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ABSTRACT

Mapping a Dataflow Programming Model onto Heterogeneous Architectures

by

Alina Gabriela Sbirlea

This thesis describes and evaluates how extending Intel’s Concurrent Collections

(CnC) programming model can address the problem of hybrid programming with high

performance and low energy consumption, while retaining the ease of use of data-flow

programming.

The CnC model is a declarative, dynamic light-weight task based parallel pro-

gramming model and is implicitly deterministic by enforcing the single assignment

rule. These properties ensure that problems are modelled in an intuitive way. CnC

offers a separation of concerns by allowing algorithms to be expressed as a two stage

process: first by decomposing a problem into components and specifying how compo-

nents interact with each other, and second by providing an implementation for each

component. By facilitating the separation between a domain expert, who can provide

an accurate problem specification at a high level, and a tuning expert, who can tune

the individual components for better performance, we ensure that tuning and future

development, such as replacement of a subcomponent with a more efficient algorithm,

become straightforward.

A recent trend in mainstream desktop systems is the use of graphics processor

units (GPUs) to obtain order-of-magnitude performance improvements relative to

general-purpose CPUs. In addition, the use of FPGAs has seen a significant increase



for applications that can take advantage of such dedicated hardware. We see that

computing is evolving from using many core CPUs to “co-processing” on the CPU,

GPU and FPGA, however hybrid programming models that support the interaction

between multiple heterogeneous components are not widely accessible to mainstream

programmers and domain experts who have a real need for such resources.

We propose a C-based implementation of the CnC model for enabling parallelism

across heterogeneous processor components in a flexible way, with high resource uti-

lization and high programmability. We use the task-parallel HabaneroC language

(HC) as the platform for implementing CnC-HabaneroC (CnC-HC), a language also

used to implement the computation steps in CnC-HC, for interaction with GPU or

FPGA steps and which offers the desired flexibility and extensibility of interacting

with any other C based language.

First, we extend the CnC model with tag functions and ranges to enable automatic

code generation of high level operations for inter-task communication. This improves

programmability and also makes the code more analysable, opening the door for

future optimizations. Secondly, we introduce a way to specify steps that are data

parallel and thus are fit to execute on the GPU, and the notion of task affinity, a

tuning annotation in the specification language. Affinity is used by the runtime during

scheduling and can be fine-tuned based on application needs to achieve better (faster,

lower power, etc.) results. Thirdly, we introduce and develop a novel, data-driven

runtime for the CnC model, using HabaneroC (HC) as a base language. In addition, we

also create an implementation of the previous runtime approach and conduct a study

to compare the performance. Next, we expand the HabaneroC dynamic work-stealing

runtime to allow cross-device stealing based on task affinity. Cross-device dynamic

work-stealing is used to achieve load balancing across heterogeneous platforms for

improved performance. Finally, we implement and use a series of benchmarks for

testing the model in different scenarios and show that our proposed approach can yield

significant performance benefits and low power usage when using a hybrid execution.
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Chapter 1

Introduction

The computer industry is at a major inflection point in its hardware roadmap due to

the end of a decades-long trend of exponentially increasing clock frequencies. Future

hardware is expected to be built using homogeneous and heterogeneous many-core

processors with order of hundreds of cores per chip and complex architectures de-

signed to target the challenges of concurrency, fault tolerance, energy efficiency and

resilience. The current trend is to develop massively multicore architectures that can

be specialized to satisfy the energy constraint. These radical changes in hardware

architectures have already begun to impact software, as the burden shifts to the pro-

grammer to make parallelism explicit. Old views have already begun to change, from

finding ways to map software onto complex hardware, to designing hardware based

on software needs. These software challenges are further compounded by the need

to enable parallelism in mainstream workloads and application domains that have

traditionally not had to employ parallelism in the past. Despite over four decades of

research, few high-level parallel programming models are available to domain experts

who are not at the same time experts in parallelism. Fortunately, this situation is

starting to change. Frameworks such as Map-Reduce [3] successfully exploit implicit

parallelism on distributed systems and have also been extended to heterogeneous plat-

forms such as GPU [4] and FPGA [5]; however, have a restricted programming model.

Other models, such as CUDA [6] and OpenCL [7], provide a restricted programming

model to the users of GPU accelerators, but also expose a significant amount of
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hardware details.

A recent trend in mainstream desktop systems is the use of graphics processor units

(GPUs) to obtain order-of-magnitude performance improvements relative to general-

purpose CPUs. In addition, FPGAs have seen increasing use by applications that can

take advantage of such dedicated hardware. We see that computing is evolving from

using many core CPUs to “co-processing” on the CPU, GPU and FPGA. However,

hybrid programming models that support the interaction between the two are not

widely accessible to mainstream programmers and domain experts who have a real

need for such resources.

At the other end of the spectrum, there are coordination languages such as In-

tel’s Concurrent Collections∗ (CnC) [9] which are explicitly designed to be implicitly

parallel and easy to use by programmers with no knowledge of parallel programming.

CnC is a declarative coordination language that can express any dependency graph

through combinations of task and data parallelism. CnC computations are built us-

ing steps that are related by data and control dependences. These are specified in a

straight forward manner in a meta language that can describe a CnC graph. CnC is

provably deterministic [9]. While this restricts CnC’s scope, it is more general than

other deterministic programming models including dataflow and stream-processing,

and can incorporate static and dynamic forms of task, data, loop, pipeline, and tree

parallelism. All of these properties make the CnC model a very good choice for a

domain expert, but what it lacks is the ability to target emerging heterogeneous ar-

chitectures. To address this problem, we first worked on extending the model for

execution on the GPU [1], creating the first such extension. This was developed by

extending a variant of Concurrent Collections[9] built on top of HabaneroJava (HJ)

∗An earlier version of CnC was called TStreams [8].
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[10, 11] programming model with promising results. However, since the model was

implemented in a high-level language such as Java, we needed to make the calls to

native code through an additional layer (the Java native interface -JNI), which added

an additional overhead of copying data and had limited interoperability.

In this work, we show how to extend the CnC programming model to address the

problem of hybrid programming while retaining the ease of programming introduced

by CnC and enabling host-device interaction. To ensure that we can express paral-

lelism in an easy way and also allow users of the CnC model to express parallelism

within a computational step if they so desire, we have chosen a research parallel

programming language that is based on C, called HabaneroC (HC). We name this

C-based approach Concurrent Collections-HabaneroC (CnC-HC). We have chosen the

C language due to past experience with a Java approach, having as a target obtaining

the best possible performance, a goal which implied using a language that is low level

enough but provide this, but still reasonable to program in. In addition, we wanted to

target heterogeneous architectures for which programs are written in languages that

can interact easily with the C language. We use HC as the language for implementing

the CnC-HC runtime, the CnC computational steps as well as for the interaction with

CUDA GPU steps.

The first extension we will present is the introduction of tag functions and ranges

in the the CnC graph file specifications. Tag functions specify the relation between

the tag that uniquely identifies a step and the tags identifying the data items that

the step is either reading or writing, while ranges define contiguous sets of items

read or written by a step. These extensions enables the compiler to automatically

generate high level operations for inter-task communication, more precisely, the auto-

generation of the calls to the functions that read the data items (Get functions) within
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a computational step. It also enables the generation of the function calls that write

data items (Put functions) and that spawn of other steps, yet, as these can be optional

depending on each step instance, the generated code will be considered helper code

rather than a requirement. C being a low level language, the ability to have much of

the interaction code generated automatically, improves programmability and ensures

ease of use. This addition of tag functions also makes the code more analysable

opening the path for research topics: static analysis of the graph for guarantees such

as graph termination, item garbage collection or graph correctness (e.g., there is a

path from the steps created by the environment to all steps specified in the graph;

all the data read by the environment after the graph execution will be available as it

was created during the run).

The second aspect we present is a novel, data-driven runtime for the CnC model,

developed in a C framework, using HabaneroC (HC). We also create an implementa-

tion of the previous runtime approach and conduct a study between the two runtimes

to determine the situations when each performs best. The result can be dependent

on the application but also on the scheduling policies defined by HabaneroC, which

we shall detail these throughout this thesis.

The third aspect we will tackle is the extension of CnC-HC for heterogeneous

architectures. To achieve this, we introduce a way to specify steps that are data

parallel and thus are fit to execute on the GPU, and the notion of task affinity, a

tuning annotation which offers hints on where a computational step should be run.

Affinities are used by the runtime during scheduling and can be fine-tuned based on

application needs to achieve better (faster, lower power, etc.) results. Further, we

expand the HabaneroC dynamic work-stealing runtime to allow cross-device stealing

based on task affinity. Cross-device dynamic work-stealing is used to achieve load
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balancing across heterogeneous platforms for improved performance.

Finally, in our experimental results, we use a series of a series of benchmarks to

show that, by using the new CnC-HC, we can match or exceed the performance of

Intel’s CnC and OpenMP, as well as yield a significant increase in performance and

decrease in power consumption when using CnC-HC for a hybrid CPU/GPU/FPGA

execution.

1.1 Motivation

Nowadays the roadmaps of hardware and software seem to be on a collision course.

The direction of hardware design is to develop a highly customizable hardware whose

parameters can be altered based on application needs. For this to be possible, a lot of

work is necessary on the application front to abstract the right principles and identify

the relevant primitives that characterize a domain.

Our ongoing work in the NSF Expeditions Center for Domain Specific Computing

(CDSC) project [12, 13] targets precisely this problem and motivates this thesis.

The project aims to determine what hardware features are most useful for a given

domain. The high-level idea is that customization is a two-stage process. One involves

configuring for the domain and one for a particular application. The configurations

that this project is attempting to select for a specific domain involve the instruction

window, cache/icache locality, register number, register file organization, allocation

of interconnect bus resources. Possible hardware configurations for the customizable

platform developed in this project include turning on/off some of the cores for energy

efficiency. The work we present here is a first step in achieving our long-term goal of

learning from software when developing the appropriate hardware architecture and

vice-versa, also known as hardware-software co-design. This first step involves running
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sample applications for the medical imaging domain in a flexible modelling language

and using it to study the computation and communication in these applications.

In this thesis, we propose using CnC for mapping such applications onto heteroge-

neous architectures, more precisely we propose using CnC as a flexible programming

model that can be used by domain experts for such a customizable hardware platform.

The Concurrent Collections programming model was chosen for its ease of use for do-

main experts and the mainstream programmer, who don’t have to worry about low

level details of parallelism. The extensions we will present keep these properties but

target the use of more complex architectures. Work on CnC-HC is further motivated

by the fact that, being a C based language, it is very well suited for heterogeneous

architectures.

My thesis is that a high level data flow model targeted for domain experts can be

and is desirable to be extended for execution on hybrid architectures, with very good

performance results, high programmability and low energy consumption.

1.2 Contributions

The main contributions of this thesis are:

1. introducing tag functions to the CnC model to relate a step’s unique identifier

- the tag - to the data that it reads, writes and other steps it may start,

2. extending a translator for generating appropriate C code, in accordance with

the tag functions specified in the CnC graph file. The generated code performs

read operations (Get), task creation and launching to increase programmability,

3. developing the CnC-HC Restart and Replay runtime, the previous runtime ap-

proach for the CnC model,



7

4. developing the CnC-HC Data Driven runtime, our proposed alternative to 3,

and comparing the two runtimes,

5. adding GPU steps to the CnC-HC model and generating the appropriate C and

most of the CUDA interface code with the CnC runtime and user code,

6. extending the specification language, translator and runtime for CnC to include

an affinity component for GPU and FPGA devices,

7. extending the HC work-stealing runtime to perform cross device work-stealing

based on the affinity metric in order to achieve load balancing of the work across

devices,

8. porting a series of benchmarks to CnC-HC and CnC-HC-Hybrid.

The rest of this thesis is organized as follows. Chapter 2 summarizes the back-

ground and related work. Chapter 3 introduces a new specification language for

CnC-HC. Chapter 4 describes the changes to the tool that interprets the input CnC

graph (the translator) needed to support and enable the language extensions proposed

in Chapter 3 while Chapter 5 presents the runtime developed for CnC-HC. Further

in Chapter 6 we discuss the extensions needs in the graph language and the neces-

sary additions to the translator and runtime for heterogeneous execution. We present

and discuss the experimental results in Chapter 7 and finally conclude the thesis and

outline possible future work in Chapter 8.



8

Chapter 2

Background

In this chapter we present in more detail aspects which will help understand our

work and relate it to other work in the field. First, as this work proposes a parallel

programming model, we shall discuss how it fits into the world of parallel program-

ming models. Secondly, we shall detail the HabaneroC programming model, which

we have chosen as the basis for this work, because it is a general model which express

parallelism in a straight forward manner, because it is a C based language which can

interact easily with languages which address accelerators and also because we were

able to access and modify the runtime to achieve this work’s objectives. Next we de-

scribe the Concurrent Collection programming model, a variant of which this thesis

brings forward, using as a lower level layer HabaneroC. As our work develops exten-

sions for heterogeneous architectures, which include GPUs, and generates CUDA code

for such devices, we next discuss the CUDA programming model. Finally, we shall

discuss other work which extends the Concurrent Collection model for various goals

and also describe other programming models which address the problem of modelling

applications for heterogeneous architectures.

2.1 Parallel programming models

A parallel programming model refers to the means of specifying a program such that

it can be compiled to run simultaneously on multiple execution units. The primary
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ways of classifying parallel programming models are based on the approaches taken

for process interaction and problem decomposition. These classifications are by no

means exhaustive; our aim is not to cover all the models in existence but to highlight

those that are most relevant to this thesis.

Considering process interactions, we can distinguish between shared memory and

message passing or distributed memory models. In the latter category, we briefly

mention MPI [14] and Java RMI [15] as the models most commonly used currently

and focus further on the shared memory models which are more relevant to this

work. In a shared memory model, parallel tasks share a global address space which is

accessed asynchronously when reading and writing data. The model thus requires the

use of synchronization primitives to control concurrent accesses to shared variables,

to ensure correctness and determinism. We detail a few of the representative shared

memory models developed thus far that are most relevant to this work.

