

vector pixels ϕ
(i)
jk = 1, and thus acquiring less new information per measurement for most

values of δ. The results shown in the next chapter support this claim.
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Chapter 4

Experimental Investigation of Subsampled Circulant

Matrices for Compressive Sensing

As we saw in the previous chapter, there is a marked difference in signal recovery when the

measurement matrix Φ is subsampled via a restriction operator RΩ where the index set Ω is

chosen either randomly or sequentially. However in that chapter, we utilized a reconstruction

algorithm based on total-variation (TV) minimization coupled with the usual least-squares

condition. That sequentially-built Φ gather less information per measurement for the first

measurements, and thus require more measurements for commensurate performance with

randomly-built Φ is one possible and quite plausible explanation for this behavior. Plausible

because TV minimization finds images with the largest possible regions of small derivative,

so it favors piecewise constancy. An intuitive argument is that if a set of measurement

vectors sample identical regions of near-constant light intensity from a scene, then it makes

sense that the measurements acquired would be somewhat redundant.

If this were the end of the story, then for `1 minimization, which we reiterate serves as a

proxy for `0 minimization, with strict equality constraints, we might expect that reconstruc-

tion would not be sensitive to how we build Φ. In this chapter we show results that defy

that expectation. Furthermore these results suggest that the powerful precise undersampling

theorems proposed, developed, and derived for gaussian random measurement matrices by

Donoho and Tanner in a series of papers, [37–43] apply to partial circulant measurement

matrices as well.

Our results indicate that partial circulant or partial block circulant matrices might well
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belong to what Donoho and Tanner call the universality class of gaussian matrices for phase

transitions with respect to signal recovery, or, as we will see shortly, phase transitions in

the number of faces of certain polytopes after projection by a measurement matrix ϕ. These

results show, perhaps surprisingly, that indeed, as Yin, et al., posited and demonstrated for

a few test cases [28], partial circulant matrices, with entries taken from {0, 1} no less, are as

effective as Gaussian random measurement matrices. In the following we will be considering

if, for a set of measurements y = Φx, the underlying signal x can be exactly recovered via

alternate regularization techniques. We will define undersampling phase space as

(δ, ρ) ∈ [0, 1]2,

where

δ =
m

n
, and ρ =

k

m
.

Here k is the number of nonzeros in the vector x, or ‖x‖0 = k.

To close the introduction to this Chapter, we forward the following two ‘research chal-

lenges’ laid out by Donoho and Tanner [37],

“Characterize universality classes of Gaussian phase transitions. We have shown

that many ‘random’ matrix ensembles yield phase transitions matching those of

Gaussian matrices. Characterize the precise universality class of such matrices.”

Not only do our experiments have a clear practical value, but the experiments we report

here suggest that most of the partial circulant measurement matrices with seed vectors

ϕ(1) ∈ {0, 1} in equal number follow the same phase transition in probability of success as

the Gaussian measurement matrices as reported in the series of work by Donoho and Tanner.

However we have found evidence suggesting that not all constructions yield Gaussian-like

phase transitions.
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When we built partial block circulant matrices as with a selection mask moving over

a patterned optical plate in a sequential fashion, as explained in Section 3.2.2, and n is a

perfect square such that n = 2w, where w ∈ Z+, we see degradations in performance for three

specific values of δ that arise for two different w we tested, w = 10, and w = 8. Thus, we may

have found a candidate counterexample to gaussian measurement matrices. Investigation of

this counterexample could yield insight into the connection between linear programming and

polytope geometry. Perhaps we are seeing evidence that would address the second research

challenge from [37],

“Discover new transitions for (LP) and (BP)∗. Many but not all matrix ensem-

bles yield phase transitions matching those of Gaussian matrices. Discover more

examples which do not, and which are also interesting matrix ensembles, either

because the phase transition is better or because the matrix is explicit and de-

terministic”

Before we show our results, we introduce the convex programming problems we solve,

the linear program (LP) and basis pursuit (BP). These problems are just two alternative

methods of regularizing the problem of solving x in y = Φx. We also present some of the

basic facts and concepts from polytope geometry. With that background in order, we present

the main theoretical result from about seven years worth of work by Donoho and Tanner,

and discuss how that result, which has no explicit connection to sparse recovery, can be

used to predict the success rate for sparse recovery based on the properties of the choice of

measurement matrix.

