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Abstract
Studies of the human microbiome have revealed that even healthy individuals differ remarkably in
the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains
unexplained, although diet, environment, host genetics, and early microbial exposure have all been
implicated. Accordingly, to characterize the ecology of human-associated microbial communities,
the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically
relevant body habitats to date. We found the diversity and abundance of each habitat’s signature
microbes to vary widely even among healthy subjects, with strong niche specialization both within
and among individuals. The project encountered an estimated 81–99% of the genera, enzyme
families, and community configurations occupied by the healthy Western microbiome.
Metagenomic carriage of metabolic pathways was stable among individuals despite variation in
community structure, and ethnic/racial background proved to be one of the strongest associations

Correspondence and requests for materials should be addressed to chuttenh@hsph.harvard.edu.

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Author Contributions
Principal investigators: BWB, RAG, SKH, BAM, KEN, JFP, GMW, OW, RKW Manuscript preparation: DG, CH, RK, OW
Funding agency management: CCB, TB, VB, JLC, SC, CD, VDF, CG, MYG, RDL, JM, PM, JP, LMP, JAS, LW, CW, KAW
Project leadership: SA, JHB, BWB, ATC, HHC, AME, MGF, RSF, DG, MGG, KH, SKH, CH, EAL, RM, VM, JCM, BAM, MM,
DMM, KEN, JFP, EJS, JV, GMW, OW, AMW, KCW, JRW, SKY, QZ
Analysis preparation for manuscript: JCC, KF, DG, AG, KHH, CH, RK, DK, HHK, OK, KPL, REL, JR, JFS, PDS, NS
Data release: LA, TB, IAC, KC, HHC, NJD, DJD, AME, VMF, LF, JMG, SG, SKH, MEH, CJ, VJ, CK, AAM, VMM, TM, MM,
DMM, JO, KP, JFP, CP, XQ, RKS, NS, IS, EJS, DVW, OW, KW, KCW, CY, BPY, QZ
Methods and research development: SA, HMA, MB, DMC, AME, RLE, MF, SF, MGF, DCF, DG, GG, BJH, SKH, MEH, WAK, NL,
KL, VM, ERM, BAM, MM, DMM, CN, JFP, MEP, XQ, MCR, CR, EJS, SMS, DGT, DVW, GMW, YW, KMW, SY, BPY, SKY, QZ
DNA sequence production: SA, EA, TA, TB, CJB, DAB, KDD, SPD, AME, RLE, CNF, SF, CCF, LLF, RSF, BH, SKH, MEH, VJ,
CLK, SLL, NL, LL, DMM, IN, CN, MO, JFP, XQ, JGR, YR, MCR, DVW, YW, BPY, YZ
Clinical sample collection: KMA, MAC, WMD, LLF, NG, HAH, ELH, JAK, WAK, TM, ALM, PM, SMP, JFP, GAS, JV, MAW,
GMW
Body site experts: KMA, EAV, GA, LB, MJB, CCD, FED, LF, JI, JAK, SKH, HHK, KPL, PJM, JR, TMS, JAS, JDS, JV
Ethical, legal and social implications: RMF, DEH, WAK, NBK, CML, ALM, RR, PS, RRS, PS, LZ
Strain management: EAV, JHB, IAC, KC, SWC, HHC, TZD, ASD, AME, MGF, MGG, SKH, VJ, NCK, SLL, LL, KL, EAL, VMM,
BAM, DMM, KEN, IN, IP, LS, EJS, CMT, MT, DVW, GMW, AMW, YW, KMW, BPY, LZ, YZ
16S data analysis: KMA, EJA, GLA, CAA, MB, BWB, JPB, GAB, SRC, SC, JC, TZD, FED, ED, AME, RCE, MF, AAF, JF, HG,
DG, BJH, TAH, SMH, CH, JI, JKJ, STK, SKH, RK, HHK, OK, PSLR, REL, KL, CAL, DM, BAM, KAM, MM, MP, JFP, MP, KSP,
XQ, KPR, MCR, BR, PDS, TMS, NS, JAS, WDS, TJS, CSS, EJS, RMT, JV, TAV, ZW, DVW, GMW, JRW, KMW, YY, SY, YZ
Shotgun data processing and alignments: CJB, JCC, ED, DG, AG, MEH, HJ, DK, KCK, CLK, YL, JCM, BAM, MM, DMM, JO, JFP,
XQ, JGR, RKS, NUS, IS, EJS, GGS, SMS, JW, ZW, GMW, OW, KCW, TW, SKY, LZ
Assembly: HMA, CJB, PSC, LC, YD, SPD, MGF, MEH, HJ, SK, BL, YL, CL, JCM, JMM, JRM, PJM, MM, JFP, MP, MEP, XQ,
MR, RKS, MS, DDS, GGS, SMS, CMT, TJT, WW, GMW, KCW, LY, YY, SKY, LZ
Annotation: OOA, VB, CJB, IAC, ATC, KC, HHC, ASD, MGG, JMG, JG, AG, SG, BJH, KH, SKH, CH, HJ, NCK, RM, VMM, KM,
TM, MM, JO, KP, MP, XQ, NS, EJS, GGS, SMS, MT, GMW, KCW, JRW, CY, SKY, QZ, LZ
WGS Metabolic Reconstruction: SA, BLC, JG, CH, JI, BAM, MM, BR, AMS, NS, MT, GMW, SY, QZ, JDZ

Author Information
All data used in this study is available from the Human Microbiome Project Data Analysis and Coordination Center1. Reprints and
permissions information is available at www.nature.com/reprints.

The authors declare no competing financial interests.

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2013 February 05.

Published in final edited form as:
Nature. ; 486(7402): 207–214. doi:10.1038/nature11234.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of both pathways and microbes with clinical metadata. These results thus delineate the range of
structural and functional configurations normal in the microbial communities of a healthy
population, enabling future characterization of the epidemiology, ecology, and translational
applications of the human microbiome.