At the lowest level, parallelism is expressed by means of threads. For UNIX

systems, a standardized C language threads programming interface has been specified

by the IEEE POSIX 1003.1c standard. Implementations that adhere to this standard

are referred to as POSIX threads, or Pthreads [16]. The routines that are included

in these implementations enable the programmer to manage all the low-level details

of parallel programming, such as thread management and synchronization. However,

not many programmers are trained in all the intricacies of Pthreads, and many models

have been designed to hide the thread management details while still offering effective

means for exploiting parallelism.

One of the best known shared memory parallel programming models is OpenMP

[17, 18]. It is an API (Application Program Interface) implemented for C and Fortran

that encompasses a series of runtime library functions and directives for specifying
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parallel regions, work sharing, synchronization and environment variables [19].

Considering the problem decomposition classification, we distinguish between data

parallelism and task parallelism. Data parallelism is achieved in SIMD, when the

same operations are performed on different pieces of the data. This usually refers

to vector parallelism, done through vector instructions support from the underlying

architecture as well as from the compiler. Examples of data parallel languages include

High Performance Fortran [20] and NESL [21]. Another more recent execution model

for data parallelism can be found in SIMT models for GPU, such as CUDA (see

section 2.4).

Our main interest in this thesis is in task parallel languages, in which different

processors may execute different parts of the computation. In general, a whole com-

putation can be viewed as a work flow, where the nodes contain pieces of computation

and the edges symbolize data communication and synchronization.

In particular, the dynamic light-weight task-based model defines the basic unit of

computation as a task, which may be far smaller than an OS thread, thus enabling

fine grained parallelism. The coarsening is performed dynamically at runtime by

assigning a set of light-weight tasks to each worker thread, depending on the inherent

dependences in the work flow. Some of the better known programming models which

adhere to this task-parallel model are Cilk [22], Intel Threading Building Blocks [23],

Chapel [24], Fortress [25], OpenMP 3.0 [26], X10 [27], HabaneroJava [10] and our

choices for this work, HabaneroC [28] and Concurrent Collections (CnC) [29] [9]. We

have chosen HabaneroC, because it is a C-based language thus low level enough to

allow us to obtain the best possible performance and easy interaction with languages

that address accelerators, while also being a general model which expresses parallelism

in a straight forward manner. CnC adds another level of abstraction through the
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definition of any problem by means of a dependency graph, offering ease of use for

non-expert parallel programmers and enabling the definition of arbitrary task graphs.

2.2 HabaneroC

The HabaneroC (HC) language is a parallel programming model currently being de-

veloped at Rice University in the Habanero Research project. Previous work on Ha-

baneroJava motivated this new C-based approach as a means of designing a language

well suited for homogeneous and heterogeneous processors, in particular the Cus-

tomizable Heterogeneous Platform (CHP) being developed in the NSF Expeditions

Center for Domain-Specific Computing (CDSC) [13], which includes CPUs, GPUs,

and FPGAs.

The two main features of HC we refer to throughout this work, and that we detail

further are:

1. The async and finish constructs which define lightweight dynamic task creation

and termination [30]

2. Hierarchical place trees for locality control [31].

HabaneroC has two basic primitives for the task parallel programming model

borrowed from X10 [27]: async and finish.

The async statement ( async 〈 stmt 〉 or async { stmt1 .. stmtN } ) causes the

parent task to fork a new child task that will execute one or more statements. The

parent task continues executing the statements that follow the async statement and

does not wait for the child task to finish its execution. The finish statement ( finish

〈 stmt 〉 or finish { stmt1 .. stmtN } ) performs a join operation. The task entering

a finish scope will execute all the statements in the finish scope which may spawn
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one or more children. It will then wait for all tasks created in the finish scope to

terminate. The language permits arbitrary level of nesting of async and finish scopes.

The HabaneroC runtime uses a work-stealing scheduler that supports work-first

and help-first policies [30]. In the work-first policy, the current thread will start to

execute a newly spawned task, adding a continuation, representing its parent task,

to its work queue from which other threads can steal it. In the help-first policy,

the worker will make the child task available for stealing and continue executing the

parent task. The work-first policy is good for scenarios when work-stealing is rare,

but it performs poorly in situations when the task continuation encompasses high

parallelism that is not split into tasks, such as a for loop creating tasks using the async

statement. It also has a provable memory bound but can overflow the stack for large

irregular computations. The help-first policy performs well when stealing is frequent,

it uses little stack but the memory usage can be large. Previous work [30] has shown

how the two policies perform in different scenarios and that an adaptive approach

that can switch between the two policies can yield good performance improvement

and efficient stack and memory usage.

For locality, HabaneroC uses Hierarchical Place Trees (HPTs) [31]. HPTs define

hierarchical trees of execution location which are an abstraction for underlying hard-

ware. These places could be cores, groups of cores sharing different levels of cache or

devices such as GPUs or FPGAs. The HC language allows the programmer to spawn

a task explicitly at such a place and the work-stealing runtime is designed to take

advantage of this information and preserve locality.
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2.3 Concurrent Collections

Concurrent Collections (CnC) [9] is a shared memory, dynamic light-weight task-based

parallel programming model. The model can also be described as a macro-dataflow

coordination language as it specifies how steps interact with each other or depend

on each other, separating these dependences into data and control dependences. A

program in the CnC model is defined by a graph describing the dependences between

serial pieces of computation called steps.

A graph specification for any program will be built using three components: steps,

items and tags. These are grouped into collections:

1. a step collection is a group of steps with the same functional behaviour with

respect to their inputs. They are declared using parenthesis and are represented

graphically using circles.

2. an item collection is a group of data items having the same type. They are

declared in the textual representation using brackets and in the graphical rep-

resentation using rectangles.

3. a control collection is a group of tags or keys used to uniquely identify items

and steps within their respective collections, hence the name tag collection is

often used as well. These are declared using angle brackets and are pictured as

triangles.

The Concurrent Collection model enforces a dynamic single assignment for items

added (Put) in an item collection, thus also ensuring that the value that a step will

read (Get) is the same every time (if the item is empty, the Get operation simply

blocks). This property makes the model provably deterministic and race-free [9].
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CnC Flavours Intel CnC Rice CnC-HJ Rice CnC-HC

Language C++ Java C

Single Assignment Enforced -

Gets before Puts

Data Dependent Gets -

Tag Functions - -

Auto-generated Step Stubs

Auto-generated Gets - -

GPU Extensions -

Table 2.1 : Comparison between different implementation flavours of the Concurrent
Collection model

An implementation dependent property is that of dead-lock freedom. Dead-lock can

occur if a step is waiting on an item that is never written, and if the manner this

behaviour is implemented in the runtime involves a blocking operation. The CnC-HC

implementation we present in this thesis is dead-lock free.

The original definition and implementation of the Concurrent Collections model

was done by Intel. The language chosen for the step and runtime implementation in

the Intel release is C++ [32]. A second implementation designed and implemented

in the Habanero group is CnC-HJ which uses HabaneroJava (HJ) [11] for defining

steps, modelling parallelism and ensuring data availability. This thesis presents our

work on CnC-HC which uses HabaneroC as the language for implementing CnC steps

and for interaction between the CnC-HC runtime, CPU steps and device steps.

We list the differences between these three flavours of CnC in the table 2.1. The
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single assignment rule is defined in the specification language of the CnC model, but

it is only enforced in the HJ and HC implementations making these more accurate in

terms of respecting the language specification.

In all flavours of CnC, a translator is used to interpret the graph specification and

generate a series of files that are either used to interact with the runtime or are used

as step stubs or suggestion code, all of these offering help to the programmer. The

Intel CnC implementation also includes an API which allows more experienced users

to bypass the translator.

In all implementations, the calls to the Get functions within a step, that read

data, precede the calls to the Put functions, but this restriction is not imposed in

Intel’s implementation, whereas it is in the Java and C versions. However, this is not

in fact a limitation, as any step executing a sequence of Get-Put-Get-Put operations

can be split into multiple steps, each adhering to the rule of calling Get before Put.

Implementing a source-to-source translator to automate splitting of steps, is a good

opportunity for future research.

A feature which we introduced for the first time in the CnC model is a means to

auto-generate Get functions by introducing tag functions in the graph specification

language. We detail this in Chapter 3. Another aspect relating to this is that of

data-dependent Gets. This means that information from the one of the items read

is used to determine which item is read next. The HC implementation requires that

items read be independent of each other due to the addition of tag functions which we

believe are a good improvement for usability. This restriction can in fact be relaxed

as any step that needs data-dependent Gets can also be split into two or more steps

which do not have this requirement. Splitting a step can be fully automated and is a

subject for future work, as with splitting steps to ensure the Gets-before-Puts rule.
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An extension explored in CnC-HJ and CnC-HC is the ability to execute CnC steps

on GPU devices, while the model manages the data transfers to and from the device.

In addition, we extended the model with a notion of affinity, as a way of specifying

multiple types of device steps and having the ability to achieve load balancing between

CPUs, GPUs and FPGAs. This is described in Chapter 6.

Another flavour currently under development at Rice University is CnC-Python

[33, 34].

2.4 The CUDA programming model

The NVIDIA CUDA programming model is an interface which enables programmers

to access the highly parallel hardware of programmable Graphics Processing Units

(GPUs). Though initially designed for graphics rendering, these GPUs are now being

used for a wide variety of applications, including image and video processing, compu-

tational biology and chemistry, fluid dynamics simulation, CT image reconstruction,

seismic analysis, ray tracing, and much more [35].

CUDA is an extension of the C programming language, with the CUDA runtime

library providing a collection of device memory management, host-device stream syn-

chronization, and execution control functions (among others). The general flow of a

CUDA program consists of the following steps [36], where all allocation and copying

of device memory is controlled explicitly or implicitly by the host using the CUDA

runtime library:

1. CPU initiates a data copy from CPU main memory to GPU memory

2. CPU instructs GPU to start a kernel

3. GPU executes the kernel in parallel and accesses GPU memory
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4. CPU initiates a copy that moves results from GPU memory to CPU main

memory.

CUDA is a data parallel SIMT architecture, in which the same programmer-defined

kernels execute on all launched threads. These threads are launched in batches of

blocks and grids, where blocks are collections of threads and grids are collections of

blocks [1].

2.5 Related work

Previous work was done for extending different aspects of the Concurrent Collections

model. We first worked on developing GPU extensions in the Java flavour of CnC,

thus creating CnC-CUDA and obtaining encouraging results [1]. This was a strong

motivation for dropping the overhead introduced by making native calls from the

Java language and defining steps in a lower level language, more flexible in terms of

communication with devices, while keeping the ease of use introduced by CnC. Other

extensions include obtaining performance through determining streaming patterns

[37].

An active area of research is that of developing programming models to make

full use of a set of heterogeneous hardware resources including one or more of CPUs,

GPUs, FPGAs or PPUs and SPUs in IBM’s Cell processor. Several models have

been developed that attempt to abstract the hardware resources for the user, pro-

vide an easy to use model while achieving better performance than homogeneous

architectures. OpenCL [7] has proposed introducing a standard for heterogeneous

programming, so that programs written using the OpenCL API could run on both

CPUs and GPUs. The standard was implemented by different graphics card vendors

and seems be gaining favour in the community, however, it is a low-level model that
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relies on the programmer to understand low-level hardware details. Another major

drawback that will need to be addressed is the capability of running on different kinds

of GPUs within a program.

There has been extensive work on extending existing languages for hybrid ex-

ecution. Many have proposed using OpenMP-like constructs. StarSs ([38]) is an

example which proposes the use of pragmas to split a program into tasks and define

data dependence requirements. This does not address the usability problem for do-

main experts and it restricts parallelism to forall statements rather than the arbitrary

graphs that CnC can define.

StarPU [39, 40] is a another runtime system designed for hybrid CPU and GPU

execution. It is similar to our work on affinity (Chapter 6) in that a task can be

specified to be “fit” for running on the CPU or GPU (“.where = CORE|CUDA”)

and the choice can be made by runtime systems. In CnC-HC we use a HabaneroC

runtime call to determine the nature of the current thread to decide which code to

run, whereas in StarPU the information is retrieved from a structure making the

device-function associations. StarPU also implements a complex memory model in

order to manage coherence among CPU and device. This is not needed in CnC as

all steps are functional with respect to their inputs and the model is dynamic single

assignment, so the data can only be written once. StarPU has extensions for the GPU

and Cell but does not address FPGAs. On the opposite side, there are systems that

address just CPUs and FPGAs [41], and companies such as Convey [2] which enable

the usage of the C language using a shared memory view for accessing FPGAs. Aside

from addressing multiple architectures, we also focused on offering high usability by

allowing users to specify their algorithm at a high level by means of tasks dependences

and automatically generating most of the code necessary to enable parallelism.
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A less recent programming model is Merge [42], which distinguishes itself by of-

fering a predicate dispatch-based library system for managing and invoking function

variants for different architectures. Merge is a high level language based on map-

reduce, having a compiler and runtime responsible for dynamically selecting the best

function variant depending on the program and the machine it is run on. Merge is

built on top of EXOCHI[43], which allows the available execution units to execute in

the same address space, thus making it easy to involve all of them in the computa-

tion. This facilitates scheduling (only one global scheduler is needed) and cooperation

for Merge. However, in order to use Merge, a new processor/accelerator would need

to support the EXOCHI interface, then to be assigned a unique identifier used for

predicate dispatch and finally implement function variants for it. What is more, the

EXOCHI model has several other drawbacks: it relies on the programmer to ensure

cache coherency, it has specific requirements that limit the set of architectures that

could use the cache coherence mechanism they provide and it makes strong assump-

tions about hardware capabilities (e.g., the existence of a TLB on EXO sequencers).