∗Donoho and Tanner use the problem code ‘(P1)’ instead of (BP).
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4.1 Background

4.1.1 Linear Programming

LP stands for the linear program, which is to find an x∗ such that

x∗ = min 1Tx subject to


y = Φx

x ≥ 0

(4.1)

The basis pursuit problem (BP) is, find x∗ such that

x∗ = min ‖x‖1 subject to y = Φx. (4.2)

Clearly LP is just BP with the additional constraint that all entries of x be nonnegative.

What began as a curiosity into whether circulant matrices indeed yield Gaussian phase

transitions for these problems may indeed meet both criteria of Donoho and Tanner’s Chal-

lenge, namely, discover a phase transition that does not match the Gaussian ensemble and

is an interesting ensemble because the matrix is explicit and deterministic.

4.1.2 Polytope Geometry

In order to understand the work of Donoho and Tanner, it is necessary to know only a few

key definitions from convex polytope geometry. Although non-convex polytopes exist, we

have no occasion to consider them here, so all future references to polytopes are understood

to be references to convex polytopes.

A set C ∈ Rn is convex if for any points z1, z2 ∈ C,

tz1 + (1− t)z2 ∈ C, t ∈ [0, 1]
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as well, or in other words, a convex set contains the line segment between any two points in

the set. If we have a set of points S, the convex hull of S is given by

convS = {t1z1 + · · ·+ tkzk : zi ∈ S, ti ≥ 0, i = 1, . . . , k, t1 + . . .+ tk = 1}

c.f. [10]. In words, the convex hull is the minimal surface that encloses all points in the set

S.

A polytope is the convex hull of a finite set of points in Rn . A polytope may also be defined

as a polyhedron that is bounded, though we mention this only for completeness. For a more

detailed and technical description of polytopes, see Ziegler’s Lectures on Polytopes [44] and

Grünbaum’s more advanced Convex Polytopes [45].

The most basic polytope is the standard n-simplex,

T n−1 = {x ∈ Rn : 1Tx ≤ 1, x ≥ 0}. (4.3)

In two dimensions, the simplex is an isosceles triange, and in three dimensions, the simplex

is a tetrahedron.

We also define the crosspolytope as

Cn = {x ∈ Rn :
n∑
i=1

|xi| ≤ 1}. (4.4)

For n = 3, the crosspolytope is the octahedron. Already there are hints of a connection to

(LP) and (BP) [46].

The most essential feature of polytopes we will be concerned with is the number of faces

of dimension k. For a polytope P , we write the number of k-dimensional faces as fk(Q).

f0(Q) is the number of vertices of Q, f1(Q) is the number of edges, f2(Q) the number of
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two-dimensional faces, and so on. If Q = C3, the cross-polytope (Equation 4.4), the convex

body with vertices at the unit vectors ±e1,±e2, and ±e3, we have

C3 =

{
v ∈ R3 : ‖v‖1 =

3∑
i=1

|vi| ≤ 1

}
,

As can be counted in Figure 4.1 the face counts of C3 are

C3 : f0(P ) = 6 (4.5)

f1(P ) = 12 (4.6)

f2(P ) = 8 (4.7)

For short, we refer to a k-dimensional face as a k-face. It is no coincidence that we refer to

the k-sparsity of a signal and a k-face. Indeed, as we will see, the connection is exactly what

enables precise undersampling theorems.

4.1.3 The Connection between Polytope Geometry and Convex Optimization

Donoho and Tanner, 2010 [37], present the following theorem that is purely the result of

combinatorial geometry with no explicit connection to linear programming. We state it here

in full with some paraphrasing and modification of notation and note that in that paper

they cite their own work for the proof [42, 43, 47, 48], which is well beyond the scope of this

paper:

Theorem 4.1

Phase Transition for Face Counts of Gaussian Randomly Projected Polytopes

Let the m× n random matrix A have i.i.d. N(0, 1) Gaussian elements. Consider sequences

of triples (n,m, k) where m = δn, k = ρm, and n → ∞. There are functions ρB(δ;Q) for
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(0,-1,0)
(0,1,0)

(0,0,-1)

(0,0,1)

(1,0,0)