A total of 4,788 specimens from 242 screened and phenotyped adults1–2 (129 males, 113
females) were available for this study, representing the majority of the target HMP cohort of
300 individuals. Adult subjects lacking evidence of disease were recruited based on a
lengthy list of exclusion criteria; we will refer to them here as “healthy,” as defined by the
consortium clinical sampling criteria2. Women were sampled at 18 body habitats, men at 15
(excluding three vaginal sites), distributed among five major body areas. Nine specimens
were collected from the oral cavity and oropharynx: saliva; buccal mucosa (cheek),
keratinized gingiva (gums), palate, tonsils, throat, and tongue soft tissues; and supra- and
subgingival dental plaque (tooth biofilm above and below the gum). Four skin specimens
were collected from the two retroauricular creases (behind each ear) and the two antecubital
fossae (inner elbows), and one specimen for the anterior nares (nostrils). A self-collected
stool specimen represented the microbiota of the lower gastrointestinal tract, and three
vaginal specimens were collected from the vaginal introitus, midpoint, and posterior fornix.
In order to evaluate within-subject stability of the microbiome, 131 individuals in these data
were sampled at an additional time point (mean 219 sd. 69 days after first sampling, range
35–404 days). After quality control, these specimens were used for 16S rRNA gene analysis
via 454 pyrosequencing (abbreviated henceforth as 16S profiling, mean 5,408 sd. 4,605
filtered sequences/sample); to assess function, 681 samples were sequenced using paired-
end Illumina shotgun metagenomic reads (mean 2.9Gb sd. 2.1 per sample)1. More details on
data generation are provided in related HMP publications1–2 and in Supplemental Methods.

Microbial diversity of healthy humans
The diversity of microbes within a given body habitat can be defined as the number and
abundance distribution of distinct types of organisms, which has been linked to several
human diseases: low diversity in the gut to obesity and inflammatory bowel disease3–4, for
example, and high diversity in the vagina to bacterial vaginosis5. For this large study
involving microbiome samples collected from healthy volunteers at two distinct geographic
locations in the United States, we have defined the microbial communities at each body
habitat, encountering 81–99% of predicted genera and saturating the range of overall
community configurations (Fig. 1, Supp. Fig. 1, Supp. Table 1, see also Fig. 4). Oral and
stool communities were especially diverse in terms of community membership, expanding
prior observations6, and vaginal sites harbored particularly simple communities (Fig. 1A).
This study established that these patterns of alpha diversity (within samples) differed
markedly from comparisons between samples from the same habitat among subjects (beta
diversity, Fig. 1B). For example, the saliva had among the highest median alpha diversities
of Operational Taxonomic Units (OTUs, roughly species level classification, see http://
hmpdacc.org/HMQCP), but one of the lowest beta diversities - so although each individual’s
saliva was ecologically rich, members of the population shared similar organisms.
Conversely, the antecubital fossae (skin) had the highest beta diversity but were intermediate
in alpha diversity. The vagina had the lowest alpha diversity, with quite low beta diversity at
the genus level but very high among OTUs due to the presence of distinct Lactobacillus spp.
(Fig. 1B). The primary patterns of variation in community structure followed the major body
habitat groups (oral, skin, gut, and vaginal), defining as a result the complete range of
population-wide between-subject variation in human microbiome habitats (Fig. 1C). Within-
subject variation over time was consistently lower than between-subject variation, both in
organismal composition and in metabolic function (Fig. 1D). The uniqueness of each
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individual’s microbial community thus appear to be stable over time (relative to the
population as a whole), which may be another feature of the human microbiome specifically
associated with health.

No taxa were observed to be universally present among all body habitats and individuals at
the sequencing depth employed here, unlike several pathways (Fig. 2 and Supp. Fig. 2, see
below), although several clades demonstrated broad prevalence and relatively abundant
carriage patterns7–9. Instead, as suggested by individually focused studies3–4,6,10–11, each
body habitat in almost every subject was characterized by one or a few signature taxa
making up the plurality of the community (Fig. 3). Signature clades at the genus level
formed on average anywhere from 17% to 84% of their respective body habitats, completely
absent in some communities (0% at this level of detection) and representing the entire
population (100%) in others. Strikingly, less dominant taxa were also highly personalized,
both among individuals and body habitats; in the oral cavity, for example, most habitats are
dominated by Streptococcus, but these are followed in abundance by Haemophilus in the
buccal mucosa, Actinomyces in the supragingival plaque, and Prevotella in the immediately
adjacent (but low oxygen) subgingival plaque12.

Additional taxonomic detail of the human microbiome was provided by identifying unique
marker sequences in metagenomic data13 (Fig. 3A) to complement 16S profiling (Fig. 3B).
These two profiles were typically in close agreement (Supp. Fig. 3), with the former in some
cases offering more specific information on members of signature genera differentially
present within habitats (e.g. vaginal Prevotella amnii and gut P. copri) or among individuals
(e.g. vaginal Lactobacillus spp.) One application of this specificity was to confirm the
absence of NIAID class A–C pathogens above 0.1% abundance (aside from S. aureus and E.
coli) from the healthy microbiome, but the near-ubiquity and broad distribution of
opportunistic “pathogens” as defined by PATRIC14. Canonical pathogens including Vibrio
cholerae, Mycobacterium avium, Campylobacter jejuni, and Salmonella enterica were not
detected at this level of sensitivity. Helicobacter pylori was found in only two gut samples,
both at <0.01%, and E. coli was present at >0.1% abundance in 15% of stool microbiomes
(>0% abundance in 61%). Similar species level observations were obtained for a small
subset of stool samples with 454 pyrosequencing metagenomics data using PhylOTU15–16.
In total 56 of 327 PATRIC “pathogens” were detected in the healthy microbiome (at >1%
prevalence of >0.1% abundance, Supp. Table 2), all opportunistic and, strikingly, typically
prevalent both among hosts and habitats. The latter is in contrast to many of the most
abundant signature taxa, which were usually more habitat-specific and variable among hosts
(Fig. 3A–B). This overall absence of particularly detrimental microbes supports the
hypothesis that even given this cohort’s high diversity, the microbiota tend to occupy a
range of configurations in health distinct from many of the disease perturbations studied to
date4,17.

