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The ability to direct functional domains to specific DNA sequences is a long sought-after 
goal for studying and engineering biological processes. Transcription activator like 
effectors (TALEs) from Xanthomonas sp. present a promising platform for designing 
sequence-specific DNA binding proteins. Here we describe a robust and rapid method for 
overcoming the difficulty of constructing TALE repeat domains. We synthesized 17 
designer TALEs (dTALEs) that are customized to recognize specific DNA binding sites, 
and demonstrate that dTALEs can specifically modulate transcription of endogenous 
genes (Sox2 and Klf4) from the native genome in human cells. dTALEs provide a 
designable DNA targeting platform for the interrogation and engineering of biological 
systems. 
 

Systematic interrogation and engineering of biological systems in normal and 

pathological states depend on the ability to manipulate the genome of target cells with efficiency 

and precision1, 2. Some naturally occurring DNA binding proteins have been engineered to 

enable sequence-specific DNA perturbation, including designer polydactyl zinc finger (ZFs)3-5 

and meganuclease6, 7 proteins. In particular, designer ZFs can be attached to a wide variety of 

effector domains such as nucleases, transcription effectors, and epigenetic modifying enzymes 

to carry out site-specific modifications near their DNA binding site. However, due to the lack of a 

simple correspondence between amino acid sequence and DNA recognition, design and 

development of sequence-specific DNA binding proteins based on designer ZFs and 

meganucleases remain difficult and expensive, often involving elaborate screening procedures 

and long development time on the order of several weeks. Here we developed an alternative 

DNA targeting platform based on the naturally occurring transcription activator-like effectors 

(TALEs) from Xanthomonas sp.8-11 

 

TALEs are natural effector proteins secreted by numerous species of Xanthomonas to 

modulate host gene expression and facilitate bacterial colonization and survival9, 11. Recent 

studies of TALEs have revealed an elegant code linking the repetitive region of TALEs with its 

target DNA binding site8, 10. Common among the entire family of TALEs is a highly conserved 

and repetitive region within the middle of the protein, consisting of tandem repeats of mostly 33 

or 34 amino acid segments (Fig. 1a). Repeat monomers differ from each other mainly in amino 

acid positions 12 and 13 (variable diresidues), and recent computational and functional 

analysis9, 11 have revealed a strong correlation between unique pairs of amino acids at positions 

12 and 13 and the corresponding nucleotide in the TALE binding site (e.g. NI to A, HD to C, NG 



Page 3 of 13 

to T, and NN to G or A; Fig. 1a). The existence of this strong association suggests a potentially 

designable protein with sequence-specific DNA binding capabilities, and the possibility of 

applying designer TALEs to specify DNA binding in mammalian cells. However, our ability to 

test the modularity of the TALE DNA binding code remains limited due to the difficulty in 

constructing custom TALEs with specific tandem repeat monomers. Early studies have tested 

the DNA binding properties of TALEs8, 12-16, including two studies that tested artificial TALEs with 

customized repeat regions13, 14. 

 

A prerequisite for exploring the modularity TALE repeat monomers is the ability to 

synthesize designer TALEs with tailored repetitive DNA binding domains. While this has been 

recently shown to be possible13, 14, 17, the repetitive nature of the TALE DNA binding domains 

renders routine construction of novel TALEs difficult when using PCR-based gene assembly or 

serial DNA ligation, and may not be amenable to high-throughput TALE synthesis. Furthermore, 

even though commercial services can be employed for the synthesis of novel TALE binding 

domains14, they present a cost-prohibitive option for large scale TALE construction and testing. 

Hence a more robust protocol to construct large numbers of designer TALEs would enable 

ready perturbation of any genome target in many organisms. 

 

To enable high-throughput construction of designer TALEs, we developed a reliable 

hierarchical ligation-based strategy to overcome the difficulty of constructing TALE tandem 

repeat domains (Fig. 1b and Supplementary Methods). To reduce the repetitiveness of designer 

TALEs and to facilitate amplification using PCR, we first optimized the DNA sequence of the 

four repeat monomers (NI, HD, NN, NG) to minimize repetitiveness while preserving the amino 

acid sequence. In order to assemble the individual monomers in a specific order, we altered the 

