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Abstract

Whilst being hailed as the remedy to the world’s ills, cities will need to adapt in the 21st century. In particular, the role of
public transport is likely to increase significantly, and new methods and technics to better plan transit systems are in dire
need. This paper examines one fundamental aspect of transit: network centrality. By applying the notion of betweenness
centrality to 28 worldwide metro systems, the main goal of this paper is to study the emergence of global trends in the
evolution of centrality with network size and examine several individual systems in more detail. Betweenness was notably
found to consistently become more evenly distributed with size (i.e. no ‘‘winner takes all’’) unlike other complex network
properties. Two distinct regimes were also observed that are representative of their structure. Moreover, the share of
betweenness was found to decrease in a power law with size (with exponent 1 for the average node), but the share of most
central nodes decreases much slower than least central nodes (0.87 vs. 2.48). Finally the betweenness of individual stations
in several systems were examined, which can be useful to locate stations where passengers can be redistributed to relieve
pressure from overcrowded stations. Overall, this study offers significant insights that can help planners in their task to
design the systems of tomorrow, and similar undertakings can easily be imagined to other urban infrastructure systems
(e.g., electricity grid, water/wastewater system, etc.) to develop more sustainable cities.
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Introduction

The advent of cities as one-fit-all solutions in the 21st century is

unequivocal. Hailed as the answer to the demographic problem (as

popularized by the 7 billion series by National Geographic [1]),

and the remedy to all ills (in the form of the City 2.0 as dubbed

and prized by TED [2]), cities represent all that works for a

sustainable and resilient future. All over the world, myriad

researchers have decided to focus their efforts on studying cities,

and a cornucopia of patterns, findings and properties have been

uncovered [3–5]. One discipline that seems to particularly stand

out is complexity: cities as complex systems [6–12]. As self-

organizing, evolutionary, and highly competitive environments,

cities are indeed complex akin to countless systems in the universe.

One dominant aspect of cities is transportation. Indeed, the

transport system is essentially the lifeblood of cities. Through the

movement of people and goods, the transport system is a

significant factor influencing (both negatively and positively)

economic activity [13,14], social development [15,16], public

health [17] and livability [18,19]. More specifically, the network

feature of transportation presents great opportunities, which can

be analyzed from the viewpoint of network science [20,21]. Many

researchers have tried and succeeded in adopting a complex

network approach to study cities’ transportation systems [22–27].

More specifically, public transportation carries special relevance

since it is often considered as the main competitor to the private

automobile for a sustainable future. As a result, public transport

systems are likely to grow significantly in the future, and they need

to be able to accommodate the growing urban population, which

is a colossal challenge. Recent gasoline price surges have produced

a noticeable increase in transit ridership, and it appears that

current systems are undergoing a lot of stress and are in no way,

shape or form able to cope with a substantial increase of riders

[28,29]. Traditional transit planning technics must therefore be

updated and adapted to be able to address this problem, and here

again taking a complex network approach may be beneficial.

Several studies have already looked at public transport systems

as complex networks, and many relevant properties have been

discovered, including scale-free and small-world features [30–35].

This is somewhat surprising considering transit systems are

designed to fit the needs of specific regions and global patterns

are not necessarily intuitive. Moreover, these patterns and

properties can actually have an impact on ridership itself

[36,37]. Looking at transit systems as complex networks can

therefore have many benefits, one of which is to enable a holistic

view of the system. For instance, Figure 1, which clearly echoes

Watts and Strogatz famous figure [38], offers a novel way to view

and analyze metro networks. One advantage of transit systems is

their relative smaller size compared to most studied networks,

which makes an initial visual inspection possible. The main goal of

this paper is scrutinize one of the most important features of transit

systems: network centrality.

Network centrality is a fairly old concept that emerged in the

1950s from social sciences [39–41]. Although it has been fairly

extensively studied for larger complex networks [42], work applied

to transit seems relatively scarcer. For transportation in general,

the use of network centrality has been mostly applied to study

matters of robustness [32], and it is slightly more common in

transport geography, notably to study the relationship between

transport and land-use [43–45]. Better understanding the evolu-

tion of centrality in transit systems has clear benefits; one practical

application is determine what stations in the system are more
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central and thus design the system so as to distribute the flow of

passengers more evenly; another application is to develop a tool to

forecast ridership increase linked with the opening of new lines.

Many centrality indicators have been developed in the past, from

the simple degree centrality (i.e. number of connections per node)

to the PageRank indicator used by Google [46]. For this work,

most existing indicators were considered but betweenness central-

ity clearly stood out as showing particular relevance and an

interesting behavior. Unlike the other indicators, betweenness

highlights the importance of a node as a transfer point between

any pairs of nodes. This transfer characteristic is obviously of

paramount importance in transit systems. Moreover, betweenness

offers a pragmatic way to capture the urban context (i.e.

geographic factors), making the location of a station a key feature

(unlike degree centrality for instance that only counts the number

of connections).