Carriage of specific microbes
Inter-individual variation in the microbiome proved to be specific, functionally relevant, and
personalized. One example of this is illustrated by the Streptococcus spp. of the oral cavity.
The genus dominates the oropharynx18, with different species abundant within each sampled
body habitat (see http://hmpdacc.org/HMSMCP) and, even at the species level, striking
differences in carriage within each habitat among individuals (Fig. 4A). As the ratio of pan-
to core-genomes is high in many human-associated microbes19, this variation in abundance
could be due to selective pressures acting on pathways differentially present among
Streptococcus species or strains (Fig. 4B). Indeed, we observed extensive strain-level
genomic variation within microbial species in this population, enriched for host-specific
structural variants around genomic islands (Fig. 4C). Even with respect to the single
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Streptococcus mitis strain B6, gene losses associated with these events were common, for
example differentially eliminating S. mitis carriage of the V-type ATPase or choline binding
proteins cbp6 and cbp12 among subsets of the host population (Fig. 4D). These losses were
easily observable by comparison to reference isolate genomes, and these initial findings
suggest that microbial strain- and host-specific gene gains and polymorphisms may be
similarly ubiquitous.

Other examples of functionally relevant inter-individual variation at the species and strain
levels occurred throughout the microbiome. In the gut, Bacteroides fragilis has been shown
to prime T cell responses in animal models via the capsular polysaccharides PSA20, and in
the HMP stool samples this taxon was carried at a level of at least 0.1% in 16% of samples
(over 1% abundance in 3%). B. thetaiotaomicron has been studied for its effect on host
gastrointestinal metabolism21 and was likewise common at 46% prevalence. On the skin,
Staphylococcus aureus, of particular interest as the cause of methicillin-resistant S. aureus
(MRSA) infections, had 29% nasal and 4% skin carriage rates, roughly as expected22. Close
phylogenetic relatives such as S. epidermidis (itself considered commensal) were, in
contrast, universal on the skin and present in 93% of nares samples, and at the opposite
extreme Pseudomonas aeruginosa (a representative gram negative skin pathogen) was
completely absent from both body habitats (0% at this level of detection). These and the data
above suggest that the carriage pattern of some species in the human microbiome may be
analogous to genetic traits, where recessive alleles of modest risk are maintained in a
population. In the case of the human microbiome, high-risk pathogens remain absent, while
species that pose a modest degree of risk also appear to be stably maintained in this
ecological niche.

Finally, microorganisms within and among body habitats exhibited relationships suggestive
of driving physical factors such as oxygen, moisture and pH, host immunological factors,
and microbial interactions such as mutualism or competition23 (Supp. Fig. 4). Both overall
community similarity and microbial co-occurrence and co-exclusion across the human
microbiome grouped the 18 body habitats together into four clusters corresponding to the
five target body areas (Supp. Fig. 4A–B). There was little distinction among different
vaginal sites, with Lactobacillus spp. dominating all three and correlating in abundance.
However, Lactobacillus varied inversely with the Actinobacteria and Bacteroidetes (see
Supp. Fig. 4C and Fig. 2–3), as also observed in the cohort of Ravel et al11. Gut microbiota
relationships primarily comprised inverse associations with the Bacteroides, which ranged
from dominant in some subjects to a minority in others who carried a greater diversity of
Firmicutes. A similar progression was evident in the skin communities, dominated by one of
Staphylococcus (phylum Firmicutes), Propionibacterium, or Corynebacterium (both phylum
Actinobacteria), with a continuum of oral organisms (e.g. Streptococcus) appearing in nares
communities (Supp. Fig. 4C). These observations suggest that microbial community
structure in these individuals may sometimes occupy discrete configurations and under other
circumstances vary continuously, a topic addressed in more detail by several HMP
investigations7,24–25. An individual’s location within such configurations is indicative of
current microbial carriage (including pathogens) and of the community’s ability to resist
future pathogen acquisition or dysbiosis; it may thus prove to be associated with disease
susceptibility or other phenotypic characteristics.

Microbiome metabolism and function
As the first study to include both marker gene and metagenomic data across body habitats
from a large human population, we additionally assessed the ecology of microbial metabolic
and functional pathways in these communities. We reconstructed the relative abundances of
pathways in community metagenomes26, which were much more constant and evenly
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diverse than were organismal abundances (Fig. 2B, see also Fig. 1), confirming this as an
ecological property of the entire human microbiome3. We were likewise able to determine
for the first time that taxonomic and functional alpha diversity across microbial communities
significantly correlate (Spearman of inverse Simpson’s r=0.60, p=3.6e-67, n=661), the latter
within a more proscribed range of community configurations (Supp. Fig. 5).