DNA sequence at the junction between each pair of monomers, similar to the Golden Gate 

cloning strategy for multi-piece DNA ligation18, 19. Using different codons to represent the 

junction between each pair of monomers (Gly-Leu), we designed unique 4 base pair sticky-end 

ligation adapters for each junction (Supplementary Methods). Using this strategy, 4 monomers 

can be ligated simultaneously to form 4-mer tandem repeats. Three 4-mer repeats can be 

simultaneously ligated to form the desired 12-mer tandem repeat and subsequently ligated into 

a backbone vector containing a 0.5 length repeat monomer specifying the 13th nucleotide of the 

binding site at the C-terminus of the repeat domain, as well as the N- and C-terminal non-

repetitive regions from the Xanthomonas campestris pv. armoraciae TALE hax3 (Fig. 1b). 
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Using this method, we attempted to construct 17 artificial TALEs with specific 

combinations of 12.5-mer repeats to target 14 base pair DNA binding sites – TALEs require the 

first letter of the binding site to be a T, and the 12.5-mer repeat targets a 13 bp binding site. We 

analyzed 2 clones for each of the 17 dTALEs via sequencing and found that all dTALEs were 

accurately assembled. Furthermore, we were able to construct 16 dTALEs in parallel in 3 days, 

a time substantially shorter than what is required for constructing a similar number of dTALEs 

via commercial DNA synthesis, and at a fraction of the cost. 

 

The DNA binding code of TALEs was identified based on analysis of TALE binding sites 

in plant genomes8, 10 and the binding specificity of TALEs have been analyzed using various in 

vitro and in vivo methods8, 14-17, 20-22. In order to determine whether this code can be used to 

target DNA in mammalian cells, we designed a fluorescence-based reporter system 

(Supplementary Fig. 1) by placing the DNA binding site for each dTALE upstream of a minimal 

CMV promoter driving the fluorescence reporter gene mCherry (Fig. 1c). To generate dTALE 

transcription factors, we replaced the endogenous nuclear localization signal (NLS) and acidic 

transcription activation domain (AD) of wild type hax3 with a mammalian NLS derived from the 

simian virus 40 large T-antigen and the synthetic transcription activation domain VP64 (Fig. 1c). 

To allow quantitative comparison of the dTALE activity, we also fused a self-cleaving green 

fluorescent protein (GFP) to the C-terminus of each dTALE, so that we could quantify the 

relative level of dTALE expression using GFP fluorescence measurements. 

 

Co-transfection of a dTALE (dTALE1) and its corresponding reporter plasmid in the 

human embryonic kidney cell line 293FT led to robust mCherry fluorescence (Fig. 1d). In 

contrast, transfection of 293FT cells with the reporter construct alone did not yield appreciable 

levels of fluorescence (Fig. 1d). Therefore, dTALEs are capable of recognizing their target DNA 

sequences, as predicted by the TALE DNA binding code, in mammalian cells. We quantified the 

level of reporter induction by measuring the ratio of total mCherry fluorescence intensity 

between cells co-transfected with dTALE and its corresponding reporter plasmid, and cells 

transfected with the reporter plasmid alone. To account for differences in dTALE expression 

level, we use the total GFP fluorescence from each dTALE transfection as a normalization 

factor to assess the fold of reporter induction fold. 

 

Next we asked whether the DNA recognition code is sufficiently modular so that dTALEs 

could be customized to target any DNA sequence of interest. We first synthesized 13 distinct 
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dTALEs targeting a range of DNA binding sites with diverse DNA sequence compositions (Fig. 

2a) and found that 10 out of 13 dTALEs (77%) drove robust mCherry expression (> 10 folds) 

from their corresponding reporters. Three dTALEs exhibited more than 50 folds reporter 

induction (dTALE1, dTALE4 and dTALE8), and only one out of 13 dTALEs (dTALE11) 

generated less than 5 fold induction of mCherry reporter expression (Fig. 2a). As a positive 

control, we constructed an artificial zinc finger-VP64 (ZF-VP64) fusion, where the ZF has 

previously been shown to activate transcription from a binding site in the human erbB-2 

promoter23. This artificial ZF-VP64 protein was tested using the same mCherry reporter assay 

and demonstrated approximately 16-fold mCherry reporter activation (Fig. 2a). 

 

These data indicate that sequence-specific dTALEs can be designed and synthesized to 

target a wide spectrum of DNA binding sites at a similar or greater level as artificial ZF-VP64 

transcription factors. While most dTALEs exhibited robust transcription activation in our reporter 

assay, the large range of observed activity suggests that other effects might contribute to 

dTALE DNA-targeting efficacy. Possible causes might include differences in DNA-interacting 

capabilities such as binding strength of individual repeat types, context-dependence of 

monomer binding strength, or complexities of mammalian transcription processes22. 

