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A new self-learning algorithm for accelerated dynamics, reconnais-
sance metadynamics, is proposed that is able to work with a very
large number of collective coordinates. Acceleration of the dynamics
is achieved by constructing a bias potential in terms of a patchwork
of one-dimensional, locally valid collective coordinates. These col-
lective coordinates are obtained from trajectory analyses so that they
adapt to any new features encountered during the simulation. We
show how this methodology can be used to enhance sampling in real
chemical systems citing examples both from the physics of clusters
and from the biological sciences.
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Introduction

Many chemical systems, notably those in condensed mat-
ter and in biology, are characterized by the presence of

multiple low energy states which are separated by large barri-
ers. The presence of these barriers prevents exploration of all
of configuration space during the relatively-short timescales
accessible in molecular dynamics (MD) simulations. Typi-
cally this means that only those configurations in a small,
locally-ergodic region in the vicinity of the input structure
are visited.

A large number of methods have been put forward to over-
come this difficulty, many of which either use some form of en-
hanced sampling (1–6) or focus on the transition from one lo-
cal minimum to another (7–10). Other methods recognize that
a small number of degrees of freedom (collective variables) ac-
curately describe the interesting transitions and so either raise
the temperature of these degrees of freedom (11–13) or intro-
duce a bias to enhance the sampling along them (14–22). The
major differences between the various approaches in this last
class is the way in which the bias is generated a particularly
useful technique being to use a bias that is dependent on the
previously visited trajectory. This is the basis of the metady-
namics method (23,24) that has been introduced by our group
and applied to a large variety of chemical problems (25).

For many chemical systems the interesting, reactive pro-
cesses take place in a relatively low dimensional space (26,27).
However, it is often not immediately obvious how to identify
a set of collective variables (CVs) that span this ’reactive’
sub-space. Furthermore, in methods like metadynamics the
presence of barriers in the transverse degrees of freedom leads
to incomplete sampling. The obvious solution therefore is to
use very large numbers of collective coordinates. However,
although this is theoretically possible with methods such as
metadynamics, it is impractical because the volume of bias
that one must add to the free energy surface, and hence the
length of the simulation, increases exponentially with dimen-
sionality. One suggestion for resolving this issue is to run
multiple short, 1D metadynamics simulations in parallel with
different collective coordinates and to allow swaps between the
different realizations based on a Monte Carlo criterion (28).
Here we propose an alternative solution based on the real-
ization that, if the free energy surface is to be flattened, the
majority of the bias will have to be added at or near the
minima in the surface. Identifying the locations of these min-

ima is straightforward as, during a dynamical trajectory, the
system should spend the majority of its time trapped in the
vicinity of one or more of them (29). Therefore by using a
form of “smart” bias that targets these low free energy re-
gions specifically we can force the system away from them
and into unexplored areas of configuration space. We call the
self learning algorithm that we have developed based on these
ideas Reconnaissance Metadynamics and have implemented
it in the plugin for molecular dynamics PLUMED (24). In
what follows we demonstrate this algorithm on two different
systems - a cluster of seven Lennard Jones atoms and a short
protein.

Background
Before introducing our new method a brief survey of estab-
lished techniques for dealing with complex energy surfaces in
terms of very large numbers of collective coordinates is in or-
der. Zhu et al (30, 31) have introduced a method that uses
a variable transformation to reduce barriers and thereby in-
crease sampling, which works with a large number of collec-
tive coordinates. Problematically though this method does
not work if there are hydrogen bonds present. In contrast,
methods that work by thermostating the CVs at a higher tem-
perature (11–13) suffer no such problems and have been used
successfully with large numbers of CVs (32). However in these
methods, unlike metadynamics, there is nothing that prevents
the system from revisiting configurations, which could prove
problematic for examinations of glassy landscapes with many
local minima of equal likelihood.

For many free energy methods explicitly including a large
numbers of collective coordinates is not feasible. However, one
can use collective coordinates that describe a collective mo-
tion that involves many degrees of freedom. For example, one
can use the principle components of the covariance matrix of
a large set of collective coordinates, the values of which have
been calculated over a short MD trajectory (33, 34). Alter-
natively, one can take non-linear combinations by defining a
path in the high-dimensionality CV space (35). The distance
along and the distance from this path span a low-dimensional,
non-linear space and metadynamics simulations using these
two CVs have been shown to work well. However, a great
deal of insight is required in choosing an initial path from
which the CVs are generated as the simulation can only pro-
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vide meaningful insight for the region of configuration space
in the immediate vicinity of this path.