Unlike microbial taxa, several pathways were ubiquitous among individuals and body
habitats. The most abundant of these “core” pathways include the ribosome and translational
machinery, nucleotide charging and ATP synthesis, and glycolysis, and reflect the basics of
host-associated microbial life. Also in contrast to taxa, few pathways were highly variable
among subjects within any body habitat; exceptions included the Sec (orally, sd. 0.0052,
mean oral sd. 0.0011 sd. 0.0016) and Tat (globally, sd 0.0055, mean global sd. 0.0023 sd.
0.0033) secretion systems, indicating a high degree of host-microbe and microbe-microbe
interactions in the healthy human microbiota. This high variability was particularly present
in the oral cavity, for phosphate, mono- and di-saccharide, and amino acid transport in the
mucosa, as well as LPS biosynthesis and spermidine/putrescine synthesis and transport on
the plaque and tongue (http://hmpdacc.org/HMMRC). The stability and high metagenomic
abundance of this housekeeping “core” contrasts with the greater variability and lower
abundance of niche-specific functionality in rare but consistently present pathways, e.g.
spermidine biosynthesis, methionine degradation, and hydrogen sulfide production, all
examples highly prevalent in gastrointestinal body sites (nonzero in >92% of samples) but at
very low abundance (median rel. abd. <0.0052). This “long tail” of low-abundance genes
and pathways also likely encodes much of the uncharacterized biomolecular function and
metabolism of these metagenomes, the expression levels of which remain to be explored in
future metatranscriptomic studies.

Protein families showed diversity and prevalence trends similar to those of full pathways,
ranging from maxima of only ~16,000 unique families per community in the vagina to
almost 400,000 in the oral cavity (Fig. 1A–B, http://hmpdacc.org/HMGI). A striking
fraction of these families were indeed functionally uncharacterized, including those detected
by read mapping, with a minimum in the oral cavity (mean 58% sd. 6.8%) and maximum in
the nares (mean 77% sd. 11%). Likewise, many genes annotated from assemblies could not
be assigned a metabolic function, with a minimum in the vagina (mean 78% sd. 3.4%) and
maximum in the gut (mean 86% sd. 0.9%). The latter range did not differ substantially by
body habitat and is in close agreement with previous comprehensive gene catalogs of the gut
metagenome4. Taken together with the microbial variation observed above throughout the
human microbiome, functional variation among individuals might indicate pathways of
particular importance in maintaining community structure in the face of personalized
immune, environmental, or dietary exposures among these subjects. Determining the
functions of uncharacterized core and variable protein families will be especially essential in
understanding the microbiota’s role in health and disease.

Correlations with host phenotype
We finally examined relationships associating both clades and metabolism in the microbiota
with host properties such as age, gender, BMI, and other available clinical metadata (Fig. 5;
Supp. Table 3). Using a sparse multivariate model, 960 microbial, enzymatic, or pathway
abundances were significantly associated with one or more of 15 subject phenotype and
sample metadata features. A wide variety of taxa, gene families, and metabolic pathways
were differentially distributed with subject ethnicity at every body habitat (Fig. 5A),
representing the phenotype with the greatest number 266 at FDR q<0.2) of total associations
with the microbiome. Vaginal pH has also been observed to correlate with microbiome
composition11, and we detected in this population both the expected reduction in
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Lactobacillus at high pH and a corresponding increase in metabolic diversity (Fig. 5B).
Intriguingly, and not previously observed, subject age was most associated with a collection
of highly differential metagenomically encoded pathways on the skin (Fig. 5C), as well as
shifts in skin clades including retroauricular Firmicutes (p=1.0e-4, q=0.033). The examples
of associations with ethnicity and vaginal pH are among the strongest associations with the
microbiome, however, and most correlates (e.g. with subject BMI, Fig. 5D) are more
representatively modest. This lower degree of correlation held for most available biometrics
(gender, temperature, blood pressure, etc.), with even the most significant associations
possessing generally low effect sizes and considerable unexplained variance. We conclude
that most variation in the human microbiome is not well-explained by these phenotypic
metadata, and other potentially important factors such as short- and long-term diet, daily
cycles, founder effects such as mode of delivery, and host genetics should be considered in
future analyses.

Conclusions
This extensive sampling of the human microbiome across many subjects and body habitats
provides an initial characterization of the normal microbiota of healthy adults in a Western
population. The large sample size and consistent sampling of many sites from the same
individuals allows for the first time an understanding of the relationships among microbes,
and between the microbiome and clinical parameters, that underpin the basis for individual
variation -- variation that may ultimately be critical for understanding microbiome-based
disorders. Clinical studies of the microbiome will be able to leverage the resulting extensive
catalogs of taxa, pathways, and genes1, although they must also still include carefully
matched internal controls. The uniqueness of each individual’s microbiome even in this
reference population argues for future studies to consider prospective within-subjects
designs where possible. The HMP’s unique combination of organismal and functional data
across body habitats, encompassing both 16S and metagenomic profiling, together with
detailed characterization of each subject, has allowed us and subsequent studies to move
beyond the observation of variability in the human microbiome to ask how and why these
microbial communities vary so extensively.

Many details remain for further work to fill in, building on this reference study. How do
early colonization and life-long change vary among body habitats? Do epidemiological
patterns of transmission of beneficial or harmless microbes mirror patterns of transmission
of pathogens? Which co-occurrences among microbes reflect shared response to the
environment, as opposed to competitive or mutualistic interactions? How large a role does
host immunity or genetics play in shaping patterns of diversity, and how do the patterns
observed in this North American population compare to those around the world? Future
studies building on the gene and organism catalogs established by the Human Microbiome
Project, including increasingly detailed investigations of metatranscriptomes and
metaproteomes, will help to unravel these open questions and allow us to more fully
understand the links between the human microbiome, health, and disease.