 

To further characterize the robustness of dTALEs activities and their DNA binding 

specificity, we altered the target nucleotides in the binding sites of dTALE1 and dTALE13 to test 

the impact of mismatch position and number on dTALE activity. In general, we found that 

dTALE activity is inversely correlated with the number of mismatches (Supplementary Figs. 2 

and 3). However, the specific dTALE recognition rules most likely depend on a combination of 

positional and contextual effects as well as the number of mismatchs8, 15, 16, 22, and need to be 

further characterized in greater detail. 

 

 Each fully assembled dTALE has more than 800 amino acids. Therefore we sought to 

identify the minimal N- and C-terminal capping region necessary for DNA binding activity. We 

used Protean (LASERGENE) to predict the secondary structure of the TALE N- and C-termini 

and truncations were made at predicted loop regions. We first generated a series of N-terminal 

dTALE1 truncation mutants and found that transcriptional activity is inversely correlated with the 

N-terminus length (Fig. 2b,c). Deletion of 48 amino acids from the N-terminus (truncation mutant 

N1-C0, Fig. 2c) retained the same level of transcription activity as the full length N-term dTALE1, 

while deletion of 141 amino acids from the N-term (truncation mutant N2-C0, Fig. 2c) retained 
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approximately 80% of transcription activity. Therefore given its full transcriptional activity, we 

chose to use truncation position N1 for all subsequent studies. 

 

 Similar truncation analysis in the C-terminus revealed that a critical element for DNA 

binding resides within the first 68 amino acids (Fig. 2b,d). Truncation mutant N1-C3 retained the 

same level of transcriptional activity as the full C-terminus, whereas truncation mutant N1-C4 

reduces dTALE1 activity by more than 50% (Fig. 2d). Therefore in order to preserve the highest 

level of dTALE activity, approximately 68 amino acids of the C-terminus of hax3 should be 

preserved. 

 

 The modularity of the TALE code is ideal for designing artificial transcription factors for 

transcriptional manipulation from the mammalian genome. In order to test whether dTALE could 

be used to modulate transcription of endogenous genes, we designed 4 additional dTALEs to 

directly activate transcription of Sox2, Klf4, c-Myc, and Oct4. dTALE binding sites were selected 

from the proximal 200bp promoter region of each gene (Fig. 3a). To assay the DNA binding 

activity of the 4 new dTALEs, we used the mCherry reporter assay as in previous experiments. 

three out of four dTALEs (Sox2-dTALE, Klf4-dTALE, and cMyc-dTALE) exhibited greater than 

20-fold of mCherry reporter activation (Fig. 3a,b).  

 

 To test the activity of dTALEs on endogenous genes, we transfected each dTALE into 

293FT cells and quantified mRNA levels of each target gene using qRT-PCR. dTALE-Sox2 and 

dTALE-Klf4 were able to upregulate their respective target genes by 5.5 ± 0.1 and 2.2 ± 0.1 

folds (Fig. 3c), providing a demonstration that dTALE can be used to modulate transcription 

from the genome. To control for specificity of activation, we transfected 293FT cells in parallel 

with dTALE1, which was not designed to target either Sox2 or Klf4, and found no change in the 

level of Sox2 or Klf4 expression relative to the mock control. Interestingly, we observed a 

statistically significant decrease in the level of Klf4 mRNA in 293FT cells transfected with Sox2-

dTALE (approximately a 2-fold reduction). This is potentially due to secondary cross-regulation 

among reprogramming factors24, 25. Finally, it is worth noticing that cMyc-dTALE and Oct4-

dTALE did not upregulate their target genes (data not shown). This is not surprising as different 

genetic loci may not be equally accessible for activation, possibly due to epigenetic repression. 

Together, the data demonstrated that dTALE can be designed to bind and specifically activate 

transcription from the promoters of endogenous mammalian genes. 
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 The modular nature of the TALE DNA recognition code provides a novel and attractive 

solution for achieving sequence-specific DNA interaction in mammalian cells. For the first time, 

sequence-specific DNA binding proteins with predictable binding specificity can be generated in 

a matter of days, economically using molecular biology methods accessible to most. Future 

studies exploring the molecular basis of TALE-DNA interaction will likely extend the modular 

nature of the TALE code for increased precision, specificity, and robustness. Given the ability of 

dTALEs to efficiently anchor transcription effector modules to endogenous genomic targets, 

other functional modules, including nucleases26, recombinases27, and epigenetic modifying 

enzymes2, can be similarly targeted to specific binding sites. The designer TALE toolbox will 

empower researchers, clinicians, and technologists alike with a new repertoire of programmable 

precision genome engineering technologies. 

 

Methods 
 

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/naturebiotechnology/. 