By scrupulously analyzing the properties and effects of

betweenness of 28 metro systems in the world, the objectives of

this work are to (1) briefly present the methodology to collect data

and calculate betweenness, (2) study the emergence of global

trends in the evolution of betweenness, (3) analyze the impact of

betweenness by looking at individual stations of a few selected

systems. Metro here refers to urban rail transit with exclusive

right-of-way, whether underground, at grade, or elevated, often

colloquially referred to as metro, subway, underground, tube, etc.

The choice of metros was natural since they are essentially closed

systems, not constrained to follow road patterns, and often

representative of their cities.

As we will discover, betweenness behaves in interesting ways in

metro systems, sometimes symptomatic of city-wide conditions (i.e.

travel patterns), but a methodology to effectively measure

betweenness must first be presented.

Methods

Collecting Data
Network centrality, in this paper, is a topological property (i.e.

related to the geometry of the network and not the flows). The first

step towards analyzing centrality is therefore to collect data about

its structure. This is typically done by representing the network as

a graph G with N nodes/vertices and M links/edges. By having

stations/stops all linked by lines, public transport systems are in

fact physical networks. Nevertheless, there exists several ways to

define them as graphs; see [47].

In this paper, only the termini and transfer stations are taken as

nodes, other stations that do not offer transfers or that do not end

lines are simply not considered. By having lines, metros vary more

typical networks, and studying them is not trivial (let alone add

other transit modes [34]). The rationale behind this decision is to

focus on the transferring properties of metros; in other words,

learning that a non-transfer station in the middle of a line is most

central does not necessarily offer helpful information. For further

information about the methodology, see [48].

As an example, Figure 2 represents a sketch of the Lyon metro.

The metro has a total of four lines and 39 stations, but only the six

termini (black circles) and four transfer stations (white circles) are

considered nodes. Note that the link EK does not exist in reality

(thus not counted here), it is only added to show evolution in

betweenness later on, hence the greyed shade (acting both as a

terminal and transfer station). The figure also contains the

adjacency matrix of the Lyon metro; i.e. cells have a value of ‘19

if a connection exists, and ‘09 otherwise.

Two points should be further noted. First, unlike most networks,

transit systems have lines, and therefore riders do not have to

transfer at each transfer station. Although this is a significant

Figure 1. Circle representation of 32 metro networks in the world (using NodeXL [52]).
doi:10.1371/journal.pone.0040575.g001
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property, somewhat unique to transit, it should not affect a general

study on network centrality. Second, multiple links are not

included in this analysis; i.e. multiple lines connecting two

consecutive stations. For instance, the addition of links to connect

nodes G to F and F to C in Figure 2 would not alter the adjacency

matrix since these new links only offer already existing connections

(i.e. redundant information). To take a more practical example,

the station République in the Paris metro hosts five non-

terminating lines, which would suggest at first that the station

has a number of 10 connections (i.e. 10 links connected to one

node). However, six of these 10 connections link two lines to the

same pair of stations (e.g., lines 5 and 9 both connect République

to Oberkampf), which reduces the number of connections to 7.

This technicality can carry some impact, in particular for degree

centrality (not studied here).

Defining Betweenness Centrality
The concept of betweenness centrality was first introduced by

Freeman [49] in the 1970s to study social networks. The logic

behind betweenness differs from most centrality indicators.

Indeed, the importance does not rely so much on the location of

the node as an end point, but on whether or not it is used to join

any two other nodes (taking the shortest paths). This is particularly

relevant in the case of public transport. A station might be heavily

used because it is in the vicinity of an important location (e.g.,

central business district, entertainment area, etc.), but another

station may be even more heavily used because it serves as a

transfer point to get to many locations. For instance in Lyon

(Figure 2), node F services the Place Bellecour (major shopping

center) and it is heavily used. Meanwhile, although not located in a

major area, node H is heavily used simply to get to node F and to

stations towards node D to reach the Part-Dieu area (also a major

shopping area, as well as the financial district and the main train

station).