Entropy plays an important role in free energy surfaces
as it can wash out potential energy minima and make it such
that finite temperature equilibrium states do not correspond
to minima in the potential energy surface. Nevertheless, for
systems with deep minima in the potential energy surface,
one can use algorithms that locate all the minima on the 0 K
(potential) energy surface and assume that the properties at
every point on this surface are the same as those of the nearest
local minima safe in the knowledge that the entropic effects
are small. These algorithms allow one to divide up config-
uration space and map every point to its appropriate local
minimum using a minimization algorithm (36). Furthermore,
the slow modes in the vicinity of each basin provide good local
collective coordinates as in the vicinity of basins the system
is very nearly harmonic. From a patchwork of such descrip-
tors one could conceive of ways to obtain globally-non-linear
CVs. Recently, Kushima et. al. (37) have developed a self-
learning, metadynamics-based algorithm based on these ideas
that works by minimizing the energy and adding bias func-
tions at the position of the minimum found so that subsequent
minimizations will identify new minima.

Ideas described above for the exploration of potential en-
ergy surfaces cannot be straightforwardly transferred to the
study of free energy surface because of the difficulties associ-
ated with the calculation of derivatives at finite temperature.
Nonetheless, Maragakis et al (29) have developed a method,
GAMUS, that has some similarities to the 0 K method devel-
oped by Kushima et al. In GAMUS the kinetic traps that are
preventing free diffusion are located by fitting the probability
distribution of visited configurations with a Gaussian Mixture
(GM) model. The resulting set of bespoke Gaussians are then
used to update an adaptive bias that encourages the system to
visit unexplored regions of configuration space. This adaptive
approach accelerates the filling of basins and thus provides a
considerable speed up over conventional metadynamics when
one is using 3 or 4 collective variables. Nevertheless, the filling
time will still increase exponentially with the number of CVs.

Fig. 2. Schematic representations of why it is necessary to use more than one

pca analyzer and why it is necessary to expand basins. The trajectory in panel (a)

can be fit using a single pca analyzer. By contrast the trajectory in panel (b) must

be fit with a pair of analyzers as the energetic barrier is low enough that there will

be hopping events between the two sub-basins. Panel (c) shows how adding a single

Gaussian to the center of the basin in panel (a) can lead to the creation of spurious

basins in later cluster analyses. Panel (d) demonstrates how this problem becomes

more severe as the dimensionality is increased and also that it will occur if the basins

are given a fixed size.

Reconnaissance metadynamics algorithm
Reconnaissance metadynamics combines a number of new

ideas with those of established methods and is thus effective
with very large numbers of CVs. The bias potential is con-
structed in terms of a patchwork of basins each of which cor-
responds to a low free energy region in the underlying FES.
These features/basins are recognized dynamically by periodi-
cally analyzing the trajectory with a sophisticated clustering
strategy. The region of configuration space in the vicinity
of each basin is then described using a one-dimensional CV
that is tuned using information collected during the cluster-
ing. Consequentially, even when the overall number of col-
lective coordinates (d) is large, depressions are compensated
for rapidly because the bias is added in a locally-valid, low-
dimensional space.

Fig. 1. Flow chart for the reconnaissance metadynamics algorithm.

Cluster analyses are performed at regular intervals using a
set of stored configurations for the CVs that are accumulated
from the trajectory. During this analysis it is essential that
some form of dimensionality reduction be performed as oth-
erwise the fitting will be intractable. In addition, one must
recognize that, because this is a dynamical trajectory, the sys-
tem may well have hopped between different basins on the free
energy surface (see figure 1). Therefore, because we would
ideally like to treat each basin separately, principle compo-
nent analysis (PCA) is not an option. Furthermore, Gaussian
mixture expectation maximization algorithms (29), although
able to separate the basins, will become unstable when the
number of collective coordinates is large. Thankfully however
combinations of these two algorithms exist (38–40) that al-
low us to cluster the data while simultaneously reducing the
dimensionality.