Note: Supplementary information is available on the Nature Biotechnology website. 
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Online Methods 

 

Design and construction of designer TALEs and reporters: To simplify construction of designer 

TALEs, a dTALE backbone containing the N-term, a single 0.5 repeat regions carrying the 

variable diresidue NI, and C-term of hax3 was synthesized (DNA2.0) and cloned into a lentiviral 

expression vector containing the mammalian ubiquitous EF-1α promoter (pLECYT)28. To allow 

for insertion of customized repeat domains, a linker containing two Type IIs BsmBI sites are 

inserted between the N-term and the 0.5 repeat region. A DNA fragment containing a 

mammalian NLS, transcription activation domain VP64, and 2A-GFP was assembled via PCR 

assembly and fused to the C-term of the synthesized dTALE backbone (pLenti-EF1a-dTALE(0.5 

NI)-WPRE).  HD, NG, and NN versions of the backbone were generated via site directed PCR 

mutagenesis using QuikChange II XL (Stratagene). The full nucleotide sequences for the four 

backbone vectors are available in Supplementary Information. Customized dTALE repeat 

domains were synthesized via hierarchical ligation of individual repeat monomers 

(Supplementary Methods). To minimize repetitiveness of the final assembled tandem repeat 

domain, the DNA sequence for each type of repeat monomer (HD, NG, NI, or NN) has been 

optimized by altering the amino acid codons. The sequences for the optimized monomers are 

listed in Supplementary Table 1, and the assembly primers are listed in Supplementary Table 
2. 

 mCherry reporter plasmids carrying dTALE binding site were generated by inserting 

sequences containing the binding site upstream of the minimal CMV promoter (Supplementary 
Fig.  1.) 
 
Cell culture and reporter activation assay: The human embryonic kidney cell line 293 FT 

(Invitrogen) was maintained under 37ºC, 5% CO2 using Dulbecco’s modified Eagle’s Medium 

supplemented with 10% fetal bovine serum, 2mM GlutaMAX (Invitrogen), 100U/mL Penicillin, 

and 100μg/mL Streptomycin.  

 mCherry reporter activation was tested by co-transfecting 293FT cells with plasmids 

carrying dTALEs and mCherry reporters. 293FT cells were seeded into 24- or 96-well plates the 

day prior to transfection at densities of 2x105 cells/well or 0.8x104 cells/well respectively. 

Approximately 24h after initial seeding, cells were transfected using Lipofectamine 2000 

(Invitrogen). For 24-well plates we used 500ng of dTALE and 30ng of reporter plasmids per well. 

For 96-well plates we used 100ng of dTALE and 7ng of reporter plasmids per well. All 

transfection experiments were performed according to manufacturer's recommended protocol. 
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Flow cytometry: mCherry reporter activation was assayed via flow cytometry using a 

LSRFortessa cell analyzer (BD Biosciences). Cells were trypsinized from their culturing plates 

approximately 18 hours after transfection and resuspended in 200ul of media for flow cytometry 

analysis. The flow cytometry data was analyzed using BD FACSDiva (BD Biosciences). At least 

25,000 events were analyzed for each transfection sample. 

 The fold induction of mCherry reporter gene by dTALEs was determined via flow 

cytometry analysis of mCherry expression in transfected 293FT cells, and calculated as the ratio 

of the total mCherry fluorescence intensity of cells from transfections with and without the 

specified dTALE. All fold induction values were normalized to the expression level of dTALE as 

determined by the total GFP fluorescence for each transfection. 

 

Endogenous gene activation assay: 293FT cells were seeded in 6 well plates. 4ug of dTALE 

plasmid was transfected using Lipofectamine 2000 (Invitrogen). Transfected cells were cultured 

at 37oC for 48 hours, sorted for GFP positive population using BD FACSAria (BD Biosciences) 

to obtain cells that were successfully transfected and expressing dTALE. At least 1,000,000 

cells were harvested and subsequently processed for total RNA extraction using the RNAeasy 

Mini Kit (Qiagen). cDNA was generated using the iScript cDNA Synthesis Kit (Bio-Rad) 

according to the manufacturer's recommended protocol. Oct4, Sox2, cMyc, and Klf4 mRNA 

were detected using TaqMan Gene Expression Assays (Applied Biosystems: Oct4 - 

Hs00999632_g1, Sox2 - Hs00602736_s1, cMyc - Hs00905030_m1, Klf4 - Hs01034973_g1). 