(-1,0,0)

x

y

z

C3

Figure 4.1 : The crosspolytope in three dimensions. There are six vertices, or 0-faces, twelve
line segments, or 1-faces, and eight 2-faces, or what we commonly call a face.
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Q ∈ {T,C} demarcating the phase transitions in face counts

lim
N→∞

fk(AQ)

fk(Q)
=

1, ρ < ρB(δ;Q)

0, ρ > ρB(δ;Q)

Amazingly, these boundaries defined by ρB(δ;Q) also predict the value of ρ where, for a

given δ, gaussian and other types of random matrices transition from successfully recovering

the underlying signal to failure as the number of nonzero elements in the test signal vector,

‖x‖0 = k goes from 0 to m. Thus, if k is either referring to sparsity or k-face, whether or

not ρ = k/m is less than or greater than ρB(δ;Q) will predict whether or not (LP) or (BP)

will recover the underlying signal x.

4.2 Experimental setup

For the images below, we solve 126× 126 separate optimizations for

δ = ρ = (.02 .0275 .035 .0425 . . . .95 .9575),

and generate a new problem for each (δ, ρ) pair for every one of Ntrials trials. Ntrials varies

from diagram to diagram, from 10 to 30. Future work is to standardize Ntrials. For each of

these 126× 126×Ntrials problems we generate a new test vector x and a new measurement

matrix Φ according to the problem parameters (δ, ρ), and what type of problem is being

solved, i.e. basis pursuit or linear program. We test two different methods We count the

solution as success if ‖x∗−x‖∞ < 10−6. The colors on the plots below indicate the percentage

of trials which the solver, CVX [49], succeeded for a given (δ, ρ). We use CVX because all

other solvers tested failed.

In the next section we discuss how, on a large scale, the phase transitions match those
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for gaussian matrices as derived and supported experimentally in [39], but there are subtle

differences and unexpected regions of failure, as well as isolated instances of failure even

below the boundary that in [37] and the other related phase transition work, would be a

region of ‘perfect correspondence’ or perfect recovery because the `1 solution is actually

identical to the `0 solution.

4.3 Phase Diagrams for Select n with Explanations

To reiterate, the purpose of these numerical tests is to see if randomly generated Ω, which

we denote Ωr, outperform sequentially generated Ω, which we denote Ωs. Thus, we build

phase diagrams either with the measurement matrices for each trial generated by Φ◦ = RΩr

or Φ◦ = RΩs . Superimposed on each phase diagram is the curve ρB(δ;Q), with Q = C for

basis pursuit and Q = T for the linear program.

4.3.1 Basis Pursuit Results

First we show results for solving basis pursuit with Ωr and Ωs. Because we have historically

worked with square powers of 2 due to the use of Hadamard-based measurement vectors,

we begin with n = 32 × 32. The result for Ωs is shown in Figure 4.2, and the result for

Ωr is shown in Figure 4.3. It appears that perhaps there is some evidence of diminished

performance with Ωs compared with Ωr. There are three distinct collapses in the phase

frontier, one at small δ, one for δ = .25, and one for δ ≈ .55.

There are also some oscillations in the phase frontier whose origin is unknown. To ensure

that our results were valid, we checked the result for Φ whose elements are each taken i.i.d.

from a Gaussian distribution. The phase diagram is well-documented to not contain those

oscillations. The phase diagram we obtained for Gaussian Φ still shows the oscillations,

shown in Figure 4.4. So, although we don’t know the origin of these, we know we are doing
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Figure 4.2 : (BP) n = 32× 32,Ωs

as well as we can since even the standard Gaussian Φ shows these oscillations.

4.3.2 Linear Program

The next natural question to ask is, “Is this collapsing phase frontier still present when

solving LP?” The answer is yes, for n = 32 × 32. In Figure 4.5, we see that again for

Φ = RΩs Φ◦ there are collapses in the phase frontier at the same locations. However for Ωr
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Figure 4.3 : (BP) n = 32× 32,Ωr
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Figure 4.4 : (BP) n = 32× 32,Φ has Gaussian entries
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Figure 4.5 : (LP) n = 32× 32,Ωs

there are no such collapses, as shown in Figure 4.6. Then the next question we ask is, “Do

we see this behavior at other resolutions?” The answers to that for n = 33×33, n = 31×31,

and n = 30× 30 is no, as shown in Figure 4.7, Figure 4.8, and Figure 4.9 respectively.