At the other end of the spectrum we find domain specific languages (DSL), which

tackle the problem of running on heterogeneous hardware by extending a high-level

language like Java. The most recent ones are the DeLite project from Stanford [44, 45]

and the Lime language from IBM Research [46]. These approaches are much more

complex as they need a source-to-source compiler to convert the conventional code

into “native” code (= suited for a particular application) such as C, OpenCL, CUDA

or Verilog and a runtime that can interact with the native libraries generated. Work

done on previous so called domain specific virtual machines (DSVM) like RapidMind

(acquired by Google) or PeakStream (now used in Intel’s Array Building Blocks),

targeted lower level languages such as C and C++, but in a similar way: the com-
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putation would be expressed in a data-parallel manner and compiled for different

architectures.

The DSVM’s and DSLs approach in general is to enable the same code to be com-

piled for different processing units, thus missing on many optimizations and lowering

performance. They can be more restrictive than what this work proposes (they don’t

allow an existing algorithm in a different language to be “plugged-in” the applica-

tion and interact with the rest of the steps, even if that language is supported as a

“native” variant). On the other hand, compared to a multi-variant language such as

Merge, DSVMs certainly offer a significantly simpler programming model. Quilin [47]

is a system which combines the two approaches. It proposes automatic mapping of

applications on heterogeneous architectures by using a training run to collect runtime

profile information and then use this to divide computations within an application

between a CPU and GPU, while also allowing filters to have CPU and GPU hand

coded variants. Their approach yields good performance improvements as well as

reduction in energy consumption. One assumption Quilin makes for determining the

best mapping is that the step’s performance varies linearly with its input, which is not

true for all applications; also, it only targets CPUs and NVIDIA GPUs, restricting

the languages in which a user can hand-code their computation step.

An improvement no other language proposes and that our work brings, is that

CnC introduces another level of abstraction where domain experts will simple write

“this step writes into this item collection” in a simple format:

(this step) -> [ this item collection ], before moving to such language details as

declaring variables, understanding the syntax, etc.. This approach also offers a highly

desirable property: easy maintenance, as previous algorithms or computation steps

can be reused by knowing their behaviour, not the implementation details, and they
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can also be replaced with no effort even by algorithms implemented in other languages

if the application was initially designed as a dependence graph. In addition, none of

the languages presented here can express arbitrary task graphs as CnC, thus offering

more generality than other models.

The approach taken in this work is a mix of some of the best parts from the

languages presented so far. We introduce ranges in an attempt to describe data-

parallel computations, which could map a computation to the GPU transparent to

the user by auto-generating the host-device communication. This feature can limit

performance as the application would not be tuned for the GPU and also limits the

applications that can be written using it to those with data-parallel constructs, yet

it would be easy to write by a programmer, with good speedup compared to the

CPU only run. On the other hand, we also allow multiple variants of the same step

for different architectures and introduce step affinity for different devices in order to

dynamically choose where a step is run based on available implementations, hardware

availability and knowledge of where the step may run faster.

We conclude that this research builds on and improves past work because the

individual tasks in our data-flow programming model can be still expressed in almost

any language (including explicitly parallel languages), providing flexibility and reuse

of the existing algorithms.
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Chapter 3

Graph language extensions for CnC-HC

The CnC model was designed to enable the separation between a domain expert, who

can provide an accurate problem specification at a high level, and a tuning expert,

who can tune the individual components of an application for better performance.

However, in the current high-level definition of a program described by a domain

expert, the provided information on the data flow is rather vague. The data in a CnC

program is grouped in collections, called item collections. The information one can

draw from a CnC specification is from what item collection is a step reading and into

which item collection it is writing. However, there is no means of knowing from that

specification which item it should read so such information wll need to be given also

by the domain expert inside the step code. As a result, the domain expert would have

to get familiar with an API provided by the CnC runtime in order to make accurate

function calls for reading and writing items inside a step.

This work offers an alternative, which removes the need for a domain expert to

learn such implementation details, thus increasing programmability.

We introduce tag functions, a means of accurately specifying the dependences on

specific items belonging to an item collection and between instances of the same or

different steps. In this work, a tag function maps a step’s unique identifier, the control

tag, to the tags (keys) of the items read or written through Get and Put operations

respectively, and control items written that enable other steps. We also introduce a

way to specify ranges of items for item and control collections, by means of two tag
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functions representing the start and end of a range.

These additions to the CnC graph specification provide support for automatic

code generation of Get functions that retrieve the data required by a step - as

well as suggested code for the items written and steps prescribed. What is more,

the addition of tag functions makes the program flow more analysable opening new

research opportunities, while introducing ranges can be used to extend CnC for other

SIMD/SIMT architectures like the GPUs, by allowing parallelism within a step.

The extensions we propose in this work make clearer the separation between

the problem definition and its implementation, ensure an easy way of programming

through code generation and are further motivated by our goal to design CnC to be

mapped onto heterogeneous hardware platforms such as the Customizable Heteroge-

neous Platform (CHP) being developed in the NSF Expeditions Center for Domain-

Specific Computing (CDSC [12] [13]).

3.1 Tag functions

To better understand the notion of tag functions in the context of the CnC graph

let us first look at the simple graph specification example shown in listing 3.1, an

example used in the CDSC project.

In this example, line 1, using angle brackets, declares a tag of type int. In the

classical CnC [9] representation of tag functions, the type can be any user defined

type, which can be detailed as being composed of multiple components. For example,

the declaration on line 1 could also be written as: 〈 1DType reg tag: pos 〉, where

the tag would be of type 1DType, having one component called pos. Similarly more

complex types can be defined such as: 〈 3DType position in 3D: row, col, depth 〉

which declares a type that will have 3 components.
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1 < i n t r e g t ag > ;

2 [ f l o a t ∗∗∗ i nput mat r i c e s ] ;

3 [ f l o a t ∗∗∗ output matr i c e s ] ;

4 <reg tag> : : ( r e g i s t r a t i o n ) ;

5 [ i nput mat r i c e s ] −> ( r e g i s t r a t i o n ) −> [ output matr i c e s ] ;

6 env −> <reg tag >, [ i nput mat r i c e s ] ;

7 env <− [ output matr i c e s ] ;

Listing 3.1: Example 1: CnC graph without tag functions

Lines 2 and 3 declare two item collections, both being 3D matrices of type float.

This means that each item found in either of the item collections will be a matrix

and each such matrix will be uniquely identified by a tag within the item collection.

Following the item collection declarations is a step prescription (line 4). This

is equivalent to saying that when an tag is put in 〈reg tag〉 tag collection, a step

identified by the same tag can start to execute. In the CnC model steps are functional

with respect to their inputs and outputs.

The next line (line 5) defines the producer-consumer relations for the step reg-

istration. We also call these relations “execution relations”. Each instance of the

registration step can read data from the item collection input matrices and can write

data into the item collection output matrices. Both relations have full generality,

meaning the step can read zero, one or more matrices and can also write a variable

number of items as its output.

The last two lines in the graph specification (lines 7 and 8) define the I/O relation

with outer environment, which will be responsible for writing into the input matrices

and reg tag collections and read from the output matrices.
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1 < i n t [ 1 ] r e g t ag > ;

2 [ f l o a t ∗∗∗ i nput mat r i c e s ] ;

3 [ f l o a t ∗∗∗ output matr i c e s ] ;

4 <reg tag> : : ( r e g i s t r a t i o n ) ;

5 [ i nput mat r i c e s : k−1 ] −> ( r e g i s t r a t i o n : k ) −> [

output matr i c e s : k−1 ] ;

6 env −> <reg tag >, [ i nput mat r i c e s ] ;

7 env <− [ output matr i c e s ] ;

Listing 3.2: Example 2: CnC graph with tag functions

Let us now look at the same example with some of the extensions added in this

thesis ( listing 3.2 ).

An addition to the classical definition of a CnC graph [9] is the introductions of tag

sizes in the declaration of a tag, which defines how many components a tag has. For

the code to be accurately generated, we need to know the type of each tag. Currently,

both the translator and the code generator support any tag type, but the current

method of creating a tag from multiple components is defined to accept just a subset

of tag types: integer. The format of the tag may be extended to support tuples of

different types, for example: (int, char, double, char*). Offering something transpar-

ent for the user for general tag types, in the current format, where tags are strings,

requires additional compiler support (e.g., a call to “createTag(int, char, double)”

being transformed into “initTag;addInt(int);addChar(char);addDouble(double)”). A

more general and efficient alternative is to change the CnC runtime implementation

such that tags become arrays of unions. We reserve this for future work, though

the programmer can obtain that functionality by marshalling and unmarshalling any
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tuple into a tuple of ints or creating his own tag creation method.

Item collections are expected to be declared with the correct element type, either a

primitive or a user defined type. All items in an item collection are stored internally as

pointers but they can be declared both as pointers and non-pointer types (a primitive

value will be “boxed” using a pointer).

Instances of computation steps are uniquely identified by tags, which are tuples

of symbolic names chosen by the one writing the CnC specification. In a prescrip-

tion relation, such as the one on line 4 in listing 3.2, the control collection (reg tag)

will contain a set of tags t which enable the execution of steps identified by t. Con-

sequently, the format of such a tag does not need to be explicit in a prescription

relation. This is synonymous with saying that the tag function of a tag t in a control

collection is the identity: f(t)=t. Thus, is our implementation of the CnC model, step

prescription are kept in the same format as in the classical CnC graph, which also

preserves the previous behaviour that a tag can prescribe multiple steps and a step

can only be prescribed by one tag. If the user chooses to add tag functions to step

prescription as well, the translator will issue a warning, keep the implicit identity

function relation and it will ignore the unnecessary tag functions.

In contrast, in an execution relation, a step can read and write multiple inputs

and outputs respectively and these can vary greatly depending on the application.

To provide flexibility in defining dependences, the items to be read and/or written by

a step are defined as functions of the tag’s components, thus the name tag function.

In the above example, on line 5, the registration step is identified by a tag with

one element, by means of variable k. The step is defined to get an item from item

collection input matrices and the function to find that element is k − 1. This allows

easy code generation without the need of computing the inverse of a function in step
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executions. Consider if in the above example, the step was identified by k*2 rather

than k. This would mean that the correct item to read for any step with tag T is

(T-1)/2 obtained by applying the function defined for input input matrices ( f(x) =

x-1 ) to the inverse function of the step identifier ( f(x) = x/2 ). Our approach is the

most intuitive way a user would define the task graph, by relating both the inputs

and the outputs of a step to what uniquely identifies a step (its tag components).

In the general case of a tag declared to have N dimensions, a get will be performed

on a collection: [collection name : tagfunction1, tagfunction2, ..., tagfunctionN ],

where the functions accept the 4 basic operators (+,-,*,/) and any variable name,

yet the variable names should relate to the variables found in the steps list for the

generated code to be correct. All items read and written by the step, as well as the

tags put to prescribe other steps, can be defined with functions relative to the step’s

control tag and constants. In addition, the step’s outputs (both data and control

items) can be declared as relative to the input data, with the indexing operator (e.g.:

input[tag component]). In the above example, the step registration has only one

output. It will write an element in collection output matrices and this element will

be uniquely identified by the key k − 1, representing a tag function. Extensions for

more complex functions and user-defined functions are a subject for future work.

For a better understanding of how tag functions can be used, we present a second

example, one simulating the execution of a loop with a variable stride.

The example in listing 3.3 contains only one type of computation steps called

“loop” (the only key word in a CnC graph is env symbolizing the environment), which

will in fact execute the body of a while loop, translating the condition to continue

to the next iteration into a prescription of another instance of the step “loop”; the

tag thus becomes the iteration number. The loop’s exit condition is dependent on
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1 < i n t [ 1 ] s t ep t ag > ;

2 [ i n t s i z e ] ;

3 [ i n t jump ] ;

4 [ f l o a t ∗∗∗ i nput mat r i c e s ] ;

5 [ f l o a t ∗∗∗ output matr i c e s ] ;

6 <s t ep tag> : : ( loop ) ;

7 [ s i z e : 0 ] , [ jump : k ] , [ i nput mat r i c e s : k ] −> ( loop : k

) −> [ jump : k + jump [ k ] ] , [ output matr i c e s : k + jump [ k ]

] , < s t ep t ag : k + jump [ k ] >;

8 env −> [ s t a r t : 0 ] , <s t ep t ag : 0>, [ i nput mat r i c e s : 0 ] ;

9 env <− [ output matr i c e s ] ;

Listing 3.3: Example 3: CnC graph simulating a loop

the value of size[0], where size is a collection with only one item. Each step with

tag = k, will do some computation on the input matrix obtained from the item

collection input matrix and may enable the execution of the next loop iteration which

is computed using the data read from the jump item collection. We notice that the

item in which the step writes the output (output matrices) is identified by a tag

relating to the step’s unique identifier (k) and to the input item jump[k].

This example shows clearly that a step can choose whether to write or not in

the outputs (item or tag collections) declared in the graph specification. This loop

will eventually terminate when some condition regarding k and size[0] is met (e.g.

k>=size[0]) which is synonymous with concluding that we cannot generate Put func-

tions or Prescribe functions with the same certainty we can generate the Gets. For

program completeness we require the user to write the tag functions both for inputs
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and outputs, however the code generated for outputs will be considered as a sug-

gestion rather than a requirement. We believe this design choice will help the user

since he would only have to reason about dependences rather than writing code (the

suggested code will need very little modifications, if any).

We must mention that we kept backward compatibility to the classic CnC model,

such that if tag sizes or tag functions are omitted, the translator will generate sug-

gested code in comment detailing how the Gets should be performed. Writing the

proper code remains the users responsibility in this case, as in the original CnC spec-

ification.

3.2 Ranges

Another addition to the CnC graph specifications is the concept of ranges. Several

applications require that several pieces of data in a continuous range be either read

or written or both. For a fix number of items known at compile time, this could have

been represented by scalar tag functions. For example:

(some step : k)→ 〈step tag : k〉, 〈step tag : k + 1〉, 〈step tag : k + 2〉 .