This clustering strategy provides us with a set of Gaus-
sian centers (µ) and covariance matrices (C) for the various
basins in the free energy surface. Some of these will have very
low weights or will be very similar to previously encountered
basins and can thus be safely discarded. Those remaining
provide useful information on the local topology of the FES
but cannot be used to predict the actual depth of the basin or
its shape away from the center. Consequentially, a flexible bi-
assing strategy must be used in the vicinity of the minimum as
addition of a single Gaussian will not necessarily compensate
for the depression in free energy. This failure to compensate
basins fully can lead to the formation of spurious low energy
features in the region surrounding the basin center (see figure
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1(c)), which is a problem that becomes more severe as the di-
mensionality is increased. To resolve these issues we assume
that the basin is spherically symmetric in the metric induced
by C and, in the spirit of metadynamics, construct an adap-
tive bias composed of small Gaussian hills of height wi and
width ∆r, along a single, radial collective coordinate r(s) (see
equation 1).

Vi(s) = wie
− (r(s)−ri)2

2∆r2 [1]

r(s)2 = (s− µ)TC−1(s− µ) [2]

In the above s is a vector that denotes the position in the full,
d-dimensional CV space. The form of equation 1 means that
the bias associated with each hill acts in a hyper-ellipsoidal-
crust-shaped region in the full, d-dimensional CV space. Each
of these crusts has a shape much like a layer in an onion and
so the integral of the bias added increases with r(s). Conse-
quentially, the filling time for each basin no longer depends
exponentially on the number of collective coordinates. Fur-
thermore, the hills have a shape that is consistent with the
underlying anisotropy of the free energy surface because of
the use of the covariance matrix in Eq. 2.

Obviously the distance from a basin center is only a good
collective coordinate when we are close to that center and so
each basin must have a size, S. This size assigns the region of
configurational space in which it is reasonable to add hills that
will force this system away from a particular basin. Setting an
initial value for this size is straightforward as we know from
our fitting that the basin’s shape is well described by a mul-
tivariate Gaussian. Therefore, we choose an initial size equal
to S0 =

√
d− 1 + 3 because, as shown in the supplementary

information, when the angular dependency of a d-dimensional
Gaussian is integrated out the resulting distribution of r is ap-

HaL HbL

HcL HdL

Fig. 3. Contour plots showing the potential energy + the current bias at selected

points along a Reconnaissance Metadynamics trajectory for a particle diffusing about

a 2D potential energy surface. The black dots indicate the positions of the snapshots

accumulated from the trajectory while the red ellipses indicate the basins found using

the PPCA algorithm. Blue ellipses are those basins, found during previous PPCA

analyses, to which hills are being added. The expansion of these blue basins as the

bias grows is clearly seen in this figure.

proximately equal to a 1D-Gaussian with standard deviation√
2 centered at

√
d− 1.

If the size of basins is fixed then the problems described in
figure 1 are encountered once more. Hence, in reconnaissance
metadynamics the basin’s size is allowed to expand during
the course of the simulation so as to ensure that spurious
minima, that would otherwise appear at the edge of basins,
are dealt with automatically. Periodically we check whether
or not the system is inside the hyper-crust at a basin’s rim
(S < r(s) < S + ∆r) and also that it is not within the sphere
of influence of any other basin. If these conditions are satisfied
we then decide whether or not to expand using a probabilis-
tic criterion, which ensures that it becomes more difficult to
expand basins as the simulation progresses. Based on the
loose analogy with free particle diffusion outlined in the sup-
porting information, this probability for expansion is given by
P = min(1, D∆t

2∆rS
), where S is the current size of the basin, ∆t

is the time between our checks on whether or not to expand
and D is a user defined parameter.

The algorithm is summarized in the flow chart in figure
. Further details on the components of the algorithm can be
found in the methods section and in the supplementary infor-
mation.

Results
2D-surface. To illustrate the operation of the algorithm we
first show how it can be used to accelerate the (Langevin) dy-
namics on the model, 2D potential energy surface illustrated
in figure .