However, what about another square power of 2? CVX is too slow to create phase

diagrams for n = 64 × 64, so we try n = 16 × 16. It’s exciting that for this resolution as

well, there are collapses in the phase frontier at two of the same locations as n = 32 × 32,
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Figure 4.6 : (LP) n = 32× 32,Ωr
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Figure 4.7 : (LP) n = 33× 33,Ωs
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Figure 4.8 : (LP) n = 31× 31,Ωs
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Figure 4.9 : (LP) n = 30× 30,Ωs
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Figure 4.10 : (LP) n = 16× 16,Ωs

namely δ = .25 and δ ≈ .55, as shown in Figure 4.10.

Operating on a hunch that this is related to resolutions that are not just square powers of

two, but square powers of any prime number. The immediate test then is n = 27× 27 = 36,

and the result is shown in Figure 4.11. Again we do in fact see a collapse in the phase

frontier, but this time at different, and only two, values of δ.
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Figure 4.11 : (LP) n = 27× 27,Ωs
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4.3.3 Some Coherence Statistics

As illustrated for pixel-array imaging in Chapter 1, Equation 1.4, the ith pixel is the coefficient

on the ith column of Φ, i.e.

y = ϕc1x1 + ϕc2x2 + . . .+ ϕcnxn =
n∑
i=1

ϕcixi. (4.8)

Based on this fact, if columns ϕci of Φ are very similar, it will be difficult to determine the

values of separate pixels xi. A widely used statistic that has connections to the restricted

isometry property (RIP), which says how close the operator Φ is to an isometry, is the

coherence,

µ(Φ) = max
i 6=j

∣∣〈ϕci , ϕcj〉∣∣ . (4.9)

If this value is small, then Φ is more nearly an isometry. According to the theory surrounding

the restricted isometry property, the smaller µ(Φ), the larger ‖x‖0 may be to still recover

x from the underdetermined set of equations y = Φx [50, 51]. Given that coherence is an

indicator of recovery performance, we must investigate whether or not the coherence µ(Φ)

is different for sequentially-built Φ and randomly-built Φ. Indeed we see a difference, but

not as expected, and not a difference that supports the hypothesis that sequentially-built Φ

would perform worse.

To test the coherence of Φ built from these two possibilities, we calculate µ(Φ) explicitly

for increasing values of δ for each case. We do this for three separate resolutions for which we

obtained the phase diagrams above, namely 16× 16, 32× 32, and 33× 33. For each value of

δ in each case, we generate Ntrials = 100 different partial circulant matrices. We calculate

µ(Φ) at twelve different values of δ, evenly spaced from δ = .05 to δ = .9212 for each trial.

Then we find the average of these 100 trials, and plot that along with the standard deviation

(error bars) as shown in Figure 4.12.
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Figure 4.12 : µ(Φ) for various resolutions and for random and sequential methods for a
series of values δ. Perhaps unexpectedly, the coherence for sequential-type Φ is lower than
for random-type, however the deviation from the mean is larger for sequential than for
random.
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Surprisingly we find that the coherence is larger on average for sequential-type partial

circulant matrices than it is for random. The standard deviation, however, is larger with

sequential than it is for random for most values of δ. As expected, the coherence decreases

as n increases. Most importantly, there is no evidence that coherence properties of these

matrices can explain the observed difference in performance as visualized by the collapses in

the phase fronteirs above.

4.4 Discussion and Future Work

With the exception of collapses in the phase frontier as shown for n = 28, 210, and 36, the

phase diagrams essentially match that of the theoretical curve ρB(Q) as introduced in the

theorem of Donoho and Tanner. This suggests that, indeed, partial circulant matrices are

members of the same “universality class” as Gaussian matrices, meaning that there could

exist a provably precise undersampling theorem for partial circulants as well. Then an

immediate, though challenging, future step would be to prove that as n → ∞, the fraction

of successful recovery for a given problem instance is either 1 or 0 with the boundary in phase

space between perfect recovery and failure given by ρB(Q). Secondly, it would be interesting

to know for what other resolutions n do we see collapses in the phase frontier as we did for

those three, n = 28, 210, and 36. Whether or not there are more resolutions for which this

occurs, what is the origin of the collapse?
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Chapter 5