Methods Summary
Microbiome samples were collected from up to 18 body sites at one or two time points from
242 individuals clinically screened for absence of disease2. Samples were subjected to 16S
rRNA gene pyrosequencing (454 Life Sciences), and a subset were shotgun sequenced for
metagenomics using the Illumina GAIIx platform1. 16S data processing and diversity
estimates were performed using QIIME27, and metagenomic data were taxonomically
profiled using MetaPhlAn13, metabolically profiled by HUMAnN26, and assembled for gene
annotation and clustering into a unique catalog1. Potential pathogens were identified using
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the PATRIC database14, isolate reference genome annotations drawn from KEGG28, and
reference genome mapping performed by BWA29 to a reduced set of genomes to which
short reads could be matched30. Microbial associations were assessed by similarity measures
accounting for compositionality23, and phenotypic association testing was performed in R.
All data and additional protocol details are available at http://hmpdacc.org. Full methods
accompany this paper.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The Consortium would like to thank our external scientific advisory board: Richard Blumberg, Julian Davies,
Robert Holt, Pilar Ossorio, Francis Ouellette, Gary Schoolnik, and Alan Williamson. We would also like to thank
our collaborators throughout the International Human Microbiome Consortium, particularly the investigators of the
MetaHIT project, for advancing human microbiome research. Data repository management was provided by the
National Center for Biotechnology Information and the Intramural Research Program of the NIH National Library
of Medicine. We especially appreciate the generous participation of the individuals from the Saint Louis, MO, and
Houston, TX areas who made this study possible. This research was supported in part by National Institutes of
Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.;
U54HG003067 to E.S.L.; U54AI084844 to K.E.N.; N01AI30071 to R.L.S.; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.;
R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.C. and P.L.S.;
R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.;
R01HG005172 to P.G.S.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was
supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., Cynthia N.
Cornelissen, Lindon K. Eaves and Jerome F. Strauss); S.M.H. was supported by UH3DK083993 (Vincent B.
Young, Eugene B. Chang, Folker Meyer, Thomas M. Schmidt, Mitchell L. Sogin, James M. Tiedje); K.P.R. was
supported by UH2DK083990 (James Versalovic); J.A.S. and H.H.K. were supported by UH2AR057504 and
UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE202098 and R01DE021574 (S.K.H. and Huiying Li);
J.G.I. was supported by R21CA139193 (J.G.I. and Dominique S. Michaud); K.P.L. was supported by
P30DE020751 (Daniel J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science
Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S.G.C.; LANL Laboratory-Directed
Research and Development grant 20100034DR and the U.S. Defense Threat Reduction Agency grants B104153I
and B084531I to P.S.G.C.; Research Foundation -Flanders (FWO) grant to K.F. and J.R.; R.K. is an HHMI Early
Career Scientist; Gordon & Betty Moore Foundation funding and institutional funding from the J. David Gladstone
Institutes to K.S.P.; A.M.S was supported by fellowships provided by the Rackham Graduate School and the NIH
Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation
of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; Analysis of the HMP data was
performed using National Energy Research Scientific Computing resources; the BluBioU Computational Resource
at Rice University.

References
1. The Human Microbiome Project Consortium. A framework for human microbiome research. (in

review)

2. Aagaard, K., et al. A Comprehensive Strategy for Sampling the Human Microbiome. (in review)

3. Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457:480–484.
nature07540 [pii]. 10.1038/nature07540 [PubMed: 19043404]

4. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature.
2010; 464:59–65. nature08821 [pii]. 10.1038/nature08821 [PubMed: 20203603]

5. Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with
bacterial vaginosis. The New England journal of medicine. 2005; 353:1899–1911.10.1056/
NEJMoa043802 [PubMed: 16267321]

6. Costello EK, et al. Bacterial community variation in human body habitats across space and time.
Science. 2009; 326:1694–1697.10.1126/science.1177486 [PubMed: 19892944]

Page 7

Nature. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://hmpdacc.org


7. Huse, S.; Ye, Y.; Zhou, Y.; Fodor, A. A Core Human Microbiome as Viewed Through 16S rRNA
Sequences Clusters. (in press)

8. Zhou, Y.; Gao, H.; Mihindukulasuriya, K.; Sodergen, E.; Weinstock, GM. Defining Core
Microbiomes in Healthy Humans. (in preparation)

9. Li, K.; Bihan, M.; Yooseph, S.; Methe, BA. Analyses of the Microbial Diversity across the Human
Microbiome. (in press)

10. Grice EA, et al. Topographical and temporal diversity of the human skin microbiome. Science.
2009; 324:1190–1192. 324/5931/1190 [pii]. 10.1126/science.1171700 [PubMed: 19478181]

11. Ravel J, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;
108(Suppl 1):4680–4687. 1002611107 [pii]. 10.1073/pnas.1002611107 [PubMed: 20534435]

12. Segata, N., et al. Composition of the Adult Digestive Tract Microbiome Based on Seven Mouth
Surfaces, Tonsils, Throat and Stool Samples. (in review)

13. Segata, N., et al. Efficient metagenomic microbial community profiling using unique clade-specific
marker genes. (in press)

14. Gillespie JJ, et al. PATRIC: The Comprehensive Bacterial Bioinformatics Resource with a Focus
on Human Pathogenic Species. Infection and immunity. 201110.1128/IAI.00207-11

15. Sharpton TJ, et al. PhylOTU: a high-throughput procedure quantifies microbial community
diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol. 2011;
7:e1001061.10.1371/journal.pcbi.1001061 [PubMed: 21283775]

16. Wylie KM, et al. Novel Bacterial Taxa in the Human Microbiome. PLoS ONE. (in press).

17. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium
identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;
105:16731–16736. 0804812105 [pii]. 10.1073/pnas.0804812105 [PubMed: 18936492]

18. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral
cavity. J Clin Microbiol. 2005; 43:5721–5732. 43/11/5721 [pii]. 10.1128/JCM.43.11.5721–
5732.2005 [PubMed: 16272510]

19. Medini D, et al. Microbiology in the post-genomic era. Nat Rev Microbiol. 2008; 6:419–430.
nrmicro1901 [pii]. 10.1038/nrmicro1901 [PubMed: 18475305]

20. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal
inflammatory disease. Nature. 2008; 453:620–625. nature07008 [pii]. 10.1038/nature07008
[PubMed: 18509436]

21. Goodman AL, et al. Identifying genetic determinants needed to establish a human gut symbiont in
its habitat. Cell host & microbe. 2009; 6:279–289.10.1016/j.chom.2009.08.003 [PubMed:
19748469]

