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The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through

idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically

by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and para-

bolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acous-

tic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed

by the sound energy trapped along the outer and concave boundary of the duct, and the other is a

fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition

depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted

to derive a general pattern. The parabolic equation method provides full-field modeling of the

sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/

scattering and horizontal Lloyd’s mirror interference. Two examples are provided to present inter-

nal wave ducts with constant curvature and meandering wavefronts.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4770240]
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I. INTRODUCTION

Nonlinear internal waves on the continental shelf and in

shelfbreak regions can influence underwater sound propaga-

tion significantly. For sound propagating across the waves, the

mode coupling, scattering, and resonant types of effects are

most profound (Zhou et al., 1991; Preisig and Duda, 1997).

Nonlinear internal waves can also act as reflective fronts, so

horizontal Lloyd’s mirror effects can occur (Badiey et al.,
2011; McMahon et al., 2012). When two nonlinear internal

waves align, a three-dimensional (3-D) acoustic duct may be

formed which can potentially trap sound over a long distance

(Katsnelson and Pereselkov, 2000; Oba and Finette, 2002;

Finette and Oba, 2003; Badiey et al., 2005; Frank et al., 2005)

and radiate sound from its open-ended termination (Lin et al.,
2009). Most of the previous work on internal wave ducting

concerns straight fronts and ducts, as they represent parts of

the wave fields observed in (approximately) straightline conti-

nental shelfbreak regions such as the Mid-Atlantic Bight

(Apel et al., 1997; Tang et al., 2007). However, curved inter-

nal wavefronts are just as common as linear fronts because

wave generation from small (point-like) regions, diffraction

by islands or seamounts, or refraction by bathymetry and/or

oceanography can easily produce significant wavefront curva-

ture. Theoretical analyses, numerical simulations, and obser-

vations of sound propagation in curved internal wave fields

have been reported by Lynch et al. (2010), Duda et al. (2011),

and McMahon et al. (2012). In this paper, a 3-D normal mode

theory is employed to analyze the modal structure of the

curved ducts. In addition, a 3-D parabolic equation method is

used to calculate full sound field solutions and to demonstrate

different ducting situations predicted from normal mode

theory.

Nonlinear internal waves of depression can produce

acoustic total internal reflection/refraction within a grazing

angle about 5 deg with respect to the wavefronts. Although

the critical grazing angle seems small, 5 to 10 dB fluctuations

in sound intensity can be expected and are observed (see the

references heretofore). Curved internal wavefronts can in

fact yield a sequence of sound reflections along its concave

side and produce an oceanic whispering gallery effect, which

may also be seen in the horizontal ducting of sound by a

sound speed front over a slope (Lynch et al., 2006; Lin and

Lynch, 2011). This whispering gallery effect has been long

studied in structural acoustics, and the most famous example

is the whispering gallery in St. Paul’s Cathedral, first studied
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mathematically by Rayleigh (1910). This type of ducting

phenomenon has also been found on solid elastic cylinders

imbedded in a fluid (Frisk et al., 1975; Dickey et al., 1976)

and many other instances over concave surfaces. The whis-

pering gallery effect has also been exploited beyond acous-

tics, e.g., laser cavities in x-rays (Braud, 1992) and a recent

work on optic resonators (Righini et al., 2011).

Lynch et al. (2010) presented theoretical analysis using

geometric and ray acoustics for a variety of ducting condi-

tions in curved internal wave fields. In this paper, 3-D nor-

mal mode and parabolic equation (PE) methods are

employed. The modal analysis is carried out in a cylindrical

coordinate system, where horizontal modes are cylinder

functions. A numerical program implementing the uniform

asymptotic expansions of Bessel functions (Abramowitz and

Stegun, 1964; Temme, 1997) is utilized in the examples

shown here. This numerical program was obtained from Dr.

K. R. Hiremath of Zuse Institute Berlin, Germany, and it

was used to calculate modes of optical waves propagating

along bent slab waveguides (Hiremath et al., 2005), where

whispering gallery modes are also observed.

This paper is organized as follows. In Sec. II, an idealized

model of curved internal waves is presented, and the 3-D

normal mode and PE methods are overviewed. The character-

istics of curved internal wave acoustic ducts are analyzed with

the normal mode method in Sec. III. Numerical examples are

shown in Sec. IV, followed by a discussion in Sec. V. The pa-

per is concluded in Sec. VI and directions for future work will

be discussed.

II. METHODS

An idealized model for a curved internal wave duct is

first proposed and described. Second, the two methods used

in this paper to analyze the horizontal ducting of sound by

curved internal waves are explained. The first method uti-

lizes separation of variables to decompose the ducted sound

field into vertical and horizontal modes. The second method

employs a PE approximation to the 3-D Helmholtz wave

equation and calculates the full sound field with a forward

marching algorithm.

A. Internal wave model

An idealized model consisting of curved internal waves

with circular fronts is employed, along with a two-layer

water column model where the upper layer has higher sound

speed. The thermocline in the water column is depressed by

the internal waves as shown in Fig. 1(a). The radius of the

circular front indicates its curvature, and the waves are sepa-

rated by a constant distance. To simplify the theoretical anal-

ysis, the internal waves are assumed to be a square

waveform, which is the first order stair-step approximation

to realistic internal solitary waves (Preisig and Duda, 1997;

Lin et al., 2009).

With a cylindrical coordinate system (r,h,z) as shown in

Fig. 1(b), the 3-D sound pressure field P(r,h,z) between the

internal waves in both the water column and the bottom is

governed by the following Helmholtz equation:
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(1)

where c(r,z) is the medium sound speed without considering

azimuthal variability, q(z) is the medium density neglecting

horizontal variation, and x¼ 2pf is the angular frequency of

the sound waves. The sound speed c in the bottom is com-

plex because the medium absorption is included, and the

attenuation coefficient appears in the imaginary part.