Mathematically, each node is first given a probability by

counting how many times it is used to link any pair of nodes. For

example in Figure 2, there are two possible shortest paths to go

from node C to H, one path by going through node D and the

other through node F. The probability to use node D is therefore

K, and similarly for node F. More generally, let pjk be the total

number of shortest paths linking nodes j and k, and pjk(i) be the

number of these paths going through node i, then the probability

of using node i is simplypjk ið Þ
�

pjk. Doing this for all node pairs,

the mathematical formulation of betweenness centrality is:

CB ið Þ~
X

j,k

pjk ið Þ
pjk

, for i, j and k e N and i=j=k ð1Þ

To achieve high betweenness, the numerator should be as high

as possible; hence nodes with high values of CB are considered

more central. Because larger networks have more possible paths,

betweenness systematically increases with network size. It can

therefore be desirable to standardize the results. Freeman [49]

suggested dividing the betweenness centrality of each node by the

maximum possible betweenness centrality for a graph with |N|

nodes, which is 1=2: DN D{1ð Þ: DN D{2ð Þ for a star network. This

process, however, simply results in inversing the previous trend

(i.e. now betweenness systematically decreases with size), and it is

therefore not necessarily helpful in our case. For this work, it is

preferable to simply normalize the results by dividing the

betweenness of each node by the sum of all nodes (equation 2),

thus binding betweenness between 0 and 1.

CB
0 ið Þ~ CB ið ÞP

j

CB jð Þ , for i and j e N ð2Þ

Normalized betweenness notably enables us to compare

cumulative distribution of betweenness in metros as will be shown

in the next section.

In Lyon, betweenness centralities are C (11, 0.19), D (11, 0.19),

F (18, 0.31), H (18, 0.31), for the current network (i.e. no link EK),

where information in brackets are original and normalized

centralities respectively. Here, nodes F and H are equally central,

followed by nodes C and D. Note that termini do not have any

betweenness since they can never be on the pathway between two

other nodes.

Figure 2. Schematic graph of Lyon metro system and its adjacency matrix. The left side is the sketch of the system where the shapes of the
lines are kept even though the graph is isomorphic. Termini are illustrated by black circles and transfers stations by white circles. The right side of the
graph shows the adjacency matrix (i.e. ‘19 when a connection exist and ‘09 otherwise). Note that link EK does not exist in real life, hence the greyed
node E and the dotted line in the matrix.
doi:10.1371/journal.pone.0040575.g002
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In practice, there are various ways to calculate these indicators

from adjacency matrices. Because shortest-paths have to be

calculated, algorithms such as the Floyd algorithm and the

Dijkstra algorithm [50,51] can be used. In this paper, the free

open-source Microsoft Excel 2007/2010 add-in NodeXL [52] was

used.

Results

The methodology described was applied to 28 metro systems in

the world. Although there are arguably more than 150 metros in

the world, most of them are small or merged with other transit

modes (e.g., light rail transit), and the purpose here was to gather a

representative pool of systems; Ovenden’s Transit Maps of the World

[53] was used for the selection. Table 1 presents the data collected

and calculated for these 28 metro systems, ordered from smallest

to largest in terms of number of nodes. It first contains the number

of nodes and links per system, followed by the values of

betweenness centrality calculated for each system, where Min,

Max, Ave, and Sum stand for minimum measured (non-zero

values since termini necessarily have zero betweenness), maximum

measured, average calculated, and sum of all betweenness (for the

normalization) respectively. A third column entitled ‘‘Quadratic

Coefficients’’ is also present, where subscripts ‘n’ and ‘o’ stand for

‘normalized’ and ‘original’ respectively; they will be explained

later on.

Data for the metro systems were collected in 2008–2009, and

discrepancies to current systems might exist (in particular for the

Shanghai metro that has substantially increased).

Global Trends
Conceptually, the relevance of betweenness to public transport

systems is fairly intuitive. From Table 1, the system with the lowest

average is Brussels (one of the smallest metros) and the system with

the highest average is London (the biggest system). It is clear that

average betweenness tends to increase with size, which is natural

considering the definition of betweenness (i.e. betweenness

increases with the total number of shortest-paths). Nevertheless,

the statistical significance of the regression is surprisingly high

(Figure 3) and the fit follows a second degree polynomial of

equation CBav~0:015:N2z0:92:N{2:65. The quadratic nature

is interesting and perhaps related to the planarity of metro

networks (i.e. two links crossing each other systematically creates a

new node). Indeed, the number of nodes is a one-dimensional

parameter and betweenness centrality in planar networks is a two-

dimensional parameter (although further efforts would be needed

to generalize the trend). Moreover, it essentially means that the

rate of increase of shortest-paths grows faster with size, and it

increases linearly (although fairly slowly with a coefficient of

0.015). Note that the one metro that does not fit the regression is

Chicago (25 nodes), which is due to the presence of the so-called

‘‘loop’’ in the downtown area that hosts five lines, increasing

substantially the number of links and in turn the number of paths;

despite having a similar number of nodes, Chicago has twice the

number of links as Shanghai, hence the higher betweenness.