22. Kuehnert MJ, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States,
2001–2002. J Infect Dis. 2006; 193:172–179. JID35385 [pii]. 10.1086/499632 [PubMed:
16362880]

23. Faust, K., et al. Microbial co-occurrence relationships in the human microbiome. (in review)

24. Koren, O., et al. Enterotypes Lost in Gradients: A Meta-Analysis of Human Microbiome Project
and Community 16S rRNA Data. (in review)

25. Zhou, Y., et al. Community states and variability of the human microbiome. (in preparation)

26. Abubucker, S., et al. Metabolic reconstruction for metagenomic data and its application to the
human microbiome. (in press)

27. Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat
Methods. 2010; 7:335–336. nmeth.f.303 [pii]. 10.1038/nmeth.f.303 [PubMed: 20383131]

28. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and
analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010; 38:D355–
360. gkp896 [pii]. 10.1093/nar/gkp896 [PubMed: 19880382]

29. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics. 2010; 26:589–595. btp698 [pii]. 10.1093/bioinformatics/btp698 [PubMed:
20080505]

Page 8

Nature. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



30. Giannoukos G, et al. Efficient and robust RNA-seq process for cultured bacteria and complex
community transcriptomes. Genome biology. 2012; 13:R23.10.1186/gb-2012-13-3-r23 [PubMed:
22455878]

31. Langille MG, Brinkman FS. IslandViewer: an integrated interface for computational identification
and visualization of genomic islands. Bioinformatics. 2009; 25:664–665.10.1093/bioinformatics/
btp030 [PubMed: 19151094]

The Human Microbiome Project Consortium
Curtis Huttenhower1,2,*, Dirk Gevers2,*, Rob Knight3,4, Sahar Abubucker5, Jonathan H
Badger6, Asif T Chinwalla5, Heather H Creasy7, Ashlee M Earl2, Michael G FitzGerald2,
Robert S Fulton5, Michelle G Giglio7, Kymberlie Hallsworth-Pepin5, Elizabeth A Lobos5,
Ramana Madupu6, Vincent Magrini5, John C Martin5, Makedonka Mitreva5, Donna M
Muzny8, Erica J Sodergren5, James Versalovic9,10, Aye M Wollam5, Kim C Worley8,
Jennifer R Wortman2, Sarah K Young2, Qiandong Zeng2, Kjersti M Aagaard11, Olukemi O
Abolude7, Emma Allen-Vercoe12, Eric J Alm13,2, Lucia Alvarado2, Gary L Andersen14,
Scott Anderson2, Elizabeth Appelbaum5, Harindra M Arachchi2, Gary Armitage15, Cesar A
Arze7, Tulin Ayvaz16, Carl C Baker17, Lisa Begg18, Tsegahiwot Belachew19, Veena
Bhonagiri5, Monika Bihan6, Martin J Blaser20, Toby Bloom2, Vivien Bonazzi21, J Paul
Brooks22,23, Gregory A Buck23,24, Christian J Buhay8, Dana A Busam6, Joseph L
Campbell21,19, Shane R Canon25, Brandi L Cantarel7, Patrick S G Chain26,27, I-Min A
Chen28, Lei Chen5, Shaila Chhibba21, Ken Chu28, Dawn M Ciulla2, Jose C Clemente3,
Sandra W Clifton5, Sean Conlan21, Jonathan Crabtree7, Mary A Cutting29, Noam J
Davidovics7, Catherine C Davis30, Todd Z DeSantis31, Carolyn Deal19, Kimberley D
Delehaunty5, Floyd E Dewhirst32,33, Elena Deych34, Yan Ding8, David J Dooling5,

1Biostatistics, Harvard School of Public Health, Boston MA
2The Broad Institute of MIT and Harvard, Cambridge MA
*Equal contribution
3Department of Chemistry and Biochemistry, University of Colorado, Boulder CO
4Howard Hughes Medical Institute, Boulder CO
5The Genome Institute, Washington University School of Medicine, St. Louis MO
6J. Craig Venter Institute, Rockville MD
7Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD
8Human Genome Sequencing Center, Baylor College of Medicine, Houston TX
9Department of Pathology & Immunology, Baylor College of Medicine, Houston TX
10Department of Pathology, Texas Children’s Hospital, Houston TX
11Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston TX
12Molecular and Cellular Biology, University of Guelph, Guleph, Canada
13Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge MA
14Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, Berkeley CA
15School of Dentistry, University of California, San Francisco, San Francisco CA
16Molecular Virology and Microbiology, Baylor College of Medicine, Houston TX
17National Institute of Arthritis and Musculoskeletal and Skin, National Institutes of Health, Bethesda MD
18Office of Research on Women’s Health, National Institutes of Health, Bethesda MD
19National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
20Department of Medicine, New York University Langone Medical Center, New York NY
21National Human Genome Research Institute, National Institutes of Health, Bethesda MD
22Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond VA
23Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond VA
24Department of Biology, Virginia Commonwealth University, Richmond VA
25Technology Integration Group, National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory,
Berkeley CA
26Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos NM
27Joint Genome Institute, Walnut Creek CA
28Biological Data Management and Technology Center, Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley CA
29National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda MD
30FemCare Product Safety and Regulatory Affairs, The Procter & Gamble Company, Cincinnati OH
31Bioinformatics Department, Second Genome, Inc., San Bruno CA
32Department of Molecular Genetics, Forsyth Institute, Cambridge MA