B. Acoustic mode decomposition

Due to the presence of the sea surface and the sea floor,

the long-distance propagating sound is guided in the water

column with vertical acoustic modes. The vertical mode

wm(z), where the subscript m indicates the mode number,

varies with horizontal position and can be determined from

the local mode equation

qðzÞ d

dz

1

qðzÞ
dwm

dz

� �
þ ðk2ðr; zÞ � f2

mÞwm ¼ 0; (2)

where k¼x/c is the medium wavenumber and fm is the eigen-

value of the mth vertical mode, i.e., its horizontal wavenumber

determined from the boundary conditions at the sea surface

and bottom. Since the medium wavenumber k is a function of

r, the vertical mode wm and its horizontal wavenumber fm can

vary in r. Solving for the vertical modes is a well-established

subject, and the details are omitted here. Readers are referred

to Pekeris (1948) and Jensen et al. (1994) for further discus-

sion. Here we will focus on the horizontal modes.

Because we are interested in ducted sound propagating

along the circular fronts in the angular direction, we will

neglect vertical mode coupling across the internal waves in

analysis of the horizontal modes. This is the so-called adiabatic

mode assumption and has been shown to be effective for ana-

lyzing the horizontal reflection and refraction of sound within a

small grazing angle (less than 10 deg) with respect to frontal

interfaces (Katsnelson and Pereselkov, 2000; Lin et al. 2009;

Badiey et al., 2011).

FIG. 1. An idealized model of a curved internal wave duct. (a) A two-layer

water column perturbed by internal waves of depression. (b) Side view of an

internal wave duct using the water column in (a). The shaded area indicates

the upper layer with sound speed c1 higher than sound speed c2 in the lower

water column.
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The depth averaged sound speed in the water column at

wave locations is higher compared with places without

waves because the internal waves induce depression of the

thermocline. Thus, there is a potential for sound to be

trapped in the duct between the waves. To find the horizon-

tal modes of ducted sound, one can substitute the vertical

mode decomposition P(r,h,z)¼
P

mAm(r,h)wm(z) for the

pressure in Eq. (1) and apply the adiabatic mode assump-

tion. This will result in the following horizontal refraction

equation for Am,

1

r

@

@r
r
@Am

@r

� �
þ 1

r2

@2Am

@h2
þ f2

m Am ¼ 0: (3)

Employing the method of separation of variables,

Am(r,h)¼
P

nGmn(r)Fmn(h), we can rewrite Eq. (3) as a set

of ordinary differential equations in r and h, respectively:

1

r

d

dr
r

dGmn

dr

� �
þ f2

mðrÞ �
g2

mn

r2

� �
Gmn ¼ 0; (4a)

d2Fmn

dh2
þ g2

mnFmn ¼ 0; (4b)

where the perfect separation is due to the fact that fm is only

a function of r. Recall that fm is the horizontal wavenumber

of vertical mode m determined from the local sound speed

profile according to Eq. (2). Also, the water column is per-

turbed by the internal waves, so the wavenumber fm inside

and outside the internal waves will be different.

Because the internal waves in the model are open (not a

ring), and the reflection of sound from the terminations of in-

ternal wave ducts is insignificant (Lin et al., 2009), there are

no modes in the angular direction. However, due to the pres-

ence of the internal wavefronts separating areas of different

fm, there are horizontal modes in the radial direction. Equa-

tion (4a) is the Bessel equation and its general solutions are

Hankel functions of the first and second kinds, H
ð1;2Þ
gmn
ðfmrÞ,

representing the outgoing and incoming waves, respectively.

Note that gmn is the angular wavenumber determining the

order of the Hankel function, and the subscript n indicates

the horizontal mode number. The angular wavenumber gmn

and the coefficients of the outgoing and incoming wave com-

ponents are determined from the interface conditions at the

internal wavefronts, and the horizontal mode function

Gmn(r) is a linear combination of H
ð1;2Þ
gmn
ðfmrÞ with the deter-

mined coefficients. The interface conditions will be intro-

duced later in the paper.

Since the final solution of Eq. (4b) is proportional to

exp(6 igmnh), the amplitude Am of the vertical mode is pro-

portional to Gmn(r)� exp(6igmnh). Thus, the horizontal

mode Gmn(r) will propagate along the internal waves in the h
direction with the angular wavenumber, gmn, and its angular

cycle distance, Hmn, along the wavefront can be determined

from the following equation:

Hmn ¼
2p

gmn � gm;nþ1

: (5)

C. 3-D PE approximation method

The PE approximation method, first introduced by

Tappert (1974) to underwater acoustics, is appropriate for

analyzing a sound field where forward propagation dominates

backward scattering. A Cartesian 3-D PE numerical program

(Duda, 2006) is used in this paper to calculate the full acous-

tic field in the examples. Because it is a full field calculation,

the adiabatic mode assumption is not applied. Brief discus-

sion of this numerical method is provided in this section.

Computation of this Cartesian 3-D PE program starts

from the source location and marches outward in one direc-

tion. At each marching step, the split-step Fourier technique

(Hardin and Tappert, 1973) is used to solve the one-way

wave equation of parabolic type with a wide-angle approxi-

mation to the square-root Helmholtz operator (Feit and

Fleck, 1978). The split-step Fourier technique divides sound

propagation over a heterogeneous sound speed field into

step-by-step free space propagation with a fixed reference

wavenumber, and periodically introduces (at each step)

phase fluctuations consistent with departures from that fixed

reference wavenumber. The free space propagation is

handled in the wavenumber domain, and phase anomalies

are introduced in the spatial domain. Thus, the computation

requires two dimensional (2-D) Fourier transforms. Readers

are referred to Jensen et al. (1994) and Duda (2006) for fur-

ther discussion.

III. ANALYSIS OF HORIZONTAL MODES

The interface conditions on curved internal wavefronts

will be introduced first, followed by an example of reflection

and transmission of Hankel function waves. Then, the char-

acteristic equation of the horizontal modes in curved internal

wave acoustic ducts is derived. Two types of horizontal duct-

ing can be found, and the general patterns of the horizontal

modes are discussed.