To further investigate the evolution of betweenness, it is

worthwhile to look at the distribution of original and normalized

betweenness centrality. Figure 4 shows the cumulative distribu-

tions of normalized betweenness for the 28 metros, where the

nodes of each system are ordered from largest betweenness to

smallest. The figure exhibits many interesting properties, the first

being that betweenness consistently becomes more evenly distrib-

uted with network size. Indeed, although total betweenness

increases as mentioned before, the addition of a new node actually

spreads the share of betweenness across all nodes without favoring

only a limited number of nodes (i.e. no ‘‘winner takes all’’

paradigm), which can be associated to a process of democratization,

unlike degree distribution in scale-free networks for instance. As a

result, most central nodes in larger networks will retain a lower

share of betweenness than most central nodes in smaller networks,

which is fairly intuitive and obvious parallels can be made with

robustness. This process can be more easily understood through an

example. Comparing Athens and London’s metros, it is clear that

the share of betweenness of Omonia station (31.25%) in Athens is

higher than King’s Cross station’s (8.04%) in London, simply

because there are a lot fewer stations in Athens.

Coming back to Lyon, with link EK, the betweenness centrality

of each node becomes C (13.5, 0.163), D (19, 0.229), E (9, 0.108),

F (20, 0.241), H (21.5, 0.259), and several observations can be

made compared to current values. First, the absolute betweenness

of all nodes grows regardless of where the addition occurred; this

essentially means that the addition of a node does not only benefit

a few but it benefits all nodes. That being said, some nodes benefit

slightly more than others (e.g., node H takes the lead as the most

central node, followed by node F). Second, normalized values

shows that shares of betweenness centralities become more

distributed in the network. Most nodes ‘‘lose’’ some of their share

of betweenness with network growth (e.g., despite increasing its

absolute betweenness, the share of node H drops from about 31%

to 26%), regardless of where the addition occurs, hence the

democratization.

This finding has significant impacts. An earlier study [54]

showed that few transfer stations tend to retain a certain

‘‘monopole’’ on transferring in metros (i.e. the number of transfers

are unevenly distributed in metros). This work here shows that

despite this monopole, network expansion invariably leads to a

lower share of betweenness for most nodes.

This phenomenon is particularly interesting and can be

estimated numerically by comparing the curves on Figure 4.

The relationships have the form of second degree polynomials

here as well; i.e. a simple quadratic equation:

CD~an
:x2zbn

:xzcn ð3Þ

where CD is the cumulative distribution, an, bn and cn are constants,

subscript ‘n’ stands for normalized, and x is the cumulative

betweenness. Here again, the quadratic nature of the fit could be

due to the planarity of metros. From Table 1, the largest quadratic

coefficient |an| belongs to Brussels (0.03261, small network) and

the smallest belongs to Paris (0.00025, large network). Therefore,

concomitant to the democratization process, the value of |an|

decreases with network size. Moreover, this decrease in an actually

takes the form of a power law with exponent of approximately 2

(Figure 5) as:

an !N{2 ð4Þ

This relationship is indicative of the evolutionary nature of

metro networks in general. Say a metro is being expanded from N1

nodes to N2 nodes, then an2~an1
: N2=N1ð Þ{2

~an1
: N1=N2ð Þ2; for

example, by doubling in size (i.e. N2~2:N1), a2 decreases by about

a factor of 4 compared to a1 (i.e. 75% smaller). Moreover, the

scalar was calculated to be 1.9 (i.e. an~1:9:N{2). It is uncertain

what the impact of this scalar is, but it should be noted that the

ratio of links to nodes in metros was found to tend to a value of two
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with network size [55], and therefore there could be a relation

between these two properties.

The cumulative distributions of original betweenness values also

fit second degree polynomials (not shown here), and their

quadratic coefficients |ao| are displayed in Table 1. Overall,

|ao| has a general tendency to increase with size, which conforms

to our expectations (i.e. betweenness increases with size).

Nonetheless, two very distinct and surprising regimes can be

observed (Figure 6), which are indistinguishable in the normalized

version. These regimes are entirely dependent on the structure of

the metro and reflect the regional transportation plans that were

elaborated by the respective regions. It is therefore possible to

relate these values to the overall nature of the metros. For instance,

Chicago and Stockholm (famous for linking its satellite towns to

the city center) have a high quadratic coefficients whilst being

comparatively small, hinting towards a radial structure. In

comparison, Paris has a fairly low coefficient whilst having many

stations, suggesting a more prominent grid structure. Finally, New

York and London can be seen as hybrids, having a high coefficient

and being large, which is likely representative of their grid cores

and radial lines linking suburban regions to the downtown. This

Table 1. Results for 28 metro networks.