Page 9

Nature. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Shannon P Dugan8, Wm Michael Dunne35,36, A Scott Durkin6, Robert C Edgar37, Rachel
L Erlich2, Candace N Farmer5, Ruth M Farrell38, Karoline Faust39,40, Michael
Feldgarden2, Victor M Felix7, Sheila Fisher2, Anthony A Fodor41, Larry J Forney42, Leslie
Foster6, Valentina Di Francesco19, Jonathan Friedman43, Dennis C Friedrich2, Catrina C
Fronick5, Lucinda L Fulton5, Hongyu Gao5, Nathalia Garcia44, Georgia Giannoukos2,
Christina Giblin19, Maria Y Giovanni19, Jonathan M Goldberg2, Johannes Goll6, Antonio
Gonzalez45, Allison Griggs2, Sharvari Gujja2, Susan Kinder Haake46, Brian J Haas2, Holli
A Hamilton29, Emily L Harris29, Theresa A Hepburn2, Brandi Herter5, Diane E
Hoffmann47, Michael E Holder8, Clinton Howarth2, Katherine H Huang2, Susan M Huse48,
Jacques Izard32,33, Janet K Jansson49, Huaiyang Jiang8, Catherine Jordan7, Vandita Joshi8,
James A Katancik50, Wendy A Keitel16, Scott T Kelley51, Cristyn Kells2, Nicholas B
King52, Dan Knights45, Heidi H Kong53, Omry Koren54, Sergey Koren55, Karthik C
Kota5, Christie L Kovar8, Nikos C Kyrpides27, Patricio S La Rosa34, Sandra L Lee8,
Katherine P Lemon32,56, Niall Lennon2, Cecil M Lewis57, Lora Lewis8, Ruth E Ley54,
Kelvin Li6, Konstantinos Liolios27, Bo Liu55, Yue Liu8, Chien-Chi Lo26, Catherine A
Lozupone3, R Dwayne Lunsford29, Tessa Madden58, Anup A Mahurkar7, Peter J
Mannon59, Elaine R Mardis5, Victor M Markowitz27,28, Konstantinos Mavromatis27,
Jamison M McCorrison6, Daniel McDonald3, Jean McEwen21, Amy L McGuire60, Pamela
McInnes29, Teena Mehta2, Kathie A Mihindukulasuriya5, Jason R Miller6, Patrick J Minx5,
Irene Newsham8, Chad Nusbaum2, Michelle O’Laughlin5, Joshua Orvis7, Ioanna Pagani27,
Krishna Palaniappan28, Shital M Patel61, Matthew Pearson2, Jane Peterson21, Mircea
Podar62, Craig Pohl5, Katherine S Pollard63,64,65, Mihai Pop55,66, Margaret E Priest2, Lita
M Proctor21, Xiang Qin8, Jeroen Raes39,40, Jacques Ravel7, Jeffrey G Reid8, Mina Rho67,
Rosamond Rhodes68, Kevin P Riehle69, Maria C Rivera23,24, Beltran Rodriguez-

33Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston MA
34Department of Medicine, Division of General Medical Science, Washington University School of Medicine, St. Louis MO
35Department of Pathology & Immunology, Washington University School of Medicine, St. Louis MO
36bioMerieux, Inc., Durham NC
37drive5.com, Tiburon CA
38Center for Ethics, Humanities and Spiritual Care, Cleveland Clinic, Cleveland OH
39Department of Structural Biology, VIB, Belgium, Brussels, Belgium
40Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
41Department of Bioinformatics and Genomics, University of North Carolina - Charlotte, Charlotte NC
42Department of Biological Sciences, University of Idaho, Moscow ID
43Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge MA
44Center for Advanced Dental Education, Saint Louis University, St. Louis MO
45Department of Computer Science, University of Colorado, Boulder CO
46Division of Associated Clinical Specialties and Dental Research Institute, UCLA School of Dentistry, Los Angeles CA
47University of Maryland Francis King Carey School of Law, Baltimore MD
48Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole MA
49Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA
50Department of Periodontics, University of Texas Health Science Center School of Dentistry, Houston TX
51Department of Biology, San Diego State University, San Diego CA
52Faculty of Medicine, McGill University, Montreal, Canada
53Dermatology Branch, CCR, National Cancer Institute, Bethesda MD
54Department of Microbiology, Cornell University, Ithaca NY
55Center for Bioinformatics and Computational Biology, University of Maryland, College Park MD
56Division of Infectious Diseases, Children’s Hospital Boston, Harvard Medical School, Boston MA
57Department of Anthropology, University of Oklahoma, Norman OK
58Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis MO
59Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham AL
60Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston TX
61Medicine-Infectious Disease, Baylor College of Medicine, Houston TX
62Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN
63Gladstone Institutes, University of California, San Francisco, San Francisco CA
64Institute for Human Genetics, University of California, San Francisco, San Francisco CA
65Division of Biostatistics, University of California, San Francisco, San Francisco CA
66Department of Computer Science, University of Maryland, College Park MD
67School of Informatics and Computing, Indiana University, Bloomington IN
68Mount Sinai School of Medicine, New York NY

Page 10

Nature. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mueller51, Yu-Hui Rogers6, Matthew C Ross16, Carsten Russ2, Ravi K Sanka6, Pamela
Sankar70, J Fah Sathirapongsasuti1, Jeffery A Schloss21, Patrick D Schloss71, Thomas M
Schmidt72, Matthew Scholz26, Lynn Schriml7, Alyxandria M Schubert71, Nicola Segata1,
Julia A Segre21, William D Shannon34, Richard R Sharp38, Thomas J Sharpton63, Narmada
Shenoy2, Nihar U Sheth23, Gina A Simone 73, Indresh Singh6, Christopher S Smillie43,
Jack D Sobel74, Daniel D Sommer55, Paul Spicer57, Granger G Sutton6, Sean M Sykes2,
Diana G Tabbaa2, Mathangi Thiagarajan6, Chad M Tomlinson5, Manolito Torralba6, Todd J
Treangen75, Rebecca M Truty63, Tatiana A Vishnivetskaya62, Jason Walker5, Lu Wang21,
Zhengyuan Wang5, Doyle V Ward2, Wesley Warren5, Mark A Watson35, Christopher
Wellington21, Kris A Wetterstrand21, James R White7, Katarzyna Wilczek-Boney8,
YuanQing Wu8, Kristine M Wylie5, Todd Wylie5, Chandri Yandava2, Liang Ye5, Yuzhen
Ye67, Shibu Yooseph76, Bonnie P Youmans16, Lan Zhang8, Yanjiao Zhou5, Yiming Zhu8,
Laurie Zoloth77, Jeremy D Zucker2, Bruce W Birren2, Richard A Gibbs8, Sarah K
Highlander8,16, Barbara A Methé 6, Karen E Nelson6, Joseph F Petrosino8,78,16, George M
Weinstock5, Richard K Wilson5, Owen White7