At low temperatures a particle rolling about on the sur-
face shown in figure will remain trapped in one of the deep
basins. This is precisely what is observed during the first part
of the simulation, when no metadynamics is performed, as
the first application of our clustering algorithm demonstrates.
On addition of bias, the system quickly escapes this first basin
and falls into other basins, the locations of which are identi-
fied during subsequent applications of our unsupervised learn-
ing protocol. This process continues throughout the simula-
tion so, once basins are identified, the history dependent bias
compensates for them quickly and hence the system rapidly
explores the entirety of the energy surface.

Figure shows that the reconnaissance metadynamics al-
gorithm, when properly applied, finds only basins that cor-
respond to the true features in the free energy surface. In
addition figure (d) shows how effective the adaptive bias is in
dealing with regions where small basins are encompassed in
larger depressions. It clearly shows that initially small hills
are used to deal with the sub-basins, while later much larger
hills are used to compensate for the super-basin.

Lennard-Jones 7. Small clusters of rare-gas atoms have a re-
markably complex behavior despite their rather limited num-
ber of degrees of freedom. A particularly well studied exam-
ple is the two-dimensional, seven-atom, Lennard-Jones clus-
ter (41,42) for which 4 minima and 19 saddle points in the po-
tential energy surface have been identified (43) (see figure 4).
At moderate temperatures (kBT = 0.1ε) this system spends
the majority of its time oscillating around the minimum en-
ergy structure, in which one of the atoms is surrounded sym-
metrically by the six other atoms. Infrequently however the
system will also undergo isomerizations in which the central
atom of the hexagon is exchanged with one of the atoms on
the surface (43).

To test the reconnaissance metadynamics algorithm we
examined this system using the coordination numbers of all
the atoms (seven collective coordinates). In doing this we ne-
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Fig. 4. The locations of the various basins found during a reconnaissance metadynamics simulation of the Lennard-Jones 7 cluster plotted as a function of the second and

third moments of the distribution of coordination numbers and the index of the atom with the highest coordination number. Also shown is a free energy surface calculated

using a well-tempered metadynamics simulation that employed the second and third moments of the distribution as collective coordinates. Each basin is represented by a circle

with an area that is proportional to the bias at its center. On the free energy surface contours are placed at intervals of 0.1 ε

glect the interchange symmetry to see if we can reproduce
this symmetry in the positions of the various basins we find.
Figure 4 gives the results of this calculations and denotes the
position of each of the basins found by a circle whose area
reflects the final bias at the basin center. The three lowest
lying minima for this cluster have one atom which has a much
higher coordination number than the others and so the basins
identified along the trajectory have been grouped, based on
the index of the atom with the highest coordination number,
onto seven slices. On each of these planes the positions and
sizes of the basins are consistent, which suggests that the algo-
rithm finds the correct symmetry and explores configuration
space correctly.

In reconnaissance metadynamics there is no straightfor-
ward connection between the bias and the free energy because
each CV is only valid in a local region and hence the overall
bias is not a function of a global order parameter. Nonethe-
less, the bias greatly enhances the exploration of phase space
and so free energies could be obtained using an umbrella sam-
pling approach. However, even without this additional step,
a reconnaissance metadynamics trajectory gives one a feel for
the lie of the land, which can be used to obtain chemical
insight. For example, the basin centers provide a set of land-
mark points that can be used to validate a low dimensionality
description of the system (27). For this simple case we did
this by calculating the value at the basin centers of many dif-
ferent candidate coordinates. We discovered that an optimal,
in-plane separation of the various basins is attained when we
use the second and third moments ( µ2

2 = 1
N

∑N
i=1(ci − 〈c〉)2

and µ3
3 = 1

N

∑N
i=1(ci−〈c〉)3 respectively) of the distribution of

coordination numbers. These two CVs clearly project out per-
mutation symmetry and so we also performed a conventional
well-tempered metadynamics simulation. Figure 4 shows the
free energy energy surface obtained in its eighth slice. A com-
parison of this surface with the results from the reconnaissance
metadynamics shows how the basins found cluster around the
minima in this FES.