Future Directions and Conclusion

Here we present preliminary data on adaptive sensing, which represents one further step into

incorporating signal processing into an imaging system. This should not be confused with

adaptive optics, the technique in astronomy that uses a laser ‘guide star’ to monitor fluctua-

tions in atmospheric conditions and deformable mirrors to compensate for that [52]. Maybe

some combination of the two is possible, which could result in a very powerful imaging tech-

nique. With adaptive sensing, the adaptivity is not explicitly to account for environmental

conditions, but instead adaptive in the sense that the ith measurement vector ϕ(i) depends on

the outcome of the measurement before it. Of course such a scheme would not be applicable

to measurement systems like CCD array imaging where the measurements are multiplexed

in space and taken all at one time.

Finally, we conclude with some thoughts centered around the idea of building signal

processing into imaging and measurement devices in general, how that can influence the

science that is done with those sensors, and how the two thrusts, the drive to acquire data

for scientific purposes and the drive to find new and powerful mathematics, sustain each other

in this paradigm. Like neurons building up, branching out, finding each other, preparing to

forge powerful new generalizations and analogies, I see the beginning of connections forming

between science and powerful new sensing paradigms including adaptive and compressive

sensing, and probably also using ideas for noise reduction like adaptive optics.
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5.1 Adaptive Sensing

Although it was not emphasized in previous chapters, the measurements were non-adaptive,

that is, the measurement vector ϕ(i) did not depend on yi−1 =
〈
ϕ(i−1), x

〉
. In this section

we report preliminary data on optical adaptive sensing, where the current measurement

vector does in fact depend on the result of the measurement before it. Based on work by

collaborators Indyk, et al., [53] entitled On the Power of Adaptivity in Sparse Recovery, we

built an optical system to initially handle only the simplest case: the 1-sparse case. The

experimental setup is simple: I simply focused a laser down to a single digital micromirror

device (DMD) pixel and ran three different algorithms,

1. Binary Search: A portion of the DMD is either on or off for each iteration. The

result of the current measurement informs the algorithm which portion of the DMD

should be halved next. This continues until the portion of the DMD is only two pixels.

2. i grayscale levels at the ith measurement: Here we take advantage of the property

that the DMD can half-tone (flip on and off quickly) to create grayscale levels inbetween

‘off’ and ‘on’. With each new measurement vector, φ(i), we add one more level of gray

to the measurement system. Thus, if our detector is sensitive up to i levels, we can

determine if the nonzero pixel is in one of i separate areas of the DMD.

3. 22i grayscale levels at the ith measurement: Identical in concept to the i grayscale

levels at the ith measurement, but with more levels. This is of course dependent on the

DMD’s ability to create that many grayscale levels, which as we show below is suspect,

and the detector’s ability to discriminate between that many grayscale levels.

First, let us show the binary search. As explained above, we search for the single non-zero

pixel, as shown in Figure 5.1. With each new measurement vector, we see if the intensity is

the same as for ‘all on’ (the top illustration in Figure 5.1), or if it is zero. If it is zero, as it is
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for the first split-in-half of the DMD, then the portion of the DMD that was ‘off’ is split to

half-on, half-off, and so on. Because it is easy and quick to visualize, and adaptive imaging

may have applications for hyperspectral microscopy and astronomy, we use a spectrometer to

acquire the result yi =
〈
φ(i), x

〉
. We simply take the maximum reading of the spectrometer,

or mathematically,

yi = ‖yij‖∞, j = 1, 2, . . . , nspec,

where nspec is the spectrometer resolution. With the laser focused to the point above, we

iterate through all the patterns in Figure 5.2 until we are down to only two pixels off or on.

Since each measurement splits the DMD in half, it takes m = log2 n measurements to find

the ‘on’ pixel.

measurement index i Expected Relative Intensity Measured Relative Intensity
0 1.000 1.000
1 0.000 0.091
2 0.500 0.378
3 0.333 0.155
4 0.500 0.449

Table 5.1 : Table showing expected and actual measurement values for the ith measurement
with the i gray levels scheme, taken as the maximum of the peak of a spectrometer reading.