However, if the number of items read or written is determined at runtime, we

need a new way of way of allowing the user to provide this information. Ranges are

declared in the CnC graph file using braces and two dots to separate the beginning

and end of the range: { start range .. end range }.

Let us consider the example in listing 3.2 once again. In essence, the graph in

the example models the execution of multiple instances of fluid registration [48] with

no dependences among each other. One will imagine that after defining this graph,

the user would have to write the Main function to Put a set of tags, each of which

will start an independent step. Considering this, let us create another example that
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1 < i n t [ 1 ] s i n g l e t o n t a g > ;

2 < i n t [ 1 ] r e g t ag > ;

3 [ i n t s i z e ] ;

4 [ f l o a t ∗∗∗ i nput mat r i c e s ] ;

5 [ f l o a t ∗∗∗ output matr i c e s ] ;

6 <s i n g l e t on t ag> : : ( s i n g l e t o n s t e p ) ;

7 <reg tag> : : ( r e g i s t r a t i o n ) ;

8 [ s i z e : 0 ] −> ( s i n g l e t o n s t e p : t ) −> <r e g t ag : { 1 . . s i z e

[0 ]+1 }>, [ i nput mat r i c e s : { 0 . . s i z e [ 0 ] } ] ;

9 [ i nput mat r i c e s : k−1 ] −> ( r e g i s t r a t i o n : k ) −> [

output matr i c e s : k−1 ] ;

10 env −> [ s i z e ] , <s i n g l e t on t ag >;

11 env <− [ output matr i c e s ] ;

Listing 3.4: Example 4: CnC graph with ranges

would make the Main call simpler for the user, by using ranges.

In the example from listing 3.4, the user main function would just have to just

prescribe a single step, the singleton step and write the code of initializing the inputs

and starting all the registration steps within it. We have shown a possible use case

of ranges, but in practice there are several others such as split join operations and

reducers. In addition, specifying that a step reads a range of items may be extended to

mean that the computation performed is data parallel and thus fit for SIMT execution.

In this chapter, we presented how tag and item collections allow and need the

ability to specify tag functions for automatic generation of high level operations for

inter-task communication. We will go into more detail of how the code is generated

from these specifications in chapter 4.
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Chapter 4

Compiler support for CnC-HC

In this chapter we present the CnC-HC translator, a tool that generates the necessary

code to link the user step code to the CnC runtime as well as suggested step code

regarding the items to be put or steps to be prescribed, all these based on the CnC

graph specifications.

4.1 Software lifecycle with CnC-HC

Let us first discuss what are the steps that a user has to make in order to write a

program using CnC-HC. Figure 4.1 presents the implementation flow for a CnC-HC

program.

The user will first decompose his algorithm into steps and write a graph specifica-

tion as described in the previous chapter. The translator is a tool which will generate

a series of “glue-code” to enable transparent parallelism for the user based on the

guidelines he provided in the graph file. What is more, it will offer step stubs as

suggested step code to handle the items a step puts or the steps it may enable. In

order to ensure an easy build, the translator will also generate a makefile.

The user can then proceed to writing the code for each of the computation steps

and run the makefile to build his application. This will use the HC compiler and gcc

compiler and generate an executable. If additional libraries are required, they can be

easily added in the provided Makefile.
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Figure 4.1 : CnC-HC Build Model

A common scenario in developing a program is making changes to the initial

specification. In our case, if the user were to make changes to the graph file and rerun

the translator, only the code linking his steps with the runtime will be overwritten

to match the new dependences. Thus, if the computation had been written by a

programmer prior to running the translator, his code will not be overwritten, but

preserved intact.

4.2 Auto-generated executable code

The need for generation of “glue code” is due to application dependent components

like item collections and steps but also to the usage of the C language. Some of the

artifacts that we need to generate include: an unique identifier for each step, methods

that initialize or delete a CnC graph, methods that launch the execution of other steps
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1 #de f i n e S t e p r e g i s t r a t i o n 0

2 s t r u c t Context{

3 I temCol l ec t ionEntry ∗∗ i nput mat r i c e s ;

4 I temCol l ec t ionEntry ∗∗ output matr i c e s ;

5 } ;

6 typede f s t r u c t Context Context ;

Listing 4.1: Auto-generated code defining a unique step id and the context

structure for the example in Listing 3.2.

and methods that link the user code to the CnC runtime.

For the example in Listing 3.2 the auto-generated code declaring the step identifier

and the item collections is presented in Listing 4.1.

The generated methods can be divided into two parts: the methods available to

the user as APIs and the methods generated to transparently enforce constraints as

specified by the CnC graph. Let us describe these below using code samples for the

example in Listing 3.2.

The auto-generated methods included in the user API are: initGraph, delete-

Graph, prescribeStep.

The pair of methods initGraph and deleteGraph are called to instantiate and

clear the allocated space respectively, for a CnC graph. The initGraph method will

reserve the space for all item collections used in the graph and perform other initial-

ization steps if required, while its complement method will free this allocated space.

Each item collection is implemented as a hashtable with a fixed number of buckets

(TABLE SIZE) defined by the runtime. Here is some sample auto-generated code
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1 Context∗ in i tGraph ( ) {

2 i n t i ;

3 Context∗ CnCGraph = ( Context ∗) cnc mal loc (1 ∗ s i z e o f ( Context

) ) ;

4 CnCGraph−>output matr i c e s = ( ItemCol l ec t ionEntry ∗∗)

cnc mal loc (TABLE SIZE ∗ s i z e o f ( I temCol l ec t ionEntry ∗) ) ;

5 f o r ( i =0; i<TABLE SIZE ; i++){

6 CnCGraph−>output matr i c e s [ i ] = NULL;

7 }

8 re turn CnCGraph ;

9 }

10 void deleteGraph ( Context∗ CnCGraph) {

11 c n c f r e e (CnCGraph−>output matr ices , TABLE SIZE ∗ s i z e o f (

I temCol l ec t ionEntry ∗) ) ;

12 c n c f r e e (CnCGraph , 1 ∗ s i z e o f ( Context ) ) ;

13 }

Listing 4.2: Auto-generated code initializing and disposing of a graph.

declaring one item collection: Listing 4.2 (we extracted only the initialization for one

of the collections for brevity).

The method prescribeStep instantiates a new step, with the corresponding tag

and, depending on the chosen runtime, prepares for step execution accordingly (either

begins to check dependency satisfaction or sends the step straight for execution taking

the chance of the step to fail if data is unavailable; the runtimes are details in chapter

5 ). An extract of the code generated for this method can be seen in listing 4.3.

As the generated files are independently compiled, we use a HabaneroC pragma
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1 #pragma hc suspendable

2 void p r e s c r i b eS t ep ( char ∗ stepName , char ∗ stepTag , Context∗

context ) {

3 Step∗ s tep = cnc mal loc ( s i z e o f ( Step ) ) ;

4 step−>tag = stepTag ;

5 // . . . s t ep i n i t i a l i z a t i o n

6 i f ( ! strncmp ( stepName , ” r e g i s t r a t i o n \0” , 12) ) {

7 step−>stepID = S t e p r e g i s t r a t i o n ;

8 #i f n d e f Data Driven Runtime

9 di spatchStep ( s tep ) ;

10 #e l s e

11 r e g i s t r a t i o n d ep end en c i e s ( step−>tag , ( Context ∗) step−>

context , s tep ) ;

12 i n t s t a tu s = reso lveDependenc i e s ( s tep ) ;

13 i f ( s t a tu s == CNC SUCCESS)

14 di spatchStep ( s tep ) ;

15 #end i f

16 re turn ;

17 }

18 p r i n t f ( ”Step %s not de f ined \n” , stepName ) ;

19 a s s e r t (0 ) ;

20 }

Listing 4.3: Auto-generated code for prescribing a new step.
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1 #pragma hc suspendable

2 void ∗ r e g i s t r a t i o n g e t s ( char ∗ tag , Context ∗ context , Step∗ s tep

) {

3 i n t k = getTag ( tag , 0) ;

4 f l o a t ∗∗∗ i nput mat r i c e s0 ;

5 char ∗ t ag input mat r i c e s0 = createTag (1 , k ) ;

6 CNCGET(( void ∗∗) & ( input mat r i c e s0 ) , tag input matr i c e s0 ,

context−>i nput matr i c e s , s tep ) ;

7 r e g i s t r a t i o n ( k , input matr i ce s0 , context ) ;

8 re turn 0 ;

9 }

Listing 4.4: Auto-generated code for getting the input data for a step.

(line 1 in listing 4.3) to mark as interruptible, methods that can spawn tasks and

therefore need to be treated differently by the source to source compiler (the details

are beyond the scope of this work). We also note on lines 9, 11, 14 calls to auto-

generated methods and on line 12 a call to the CnC runtime.

The auto-generated methods that are needed to link the user code to the runtime

are: stepName dependencies, stepName gets, dispatch. For each step we will generate

a pair of functions called stepName dependencies and stepName gets. The former will

make runtime calls to store the list of all dependences needed to be satisfied for a step

to execute and is only used in the Data Driven runtime. For the graph in Listing 3.2,

the method performing the Get calls is presented in listing 4.4. Here, we highlight

three runtime calls on line 3, 5 and 6 and a call to the user-written step code on line

7.
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1 void d i spatchStep ( Step∗ s tep ) {

2 switch ( step−>stepID ) {

3 case S t e p r e g i s t r a t i o n : async IN( step ) { r e g i s t r a t i o n g e t s (

step−>tag , ( Context ∗) step−>context , s tep ) ; } ; break ;

4 de f au l t : CNC ASSERT(0 , ”Attempt at execut ing an unknown step

! ” ) ;

5 }

6 }

Listing 4.5: Auto-generated code for asynchronously spawning a task.

Calling the dispatch method (listing 4.5) is equivalent to asynchronously executing

a step. The generated code for this implies using the async construct provided by

HabaneroC to asynchronously launch the execution of a step. This means running

the auto-generated code for getting the data needed by a step and then doing the

actual user code call. The runtime chosen will determine whether the creation of an

asynchronous launch will be equivalent to a successful step execution or a possible

failed attempt that will need to be retried. For the scheduling of the tasks launched

using the async keyword, CnC will be using HabaneroC’s work stealing mechanism.

The policy (work first or help first) can be chosen through a command line argument

to the executable.

4.3 Auto-generated helper code

The translator will use the information provided by the user in the graph file to also

generate helper code for the steps. For example if a step was defined to possibly

create a control item (tag), the step code will include a comment of how this would
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translate into code. More precisely, the generated code will call prescribeStep on all

steps prescribed by that tag. The user can use this code as he/she sees fit, though

in most cases simply uncommenting the suggested code and making minor changes

will give the desired user code. In listing 4.6) we present some sample suggested

code for a more complex example (the graph from listing 3.4 ). The step stub for

the singleton step contains two comment blocks. The first one refers to data items

written, while the second contains the prescription code. The graph specification

defined the step to write a range of items, consequently, the generated code will have

a for loop with the number of iterations equal to the elements in the range, and it

will make the runtime call that writes an item on each iteration. If the specification

was accurate, the user would simply have to uncomment this code block and read

from an external source, initialize or compute the items to be written. Similarly, the

suggested code prescribing the registration steps would be uncommented and, in this

case, no additional changes would be needed.

As mentioned before, running the translator on a graph file will also generate a

Makefile for building the application using the generated files. This can be altered by

the user to meet the application needs, such as adding other source files or libraries.
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1 void s i n g l e t o n s t e p ( i n t k , i n t s i z e0 , Context∗ context ) {

2 /∗ This i s suggested code

3 i n t index1 0 ;

4 f l o a t ∗∗∗ i nput mat r i c e s1 [ s i z e0 −0] ;

5 f o r ( index1 0 = 0 ; index1 0 < s i z e 0 − 0 ; index1 0++){

6 // a l l o c a t e memory i f nece s sa ry and f i l l in va lue s to put

here

7 char ∗ t ag input mat r i c e s1 = createTag (1 , index1 0 + 0) ;

8 Put ( input mat r i c e s1 [ i ndex1 0 ] , tag input matr i c e s1 ,

context−>i nput mat r i c e s ) ;

9 }

10 ∗/

11 /∗ This i s suggested code

12 i n t index2 0 ;

13 f o r ( index2 0 = 0 ; index2 0 < s i z e 0 ; i ndex2 0++){

14 char ∗ t ag r eg tag2 = createTag (1 , index2 0 ) ;

15 pr e s c r i b eS t ep (” r e g i s t r a t i o n ” , tagreg tag2 , context ) ;

16 }

17 ∗/

18 }

Listing 4.6: Auto-generated suggested step code for handling data and control

output edges.
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Chapter 5

Runtime support for CnC-HC

The CnC-HC model was developed on top of the HabaneroC (HC) programming lan-

guage, and it uses the async and finish constructs available in HC. However not all

dependency graphs can be expressed using only async and finish, so we need a CnC

runtime. In this chapter we will first present previous approaches of expressing arbi-

trary task graphs using the async construct. We will then detail two implementations

of the CnC runtime in HC. The first one was developed to reflect the behaviour of a

previous CnC runtime systems [9], using the best performing scheduling policy: restart

and replay, which essentially will abort a step when data is not present and restart

the step when the data becomes available. The second one focuses on spawning a

step only when all data is available, aiming to eliminate the overhead of repeated

task creation when necessary, yet introducing the possibility of loss of parallelism in

the process. Both runtimes use the tag functions introduced in this work and take

advantage of the code generated by the translator for making the writing of the step

code significantly easier than in previous CnC implementations.

5.1 Previous runtime approaches

In this section we present brifly previous work on the runtime approaches for a Java

implementation of the CnC model. The Rice CnC-HJ variant, mentioned in sec-

tion 2.3 and table 2.1, takes a classical approach on the model, where within each
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step, the user will call the Get methods for reading the input data, then perform

the computation and finally write items through Put calls or enable other steps for

execution. The runtime provides three scheduling policies: Blocking, NonBlocking

and RestartAndReplay.