Metro Nodes Links Betweenness Centrality CB Quadratic Coefficients

Min* Max Ave Sum |an| |ao|

Athens 9 9 7.00 15.00 5.33 48 0.03125 1.50

Brussels 9 9 7.00 19.00 5.11 46 0.03261 1.50

Lyon 10 10 11.00 18.00 5.80 58 0.03017 1.75

Montreal 10 10 11.00 18.00 5.80 58 0.01742 1.75

Toronto 10 9 8.00 26.00 8.20 82 0.03017 1.43

Bucharest 11 12 6.00 19.00 6.82 75 0.01643 1.23

Lisbon 11 11 13.50 21.50 6.82 75 0.02167 1.63

Singapore 12 13 10.00 26.00 8.92 107 0.01335 1.43

Buenos Aires 12 13 17.50 34.00 7.33 88 0.00426 0.38

Milan 14 15 23.00 39.00 12.36 173 0.00888 1.54

St Petersburg 14 16 22.50 25.00 9.93 139 0.00058 0.08

Hong-Kong 17 18 15.00 71.00 18.94 322 0.01046 3.37

Washington DC 17 18 19.00 71.00 16.94 288 0.00544 1.57

Stockholm 20 19 35.00 113.00 28.60 572 0.00920 5.27

Boston 21 22 37.00 102.00 25.62 538 0.00592 3.18

Shanghai 22 28 13.83 93.22 21.82 480 0.00441 2.12

Chicago 25 57 23.00 221.00 63.92 1598 0.00397 6.34

Barcelona 29 42 9.12 163.07 35.45 1028 0.00218 2.25

Berlin 32 43 22.10 110.40 40.97 1311 0.00166 2.17

Mexico City 35 52 12.42 129.22 44.20 1547 0.00111 2.06

Osaka 36 51 13.25 153.00 50.25 1809 0.00133 2.01

Moscow 41 62 25.52 177.26 54.10 2218 0.00106 2.36

Madrid 48 79 2.03 265.19 72.77 3493 0.00062 2.18

Tokyo 62 107 9.50 452.55 98.56 6111 0.00045 2.76

Seoul 71 111 21.41 467.57 144.10 10231 0.00034 3.50

New York City 77 109 10.74 683.15 162.45 12509 0.00036 4.46

Paris 78 125 40.07 630.73 152.50 11895 0.00025 3.02

London 83 121 7.69 1240.29 185.84 15425 0.00030 4.59

*minimum non-zero values since termini have no betweenness.
doi:10.1371/journal.pone.0040575.t001

Figure 3. Evolution of average betweenness centrality CB with
network size. The regression fits a second degree polynomial and the
statistical significance is surprisingly high; only Chicago does not fit the
regression as well (perhaps due to its five-lined directed elevated
section in the so called ‘‘loop’’ area).
doi:10.1371/journal.pone.0040575.g003
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differentiation in structure between metros is interesting, and it

may impact factors such as travel patterns and ridership for

instance.

Democratization, however, does not mean ‘equalization’. Indeed,

despite an overall share loss, some nodes benefit slightly more than

others, which are most often the nodes directly connected to the

new stations/lines. As a result, it is worthwhile to further

investigate the effect of size on three specific values: highest

betweenness centrality CBhi (i.e. node having the highest value of

betweenness), average betweenness CBav and lowest non-zero

betweenness CBlo. Normalized values have to be used here to be

able to compare metros with one another. Average betweenness

centrality is defined as 1=N:
P

i CB(i), dividing it by the sum of

centralities
P

i CB(i) to normalize it results in the inverse function

N{1, thus an exponent of 1. As shown in Figure 7, highest

betweenness centralities share a strong power law relationship with

network size, with an exponent of 0.87. A similar relationship

exists with lowest betweenness with exponent 2.48 (Table 2). The

difference in exponents suggests that the share of the node with

highest betweenness decreases slower than the average, and the

share of the node with lowest betweenness decreases faster than

the average. In other words, nodes with highest betweenness

centralities remain comparatively more central in the system, and

despite a share loss, they benefit more than the average. Nodes

with lowest betweenness centralities on the other hand, are

proportionally less central with network size, and their between-

ness centralities decrease at a faster rate than the average. This

phenomenon is all the more interesting that most central nodes are

not only the nodes that possess many transfers, but also those are

simply topologically well located in the network (i.e. at the center),

as we are about to see in the next section.

Overall, the properties uncovered are insightful about the

nature of metros, and a similar study on other networks would be

valuable, notably on other urban infrastructure networks to

identify potential synergies [56]. In the next section, the analysis

is brought one step further by locating and studying the most

central nodes in larger networks, which can be critical to relieve

some of the pressure from current systems by redistributing

passengers.