Poly-alanine 12.The protein folding problem is commonly
tackled using computer simulation and there exist model sys-
tems for which the entirety of the potential energy landscape
has been mapped out (36) that represent a superb test of any
new methodology. For example polyalanine-12, modeled with
a distance dependent dielectric (εij = rij in Angstroms) that
mimics some of the solvent effects, has been extensively stud-
ied (44). This protein has a funnel-shaped, energy landscape
with a alpha-helical, global minima. We found that during
a 1 µs, conventional MD simulation started from a random
configuration, the protein did not fold (see supplementary in-
formation). Hence, examining whether or not the protein will
fold during a reconnaissance metadynamics simulation will
provide a third test of our methodology.

For this reconnaissance metadynamics calculation we used
the 24 backbone dihedral angles as the collective coordinates
as these angles provide an excellent description of the pro-
tein structure. These variables are periodic, which had to
be accounted for in the method by replacing the multivari-
ate Gaussians with multivariate von Mises distributions (45).
This distribution, if sufficiently concentrated about the mean,
is equivalent to a Gaussian in which the difference between any
point and the mean is shifted to the minimum image. Con-
sequentially, we can continue to use the same algorithm for
trajectory analysis as long as we take into account the period-
icity when we calculate differences and averages. In addition,
we can define a quantity (see equation 3) that is equivalent
to the distance from the center of the basin (equation 2) but
that takes into account the periodicity of the CVs (Pi).

r(s)2 = 2

d∑
i=1

C−1
ii

[
1− cos

(
2π[si − µi]

Pi

)]
[3]

+
∑
i 6=j

C−1
ij sin

(
2π[si − µi]

Pi

)
sin

(
2π[sj − µj ]

Pj

)
Figure 5 provides a representation of a portion of a typ-

ical reconnaissance metadynamics trajectory of the protein.
The figure shows the values of all the backbone torsional an-
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Fig. 5. A representation of a 50 ns portion of the reconnaissance metadynamics trajectory for alanine 12 modeled with a distance dependent dielectric. The bars in the lower

panel give the values of 40 ps running averages for each of the torsional angles in the protein (see key). The red (light) line shows a similar running average for the bias potential.

The system was annealed every 20 ps to examine the transitions between inherent structures and the energies obtained are indicated by the blue (dark) line. A number of

low-energy, representative structures found during the trajectory are also shown and the box highlights the portion of the trajectory when the protein has a configuration that

is near the global-minimum, alpha-helix structure.

gles and clearly demonstrates that a large volume of config-
urational space is explored during this relatively-short sim-
ulation. Furthermore, unlike in conventional MD, after ap-
proximately 22 ns the protein folds into the global-minimum,
alpha-helix configuration. To further demonstrate that the re-
connaissance metadynamics is ensuring that large portions of
configurational space, that would otherwise not be visited, are
being explored we calculated the inherent structures by mini-
mizing the energy every 20 ps. The energies of the minimized
structures are shown in the uppermost panel of figure 5 and
demonstrate that the potential energy surface is very rough
and that the alpha helix is considerably lower in energy than
the other energy minima encountered.

Conclusions
We have proposed a new accelerated dynamics scheme, recon-
naissance metadynamics, that uses a self-learning algorithm to
construct a bias that accelerates the exploration of configura-
tion space. This algorithm works by automatically identifying
low free energy features and deploying a bias that efficiently
and rapidly compensates for them. The great advantage of
this algorithm is that there is no limit on the number of CVs
on which the bias acts. This is only possible because we col-
lapse all these CVs into a single collective coordinate that is
only valid locally and patch together a number of these lo-
cal descriptors in order to reflect the fact that the important
degrees of freedom are not uniform throughout configuration
space. As shown in figure this approach provides us with
a simple, compact, hierarchical description of the free energy

surface, which could be used to construct bias potentials for
umbrella sampling.

As shown for the two chemical systems on which we have
demonstrated the algorithm, our ability to work with large
numbers of collective coordinates means that one can employ
generic configurational data, such as torsional angles and coor-
dination numbers, as collective coordinates and thereby avoid
all the usual difficulties associated with choosing a small set
of collective coordinates. In fact, even when CVs, on which
there are no large barriers to motion, such as the torsional an-
gles on the terminal amino acid groups in ala12, are included
the algorithm will still function. For both systems our method
produces trajectories that contain an extensive exploration of
the low energy parts of configurational space and hence pro-
vides a feel for the lie of the land. Furthermore, even without a
quantitative estimate of the free energy, considerable insight
can be obtained from the trajectory. In the Lennard Jones
this allowed us to attain an effective two dimensional descrip-
tion of the landscape. For more complex systems non-linear
embedding could be used to automate this procedure.