In the Blocking policy, once a Get fails to find an item, the thread which executed

the Get blocks waiting for the data to become available and a new thread is spawned

in its place to avoid the situation when all threads block. This causes considerable

overhead as the newly created threads are not terminated when others are unblocked.

What is more, for large applications, if too many threads block, the execution will

fail due to the limited Java thread pool size.

The NonBlocking policy introduces a ready function associated with each step

that the user has to provide. The ready function signals whether the step’s input

data is available or not. The runtime will continuously check for each prescribed

step by calling this function, whether the input data is present, in which case it

will spawn (async) that step. This ensures that all Get calls within a step will be

successful. Though the NonBlocking policy performs better that the Blocking policy

and resolves the problem of creating additional threads, it still incurs considerable

overhead from polling using the ready function.

According to previous work [9], in most cases the best performing policy is the

RestartAndReplay. This method allows steps to spawned as soon as they are pre-

scribed, so calls to the read input items may fail to find the data. In this situation,

the runtime is engineered to abort execution of the current step and store it, as a

closure, in a queue waiting for the item it failed on. When the missing item is written,

the step that Put it will check the associated queue and respawn all the previously

failed steps. As a result every Get can fail at most once, so it is possible to repeat
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Figure 5.1 : Hypothetical C implementation of a CnC Runtime, using the Restart and
Replay policy.

the Gets up to the number of items the step needs before being able to execute.

With the objective of enabling heterogeneous architectures, we pictured in figure

5.1 a C-base implementation of CnC which would implement the Restart and Re-

play policy. This figure simply shows how the current methodology would translate

into a concrete implementation. However, in CnC-HC we went one step further. As

mentioned in chapter 3, our goal was to ensure ease of programming in a low level

language such as C, for which reason we introduced tag functions and ranges in the

specification language. This allows us to engineer the runtime to take advantage of

the auto-generated code. We will present how we do this in the next section.
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Figure 5.2 : Control Flow for the Restart and Replay Runtime

5.2 Restart and Replay runtime

5.2.1 Runtime description

The Restart and Replay Runtime is pictured in figure 5.2. The flow of any program

using this runtime is as follows. The Main function written by the user, will instantiate

the graph and Put the items it wants to use as inputs in one or more item collections

(step 1). It will then start the graph execution by prescribing one or more steps (steps

2). These prescriptions need to be executed inside a finish scope, ensuring that the

main program waits for all steps pertaining to the graph to finish executing. After the



44

finish scope, the user can Get the data from one or more item collections as outputs

of the CnC execution(step 10). Let us now go into depth into what happens once a

step is prescribed.

In CnC-HC, a step is a C function. On each prescription, a step is said to be

dispatched or spawned into a new task using the HC async construct (step 3). In

previous implementations of CnC, each step could make calls to the Get and Put

functions, but according to the CnC semantics, all Gets had to precede all Puts. The

reason for this is to ensure that a step can run to completion without interruption

once all its inputs are available. It is not considered a limitation, as any step can be

split such that the condition is met.

One of CnC-HC’s contributions is the usage of tag functions for generating the

Get functions (step 4) outside the user code, as well as generating suggested code

for items to be put and steps to be prescribed. We use the information given in the

graph file to generate the Get functions, removing this burden from the user and also

ensuring consistency between the graph specification and the step code. Thus, a step

can be viewed as split into two function calls: one retrieving the inputs (step 4) and

one executing the computation using them (step 6).

When calling the Get function (step 5), the runtime will check if the item exists

(was Put by another step) and if so it returns it. If however the item does not exist,

a placeholder for the item will be created and also a queue will be associated with it.

The current step will put itself in that queue and then abort (the step function will

return).

To ensure light weight synchronization, we only use the “compare and swap”

primitive and no blocking operations. For both Get and Put calls, we first need to

retrieve the location for the item requested. This implies finding it if it exists through
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a simple search or else creating one. In the latter case, the placeholder associated

with an item is created and initialized, and then an attempt is made to insert it in

the item collection using compare and swap. If the attempt fails, then another thread

succeeded and we will use the location it created. If however both attempts came

from Put calls, then the runtime reports a “Single assignment rule violation”.

When doing a Get, a step either finds the item in the location it just retrieved,

in which case it returns it, or else it needs to wait for the item to become available.

Once the Get has the location for the item, it can also access the waiting queue it has

associated. A step will always enqueue itself at the beginning of the waiting queue

through a compare and swap operation. If it fails, there are two possible reasons:

a Put was done while the step was enqueuing itself, in which case the item is now

available and can be returned, or another step has succeeded in enqueuing itself first,

in which case the step will retry to add itself.

When doing a Put, the step will write the item in the location it found and then

proceed to respawn th steps that failed on that item. For this, it uses once again a

compare and swap to retrieve the queue of failed steps. If the attempt fails, it means

some other step successfully enqueued itself in the meantime so a retry is necessary.

Otherwise, all steps in the waiting queue will be respawned.

Previous implementations of CnC modelled the prescription of a new step by

adding a tag to a control collection. The specifications were designed such that each

step prescribed by such a tag collection will start to execute with the tag put in

the collection. We model this in a more straight forward way, by directly making a

call which enables the desired step (step 8), thus eliminating an additional overhead

introduced by control collections.

When a step puts an item (step 7), it will check the waiting queue associated with
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that item, and if it is not empty it will create an async for each step waiting for that

item (step 9). It is thus possible for a step which gets N items to be restarted between

0 - when all items are found the first time - and N times when all Gets fail the first

time. This behaviour leverages the restriction of having Gets before Puts, because of

the single assignment rule imposed in CnC. If a step were to do a Put followed by a

failing Get, on the second run of that step, a second Put will be done on the same

item causing a single assignment rule violation. Also, since Puts are the only side

effect permitted in a CnC step it is safe to restart the step whenever a Get fails.

The suggested code for items to be Put or prescribed is generated in a comment

block that can be edited to accommodate the application needs. A typical example

is of a step that prescribes another step if a set of conditions is true (the example

in Listing 3.3 is one of them). In such a case, the generated code can be uncom-

mented and used inside a user written if clause. Details on the code generated by the

translator were given in chapter 4.

Having understood how the Restart and Replay Runtime behaves, we now mo-

tivate the need for the Data Driven Runtime. The aim is to eliminate the need of

restarting a step for every failed attempt to get an item. We also note that the cre-

ation of an async implies the allocation of a task frame in HabaneroC and the copying

of data to that new frame, which can incur significant overhead if done repeatedly as

in the case of many failing Gets described above. Further, the abort-restart approach

is impractical across heterogeneous processors.

5.2.2 Theoretical guarantees

The CnC model does not guarantee dead-lock freedom. It is possible for step1 to wait

for an item produced by step 2 while step 2 waits on an item from step1. However
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depending on the runtime implementation we can detect such cases with more ease.

In CnC-HC we took a non-blocking approach, which means that in the situation

described above, both step1 and step2 will be placed into a waiting queue without

keeping a thread blocked. The HC finish scope will detect quiescence (there are no

more asyncs running in the scope) and the program will terminate. Ongoing work is

being done for the runtime to issue a warning that there were steps waiting for items

that were never Put. This information can then be used to determine the missing

items and resolve the dead-lock.

The first theoretical guarantee we present is described by theorem 5.1.

Theorem 5.1

The Restart and Replay runtime correctly implements CnC semantics

Proof 5.1 The CnC semantics state 1) that the Gets must precede Puts, 2) that data

is dynamic single assignment and 3) that the model is race-free.

1)The first property is deduced trivially by the fact that we generate a function

which reads the data before calling the user step code.

2)To enable the second property, we engineer the runtime to check that an item

is not put more than once. This is done by providing light-weight synchronization

using compare-and-swap. The key cases that we handle the following. First, if a step

tries to perform a Get while another does a Put there are two possible sequences of

events:

1. The Get succeeds in creating a place holder for the item and putting itself in

a queue waiting for it; it then terminates its execution. In this case, the step

doing the Put will fill in the value and respawn the step that aborted.

2. The Put succeeds in adding the item, in which case the Get will immediately
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succeed.

The second key case is when there are two threads trying to do a Put on the same

item. We distinguish two subcases: one when there was an attempt to get the item

previously in which case a place holder for the item exists and another when the task

doing the Put needs to create that location. We implemented the synchronization

needed to handle both of these situations. The execution terminates with a “Single

assignment violation” exception if a Put is attempted twice on the same item.

3) Having proven that the Restart and Replay runtime correctly implements the

single-assignment rule we can also deduce that there cannot exist a race for reading

an item, as its value will not change once it’s written. Thus the runtime exhibits

race-freedom. 2

A second guarantee is described by theorem 5.2.

Theorem 5.2

The Restart and Replay runtime cannot exhibit live-lock.

Proof 5.2 We prove this result based on the result from theorem 5.1. We know that

the Gets are executed before the Puts in any CnC-HC execution. The Get function will

abort the step if data is unavailable so the step will no longer be “live”. Respawning

the step is solely done when that data becomes available. In addition, the dynamic

single assignment rule enforces that an item be written only once and never be deleted.

Thus it is not possible to have continuous failing on retrieving the inputs which would

cause a live-lock. 2
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5.3 Data Driven runtime

The Data Driven Runtime was developed to solve the problem of the Get function

being called multiple times each time a Step fails to find an item. It also avoids the

overhead of creating a new task (async) when this occurs.

In addition to the information we currently store about a step, we need to add

the step’s data dependences. We use once again the tag functions introduced in the

graph file to generate code for an additional function “Step dependencies” - presented

in Section 4.2, to store a record for each datum that needs to be available before the

step can execute.

We extended the runtime to support the addition of dependences to each step and

we provide an API for adding and checking them. The auto-generated code uses these

interfaces to start a step only when all data is available. Instead of starting a step

as soon as it is prescribed, we first add a record for each dependence through calls

to the runtime, and then we check each of its dependences. The check is interrupted

when data is not found and is restarted from where it left off when the missing data

is put. Once all required data exists, the step is spawned (dispatched).

Figure 5.3 shows in detail the structure of the Data Driven Runtime system. As

before, the Main function will provide the initial input data and will prescribe one or

more steps as startup computations (steps 1,2 in figure 5.3 ). After being created, a

step will then have all of its dependences filled in in the auto-generated code (steps

3,4). Further each of these are checked for availability (steps 5,6) and only if all

of them are present the step will be asynchronously dispatched for execution (step

7). The required data is retrieved, and as it is known to be available, the attempt

of getting the items cannot fail (steps 8, 9). The next step is to call the user code

parametrized with the data obtained (step 10). However if all data was not present,
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Figure 5.3 : Control Flow for the Data Driven Runtime
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the step will not be launched for execution but it will be put in a queue to wait for

the missing data. A step can prescribe other steps (step 12) and also write (Put)

data items (step 11). When a step writes a piece of data (step 11) and sees that there

are steps that had been waiting on it, it will retry the data dependency checks from

where they were interrupted (step 13). Thus a step can be moved through up to N

queues, where N is the number of dependences it needs to satisfy. When finally the

last of the items is obtained the step can begin to execute asynchronously(step 14).

We have shown so far how the Data Driven runtime removes the overhead of task

creation by resolving a step’s dependences before it is spawned. Yet for applications

where the input data is available on the first attempt, this approach loses some

parallelism, because the dependences are checked sequentially. In real applications

however, the computational work is significantly larger that reading the input data, so

the loss in parallelism wouldn’t be noticeable. In our experimental results, we shall

conduct a comparison study between the two runtimes to determine the scenarios

where one will outperform the other based on the observations we have detailed in

this chapter.

The theoretical guarantees proven for the Restart and Replay runtime also hold

true for the Data Driven runtime.

5.4 Domain expert versus tuning expert

As we mentioned earlier, the CnC-HC runtime builds on the async, finish constructs

in HabaneroC. The only explicit HC construct that the CnC-HC user sees is the fin-

ish scope surrounding the graph execution. The asyncs created are transparent to

the user, and can be found in the auto-generated code. We offer the possibility of

generalizing this approach by allowing the more experienced user to use async-finish
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constructs within the step code. A tuning expert who knows how to improve appli-

cation performance by using async-finish explicitly within steps, can take advantage

of this feature. Other forms of parallelism can also be used within a CnC step if it is

designed to run on a specific device. For example, a CUDA kernel designed for the

GPU or a Verilog module written for the FPGA, as will be demonstrated later in our

experimental results.
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Chapter 6

CnC-HC-Hybrid: A declarative language for

heterogeneous architectures

6.1 Overview

With architecture design moving towards a heterogeneous approach and co-located

on-die CPU-GPU soon to become a reality, programming models need to reinvent

themselves to be able to take advantage of these hardware resources. We propose

using the data-flow model introduced by Concurrent Collections as a foundation since

it is a model that was proven to have large generality and also a series of desired

properties including determinism, race and live-lock freedom [9]. The extension we

propose enables the use of a Graphical Processing Unit (GPU), by extending the

language specifications to include a definition for GPU steps. This information can

be used to generate the required code for transferring data to and from the device,

launching and waiting for the execution. Further, we add more generality through the

notion of affinity, which enable steps to run on multiple locations which can include

CPUs, GPUs and FPGAs. Changes to the CnC translator and to the HabaneroC

runtime enable us to obtain very good performance for applications that can take

advantage of such architectures.
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6.2 Language extensions

We designed two approaches for specifying device steps, one targeting domain experts

and the other tuning experts. Further work can take advantage of both to provide a

mechanism that offers generality with respect to the available hardware.

Our first approach required extension to the specifications language in order to

specify steps which would map well to a graphical unit. The notation for GPU steps

uses braces instead of parentheses as follows.

<reg tag> :: { registration };

This change was added to the language grammar to enable GPU step recognition. We

will discuss in the next section how the translator uses this information to generate

special linkage code between the user step code and the CnC runtime.

The second approach was motivated by the CDSC project [13], where applications

needed the possibility of executing some steps on accelerators such as GPUs or FPGA

and relying on the user to write the appropriate CUDA or C (calling libraries that

access the FPGA) step code. We decided to see how such a functionality would work

for a model like CnC.