A. Interface conditions

Figure 2 illustrates the reflection and transmission of

Hankel function waves of order g across a circular interface

located at r¼ ri. The mode-number subscripts m and n are

dropped in the following discussion for convenience. In

Area I where r< ri, the horizontal wavenumber is fI, and in

FIG. 2. Reflection and transmission of Hankel function waves of higher

order across a circular interface at r¼ ri.
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Area II where r> ri, it is fII. Also, the total wave field is

GIðrÞ ¼ AH
ð1Þ
g ðfIrÞ þ BH

ð2Þ
g ðfIrÞ in Area I, and is GIIðrÞ

¼ A0H
ð1Þ
g ðfIIrÞ þ B0H

ð2Þ
g ðfIIrÞ in Area II. One way to consider

the relationship among these wave components is that

BH
ð2Þ
g ðfIrÞ is the reflection of an incident wave AH

ð1Þ
g ðfIrÞ

onto the interface, with an incoming wave B0H
ð2Þ
g ðfIIrÞ from

the outer area and a transmitting wave A0H
ð1Þ
g ðfIIrÞ outward.

The interface conditions are derived by requiring conti-

nuity and smoothness for the solution across the interface,

i.e., GIðriÞ ¼ GIIðriÞ and dGI=drjr¼ri
¼ dGII=drjr¼ri

. After

straightforward but exhaustive algebraic manipulation using

the recurrence relation of Hankel functions (Abramowitz

and Stegun, 1964), i.e.,

d

dr
Hð1;2Þg ðfrÞ ¼ �fH

ð1;2Þ
gþ1 ðfrÞ þ g

r
Hð1;2Þg ðfrÞ; (6)

one can find a linear relation for the coefficients in GI and

GII as shown in the next equation,

A0

B0

� �
¼ Q2�2ðg; fI; fII; riÞ

A
B

� �
; (7a)

where Q is a 2� 2 matrix depending on g, fI, fII, and ri, and

its detailed formula is

Q2�2ðg; fI; fII; riÞ ¼

H
ð1Þ
g ðfIriÞ

H
ð2Þ
g ðfIIriÞ

� j�1
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H
ð1Þ
g ðfIIriÞ

�
H
ð2Þ
gþ1ðfIIriÞ

H
ð1Þ
gþ1ðfIIriÞ

H
ð2Þ
g ðfIriÞ

H
ð1Þ
g ðfIIriÞ

� j�1
H
ð2Þ
gþ1ðfIriÞ

H
ð1Þ
gþ1ðfIIriÞ

H
ð2Þ
g ðfIIriÞ

H
ð1Þ
g ðfIIriÞ

�
H
ð2Þ
gþ1ðfIIriÞ

H
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gþ1ðfIIriÞ

2
6666666666666666664

3
7777777777777777775

; (7b)

where j is the index of refraction defined as j¼ fII/fI. One

can also show that when another pair of independent Bessel

functions, i.e., the Bessel functions of the first and second

kinds Jg(fr) and Yg(fr) is used to construct the general solu-

tion of Eq. (4a), the relation between wave components will

have the same form as Eqs. (7), with only the two Hankel

functions replaced by the two Bessel functions. This formu-

lation of the reflection and transmission of Hankel function

waves across a single interface will be used later to construct

the characteristic equation for the horizontal modes in the

radial direction, which are called radial modes hereafter.

Next we use Eqs. (7) to examine the reflection coeffi-

cient of a Hankel function wave incident on a circular inter-

face. Let A equal one and B0 equal zero, and we can solve

the equation for B, which is the reflection coefficient R:

R ¼ �

H
ð1Þ
g ðfIIriÞ

H
ð1Þ
gþ1ðfIIriÞ

� j
H
ð1Þ
g ðfIriÞ

H
ð1Þ
gþ1ðfIriÞ

H
ð1Þ
g ðfIIriÞ

H
ð1Þ
gþ1ðfIIriÞ

� j
H
ð2Þ
g ðfIriÞ

H
ð2Þ
gþ1ðfIriÞ

�
H
ð1Þ
gþ1ðfIriÞ

H
ð2Þ
gþ1ðfIriÞ

: (8)

Using the asymptotic formulas of Bessel functions

for large real order, i.e., JgðxÞ � ð1=
ffiffiffiffiffiffiffiffi
2pg
p

Þðex=2gÞg and

YgðxÞ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=pgÞ

p
ðex=2gÞ�g

, where e is the base of the

natural logarithm (Abramowitz and Stegun, 1964), we can

obtain the asymptotic behavior of the reflection coefficient for

large real g. Note that H
ð1Þ
g ¼ Jg(x) þ iYg(x) and H

ð2Þ
g ¼ Jg(x)

� iYg(x). Thus, H
ð1Þ
gþ1(fIri)/H

ð2Þ
gþ1(fIri) is asymptotic to �1, and

both H
ð1Þ
g (fIri)/H

ð1Þ
gþ1(fIri) and H

ð2Þ
g (fIri)/H

ð2Þ
gþ1(fIri) are asymp-

totic to fIri/2g. The reflection coefficient R is asymptotic to

but never equal to one. On the other hand, the asymptotes of

Hankel functions for small real order are H
ð1Þ
g ðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpxÞ

p
� expðiðx� gp=2� p=4ÞÞ and H

ð2Þ
g ðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpxÞ

p
expð�iðx

� gp=2� p=4ÞÞ, so the magnitude of the reflection coefficient

FIG. 3. Reflection coefficient of a Hankel function wave as a function of

real g. Calculation uses Eq. (8) with fI¼ 0.2094 m�1 and fII¼ 0.2040 m�1.

The interface is at ri¼ 5 km.
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for a small and real g is jRj � jð1� jÞ=ð1þ jÞj, which is

also the limit of the plane wave reflection (Frisk, 1994).

An example calculation of the reflection coefficient

magnitude jRj is shown in Fig. 3 for j< 1, and confirms the

asymptotic behavior discussed above. More importantly, the

calculation shows that the reflection coefficient gradually

approaches the asymptote with increasing real g, so total

reflection (R¼ 1) will never occur for real g. This observa-

tion is important because it will lead to complex eigenvalues

for the radial modes.