Individual Systems
As a practical application, betweenness centrality can be used to

determine which stations are topologically more central in the

system. At the moment, transit planners assess network centrality

either geographically (i.e. stations in the city center), by identifying

major transfer hubs (related to degree centrality), or at best by

looking at platform counts (i.e. actually usage of the stations).

Using the concept of betweenness centrality therefore offers clear

benefits to identify stations that are naturally (or topologically)

central. In particular, and as previously mentioned, locating most

central stations can be of significant help to redistribute passengers

to stations and lines that experience lower volumes.

As opposed to the previous section, the centrality of each station

is calculated here. Table 3 contains the original and normalized

centrality values of the five stations with highest betweenness for all

metros having at least 20 nodes. To illustrate the value of this

method, the bulk of this section consists in going through several

familiar systems and discussing the opportunities. These systems

are: London, Paris, Madrid, Chicago, and New York.

Figure 4. Cumulative distributions (CD) of normalized betweenness centrality for 28 metros. Although it can be difficult to pinpoint one
specific system, the main message here is that betweenness consistently becomes more distributed with network growth. The absence of a ‘‘winner
takes all’’ paradigm is surprising considering it is often the case with other complex network properties (e.g., in scale-free networks).
doi:10.1371/journal.pone.0040575.g004

Figure 5. Evolution of quadratic coefficients |an| of normalized
cumulative distributions with network size.
doi:10.1371/journal.pone.0040575.g005
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London is the largest system considered in this analysis. The

station with highest betweenness is Kings Cross St Pancras, which

is also a major train station (i.e. likely to be congested) and is

geographically centrally located. The second station is Baker St.,

which is located fairly closely to the former and can serve as a hub

for the north-western part of London. Note that Baker St. station

actually has more connections (i.e. higher degree centrality) than

Kings Cross St Pancras, but unlike the latter, it does not have a

direct access to the Piccadilly and Victoria lines, which are two

major diametrical lines with abundant transfer stations. The third

station is Bank, and the fourth is Moorgate. Both these stations

host the Northern line, which is also shared with Kings Cross St

Pancras; hence having a particular potential to redistribute

passengers (their location in the system seems to be the decisive

factor that gives them high betweenness). The fifth station is

Liverpool Street, which is also a train station. It is interesting to

observe that none of these stations are located in the central area

of London (i.e. inside the area delimited by the Circle line) such as

Piccadilly Circus or Oxford Circus. The first station located within

this area is Holborn station, coming in 12th, followed by Green

Park in 14th position, both with betweenness centralities that are

roughly a third of Kings Cross St Pancras.

The Paris metro is also very large in size and is famous for being

ubiquitous in the city. The station with highest betweenness is

République. The République station is the main hub to link the

north-eastern part of Paris to the rest of the city. The Bastille

station is also very important to further link eastern Paris with the

rest of the city, but it actually comes in 11th place, having less than

half the betweenness of République. The second station is Châtelet

Les Halles, which is one of the main hubs in the Paris system and a

very busy station. It is surprising to see that Châtelet Les Halles

comes in second place (and by a significant margin), considering it

is geographically more central than République. They both host

the same number of lines, but somehow, the lines hosted by

République grant it better betweenness. The third and fourth

stations, Gare de l’Est and Gare Saint-Lazarre, are both train

stations that are likely to be busy; note, however, that despite

having a lower number of connections (i.e. degree centrality), Gare

de l’Est is slightly more central, likely thanks to its direction

connection to République. Unexpectedly, the fifth station is

Figure 6. Evolution of quadratic coefficients |ao| of cumulative distributions with network size. Two clear and distinct regimes can be
observed here. The high coefficient of Chicago and Stockholm, whilst being comparatively small, suggests the dominance of a radial feature. On the
other hand, the lower coefficient of Paris, considering its size, suggests a dominant grid pattern. New York and London can be seen as hybrids, having
fairly high coefficients whilst being large, which is quite intuitive (grid pattern in the center, joined with a radial pattern in the peripheries).
doi:10.1371/journal.pone.0040575.g006

Figure 7. Evolution of highest CBhi and lowest non-zero CBlo

betweenness centralities with size. While both centralities fit
power law functions, the exponent of highest betweenness is much
lower than the lowest betweenness, suggesting that the loss of share in
betweenness from most central nodes does not decay as fast as for
least central nodes.
doi:10.1371/journal.pone.0040575.g007

Table 2. Node betweenness and power law exponents.