We applied the CnC model in practice in the medical imagining domain, enabling

the domain experts to reuse their previously implemented computational kernels.

Certain kernels were only implemented on a particular platform, such as an FPGA.

In contrast, other kernels had multiple implementations and could run on more than

one platform, for example on a CPU and a GPU, but not on an FPGA. From our

preliminary experiments, we also knew that some steps would perform significantly

better on a particular platform. Thus, we introduced the notion of affinity into the

CnC graph specification to allow tuning of an application based on knowledge of where

an algorithm can run and where it runs better if multiple variants are available. In
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this thesis, we use the term “affinity” to indicate a scheduling priority rather than an

indication of locality. A snippet of the graph from a real application - the medical

imaging pipeline detailed in chapter 7 - can be seen in listing 6.1.

1 <deno i s e tag > : : ( deno i s e @ CPU = 20 , GPU=10) ;

2 <reg tag> : : ( r e g i s t r a t i o n @ GPU = 5 , FPGA = 10) ;

3 <seg tag> : : ( segmentat ion @ GPU = 12) ;

Listing 6.1: Step prescriptions with affinity for the medical imaging pipeline

Medical images are sent through the pipeline of image processing kernels (denois-

ing, registration and segmentation), resulting in an image that can be interpreted by

a medical expert. All the steps in the above example are image processing steps exe-

cuting in sequence: denoising makes the image clearer, the registration step compares

the image to previous scans and finally the segmentation step localizes the desired

area (in our case, a tumor or an aneurysm). Line 1 defines the denoising step, which

can be run on both a CPU and a GPU but is more fitting for CPU execution. Line 2

defines the step executing registration, which can execute on a GPU and on an FPGA

but is better suited for FPGA execution. Finally, line 3 defines the segmentation step,

which only has a GPU implementation.

Currently, the values assigned as affinity are considered for prioritizing which

device a step should first attempt to execute on; the relative quantitative differences

are used to enable the “device worker” to use a small look-ahead and choose a task

which needs to be executed sooner based on its higher priority. In this particular

above example, it may be desirable to execute the denoising steps with a higher

priority, in order to enable the registration step for that image. Similarly, we may

want to execute the registration as soon as possible, so that the segmentation can

start. However, if we had a single GPU, note that the CPU and FPGA respectively
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can also execute the first two stages, while the last stage must run on the GPU. As a

result, we have chosen the last stage to have the greater GPU affinity. We also notice

that the first two stages run better on other platforms (CPU and FPGA respectively),

motivating a choice of affinities as defined by the example.

In general, a “tuning expert” would need to do the analysis we described above

and choose appropriate affinity values. Thus, the affinity notion can be viewed as a

tuning annotation [49] which we provide as a means of, not only enabling the mapping

of an application to a heterogeneous architecture, but also tuning it according to a

set of constraints (these can include throughput, energy efficiency, latency).

We are currently also exploring opportunities to define a quantitative notion of

affinity in which affinity values are assumed to be proportional relative to the expected

performance on a given device (where a bigger number implies better performance).

This feature would allow the runtime to perform even better informed scheduling

decisions and possibly improve the results. In addition, future work would involve

adjusting the affinities at runtime based on information retrieved from profiling during

the run.

There has been previous work on tuning annotations in the CnC model [49], but

they do not involve extensions for specifying affinities for heterogeneous architectures.

6.3 Code generation

Let us first describe code generation changes for the first approach presented in the

previous section. The first difference is that launching a device step will use the place

feature available in HabaneroC. Here is an example:

async (gpu place) { step code() }
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This async statement is generated by the translator and is transparent to the user.

The initialization of the place is also generated by the translator. However this

generated code can be edited by an expert user if so desired e.g., in the event of

multiple available GPU devices. In the sample code below, a HabaneroC runtime call

makes available pointers to all NVIDIA GPU devices (places); by default the first

one is chosen for GPU steps but can be changed by the user. In the future we plan

to extend the runtime to automatically choose an available GPU place.

place t* gpu place = get places(NVGPU)[0];

Further, we generate code for the data transfer to and from the device. A sample

of such code can be seen in listing 6.2. This code was generated for the encryp-

tion benchmark we will describe in more detail in chapter 7. For simplicity, details

such as variable declarations have been omitted in this listing. On line 1, we allo-

cate contiguous memory for num tags items, each of size GPU SIZE (the amount

of copied data is currently a user defined constant to allow adjustable chunking of

data, for flexibility; this is both a limitation as the user needs to specify the size

of the copied data and a great opportunity for tuning an application by testing an

application with different kernel sizes). We check that enough memory is available

on the device (lines 2-5) and, on line 6, we copy the data required for the compu-

tation. We omit additional data allocation, because of its similarity to lines 2-6.

On line 8 we call the CUDA kernel which performs the actual computation. The

kernel is parametrized with the number of blocks per grid and threads per block

typical of CUDA kernel calls and takes as arguments: an array with the tags as-

sociated with each thread (d crypt tag - a copy of the CnC tags placed on the de-

vice), the size of the tag array and a series of inputs (the array to be crypted -

plain -, the encryption key - z -, and the array to store the encrypted text - crypt).
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1 e r r o r = cudaMalloc ( ( void ∗∗)&d pla in , GPU SIZE ∗ s i z e o f ( unsigned char

) ∗ num tags ) ;

2 i f ( e r r o r != cudaSuccess ) {

3 p r i n t f ( ” Fa i l ed to a l l o c a t e d memory f o r p l a i n in gpu encrypt \n” ) ;

4 e x i t (1 ) ;

5 }

6 cudaMemcpy( d p la in , p la in , GPU SIZE ∗ s i z e o f ( unsigned char ) ∗

num tags , cudaMemcpyHostToDevice ) ;

7 // a l l o c a t i o n f o r add i t i o na l s t r u c t u r e s

8 gpu encryptKerne lCa l l e r<<<b l o ck s p e r g r i d , th r eads pe r b l o ck>>>(

d crypt tag , num tags , d p la in , d z , d crypt ) ;

9 cudaThreadSynchronize ( ) ;

10 i f ( ( e r r o r = cudaGetLastError ( ) ) != cudaSuccess ) {

11 f p r i n t f ( s tde r r , ”CUDA e r r o r in encrypt : %s \n” , cudaGetErrorStr ing (

e r r o r ) ) ;

12 e x i t (1 ) ;

13 }

14 cudaMemcpy( pla in2 , d p la in , GPU SIZE ∗ s i z e o f ( unsigned char ) ∗

num tags , cudaMemcpyDeviceToHost ) ;

15 cudaFree ( d p l a i n ) ;

Listing 6.2: Automatically generated data transfer code for CPU-GPU

communication.

All parameters are prefixed with “d ” referring to data stored on the device. On

line 9 we wait for the kernel to finish executing and lines 10-13 check that the GPU

execution completed successfully. Lastly, line 14 copies the data back to the host and

line 5 frees the device memory.

Listing 6.3 gives more insight on what the generated kernel, called on line 8 of

Listing 6.2, looks like.
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1 g l o b a l void gpu encryptKerne lCa l l e r ( i n t ∗ crypt tag , i n t

num crypt tag , unsigned char ∗ pla in , i n t ∗z , unsigned char ∗ crypt ) {

2 i n t t i d = blockDim . x∗blockIdx . x+threadIdx . x ;

3 i f ( t i d < num crypt tag ) {

4 gpu encryptKernel ( c rypt tag [ t i d ] , &p l a i n [GPU SIZE ∗ t i d ] , z , &

crypt [GPU SIZE ∗ t i d ] ) ;

5 }

6 }

Listing 6.3: Generated kernel code calling user code for each GPU thread

Line 2 computes the GPU thread id, based on which, we check on line 3 that only

the right threads perform work. For example if there are N pieces of data, on which

some data parallel computation can be performed on the GPU, but M total threads

that are running in a block (usually a power of two), with M>N, then only the first

N threads should work. The condition on line 3 ensures that only the threads with

available data call the user written code (line 4).

Although we have implemented the support for generating the code above, there

are still details to sort out in terms of correct generation due to limited amount of

information present in the graph file specification. Currently, we don’t have a way of

specifying, in the graph file, the sizes of each item to be copied to and from device.

An option we considered is to use ranges to get a series of items thus being able

to deduce the amount of data from the range bounds and data type. This however

involves additional memory allocation and copying of data (each piece of data will be

copied into device memory individually rather than a contiguous data copied all in

one) and less flexibility in terms of tuning an application. In the above example, the

data to be encrypted and the encrypted result are the same length and are divided

amongst the GPU threads (each GPU thread uses a piece of the input and computes
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a piece of the result); however, the encryption key z is shared among the threads,

and has a fixed size. As a result, even if we describe the input and output as ranges

for a crypt step, we need a way to also specify shared data among the threads. In

addition, for an efficient implementation, we need to consider coarsening of the data;

if the input ranges from 1 to N, we may not want to assign a piece to N threads

but create a coarser grained alternative where M pieces are assigned to N/M threads.

For the purpose of demonstrating the usefulness of this approach we hand coded the

data copy code for the encryption benchmark and obtained very encouraging results.

This motivates further research on how to accurately specify such information while

keeping the simplicity of the graph file specification language.

For the second approach detailed in section 6.2, which involves specifying affinities

for steps, the changes involve generating the construction of an affinity field and

passing this to the HabaneroC async construct. The code generated for listing 6.1

with affinities can be seen in listing 6.4.
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1 void d i spatchStep ( Step∗ s tep ) {

2 i n t a f f i n i t y = 0 ;

3 switch ( step−>stepID ) {

4 case Step segmentat ion : a f f i n i t y = 0 | GPU AFFINITY(12) ;

5 async ( gpu pl ) IN( a f f i n i t y , s tep ) { s egmentat i on ge t s ( step−>tag ,

( Context ∗) step−>context , s tep ) ; } ; break ;

6 case S t e p r e g i s t r a t i o n : a f f i n i t y = 0 | GPU AFFINITY(5) | FPGA AFFINITY

(10) ;

7 async ( f pga p l ) IN( a f f i n i t y , s tep ) { r e g i s t r a t i o n g e t s ( step−>tag ,

( Context ∗) step−>context , s tep ) ; } ; break ;

8 case S tep deno i s e : a f f i n i t y = 0 | CPU AFFINITY(20) | GPU AFFINITY(10) ;

9 async ( gpu pl ) IN( a f f i n i t y , s tep ) { deno i s e g e t s ( step−>tag , (

Context ∗) step−>context , s tep ) ; } ; break ;

10 de f au l t : CNC ASSERT(0 , ”Attempt at execut ing an unknown step ! ” ) ;

11 }

12 }

Listing 6.4: Steps launched with device affinity

We note that for each step, an affinity field is created using the values provided in

the graph file, but these are also evaluated in order to launch the task at the device

place with the higher affinity. In this context, device includes only GPU and FPGA,

not CPU. Let’s look at the example in order to better understand the procedure. For

segmentation, the only affinity is with the GPU, thus the step is launched at gpu pl

(line 5). The registration step can run either on a GPU or an FPGA but the FPGA

affinity is larger, so the step is launched at fpga pl. As explained in the next section,

the HabaneroC runtime may move this step from an FPGA queue to a GPU queue,

if there’s a backlog on the FPGA queue. Finally, the denoising step can execute on

a CPU or a GPU and its largest affinity is with the CPU. However, for efficiency
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reasons that we will explain further, a task cannot be transferred from a CPU queue

to a device queue, so the step will be launched at a GPU place. The motivation for

this choice will become clear in the next section, when we explain how the runtime

manages the tasks.

6.4 HabaneroC runtime support

As generating CUDA code did not require any changes in the runtime, we will dedicate

this section to give an overview of the HabaneroC runtime support required for the

second approach - launching steps with several device affinities.

The original HabaneroC runtime system was implemented for homogeneous multi-

core processors, with support for work stealing among CPU workers. We extended the

HC runtime to use the place/affinity annotation to facilitate task scheduling across

heterogeneous processors by enabling work-stealing among devices. The affinity an-

notation presented in the previous section is used to specify which variants of code

are available for a given task (currently, these can be some subset of CPU, GPU, and

FPGA).

Figure 6.1 shows a work-stealing scenario for a group of tasks from the example

in listing 6.1. The environment first launches all the tasks (D1, R1, S1, D2, R2, S2, . . .)

on devices specified by their initial affinities. In this particular example, denoising

(D1, D2, . . .) tasks can run on a GPU device or on a CPU device, and are initially

launched on a GPU device. Segmentation (S1, S2, . . .) tasks can run on a GPU only.

Registration (R1, R2, . . .) tasks can run on an FPGA or a GPU device, and are initially

launched on the FPGA device. The CPUs can steal denoising tasks from the GPU,

and the GPU can steal registration tasks from the FPGA.

In our implementation of work-stealing between devices, instead of stealing the
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Figure 6.1 : Dynamic work-stealing between devices for the medical imaging pipeline

first task available on a worker’s dequeue, the thief worker will choose the one with

the highest affinity towards himself from the first N tasks on the dequeue, where N is

a small number typically less than 10 defined by the runtime (in our results we used

a lookahead of N=5). For example, if the top 5 tasks in the FPGA queue have GPU

affinities of 10, 20, 30, 15 and 5, the GPU worker, when stealing from the FPGA

queue, will steal the one with the GPU affinity 30.

A CPU worker can steal from any kind of device and any device can steal tasks

from other devices (as long as the task can run on the thief’s device). For performance

reasons, we have disabled stealing from CPU queues by device workers. The reasons

for this are twofold: a) the CPU tasks usually have small granularity, and the overhead

of launching a task on a GPU or FPGA device can be significant, and b) allowing

device workers to steal from CPU tasks would require locking the CPU queues in

order to implement the N task lookahead, which would introduce significant overhead

to CPU-to-CPU work stealing, which is currently implemented using a non-blocking
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algorithm [50].