B. Characteristic equation of radial modes

Solving Eq. (4a) for the radial modes requires the hori-

zontal wavenumber of vertical modes, fm, determined from

Eq. (2) along the radial. Because the water column is per-

turbed by the internal waves, the horizontal wavenumber fmI

in the area outside the waves (Area I) will be different from

the horizontal wavenumber fmII inside the waves (Area II).

The left panel of Fig. 4 is a horizontal plane showing these

two different areas, and since internal waves of depression are

considered, fmII is smaller than fmI. There are in fact four

wavefronts in this idealized square wave model (two for each

internal wave). To solve for the radial modes, interface condi-

tions at all these fronts need to be satisfied. For convenience,

an additional model simplification is made for the internal

wave width to be effectively infinite so that there will only be

two remaining interfaces, as shown in the right panel of Fig.

4. This is called the well approximation in literature (Oba and

Finette, 2002; Finette and Oba, 2003; McMahon et al., 2012)

without considering the horizontal tunneling of sound through

internal waves (Lin et al., 2009). Some discussion will be pro-

vided on the tunneling effect in Sec. IV B.

One can use the reflection and transmission of Hankel

function waves shown in Eqs. (7) to construct a characteris-

tic equation for determining the eigenvalues gmn of the radial

modes. To simplify the notation, the subscripts m and n of

mode numbers are dropped in the following discussion. As

shown in Fig. 5, with the well approximation there are six

components of Hankel-function waves constituting the radial

modes in the simplified model. The inner front is at r¼D,

and the width of the duct is W. So the outer front is at r¼D
þ W. The wave components in each area are shown, and

their coefficients and the eigenvalue g need to be determined

from the boundary and interface conditions.

Equations (7) are derived from conditions at a single

interface, and for the case shown here relationships between

wave components across the duct can be determined by cas-

cading the interface conditions, i.e.,

A2

B2

� �
¼ Q2�2ðg; fI; fII;DþWÞ

A1

B1

� �

¼ Q2�2ðg; fI; fII;DþWÞQ2�2ðg; fII; fI;DÞ
A0

B0

� �
;

(9)

where the definition of the 2� 2 matrix Q is given in Eq.

(7b). In addition to the interface conditions, we also need to

employ the boundary conditions at r¼ 0 and 1. Since the

radial modes need to be finite at r¼ 0, B0 must be equal to

A0 so that the solution in r<D can be the Bessel function of

the first kind, Jg(fII r), which is finite at r¼ 0. Also, in order

to satisfy the Sommerfeld radiation boundary condition at in-

finite r, B2 must be zero [no incoming wave H
ð2Þ
g (fIIr) from

r>DþW]. Substituting these two requirements into Eq. (9)

gives

A1

B1

� �
¼ Q2�2ðg; fII; fI;DÞ

A0

A0

� �
; (10a)

A2

0

� �
¼ Qsq

2�2ðg; fI; fII;D;WÞ
A0

A0

� �
; (10b)

where fI, fII, D, and W are known quantities, and a new

variable Qsq(g, fI, fII, D, W) is defined to represent Q(g, fI,

fII, D þ W)�Q(g, fII, fI, D). Equations (10) provide how

A1, B1, and A2 relate to A0. Note that A0 will be determined

ultimately through normalization of the mode functions,

which is presented in Appendix A. The last equality of

Eq. (10b) can yield the characteristic equation for the eigen-

value g

qsq
21ðg; fI; fII;D;WÞ þ qsq

22ðg; fI; fII;D;WÞ ¼ 0; (11)

where qsq
jk is the element of the matrix Qsq at the jth row and

the kth column. It is probably impossible to derive a closed-

form solution for the eigenvalue g with given fI, fII, D, and

W, but Eq. (11) can still be solved by numerical root finders.

It is because Hankel functions are analytic with respect to

their order and so are differentiable with respect to g (Abra-

mowitz and Stegun, 1964).

The discussion on the reflection coefficient from a single

interface in Sec. III A leads to an important property for the

characteristic equation: its solution for the radial modeFIG. 4. An internal wave duct and the well approximation.

FIG. 5. Wave components along the radial axis in a curved duct.
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eigenvalue g is complex-valued even when the vertical

mode eigenvalue f is real-valued. This comes from the fact

that when g is a real number, no total reflection will occur,

see Sec. III A, and hence no mode can form. In addition,

because the curved internal wavefronts are soft interfaces

(sound can penetrate them), the guided sound propagating

along the curved internal wave duct in the h direction will

encounter radiation damping/losses (Carlstone, 1992). Thus,

the angular wavenumber g of the radial mode must be com-

plex to describe the decay of sound due to that effect.

The effects of internal wave parameters, such as the

index of reflection j¼ fII/fI, the radius of curvature D and

the gap between internal waves W, on the horizontal ducting

condition will be studied numerically in Sec. V. Also, it is a

future research direction to perform an asymptotic analysis

to the characteristic equation.

C. Types of radial modes

Once the eigenvalue of the radial mode is determined, we

can obtain the radial mode in the duct where D� r�D þ W

GmnIðrÞ ¼ A1Hð1Þgmn
ðfmIrÞ þ B1Hð2Þgmn

ðfmIrÞ; (12)

where the subscripts m and n are restored to distinguish the

vertical and radial mode numbers. The coefficients of the

incoming and outgoing components, A1 and B1, also depend

on the internal wave curvature and the duct width, as shown

in Eqs. (10), in addition to the wavenumber contrast between

fmI and fmII.

Equation (12) is a general solution of the radial mode

within the curved duct, and there are two types of radial

trapped modes. The first is the whispering gallery mode

formed by the sound continually reflecting off the outer

boundary, for which the mode function has peaks close to

the outer boundary (Rayleigh, 1910). The second type of ra-

dial trapped mode is the fully bouncing mode formed by the

sound reflecting between the wavefronts. These two types of

modes are depicted in Fig. 6.