Materials and Methods

Mixture of probabilistic principle component analyzers. Throughout this work

we use the annealing strategy outlined in reference (40) and in the supplementary

information to do clustering. This algorithm requires one to state at the outset the

number of clusters that are being used to fit the data and the number of annealing

steps. For the latter we initially set σ2, which is the quantity treated like the temper-

ature during the annealing, equal to the maximum eigenvalue of the covariance of the

data and lowered σ2 until it was less than 1 % of its initial value. To establish the

correct number of clusters we run multiple fits to the data using different numbers

of clusters and select the fit that gives the largest value for the Bayesian Informa-
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tion Criterion (46), BIC=2 log[L(x,θ)]−np log[M ], where L(x,θ) is the maximized

likelihood for the model, np is the number of parameters in the model and M is the

number of trajectory snapshots used in the fitting.

Selecting novel basins. As already discussed the GM algorithm provides us with

the locations of a number of basins. Some of these will have very low weights in the

fit and can therefore be safely ignored in the construction of the bias. Others however

will provide information about the basins found during prior runs - in short information

that is redundant. Therefore, we introduce a criterion for the selection of basins that

requires that fi[1−max(ξij)]>TOL, where TOL is some user defined tolerance, fi
is the weight of the new basin in the fit and ξij is the similarity between the new

basin i and the old basin j. To calculate ξij we use Matusita’s measure which can be

calculated exactly for multivariate Gaussians (47). For an expanded basin of size S
its original covariance is multiplied by a factor of S/S0 when calculating this function

so that their expanded volume is appropriately taken into account.

Lennard-Jones. The parameters for the simulations of Lennard-Jones 7, in

Lennard Jones units are as follows. The temperature was set equal to kBT=0.1ε

using a Langevin thermostat, with a relaxation time of 0.1
√
ε/mσ2. The equa-

tions of motion were integrated using the velocity verlet algorithm with a timestep

of 0.01
√
ε/mσ2 for 5 × 10

7
steps. During reconnaissance metadynamics the

CVs were stored every 100 steps, while cluster analysis was done every 1 × 10
5

steps. Only basins with a weight greater than 0.3 were considered and to these

attempts to add hills of height 0.5 kBT and a width of 1.5 were made every

1000 steps. Basin expansion was attempted with the same frequency with the

parameter D set equal to 0.03. The coordination numbers were computed using

ci=
∑

i6=j 1−
( rij

1.5

)8
[
1−
( rij

1.5

)16
]−1

, where rij is the distance between atoms i

and j.

poly-alanine-12. All simulations of polyalanine were run with a modified version of

gromacs-4.0.3 (48), the amber96 forcefield (49) and a distance dependent dielectric.

A timestep of 2 fs was used, all bonds were kept rigid using the LINCS algorithm and

the van der Waals and electrostatic interactions were calculated without any cutoff.

The global thermostat of Bussi et al (50) was used to maintain the system at a tem-

perature of 300 K. The initial random configuration of the protein was generated by

setting up the protein in a linear geometry, minimizing it and then running 1 ns of

normal MD at 300 K in order to equilibrate. During reconnaissance metadynamics

the CVs were stored every 250 steps, while cluster analysis was done every 5 × 10
5

steps. Only basins with a weight greater than 0.2 were considered and attempts were

made every 1000 steps to add to these basins hills of height 0.4 kBT and width 1.5.

Basin expansion was attempted with the same frequency with the parameter D set

equal to 0.3. Minimizations to obtain inherent structures was done by first annealing

for 1.2 ns with a decay rate of 0.996 ps
−1

and subsequently performing a steepest

decent minimization. Guidelines as to how to select parameters for reconnaissance

metadynamics are provided in the supplementary information. For both this system

and the Lennard Jones cluster we obtained similar results with a variety of different

parameters sets.
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