The illustration of the i-grayscale levels for the ith measurement with the 22i gray levels

scheme is shown in Figure 5.3. In Table 5.1 we show the result of the ith measurement.

measurement index i Expected Relative Intensity Measured Relative Intensity
0 1.000 1.000
1 1.000 1.000
2 0.333 0.290
3 0.600 0.579

Table 5.2 : Table showing expected and actual measurement values for the ith measurement,
taken as the maximum of the peak of a spectrometer reading.
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...

Figure 5.1 : A series of 1-bit adaptive measurements. An alternative description would be a
binary search, where on each measurement we split the portion of the DMD where the ‘on’
pixel could be and ask ‘Which half of this active space has the ‘on’ pixel?’.
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Figure 5.2 : Sequence of all log2(1024) = 10 32 × 32 binary adaptive measurement vectors.
The 0th measurement vector, where all the mirrors are ‘on’ is omitted.

And finally the 22i grayscale levels for the ith measurement with actual measurement

results shown in Table 5.2. The illustration of the corresponding DMD patterns we displayed

is shown in Figure 5.4.

The measurements are not totally divergent from their expected values, however it does

raise questions about whether the DMD/spectrometer combination is suitable for this appli-

cation. Indeed, the grayscale functioning of the DMD is primarily for projection screens to

project sequences of pictures that look like they are moving realistically to human beings. Of

course, just the production of motion itself is an illusion, and human beings don’t care that

darker regions be exactly 30% darker than the brightest region—only the relative bright-

nesses of scenes matter. In that spirit, Figure 5.5 shows a series of 64 separate grayscale

levels that we had the DMD implement along with the actual reading at the spectrometer

while the DMD was displaying that grey level.

The graph shows that there may be only eight distinct gray levels the DMD can achieve.

Of course before the gray-level adaptivity can be extensively developed, this phenomenon
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Figure 5.3 : Sequence of all 4 8× 8 binary adaptive measurement vectors. The 0th measure-
ment vector, where all the mirrors are ‘on’ is omitted. Theoretically m ≈

√
log2 n, however

with only n = 64, we do not achieve this dramatic of an improvement.

Figure 5.4 : Sequence of all log2(log2 1024) = 3 8×8, 22i grayscale levels for the ith measure-
ment adaptive measurement vectors. The 0th measurement vector, where all the mirrors are
‘on’ is omitted.
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Figure 5.5 : Results from sending 64 different gray levels for the DMD to display along with
the actual measurement recorded at the DMD. We quantified the spectrometer reading by
‘sum’ and ‘max’, ‘sum’ meaning we summed over all wavelength bins and divided by the
number of pixels, and for ‘max’ we took the maximum value over all wavelength bins as we
did for the measurements presented in the rest of the chapter.
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needs to be understood and corrected for, if necessary.

5.2 Conclusion

This thesis itself weaved through signal processing, the cutting edge in imaging technology,

microscopy and hyperspectral microscopy, and discrete geometry with connections to con-

vex programming. Beginning with some basic notation, a simple example of copmressive

imaging, and some intuition into the (not really) magic of compressive sensing, we tran-

sitioned into discussing more complex imaging systems, namely hyperspectral microscopy

systems. In an effort to design and build a better imaging system, we encountered some

interesting behavior, namely that the sequentially built partial circulant sensing matrices

underperformed compared with randomly built partial circulant sensing matrices. By ap-

plying scientific methods to dig deeper into whether this performance gap was isolated to

total variation (TV) minimization problem, we found suggestive evidence that said indeed it

was isolated to TV minimization. However, that investigation itself led to new observations

with attendant new questions, including, “Why are there collapses in the phase frontier for

n = 28, 210, and 36?” Also, “Why is the coherence for randomly built measurement matrices,

Φ, larger than that for sequentially built Φ?” And finally, the big question, “Does the same

precise undersampling theorem that holds for random Gaussian sensing matrices also hold

for partial circulant sensing matrices?”

It is my firm belief that this is a pattern that will repeat itself. The idea that how

we acquire data can more efficiently lead to models of the data is a powerful one. When

researchers outside of information theory, statistics, and mathematics begin to apply these

theories to their own problems, they will see compressive sensing and sparse recovery through

their own nuanced lens. The result will be a more parsimonious worldview where information

and physical models are less and less distinguishable.
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