Although it is not shown here rigorously, the radial

mode shape within the duct can be approximated by the Bes-

sel function of the first kind, Jgmn
(fmIr), which means the

coefficients A1 and B1 in Eq. (12) have very close values.

Because a Bessel function descends rapidly to zero when its

argument drops below its order, we can compare gmn and

fmID to characterize the mode type, which, in other words, is

closely related to the location (at r¼ gmn/fmI) of the inflec-

tion point of the mode function. When gmn is significantly

greater than fmID (the inflection point is located at r>D),

the corresponding mode is considered a whispering gallery

mode; otherwise, it is a fully bouncing mode. This criterion

was in fact used by Buckingham (1987) on determining the

envelope of refracted sound in a slope environment. In the

current application, it essentially characterizes the case of a

radial mode in the inner domain where r<D. A whispering

gallery mode has its tail vanishingly small because the

guided sound bounces along the outer boundary only. In con-

trast, a fully bouncing mode has a noticeable tail indicating

that the trapped sound also interacts with the inner boundary.

IV. NUMERICAL ILLUSTRATIONS

The water depth in the numerical example is 80 m, and

the acoustic frequency is 75 Hz. The sound speed profile and

the bottom geoacoustic parameters are shown in Fig. 7(a).

The thickness of upper higher-speed layer is 20 m and the

amplitude of the internal wave of depression is 20 m. Envi-

ronmental parameters of the internal wave field are: radius

of curvature D¼ 50 km, gap between the waves (the duct

width) W¼ 500 m, and wave width w¼ 300 m. Note that the

well approximation is employed in calculating the radial

modes, but not in the 3-D PE calculation.

FIG. 6. Two types of radial modes in a curved internal wave duct.

FIG. 7. (Color online) Vertical

modes and their phase speeds in the

water column model. (a) Sound

speed profiles with and without the

internal wave perturbation. The first

three vertical modes of 75 Hz sound

(b) inside the duct and (c) inside the

wave are shown. (d) Phase speeds of

the vertical modes in the duct

(circles) and the wave (crosses).
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A. Radial mode calculations

Calculating radial modes requires information about the

vertical modes, which are shown in Figs. 7(b) and 7(c) along

with their phase speeds in Fig. 7(d) (the modal attenuations

are included but not shown). From the modal phase speeds,

one can see that the strongest modal contrast across the wave

occurs on the second vertical mode (m¼ 2), which encoun-

ters an abrupt change on the sound speed at its upper turning

point at depth �30 m.

A numerical root finder using the bisection method is

implemented to solve the characteristic equation (11) for the

eigenvalues/angular wavenumbers of the radial modes.

Three different horizontal ducting situations are identified:

no ducting, whispering gallery type ducting, and full bounc-

ing between the two wavefronts. Accordingly, three corre-

sponding types of radial modes are found: leaky modes,

whispering gallery modes, and fully bouncing modes. Dis-

cussion on the radial mode solutions is provided below.

Figure 8(a) shows the angular wavenumbers of first

eight radial modes for vertical mode 1 in terms of their ratios

to the radius of internal wave curvature, i.e., g1n/D with

n¼ 1–8. The imaginary part of this ratio can be considered

as the reciprocal of a modal decay distance over which the

amplitude of a radial mode decays by a factor of e along the

inner wavefront. The radial mode of the lowest order (n¼ 1)

has the slowest decay rate, and the rate increases as the

mode number n increases. The modal decay distance is a

good indicator of the effectiveness of a radial mode propa-

gating in the curved duct. Considering 10 km as a cutoff, the

first two radial modes shown here are propagating modes,

and the others are leaky modes. By the characterization

method for radial mode functions based on the locations of

their inflection points (see Sec. III C), the two propagating

trapped modes are of whispering gallery type. This is

because the ratios of their eigenvalues to the radius of inter-

nal wave curvature g1n/D, where n¼ 1–2, are significantly

higher than the real part of the vertical mode eigenvalue f1I,

which is about 0.3161 m�1. The mode functions are calcu-

lated and plotted in Fig. 8(b), and the first two radial modes

are indeed whispering gallery modes. Their angular cycle

distances Hmn, where m¼ 1 and n¼ 1–2, can be calculated

using Eq. (5), and the values are 0.1901 and 0.2142 rad,

respectively. The cycle distances of these two whispering

gallery modes along the outer wavefront, converted into

length by (DþW)�Hmn, are both of order 10 km, which are

smaller than their modal decay distances.

This example also shows that the total number of radial

trapped modes depends on the vertical mode number m, and

the discussion is provided here. Because the phase speed

contrast of vertical mode 2 across the wavefront is greatest

compared to other vertical modes, it should have more radial

trapped modes. This is confirmed in the radial mode calcula-

tion results shown in Figs. 8(c) and 8(d). All three types of

radial modes, in fact, appear in this case (m¼ 2), and they

are whispering gallery modes for n¼ 1–4, fully bouncing

modes for n¼ 5–6, and leaky modes for n� 7. The cycle dis-

tances of the whispering gallery modes are again of order

10 km. Finally, it is worth noting that all of the radial modes

seen in this example are complex, while the leaky modes

have significantly larger imaginary parts.

B. Full 3-D PE calculation

A Cartesian 3-D PE numerical program (Duda, 2006) is

used to calculate the full acoustic field in the example model

without employing the adiabatic mode assumption. Vertical

mode filtering is employed to extract the amplitude of modes

FIG. 8. Radial modes of 75 Hz sound

and the ratios of their angular wave-

numbers gmn to the radius D of inter-

nal wave curvature (D¼ 50 km). (a)

and (b) correspond to vertical mode

1, and (c) and (d) correspond to verti-

cal mode 2. The solid curves in (b)

and (d) are real parts of the radial

modes, and dashed curves are imagi-

nary parts.
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1 and 2 to examine their horizontal ducting conditions. A

point source with 0 dB intensity measured at 1 m away is

placed at the depth 65 m and transmits 75 Hz tonal sound.