Because of this restriction — disallowing device workers to steal tasks from a

CPU worker — a task that has both CPU and some other device affinity needs to be

launched on a device. In HabaneroC, the launch mechanism implies adding the task

to the waiting queue for the device, not necessarily running it immediately. Thus,

such a task may later be stolen by a CPU thread, whereas if it were launched on the

CPU it would never be stolen by a device worker.

To implement steps that can potentially run on different components we used

HabaneroC library function current place(), which can be used to determine the

type of the hardware component the step runs on. Based on the device type, the step

code calls the appropriate code or library routine that is compiled for that device

type.

This approach yielded very good results, and we shall present them in the next

chapter.
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Chapter 7

Experimental results

In this chapter, we present experimental results obtained for a variety of benchmarks,

structured as follows: a comparison study between the two runtimes implemented,

performance results on the CPU comparing the C implementation of Concurrent

Collections to Intel’s CnC and OpenMP for different scheduling policies and finally

some results for hybrid CPU, GPU and FPGA execution. The notations used in the

graphs are:

RR for the Restart and Replay Runtime in CnC-HC

DD for the Data Driven Runtime introduced in this thesis for CnC-HC

WF for the Work-First scheduling policy [30]

HF for the Help-First scheduling policy [30]

HC for HabaneroC [28]

These have been described in sections 2.2 and 2.3 and in Chapter 5.

The results presented in sections 7.1 and 7.2 (CPU only) were obtained on an

Intel(R) Xeon(R) E7330 @ 2.40GHz with 16 cores. The results involving a GPU

were obtained on 3 machines. Crypt was run on (a) an Intel(R) Xeon(R) E5504

with 8 cores and an NVIDIA Quadro FX 580, with 256 threads, 32 CUDA streaming

multiprocessors and 512 MB memory and (b) an AMD Phenom(tm) 9850 Quad-Core

Processor and an NVIDIA Tesla C1060, with 512 threads, 240 CUDA cores and 4
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Figure 7.1 : The Convey HC-1ex architecture. [2]

GB memory. The medical imaging pipeline was run at UCLA, on 2-4 CPU threads,

1 GPU and 1 FPGA, on a Convey HC-1ex (see figure 7.1). Currently this testbed is

using a PCI-express expansion box to host a Tesla compute card C1060 and a virtex6

LX760 as the user FPGAs. CPU and different FPGAs access the off-chip memory

using a shared memory model. The system employs an onboard crossbar to realize

the interconnection. Cache coherence is also handled through the FSB protocols.

Convey HC-1ex provides a very large bandwidth (80GB/s peak) for coprocessor side

memory. In practice, it was observed that around 30% to 40% of the peak bandwidth

can be easily obtained.
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7.1 Performance comparison study between the Restart and

Replay and Data Driven runtimes

One of the first objectives was to conduct a performance study between the two

runtimes implemented for CnC-HC. Judging by the implementation details, here’s

when the two differ and would perform better or worse. The Restart and Replay

runtime will restart a step for every datum that was not found when attempting to

execute the step. Thus, for applications with many data dependencies and/or much

parallelism (many spawned tasks), the overhead of creating asynchronous tasks and

aborting them would tend to affect performance. On the other hand, in the Data

Driven runtime, keeping the dependency record is done serially for each step, before

spawning the task, which wastes part of the parallelism available in the situation

when the data was available so no restart would have been necessary. Creating the

structure to hold the said dependencies can also be a source of overhead.

7.1.1 When the Data Driven runtime is the better choice

We consider a variant of the Java Grande ForkJoin micro benchmark [51] to measure

how much overhead the creation and termination of a large number of tasks would

incur. In this application, we create N tasks that will abort due to lack of data

and will restart once the data becomes available. We engineer the application to

create tasks with a single dependency that are ensured to not find the needed data

on the first attempt. We plot how both runtimes perform for work-first and help-first

scheduling policies in HabaneroC.

In figure 7.2, we plot the time for N = 103, 104, 105, 106, 107, when tasks are

doing trivial work. As a result, the task creation overhead is larger than useful work
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and the application does not scale.

For both WF and HF HC policies, the Data Driven CnC runtime outperforms

Restart and Replay with a time difference proportional to the number of tasks. For

the small case with 103 tasks, the benefit is not obvious because the times are small,

so we may have more noise than useful work; however, we notice that the trend is

constant as the sizes increase and for the pathological case with 107 tasks performing

little work the Data Driven runtime is two times faster than Restart and Replay on

16 cores, saving order of minutes depending on the policy. In this case, on the initial

runs we noticed a spike for the HF case for 1 core (much larger time than expected).

This occurred in both runtimes and could be explained by the creation of all the

tasks (and their placement in a dequeue) before executing them. In HabaneroC, the

dequeue of tasks expands at runtime as required by the application (size is doubled

each time there isn’t enough space; copying the data to a new dequeue makes this very

expensive), and, in such a case, repeated memory allocations cause the HF version

to take a much longer time. In the timing presented in this work, we set the initial

dequeue to a large enough size to avoid the need of expansion. This is not always a

solution, as high memory consumption of the application can cause the machine to

swap when a large amount of memory is already preallocated.

To get a better look at how much we gained from avoiding the restarting of steps,

we plot the time difference between the two runtimes (Restart and Replay minus Data

Driven) in the cases presented above (Figure 7.3)

Also from figure 7.2 we notice that the HF implementations take less time than

the WF ones. This again is to be expected based on the behaviour explained in

section 2.2. In WF, the spawned task is executed by the thread that created it, and

the continuation is placed on a dequeue for the others to steal. In this benchmark, the
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Figure 7.2 : Performance comparison between the Restart and Replay and Data
Driven Runtimes for ForkJoin benchmark, with little work, for 1-16 cores
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Figure 7.3 : Time difference between the Restart and Replay and Data Driven Run-
times for ForkJoin benchmark, with little work, for 1-16 cores
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Figure 7.4 : Performance comparison between the Restart and Replay and Data
Driven Runtimes for ForkJoin benchmark, with large work, for 1-16 cores. For the
graphs on the right, a negative value indicates a case for which the Restart and Replay
runtime performs better than the Data Driven runtime.

continuation consists of N-1 tasks. Thus, only one large task is available for stealing

at any time, leading to a large number of steals (“steal conflicts” [30]). In contrast,

in HF, the worker will “give” the spawned tasks to the other cores, thus reducing the

contention due to stealing. The difference would also be less pronounced if the tasks

were large enough so that the duration of the work performed in each task would hide

the stealing overhead or if the tasks were spawned in a tree-like structure as done by

the Cilk [22] language.

We take the application described above and enhance it to make each task perform

useful work (50 thousand trigonometric operations). Figure 7.4 shows results for data
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sizes between 103−105; larger sizes gave similar results and were ommitted for brevity.

We see immediately on the left-side graphs that the application now scales and, what

is more, the differences between the two runtimes and policies and now minimal. On

the right-hand side we plotted these differences which are now negligible. We can

see that occasionally the Restart and Replay runtime outperforms the Data Driven

runtime, which can be explained by the sequential checking of dependencies and thus

loss of parallelism.

In an attempt to lessen the difference between the WF and HF policies in the initial

implementation, we created another variant of the ForkJoin benchmark which we call

TreeForkJoin. In this approach, the main function will spawn M node steps, who will

in turn each spawn M other node steps, and so on, thus creating a tree structure.

After creating the child nodes (spawning the node tasks), each node step will spawn

a compute step, which will perform the same small computation as ForkJoin. In

order to properly see the difference between the two runtimes, we required that each

compute step read 10 items and engineered the application such that the first Get

attempt fails. The results are presented in figure 7.5, for a total number of compute

steps ranging from 103 − 107, where the number of nodes on each level of the tree is

M=10. As before we notice that for the smallest size 103, the differences in actual

time are not relevant and can be attributed to noise; however as the sizes increase,

the trend becomes obvious and the differences more pronounces.

To get better insight into what is taking most time in each of the cases, we also

timed separately, for each case, how much it took to spawn the node tasks and to

allow the compute tasks to fail, and how much it took to run all tasks after the items

became available for all tasks. We noticed that the first part took more time in the

Data Driven runtime, as the data structure filling all dependencies was created serially
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Figure 7.5 : Performance comparison between the Restart and Replay and Data
Driven Runtimes for TreeForkJoin benchmark, with little work, 10 failing Gets, for
1-16 cores.
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for each compute step, while in the Restart and Replay runtime these compute steps

were eagerly executed and aborted after failing to find the first item. The second part

took considerably more time for the Restart and Replay runtime, as, once the first

item became available for a compute step, it was again executed eagerly and failed

on the next item. In contrast, in the Data Driven runtime, the Put only triggered a

check in the dependency list created previously.

We notice that for the Data Driven runtime, this approach made the two policies

(work first and help first) have very similar results, because we have eliminated the

work-stealing overhead (steal conflicts) through tree-like spawning. In this micro-

benchmark, the short coming of the work-first policy is only visible in the Restart

and Replay runtime because of the way tasks are respawned in the runtime, which is

eagerly for each item put. In contrast, in the Data Driven runtime, even though the

tasks are also analysed in a for loop, only those with all data available are spawned

using async. Thus the overhead we see for the RR-WF line in figure 7.5 can be

attributed to work-stealing overhead caused by the way tasks are spawned. This

can be removed either by using a different data structure in CnC for keeping the

enqueued steps, such as a concurrent skip-list or by creating a “parallel for” construct

in HabaneroC such as Cilk’s “cilk for” [50]. We note that in the HF policy this

problem does not arise, yet the results show that Data Driven still outperforms Restart

and Replay in a scenario such as the one presented above.

7.1.2 When the Restart and Replay runtime is the better choice

We chose to make a second variant of the ForkJoin micro benchmark to model a

situation when using the Restart and Replay runtime would be preferable. In this

implementation we create N tasks that need to get 100 input items that are available
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before execution begins. Figure 7.6 shows the results for this case: the first column of

graphs presents the absolute times for the the two runtimes, for the Work-First and

Help-First policies when creating 103 − 107 tasks, while the second column of graphs

shows the time difference between the two runtimes.

We notice that the execution time increases with the number of cores for the Data

Driven runtime, the reason being that it loses parallelism by checking dependencies

serially and adding more cores only increases the overhead of work-stealing (for 107

tasks, running on 1 core causes the test machine to swap, yielding the spike displayed

in the graph). In contrast, the Restart and Replay runtime scales well in the begin-

ning, but for more than 8 cores the time it takes is about constant. This is due to the

fact that the tasks are created sequentially and take little time to execute, so after a

certain threshold any core added will be idle as there isn’t enough work available for

it. The tests could be further tuned to include larger amounts of work which would

show good scaling for the Restart and Replay runtime, however, this synthetic case

was created to show how checking dependencies beforehand can lower performance

and we have shown this already.

We conclude that under heavy load of small parallel tasks, that are likely to fail

on retrieving the inputs needed, the Data Driven runtime is a preferable choice to the

Restart and Replay as it avoids the task-creating overhead. In contrast, the Restart

and Replay Runtime performs better for a heavy number of successful Get calls as

it eagerly executes tasks, thus obtaining more parallelism than the “safe” approach.

These two situations are the extreme cases and recognizing how an application is mod-

elled will help choose the best runtime for that application; for regular applications,

however, the two runtimes can be used interchangeably.

Another useful approach may be to alternate policies, e.g., eagerly spawn a task
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Figure 7.6 : Performance comparison between the Restart and Replay and Data
Driven Runtimes for a variant of the ForkJoin benchmark when each task needs 100
items that are already available; 1-16 cores. The graphs on the right indicate that
the Restart and Replay runtime performs better than the Data Driven runtime when
getting the data would be successful on a first attempt.
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a number of times to exploit parallelism but, after a threshold, continue the checks

sequentially if all previous spawns failed. Researching such a runtime is a subject for

future work.

In the remainder of this chapter we will report results for the Data Driven runtime,

as testing showed no noticeable difference between the times collected for the two

runtimes on the benchmarks we present further.

7.2 CPU testing and benchmarks

We consider three benchmarks for comparing the HabaneroC implementation of CnC

with either a previous implementation in Intel’s CnC or a reference OpenMP bench-

mark.

The first benchmark chosen is Cholesky factorization, which takes as an input

a positive-definite matrix and decomposes it into a lower triangular matrix and its

conjugate transpose. The well known algorithm, which computes the resulting tri-

angular matrix, will update the columns starting with the first, use these values to

update each of the rows (the value on column 1 and row i is used for the remaining

columns on row i), then repeat the process for the remaining columns using the values

computed in the previous iterations. A tiled version of the algorithm will perform the

computation serially for a matrix of size tile*tile, using adjacent tiles as inputs.

Figure 7.7 shows the results for the implementations of CnC-HC with work-first

and help-first policies and Intel’s CnC. The runs are done on 1-16 cores using an input

matrix of 2000 by 2000 elements and the computation is tiled with tile sizes of 50,

100, 125 and 200. The performance differences when varying the tile size are due to

cache effects, and previous work [52], [53] has shown that the best times are obtained

for a tile size of 125 on this machine.
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Figure 7.7 : Performance comparison (time and parallel efficiency) between Intel’s
CnC and CnC-HC for the Cholesky factorization, on 1-16 cores
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Analysing the results we can draw quite a few conclusions. First, we note that

Intel’s CnC always performs better for execution on small number of cores (1,2), which

shows that the overhead of spawning tasks can be improved in our implementation.