Node
Betweenness

Power Law
Exponent

CBhi 0.87

CBav 1.00

CBlo 2.48

doi:10.1371/journal.pone.0040575.t002
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Madeleine, which is well located in the center of the city, but it has

much fewer connections than other stations such as Montparnasse

Bienvenüe, which comes in 7th place. Madeleine is not known to

be a major transfer point, it could therefore have some potential to

attract passengers.

The Madrid metro is known as a success story in the transit

community, since it has doubled in length in ten years. The station

with highest betweenness is Avda de America, located in the

Table 3. Five most central stations and their betweenness
centralities for metros with N $20.

Cities

Stations CB C’B

Stockholm

T-Centralen 113 0.198

Slussen 103 0.180

Gamla stan 90 0.157

Fridhemsplan 63 0.110

Gullmarsplan 63 0.110

Boston

Park St 102 0.190

Copley 79 0.147

Downtown Crossing 75 0.139

Gov’t Center 59 0.110

Kenmore 54 0.100

Shanghai

People’s Square 93 0.194

Century Avenue 53 0.111

Zhongshan Park 53 0.111

Shanghai Indoor stadium 50 0.105

Shanghai South Railway 41 0.086

Chicago

Roosevelt 221 0.138

Fullerton 193 0.121

Washington-Blue 168 0.105

Belmont 166 0.104

Jackson 143 0.089

Barcelona

Diagonal Provenca 163 0.159

Verdaguer 90 0.087

Sants Estacio 89 0.086

Maragall 84 0.081

Passeig de Gracia 82 0.080

Berlin

Leopold platz 110 0.084

Stadtmitte 106 0.081

Alexander platz 100 0.077

Zoologischer garten 99 0.075

Bayerischer platz 91 0.069

Mexico City

Chabacano 129 0.084

Tacubaya 105 0.068

La Raza 99 0.064

Centro Medico 98 0.064

Consulado 95 0.061

Osaka

Hommachi 153 0.085

Tanimachi9-chome 141 0.078

Sakaisuji-Hommachi 135 0.075

Nippombashi 119 0.066

Namba 97 0.054

Moscow

Aleksandrovski Sad 177 0.080

Kurskaya 177 0.080

Pushkinskaya 153 0.069

Marksistskaya 149 0.067

Okhotny Ryad 136 0.061

Madrid

Avda de America 265 0.076

Sol 190 0.054

Plaza de Espana 173 0.050

Pacifico 156 0.045

Alonso Martinez 154 0.044

Tokyo

Otemahi 453 0.037

Hlbiya 370 0.030

Shinjuku 309 0.025

Akasaka-mitsuke 296 0.024

Kasuga 257 0.021

Seoul

Express Bus terminal 468 0.046

Gunja 466 0.046

Daerim 439 0.043

Konkuk Univ 424 0.041

Isu 422 0.041

New York City

Broadway Junction 683 0.055

Metropolitan Av Lorimer 618 0.049

59 st Columbus circle 570 0.046

42 st Times Sqr 541 0.043

Lexington Av 59 st 521 0.042

Paris

Republique 631 0.053

Chatelet les Halles 541 0.045

Gare de l Est 531 0.045

Gare Saint-Lazarre 503 0.042

Madeleine 461 0.039

London

Kings Cross St Pancras 1240 0.080

Baker Street 1142 0.074

Bank 755 0.049

Moorgate 685 0.044

Liverpool Street 578 0.037

doi:10.1371/journal.pone.0040575.t003

Table 3. Cont.
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north-eastern part of the city, acting a transfer hub. It is actually

also the station with the most connections (i.e. highest degree

centrality). The second station is Sol, located in the famous Puerta

del Sol, and the third is Plaza de Espana, situated close to the

Royal Palace. Surprisingly, the fourth station is Pacifico, which is

located in the south-eastern part of the city. Its high betweenness

seems heavily reliant on the fact it is directly connected with Sol,

thus presenting some potential to relieve pressure from it, but also

because it hosts the Circular line. Finally, the fifth station is Alonso

Martinez, which acts as a major transfer point. Despite having

mostly diametrical lines, the Madrid metro seems to possess a grid

structure, which particularly allows for multiple transfer stations.

This grid property is further supported by a comparatively low

|ao| in Figure 6.

Contrary to Madrid, the Chicago metro has a strong radial

structure, which requires that most trips go through the city center. Its

station with highest betweenness is Roosevelt, which is located at the

southern tip of the loop. The second station is Fullerton, which

appears to carry an equivalent function to Roosevelt station, but

north of the loop. The third station is Washington-Blue that is located

in the center of the loop. Surprisingly, the fourth station is Belmont; it

is situated north of Fullerton station and it therefore seems to have

some potential. The fifth station is Jackson, which is close to

Washington-Blue. It is interesting to notice that none of these stations

are part of the elevated system present in the loop. In fact, only the

sixth station, Clark station, is part of the elevated loop system.