Two source locations are considered. One source location is

inside the duct and 75 m away from the outer wavefront. The

other is also inside the duct, but it is 75 m away from the

inner wave. When the origin of the horizontal coordinates

(x,y) is placed at the center of the 500 m wide duct, the two

source locations are at y¼6175 m. The excitation of verti-

cal modes 1 and 2 is about �6 dB and �4 dB, respectively,

at 1 m from the source.

The radial modes shown in Fig. 8 indeed capture the

horizontal ducting seen in the 3-D PE solution. For example,

the modal theory predicts that vertical mode 1 (m¼ 1) has

only corresponding radial trapped modes of the whispering

gallery type, and the 3-D PE solution in Figs. 9(a) and 9(b)

indeed shows that only when the source is located close to

the outer wave, vertical mode 1 is trapped. The modal theory

also predicts that vertical mode 2 (m¼ 2) will encounter

strong horizontal ducting with both whispering gallery and

fully bouncing types, and the PE solution in Figs. 9(c) and

9(d) shows that no matter where the source is placed inside

the duct, vertical mode 2 can be trapped in the duct.

In addition to the horizontal ducting, the 3-D PE solu-

tion also shows other interesting propagation effects. First,

when the source is located close to the inner wave inside the

duct, as shown in Figs. 9(a) and 9(c), the split beam pattern

observed near the source on the convex side of the inner

wave is caused by the horizontal Lloyd’s mirror effect

(Badiey et al., 2011; McMahon et al., 2012). Also, vertical

mode coupling occurs in the areas near the source where the

sound propagates across the internal waves with greater

grazing angles, and it causes discontinuity of the acoustic

beams across the waves. Last, the 3-D PE solution contains

the tunneling effect, which was not seen in the mode calcula-

tion due to the well approximation. As shown in Figs. 9(c)

and 9(d), when the horizontal ducting starts appearing, some

of the trapped sound tunnels through the outer internal wave

at locations from x¼ 6 km to 12 km. The modal analysis of

this tunneling effect has been conducted for straight internal

wave ducts (Lin et al., 2009), and the extension to curved

ducts is a topic for future research.

V. DISCUSSION

Further discussions on the horizontal ducting of sound

by curved internal waves are provided in this section. We

will first examine the effect of wavefront curvature, and then

present a meandering wave case, for which the curvature has

a longitudinal variation. A parametric study of ducting con-

ditions will be implemented, and their general pattern will

be presented.

A numerical calculation is performed to examine the de-

pendency of the horizontal ducting on internal wave curva-

ture. All the environmental parameters are the same as the

example in Sec. IV except for the radius of internal wave

curvature, which decreases from 50 km to 25 km. The radial

modes corresponding to vertical mode 2 are shown in Figs.

10(a) and 10(b) for their angular wavenumbers and mode

functions. Compared with the case of the 50 km radius

shown in Figs. 8(c) and 8(d), we see that fewer trapped radial

FIG. 9. (Color online) Horizontal

ducting of vertical modes 1 and 2 in

a curved internal wave duct. The fre-

quency is 75 Hz, and the sound

source is placed at depth 65 m. Full

3-D PE solutions with vertical mode

filtering are presented in terms of

modal intensity. The edges of inter-

nal waves are indicated by the solid

curves, and the inset panel is a closer

view of the area marked by the box.
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modes occur in the current case, and they are all whispering

gallery modes.

The 3-D PE solutions of vertical mode 2 intensity for two

different source locations are shown in Figs. 10(c) and 10(d).

In contrast to Figs. 9(c) and 9(d), only when the source is

close to the outer wave, vertical mode 2 is trapped in the duct

because the horizontal ducting is the whispering gallery type.

Also, the cycle distances of these whispering gallery modes

are between 6 and 8 km, which are smaller than the values

(10 km) in the preceding case. In summary, this test suggests

that the number of radial trapped modes, as well as their cycle

distances, gradually decreases when the radius of curvature

becomes smaller. On the other hand, as the wavefront curva-

ture decreases and becomes closer to straight, there will be

more radial trapped modes. In the limiting case of flat wave-

fronts, the whispering gallery mode disappears, and there will

be only fully bouncing modes.

The second calculation is for horizontal ducting in a

meandering wave field, where the wavefronts follow a sinu-

soidal function with a 200-m amplitude and a 20-km wave

length. The internal wave curvature is 50.66 km at the most

curved part, and it changes longitudinally along the duct. As

sketched in Fig. 11(a), the radial modes tend to be of whis-

pering gallery type in the most curved part. On the other

hand, the radial modes tend to be fully bouncing in the less

curved portion because the concavity of the wavefront is not

great enough to support whispering gallery ducting. Figures

11(b)–11(e) depict the horizontal ducting of vertical modes 1

and 2 for different source locations obtained from 3-D PE

calculations. In this example where the source is placed in

the curved part, when the source is close to the outer wave,

more sound is trapped in the duct; see Figs. 11(c) and 11(e).

This is because the whispering gallery modes in the curved

part are excited.

In this meandering wave case, we also notice that the ra-

dial modes have a longitudinal variation, because the inter-

nal wave curvature changes along the waveguide. In a more

realistic situation, where the wave shape varies along the

wavefront, the radial mode variation will be even more sig-

nificant. The consequence is that the ducted sound will en-

counter radial mode coupling. The 3-D PE modeling

technique can be used to study sound propagation in this sit-

uation numerically (Duda et al., 2011). For a more analytical

approach, the radial mode coupling can also be analyzed

with the virtual mode method (Tindle et al., 1976; Williams,

1978). A preliminary research idea is proposed here and the

detailed study is suggested for future research. To solve the

coupled radial mode equation, we can expand the radial

modes at any position along the duct with one set of discrete

plus continuum basis modes. Because the tangent of the

wavefront changes along the waves, the basis modes are sub-

jected to rotation. The Jacobian caused by the rotation of the

basis modes may be needed to determine the transportation

of the modal energy. Also, if we think of the continuum as

virtual modes (Tindle et al., 1976; Williams, 1978), the cou-

pling to any virtual mode that can retain energy in the duct is

apt to be negligible, so that anything past the trapped mode

set can be considered to be a complete loss. So we may keep

the same set of trapped modes everywhere. Modes near cut-

off might be a flaw in this approach, and the study by

FIG. 10. (Color online) Horizontal

ducting of vertical mode 2 at 75 Hz

in a curved internal wave duct. The

radius of internal wave curvature is

25 km, which is smaller than the

case shown in Figs. 8 and 9. The

ratios of the radial mode eigenvalues

gmn to the radius D of internal wave

curvature are shown in (a), and the

radial mode functions are shown in

(b). The intensity of vertical mode 2

obtained from full 3-D PE calcula-

tion with vertical mode filtering are

presented. The sound source is

placed at the depth 65 m, and two

different source locations are consid-

ered: (c) near the inner wave and (d)