 

 

 

 

28. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633-639 
(2007). 
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Figure 1 | Design and construction of customized artificial transcription activator like 
effectors (dTALEs) for use in mammalian cells. a, Schematic representation of the native 

TALE hax3 from Xanthomonas campestris pv. armoraciae depicting the tandem repeat domain 

and the two variable repeat diresidues (red) within each repeat monomer that specify the base 

recognition specificity. The four most common naturally occurring diresidues that were used for 

the construction of customized artificial TAL effectors are listed together with their proposed 

major base specificity. b, Schematic of the hierarchical ligation assembly method for the 

construction of customized dTALEs. 12 individual PCRs are performed for each of the 4 types of 

repeat monomers (NI, HD, NG, and NN) to generate a set of 48 monomers to serve as 

assembly starting material. Each of the 12 individual PCR products for a given monomer type 

(i.e. NI) has a unique linker specifying its programmed position in the assembly (color-coded 

digestion and ligation adapters). After enzymatic digestion with a Type IIs cutter (e.g. BsaI), 

unique overhangs (generated by leveraging the alternate codons for each amino acid in the 

junction) are generated. The unique overhangs facilitate the positioning of each monomer in the 

ligation product. The ligation product was PCR amplified subsequently to yield the full-length 

repeat regions, which were then cloned into a backbone plasmid containing the N- and C-

termini of the wild type TALE hax3. c, Schematic representation of the fluorescence reporter 

system for testing dTALE-DNA recognition. The diagram illustrates the composition of the 

tandem repeat for a dTALE and its corresponding 14bp DNA binding target in the fluorescent 

reporter plasmid. NLS, nuclear localization signal; AD, activation domain of the native TAL 

effector; VP64, synthetic transcription activation domain; 2A, self-cleavage peptide. d, 293FT 

cells co-transfected with a dTALE plasmid and its corresponding reporter plasmid exhibited 

significant level of mCherry expression compared to the reporter-only control. Scale bar, 200μm. 

 

Figure 2 | Functional characterization of the robustness of dTALE-DNA recognition in 
mammalian cells and truncation analysis of TALE N- and C-termini. a, 13 dTALEs were 

tested with their corresponding reporter constructs. Customized repeat regions and binding site 

sequences are shown on the left. The activities of the dTALE to activate target gene expression 

are shown on the right as the fold induction of the mCherry reporter gene in a log scale. b, The 

N- and C-terminal amino acid sequence of wild type TAL effector hax3 showing the positions of 

all N- and C-terminal truncation constructs tested in 293FT cells. N0 to N8 designates N-

terminal truncation positions (N0 retains the full-length N-terminus), and C0 to C7 designate C-

terminal truncations. The amino acids representing the nuclear localization signal and the 

activation domain in the native HAX3 protein were underlined. c, Sequential truncation at the N-
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terminus of dTALE1 led to decreasing levels of reporter activity. Each truncation constructs is 

designated by its corresponding N-terminal and C-terminal truncation positions as indicated in 

panel b. Cartoon representations of all truncation constructs are shown on the left; the relative 

activity of each dTALE truncation construct compared to the dTALE(N0-C0) is demonstrated on 

the right. This relative activity is calculated from the fold induction of the reporter gene. d, 
Sequential truncation at the C-terminus of dTALE1 was used to characterize the optimal length 

of the C-terminus. Truncation position is designated in panel b. The relative activity of each 

truncation design compared to dTALE(N1,C0) is shown on the right. All error bars indicate 

s.e.m.; n=3. The fold induction was determined via flow cytometry analysis of mCherry 

expression in transfected 293FT cells, and calculated as the ratio of the total mCherry 

fluorescence intensity of cells transfected with and without the specified dTALE, normalized by 

the GFP fluorescence to control for transfection efficiency differences, as detailed in the Online 
Methods. 

 

 

Figure 3 | Activation of endogenous pluripotency factors from the human genome by 
designer TALEs. a, dTALEs designed to target the pluripotency factors Sox2, Klf4, c-Myc, and 

Oct4 facilitate activation of mCherry reporter in 293FT cells. The target sites are selected from 

the 200bp proximal promoter region. The fold induction was determined via flow cytometry 

analysis using the same methodology as stated in Fig. 2 and detailed in Supplementary 
Methods. b, Images of dTALE induced mCherry reporter expression in 293FT cells. Scale bar, 

200μm. c, mRNA levels of Sox2 and Klf4 in 293FT cells transfected with mock, dTALE1, Sox2-

dTALE and Klf4-dTALE. Bars represent the levels of Sox2 or Klf4 mRNA in the transfected cell 

as determined via quantitative RT-PCR. Mock consists of cells receiving the transfection vehicle 

and dTALE1 is used as a negative control. All error bars indicate s.e.m.; n=3. *** p < 0.005. 
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