Secondly, our results show that if the computation is too fine grained (tile size =

50), Intel’s CnC begins to perform poorly and fails to scale beyond 4 cores, whereas

the CnC-HC still offers good scalability and close to optimal performance. Thirdly,

the best times are obtained for both version - as expected - for tile size equal to

125, for which the CnC-HC outperforms Intel’s CnC implementation on 16 cores by

4.2%. For other tile sizes around the “sweet-spot”, we notice CnC-HC offers better

times for smaller tasks (5.4-9.8%) while Intel’s CnC does better for coarser granularity

(0.4-9.3%)

The second benchmark, taken from the Parsec benchmark suite [54], is option

pricing with Black-Scholes partial differential equation. This is a embarrassingly

parallel benchmark which computes the price using the Black-Scholes equation for one

million items, over one hundred trials. Figure 7.8 shows a performance comparison

between the OpenMP implementation available from [54] and CnC-HC with work-first

and help-first policies. We tested the CnC version for two cases, varying the amount

of work for the whole that is attributed to a core at any iteration. The differences in

performance were negligible, which for such a benchmark is encouraging as it shows

our model can handle both complex graphs and parallelism of the type “parallel-for”

with no noticeable overhead.

The third benchmark, taken from the Rodinia benchmark suite, is Heart Wall

Tracking. This is the final stage of an application that tracks the movement of a

mouse’s heart over a sequence of 104 609x590 ultrasound images [55]. By using

sample points to observe the changes in the sequence of images, it aims to detect
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Figure 7.8 : Performance comparison Parsec’s OpenMP and CnC-HC for BlackScholes,
on 1-16 cores

the movement of the heart walls. The processing is done frame by frame, in a serial

way due to the dependencies between adjacent frames. For each frame a number of

sample points are processed with no dependencies between each other; these points

are retrieved from a previous edge detection processing of the sequence of images. The

processing for each point is based on a template, updated every 10 frames; the initial

template is based on the first frame. The movement of the heart walls is detected by

comparing the frame currently being processed to the template. Processing a single

point for a certain frame: (point, frame), involves a large number of small steps,

dependent only on each other, point, frame and the template updated after every

batch of frames. However, according to our analysis of the source code, processing

(point, frame) will only update its share of the template, while (point, frame+1) will

only use the template updated in the previous step, the same share of the template.

The Rodinia OpenMP implementation uses parallel for to execute in parallel the
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processing of all sample points points for a frame. Since the parallel for pragma has

an implicit barrier after each step, the full template will be updated before the next

frame starts to be processed. We created two versions of the benchmark in CnC-HC

and compared them with the OpenMP version. The results are shown in figure 7.9.

In the first CnC implementation, we created each step with just one dependency, that

of the previous frame processed. In this manner, we relaxed the barrier and exposed

more parallelism for the HC work-stealing scheduler to handle load balancing of the

tasks. This yielded a 13.35% improvement relative to the OpenMP version. In the

second version, we analysed the computation performed for each step (identified by a

(frame, point) pair) and created a more finer grained graph ( composed of 10 steps ).

However, since each of the steps was decomposed into a single entry single exit graph,

the parallelism obtained from within a step was not significant and didn’t yield much

performance improvement, but a slowdown compared to the first CnC version and a

10.5% improvement compared to the OpenMP implementation.

7.3 Hybrid testing and benchmarks

The first benchmark we implemented for hybrid execution was crypt from the Java

Grade Benchmark suite [51]. This application performs encryption on a large amount

of data, then decrypts the same amount of data to obtain the initial information and

performs an equality comparison to check correctness. Typical sizes for the data

for the JGB are 104 (SizeA), 105 (SizeB), 106 (SizeC), however we tested for larger

sizes: 2 ∗ 108, 5 ∗ 108 and 109, to show how an accelerator can significantly increase

performance for such loads. We note that for hybrid execution, a thread will be

assigned to interfacing with the device, thus we will have N-1 working threads for a

machine with N cores. The results can be seen in figure 7.10.
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Figure 7.9 : Performance comparison Rodinia’s OpenMP and CnC-HC for Heart Wall
Tracking, on 1-16 cores

We used two machines to test this benchmark, running a percentage of the com-

putation on the GPU and the rest on the available CPU cores. The first machine has

8 CPU cores and an older GPU model (an NVIDIA Quadro FX 580). For 2 ∗ 108

data size we obtain the best performance if we offload 30% of the computation to the

GPU. For 5 ∗ 108 elements, the optimal case is when running 40% on the device, but

we run out of device memory when attempting to execute 60% of the computation on

the GPU. Similarly for 109 data size, we can only run up to 30% of the computation

on the device. This limitation is due lack of data size knowledge from the current

graph specification, but there is potential research opportunity in chunking of data

and launching multiple device kernels in order to get past this obstacle.

The second machine we ran the crypt benchmark on, has a better GPU (an

NVIDIA Tesla C1060) but only 4 CPU cores. The results in this situation show that

the best results (a speedup of 80%) are obtained when 90% of the computation is
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Figure 7.10 : Performance on two GPU models of the crypt benchmark when a
percentage of the work is offloaded to the GPU

performed on the GPU. We need to mention that the difference in speedup between

the two situations is also due to the difference in the number of cores available in

each of the machines. Comparing the results in these two situations, we note that

further investigation and testing on the latest GPU models with a larger number of

cores would perhaps reveal other optimal points for executing similar applications.

Our current results show that it is a great feature to have the option to use the GPU

card in a laptop computer to speed up computation - e.g., on the first machine the

computation was sped up by 32.4% just by running 30% of the computation on the

GPU.

The second benchmark we tackled was a medical imaging pipeline, composed of

three stages: denoising, registration and segmentation. This implementation was de-
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veloped as part of the CDSC project [13]. The first stage, denoising, performs an

image noise reduction to facilitate further image analysis. The second stage, regis-

tration, compares the image to previous samples in order to detect possible changes.

Since we are dealing with medical images, this pipeline is mainly used for detecting

tumours or aneurysms and recording their progress in time through of subsequent

studies from different MRIs. The third and final stage, segmentation, has the role

of emphasising a location in the image where a change has occurred, like the growth

or appearance of a tumour. We ran a pipeline containing 10 runs of denoising, reg-

istration and segmentation (simulating 10 images run in parallel), each processing

an image of 256*256*256 voxels, where denoising had 3 iterations, registration 100

iteration and segmentation 50 iteration (the reason for the multiple iterations is to

control the convergence of the algorithms).

First, we considered a CPU only implementation for all stages in the pipeline.

We them improved on this by providing GPU implementations for all stages and

retesting the benchmark. Further, we merged the two, to obtain a hybrid approach

where some steps were run on the GPU and some on the CPU. We used the affinity

metric we presented in previous chapters to mark which steps are better suited for

the CPU and which for the GPU. Finally, we tested the benchmark on a hybrid

architecture encompassing a 4 core CPU, a GPU and an FPGA by also providing an

FPGA implementation for the registration step. While it is possible to run multiple

kernels on the FPGA, in practice that may involve a large reconfiguration overhead.

In our experiments, we configured the FPGA to accelerate the registration kernel

only. We took two approaches here: one involved a static mapping, similar to what

a programmer would write in the absence of a cross-device work-stealing runtime,

and one with the extended HC runtime we presented in section 6.4. In the static
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Figure 7.11 : Evaluating performance for the medical imaging pipeline on a Convey
HC-1ex with 2 CPU threads, 1 GPU and 1 FPGA

approach we executed the denoise step on the CPU, the registration on the FPGA

and the segmentation on the GPU, as this mapping yielded the best performance

for each step in turn and for the overall application. In the dynamic approach, we

allowed steps to run on multiple architectures as presented in listing 6.1.

Figures 7.11 and 7.12 show the results obtained on a Convey HC-1ex, on which a

C1060 GPU was added; these results are also detailed in the paper [56] submitted for

publication and were obtained in collaboration with the co-authors from University

of California Los Angeles (UCLA). In both figures we plot the time for the runs on

various architecture choices and notice an increase in performance of 8.28× just from

switching from CPU to GPU only, while, when using all devices, we get 11.84× for

the static scheduling and 17.72× for the dynamic one. As we assign each device a

CPU thread, for the CPU+GPU results only 3 cores are doing computation, while

for the CPU+GPU+FPGA results only 2 CPU cores do actual work.

In figure 7.11 we also show the measured overhead of launching steps on different
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Figure 7.12 : Evaluating performance for the medical imaging pipeline on a Convey
HC-1ex with 2 CPU threads, 1 GPU and 1 FPGA

devices (creating HabaneroC frames for CPU tasks and copying of data to and from

the device for GPU tasks). We note that even though the overhead increases signifi-

cantly when using multiple devices, the increase in performance more than makes up

for it.

In figure 7.12 we plot the estimated energy consumption which is computed by

summing up the energy spent by each device that contributes to the computation,

assuming 10W per core for the CPU, 200W for the GPU and 94W for the FPGA,

ignoring idle power. One of the reasons why the static binding has a lower energy

estimate than dynamic binding is because idle power is ignored. If the idle power

and the power of other system components are considered, we expect that dynamic

binding will have a lower energy cost because of its shorter execution time. The data

in figure 7.12 also suggests that different mapping policies may be needed to optimize

the energy consumption and/or the overall performance.

In this chapter we have presented our experimental results. We first made a study
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on the two runtimes presented in this thesis and argued when each can outperform

the other basing our deductions on analysis of the implementation and confirming

through experimental results. We then presented a series of CPU benchmarks showing

multiple aspects: our approach outperforms Intel’s CnC as showed by the Cholesky

benchmark, it does not add notable overhead to embarrassingly parallel computations

compared to OpenMP as showed by the BlackScholes benchmark and using the CnC

model can outperform OpenMP as it can express arbitrary task graphs thus exploiting

more parallelism if this exists, as shown by the Heart Wall Tracking benchmark. In

addition, porting these applications took little time due to the introduction of tag

functions and having a significant amount of code auto-generated, especially the calls

reading the inputs (Gets). Finally, we showed two approaches to tackle mapping on

heterogeneous architectures: we introduced a way to specify GPU steps thus enabling

auto-generation of much of the glue code between CPU and GPU (such as data copies,

kernel launches), and we extended the HabaneroC work-stealing runtime to support

cross-device work-stealing, which coupled with the introduction of affinities enables

the definition of multi-versioned computation steps and allows load balancing, thus

obtaining increased performance and reduction in energy consumption.
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Chapter 8

Conclusions and future work

In this work we have shown how a general data flow model can be extended for

developing and running programs on hybrid architectures. In the process we retained

the dataflow model’s most important guarantees: determinism, race and live-lock

freedom while obtaining good speedup when using accelerators like GPUs and FPGAs.

First, we presented the changes made to the user specification language and the

need for additional information introduced by tag functions and ranges. We showed

how tag functions specify the relation between the tag that uniquely identifies a step

and the tags identifying the data items that the step is either reading or writing,

while ranges define contiguous sets of items read or written by a step. We used these

extensions to enable the compiler to automatically generate high level operations

for inter-task communication, more precisely, the auto-generation of the calls to the

functions that read the data items (Get functions) within a computational step. In

addition we introduced the generation of function calls that write data items (Put

functions) and that spawn of other steps as helper code to improve usability. The

addition of tag functions also makes the code more analysable, opening the door for

future optimizations. Some of these are: the possibility to signal errors or problems

in the specification through static analysis (such as defined steps not being started by

any other step or the environment, items never being computed or computed items

never being used) or the opportunity to help with scheduling choices and decisions

on memory management.
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Second, we described a novel, data-driven runtime for the CnC model, developed

in a C framework, using HabaneroC (HC). We also created an implementation of

the previous runtime approach and conducted a study between the two runtimes

to determine the situations when each performs best. We determined that there

are situations when either runtime can outperform the other. Under heavy load of

small parallel tasks, that are likely to fail on retrieving the inputs needed, the Data

Driven runtime is a preferable choice to the Restart and Replay as it avoids the task-

creating overhead. In contrast, the Restart and Replay Runtime performs better for a

heavy number of successful Get calls as it eagerly executes tasks, thus obtaining more

parallelism than the “safe” approach. A useful approach may be to alternate policies,

e.g., eagerly spawn a task a number of times to exploit parallelism but continue the

checks sequentially if the spawn failed every time. Researching such a runtime is a

subject for future work.

The third aspect we tackled is the extension of CnC-HC for heterogeneous archi-

tectures. We introduce a way to specify steps that are data parallel and thus are

fit to execute on the GPU, and also the notion of task affinity, a tuning annotation

which offers hints on where a computational step should be run. Affinities are used

by the runtime during scheduling and can be fine-tuned based on application needs

to achieve better (faster, lower power, etc.) results. Further, we showed how we

expanded the HabaneroC dynamic work-stealing runtime to allow cross-device steal-

ing based on task affinity, in order to achieve load balancing across heterogeneous

platforms for improved performance. We are currently exploring the possibility of

extending the notion of affinity to encompass locality in space and time in a hierar-

chical definition of the steps in the CnC graph. Moreover, further work can enable

affinities to be determined and adapted automatically by combining static analysis
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and runtime profiling. Another extension, would be the introduction of a means to

specify data sizes in the graph specification, so as to fully automate the generation of

data copying code between the host and devices. In addition, this would also enable

the splitting of groups of data such that multiple GPU kernels could be launched

when there are memory constraints. On that subject there is also the hard problem

of how best to exploit different storage classes on a GPU device.

Finally, in our results we started by making a comparison study between the two

runtimes that we implemented, in order to assess how the theoretical differences affect

actual programs. Next, we used a series of CPU benchmarks in order to evaluate the

performance of our CnC-HC implementation. We compared to Intel’s CnC runtime

(based on C++) and with OpenMP and concluded CnC-HC did just as well or better in

terms of performance. Further, we used the extensions we made for hybrid execution

to evaluate two benchmarks on systems encompassing CPUs, GPUs and FPGAs and

proved that this approach can yield a significant increase in performance and decrease

in power consumption, for applications with steps that can exploit such hardware,

when using CnC-HC for a hybrid CPU/GPU/FPGA execution. To evaluate how a

larger variety of applications could take advantage of this model, more applications

need to be ported, as part of future work.

We conclude with our claim sustained by practical results, that a high level and

easy to use data flow model can be extended for execution on hybrid architectures,

while yielding very good performance, low power consumption and retaining high

programmability.
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Scientific Programming, vol. 18, pp. 203–217, August 2010.
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