near the outer wave. The edges of

internal waves are indicated by the

solid curves, and the inset panel is a

closer view of the area marked by

the box.
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Williams (1978) on the virtual modes in this regime may

provide some insight into the problem.

The ducting condition derived from the geometric and

ray acoustics approximation by Lynch et al. (2010) has been

compared with the normal mode predictions shown above.

The ray approach requires the horizontal angle hhor
nm of a ra-

dial mode, which can be determined from its eigenvalue gmn

in the following way:

hhor
nm ¼ cos�1 gmn= Dþ W

2

� �
fm

; (13)

where the horizontal angle hhor
nm is measured at the midpoint of

the internal wave duct at r¼D þ W/2. We also need to use

the environmental parameters of internal waves to derive the

critical grazing angle for a modal ray reflecting from a wave-

front: see Lynch et al. (2010) for details. Then, by comparing

hhor
nm to the critical angle, we can determine the ducting condi-

tion of the mode for three possible outcomes: no ducting,

whispering gallery ducting, and the fully bouncing type of

ducting. Ray predictions of the ducting condition mostly agree

with results from the normal mode method described earlier

in Sec. III C. The exceptions may occur for a small radius of

curvature and low vertical mode number m, where the ray

approximation breaks. For example, with 100 Hz frequency

there may be differences for the radius of curvature D less

than 10 km and for the first vertical mode (m¼ 1).

An analysis using both the ray and normal mode

approaches has been conducted to study the dependency of

the ducting condition on the radius of internal wave curva-

ture D and the vertical mode number m. A sketch of the

overall behavior is shown in Fig. 12, and the ducting condi-

tion is jointly constrained by D and m such that the boundary

of each ducting condition in the dependency diagram has a

hyperbolic shape. In general, there is a cutoff vertical mode

number for the ducting condition acting like one of the

asymptotes of the hyperbolic boundary. Similarly, there is

also a maximum curvature (the other asymptote) behind

FIG. 11. (Color online) Horizontal

ducting of sound in a meandering in-

ternal wave duct. (a) A sketch show-

ing different types of ducted modes

in the duct. Full 3-D acoustic fields

for a source in a curved portion and

located (b) near the inner wave, and

(c) near the outer wave. (d) Same as

(b) except vertical mode 2 is plotted.

(e) Same as (c) except vertical mode

2 is plotted.

46 J. Acoust. Soc. Am., Vol. 133, No. 1, January 2013 Lin et al.: Curved internal-wave acoustic duct

Downloaded 14 Jan 2013 to 128.128.44.26. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



which no sound can be trapped in the duct. In addition, for a

given vertical mode, as the radius of curvature varies from

small to large, there is generally a sequential change from no

ducting (N.D.), to whispering gallery ducting (W.G.), and

then to combined ducting by whispering gallery and fully

bouncing modes. The same pattern can also be observed for

specifying an internal wave curvature and varying the verti-

cal mode number. However, when the curvature is very

small, the ducting condition will directly transition to com-

bined ducting. In the limit of straight wavefronts, there will

be no whispering gallery modes.

It is also found that as the duct width W increases, the

area of the whispering gallery condition in the dependency

diagram (Fig. 12) expands with the boundary of the com-

bined ducting moving up and to the right. On the other hand,

when the duct width is too small (less than a half of a wave-

length), no ducting is permitted. The dependency of the

horizontal ducting on acoustic frequency has also been

examined. As acoustic frequency increases, the cutoff verti-

cal mode number goes up, and only higher vertical modes

can be trapped horizontally in the duct. In fact, higher verti-

cal modes are generally more easily trapped in the curved

duct. Finally, although it is not addressed here, from the

modal ray analyses and the numerical simulations shown by

Lynch et al. (2010) and Duda et al. (2011), the strength of

the horizontal ducting also depends on the size of internal

waves. Readers are referred to the two papers for detailed

discussions.

VI. CONCLUSION

Horizontal ducting of low-frequency sound by curved

internal waves is analyzed with 3-D normal mode and PE

methods in this paper. The results are briefly summarized

here.

The horizontal acoustic modes in curved internal wave

ducts can be determined from the Bessel equation of com-

plex order. Two types of modes can be found: whispering

gallery modes and fully bouncing modes. Horizontal ducting

depends on both acoustic and internal-wave parameters. For

instance, total number of horizontal trapped modes depends

on the vertical mode number, and the number gradually

decreases as the internal wave curvature becomes greater.

On the other hand, as the wave curvature decreases, more

horizontal modes occur. Detailed discussion has been pro-

vided with a parametric study.