The New York subway is also a significantly large metro that is

partially shaped by the geography of the region; i.e. Manhattan’s

topography favors North-South lines. The station with highest

betweenness is Broadway Junction located in Brooklyn. It is followed

by Metropolitan Av Lorimer St that is also in Brooklyn. This is fairly

surprising considering Manhattan is the logical center of the New

York City transit system. These results essentially mean that the

natural center of the New York City subway is in fact located in

Brooklyn. Consequently, it may be desirable to direct future

expansion of the network to shift centrality to Manhattan, as may

be the case with the construction of the new Second Avenue line

currently scheduled for 2016. The three other stations are located in

Midtown Manhattan, they are: Columbus Circle, Times Square, and

Lexington Ave at 59st. Because of the geography of New York City,

taking a topological framework to future planning might be of

significant help to control the flow of passengers within the system.

Finally, it should be noted that this approach does not take the

presence of other modes into consideration. For instance, a station

might be strongly affected because it offers a transfer with a

regional rail system, or it is linked with a strong feeder services

from a light rail, bus rapid transit or even a conventional bus

system. Similarly, other stations may be overrepresented, which is

particularly true of main junctions for multiple branches (e.g.,

Harrow-on-the-Hill station in London, or Copley station in

Boston). As a result, creating artificial branches (or alternatively

removing actual branches) in the adjacency matrices may be

desirable to simulate these exogenous factors. By creating or

removing nodes, weights are essentially applied, therefore

increasing (or decreasing a node’s betweenness). Although this

solution may not be optimal, it is pragmatic and easy way to

perform a relatively simple analysis and compare different

scenarios.

Discussion

If the cities are to solve the serious challenges the earth is facing,

public transport systems are likely to take an increasingly

important role to provide mobility to the growing urban

population. Current transit systems, however, are undergoing a

lot of stress and they are not capable to accommodate the

increasing demand. Adopting a complex network approach to

develop new tools and technics for transit planners can therefore

be beneficial.

This paper dealt with one of the most important aspect of transit

systems: network centrality. In our case, centrality was assessed by

using betweenness centrality. Betweenness measures the importance

of a node as a transfer point to join pairs of nodes, and its relevance

to transit is self-evident. It was applied to 28 metros in the world that

range all sizes. More specifically, the main goal of the paper was to

identify global trends in the first place, followed by a more detailed

analysis of individual stations in several systems.

The methodology applied to study metros was first introduced,

where only transfer stations and termini were considered. The

concept of betweenness itself was then defined as the sum of the

ratios of all shortest-paths going through a particular node and the

total number of shortest-paths.

By comparing the systems at the global level, clear patterns

were found that had surprisingly strong statistical significance

despite the fact metros were built independently of each other.

First of all, although betweenness increases with network size by

definition, using normalized cumulative distributions showed that

the share of each node consistently decreases (i.e. no ‘‘winner

takes all’’), which was referred to as a process of democratization.

Moreover, these distributions had second degree polynomial fits,

whose quadratic coefficients decrease with network size following

a power law of exponent 2. Looking at the original (non-

normalized) cumulative distributions showed similar second

degree polynomials. In this instance, however, the quadratic

coefficients exposed two distinct regimes in the nature of metros,

enabling us to differentiate between radial vs. grid structures.

Finally, a further detailed analysis of nodes with highest, average,

and lowest betweenness revealed that they all decrease in a

power law fashion with network size. Nonetheless, the share of

nodes with highest betweenness decreases slower than average

(0.87 vs. 1), while the share of nodes with lowest betweenness

decreases faster than the average (2.48 vs. 1).

Subsequently, effort was concentrated on looking at systems

individually by locating the five most central stations of all metros

having more than 20 nodes. In particular, five systems were

examined more closely and specific stations were identified that

could be used to redistribute passengers in the network (thus

relieving stress from overcrowded stations). One finding was that

stations located in the center of the network tend to have higher

betweenness centralities, simply because they are connected to

other stations with high betweenness. Taking considerations of

centrality into account in the planning process can be valuable,

notably to control centrality (e.g., back to Manhattan), and

therefore better distribute the flows of passengers.

Overall, centrality is an important notion in network science

and it is at the core of public transport. Better understanding the

topology of transit systems can be valuable and helpful for

scientists, planners and engineers. Adopting a similar framework to

study urban infrastructure systems in general could be very

promising as well, especially to compare the network topologies of

the different systems (e.g., how does the topology of the electric

grid compare with the water/wastewater system, etc.). Much work

therefore remains to be done.
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