69Molecular & Human Genetics, Baylor College of Medicine, Houston TX
70Center for Bioethics and Department of Medical Ethics, University of Pennsylvania, Philadelphia PA
71Department of Microbiology & Immunology, University of Michigan, Ann Arbor MI
72Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI
73The EMMES Corporation, Rockville MD
74Harper University Hospital, Wayne State University School of Medicine, Detroit MI, Detroit MI
75McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore MD
76J. Craig Venter Institute, San Diego CA
77Feinberg School of Medicine, Northwestern University, Chicago IL
78Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX

Page 11

Nature. Author manuscript; available in PMC 2013 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Diversity of the human microbiome is concordant among measures, unique to each
individual, and strongly determined by microbial habitat
A) Alpha diversity within subjects by body habitat, as measured using the relative inverse
Simpson index of 16S rRNA gene OTUs (red), genus-level phylotypes (blue), shotgun
metagenomic reads matched to reference genomes (green), functional modules (yellow), and
enzyme families (white). The mouth generally shows high within-subject diversity and the
vagina low diversity, with other habitats intermediate; variation among individuals often
exceeds variation among body habitats. B) Bray-Curtis beta diversity among subjects by
body habitat, colors as for A. Skin differs most between subjects, with oral habitats and
vaginal genera more stable. Although alpha- and beta-diversity are not directly comparable,
changes in structure among communities (A) occupy a wider dynamic range than do
changes within communities among individuals (B). C) Principal coordinates plot showing
variation among samples demonstrates that primary clustering is by body area, with the oral,
gastrointestinal, skin, and urogenital habitats separate; the nares bridge oral and skin
habitats. D) Repeated samples from the same subject (red) are more similar than
microbiomes from different subjects (yellow). Technical replicates (green) are in turn more
similar; these patterns are consistent for all body habitats and for both phylogenetic and
metabolic community composition. See previously described sample counts1 for all
comparisons.
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Figure 2. Carriage of microbial taxa varies while metabolic pathways remain stable within a
healthy population
Vertical bars represent microbiome samples by body habitat in the seven locations with both
shotgun and 16S data; bars indicate relative abundances colored by A) microbial phyla from
binned OTUs and B) metabolic modules. Legend indicates most abundant phyla/pathways
by average within one or more body habitats; RC = retroauricular crease. A plurality of most
communities’ memberships consists of a single dominant phylum (and often genus; see
Supp. Fig. 2), but this is universal neither to all body habitats nor to all individuals.
Conversely, most metabolic pathways are evenly distributed and prevalent across both
individuals and body habitats.
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Figure 3. Abundant taxa in the human microbiome, which has been metagenomically and
taxonomically well-defined in the HMP population
A–C) Prevalence (intensity, color denoting phylum/class) and abundance when present
(size) of clades in the healthy microbiome. The most abundant A) metagenomically-
identified species, B) 16S-identified genera, and C) PATRIC14 “pathogens” (metagenomic).
The population size and sequencing depths of the HMP have well-defined the microbiome at
all assayed body sites, as assessed by saturation of added community D) metabolic
configurations (rarefaction of minimum Bray-Curtis β-diversity of metagenomic EC
abundances to nearest neighbor, inter-quartile range over 100 samples) and E) phylogenetic
configurations (min. 16S OTU weighted UniFrac distance to nearest neighbor).
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Figure 4. Microbial carriage varies between subjects down to the species and strain level
Metagenomic reads from 127 tongue samples spanning 90 subjects were processed with
MetaPhlAn to determine relative abundances for each species. A) Relative abundances of 11
distinct Streptococcus spp. In addition to variation in broader clades (see Fig. 2), individual
species within a single habitat demonstrate a wide range of compositional variation. Inset
illustrates average tongue sample composition. B) Metabolic modules present/absent (grey/
white) in KEGG28 reference genomes of tongue streptococci denote selected areas of strain-
specific functional differentiation. C) Comparative genomic coverage for the single
Streptococcus mitis B6 strain. Grey dots are median Reads Per Kilobase per Million reads
(RPKM) for 1kb windows, gray bars are the 25th to 75th percentiles across all samples, red
line the lowess smoothed average. Red bars at the bottom highlight predicted genomic
islands31. Large, discrete, and highly variable islands are commonly under-represented. D)
Two islands highlighted, V = V-type H+ ATPase subunits I,K,E,C,F,A & B, and CH =
Choline binding proteins cbp6 and cbp12, indicating functional cohesion of strain-specific
gene loss within individual human hosts.
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Figure 5. Microbial community membership and function correlates with host phenotype and
sample metadata
The pathway and clade abundances most significantly associated (all FDR q<0.2) using a
multivariate linear model with A) subject race or ethnicity, B) vaginal posterior fornix pH,
C) subject age, and D) BMI. Samples’ scatter plots are shown with lines indicating best
simple linear fit. Race/ethnicity and vaginal pH are particularly strong associations; age and
BMI are more representative of typically modest phenotypic associations (Sup. Table 3),
suggesting that variation in the healthy microbiota may correspond to other host or
environmental factors.
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