A 3-D normal mode theory is employed to investigate the

ducted sound field with the well approximation, and the effect

of sound tunneling through internal waves and radiating out-

ward is neglected in the modal analysis. The 3-D full field cal-

culated from the PE method does show the tunneling effect,

as well as other effects caused by internal waves but neglected

in the modal analysis. It is suggested for future research to

avoid the well approximation in the mode calculation so that

the tunneling modes can be resolved and investigated within

normal mode framework. The mode coupling and horizontal

Lloyd’s interference seen in the 3-D PE calculations are as

important as the ducting, and they all contribute to the acous-

tic fluctuations in a curved internal wave field.
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APPENDIX: NORMALIZATION OF RADIAL MODES

This appendix concerns the normalization factor of ra-

dial modes, i.e., the value of A0 in Eqs. (10). The derivation

follows closely the normalization of vertical modes shown

by Porter (1991). First, we include a point-source forcing

function in Eq. (3), i.e.,

1

r

@

@r
r
@A

@r

� �
þ 1

r2

@2A

@h2
þ f2ðrÞA ¼ � dðr � r0Þ

r
dðhÞ;

(A1)

where the horizontal wavenumber f is assumed to be only a

function of r, and the source is placed between two interfa-

ces located at r¼ a and b. The horizontal wavenumber for

a� r� b is fI, and is fII elsewhere. With the wavenumber

integration technique (Frisk, 1994), one can find the follow-

ing solution to Eq. (A1):

Aðr; hÞ ¼ 1

2p

ð1
�1

Gðr; gÞ expðighÞ dg; (A2)

where g is the angular wavenumber, and G is governed by

the next ordinary differential equation with two mixed

boundary conditions imposed at r¼ a and b,

1

r

d

dr
r

dG

dr

� �
þ f2 � g2

r2

� �
G ¼ � dðr � r0Þ

r
; (A3)

f ða; gÞ
gða; gÞGða; gÞ þ

dGða; gÞ
dr

¼ 0;

f ðb; gÞ
gðb; gÞGðb; gÞ þ

dGðb; gÞ
dr

¼ 0:

8>>><
>>>:

(A4)

FIG. 12. Dependency of the horizontal ducting condition on the internal

wave curvature and the acoustic vertical mode number. N.D. stands for no

ducting, and W.G. stands for whispering gallery.
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The functions f(r,g) and g(r,g) in Eq. (A4) actually

determine the impedance conditions at the boundarie, and

they are, in general, complex-valued. Therefore, the current

boundary value problem is not a proper Sturm-Liouville

problem, which requires the coefficients of a mixed bound-

ary condition to be real constants. This prevents us from

employing Sturm-Liouville theory to solve Eq. (A3) with

eigenfunction expansions. Nevertheless, we can still use the

endpoint method (Frisk, 1994) to solve for G, and then ap-

proximate the wavenumber integral solution of A(r,h) shown

in Eq. (A2) as a modal solution by applying Cauchy’s inte-

gral theorem and neglecting the branch line integral. It is the

goal of this appendix to normalize these modes so that the

modal solution can be written in the following form:

Aðr; hÞ ffi i
X

n

Gnðr0; gnÞGnðr; gnÞ expðignhÞ; (A5)

where Gn(r,gn) is the nth normalized radial mode with the

modal eigenvalue gn.

We now employ the end-point method (Frisk, 1994) to

solve Eq. (A3) for the wavenumber spectrum G(r,g) into the

next formulation

Gðr; gÞ ¼
� 1

C
uaðr; gÞubðr0; gÞ; a � r � r0;

� 1

C
uaðr0; gÞubðr; gÞ; r0 � r � b;

8>><
>>:

(A6)

where the denominator C¼ r0W[ua(r0,g), ub(r0,g)], and the

symbolic notation W denotes the Wronskian, i.e.,

W½uaðr0; gÞ; ubðr0; gÞ� ¼ uaðr0; gÞu0bðr0; gÞ
� u0aðr0; gÞubðr0; gÞ: (A7)

In Eq. (A7), the prime symbol denotes the first derivative

with respect to r, and the ua and ub are the solutions of the

following two ordinary different equations, respectively:

LðgÞua ¼ 0; Bða; gÞua ¼ 0; (A8a)

LðgÞub ¼ 0; Bðb; gÞub ¼ 0; (A8b)

where the symbol L(g) indicates the left-hand side of Eq.

(A3), and the symbol B(r,g) represents the boundary condi-

tion shown in Eq. (A4). Note that the horizontal wavenum-

ber f is known so that L and B depend on g and r only.

Substituting the end-point solution of G(r,g) into Eq. (A2)

yields

Aðr; hÞ ¼ 1

2p

ð1
�1

uaðr<; gÞubðr>; gÞ
�C

expðighÞ dg; (A9)

where the variable r< denotes the smaller value between r
and r0, and r> denotes the larger value between r and r0. To

determine the integration, we first search for the singular

points of the integrand where the denominator vanishes, and

then apply Cauchy’s integral theorem to approximate the

complex integral to a summation of the residues and neglect

the branch line integral. Note that at the singular points

(g¼ gn), the numerator ua(r<, g)ub(r>, g) becomes simply

Un(r0, gn)Un(r, gn), where Un is a non-normalized mode

determined from the next equation with gn,

LðgnÞUn ¼ 0; Bða; gnÞUn ¼ 0 and Bðb; gnÞUn ¼ 0:

(A10)

With these non-normalized modes, the approximated solu-

tion of A in Eq. (A9) can be found to be

Aðr; hÞ ffi i
X

n

Unðr0; gnÞUnðr; gnÞ
�@C=@gjgn

expðignhÞ; (A11)

where the denominator can yield the normalization factor A0

for Un to reach Eq. (A5) via Gn(r,gn)¼A0Un(r,gn). Because

the variable C is r0W[ua(r0, g), ub(r0, g)]¼ r0ua(r0, g)u0b(r0, g)

� r0u0a(r0, g)ub(r0, g) [see Eqs. (A6) and (A7)], the normal-

ization factor A0 can be determined from the next equation,

A�2
0 ¼ �r0

@

@g
½uaðr0;gÞu0bðr0;gÞ � u0aðr0; gÞubðr0;gÞ�

		
gn
:

(A12)

Following the procedure proposed by Porter (1991), we can in

fact calculate the right-hand side of Eq. (A12) using the

non-normalized mode Un and the boundary conditions at r¼ a
and b. The details are omitted here, and the final result is

A�2
0 ¼ 2gn

ðb

a

U2
nðr;gnÞ

r
dr�a

@

@g
f ða;gÞ
gða;gÞ

				
gn

U2
nða;gnÞ

þ b
@

@g
f ðb;gÞ
gðb;gÞ

				
gn

U2
nðb;gnÞ: (A13)
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