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Through an analysis on microstructure and high cycle fatigue (HCF) properties of Ti-6Al-4V alloys 

which were selected from literature, the effects of microstructure types and microstructure parameters on 

HCF properties were investigated systematically. The results show that the HCF properties are strongly 

determined by microstructure types for Ti-6Al-4V. Generally the HCF strengths of different 

microstructures decrease in the order of bimodal, lamellar and equiaxed microstructure. Additionally, 

microstructure parameters such as the primary α (αp) content and the αp grain size in bimodal 

microstructures, the α lamellar width in lamellar microstructure and the α grain size in equiaxed 

microstructures, can influence the HCF properties.  

Keywords: titanium alloy; microstructure; fatigue; quantitative analysis 
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1. Introduction 

Due to their excellent properties (high specific strength, high fatigue strength, good corrosion 

resistance, etc.), titanium components (particularly Ti-6Al-4V) are often used for manufacturing critical 

systems such as airfoils, undercarriage components, and airframes [1-4] instead of heavy steel 

components. During these applications titanium structures are often exposed to fatigue loading [1]. 

Fatigue fracture is an important failure mode for these structures [5]. 

  Depending on the alloy class, the parameters possibly having an influence on the fatigue life of 

titanium alloys include grain size (phase dimension and morphology), age hardening condition, degree of 

work hardening, elastic constants, and crystallographic texture [1]. Depending on the thermomechanical 

treatment or heat treatment of the (α + β) titanium alloy, such as Ti-6Al-4V, the microstructure and 

mechanical properties can vary in a wide range [3, 6]. Such influences have been documented in 

numerous reports in the literature [4, 7-11]. However, due to experimentation limitations, experimental 

results are not always reproducible, and thus it is difficult to compare among fatigue properties obtained 

from different tests, even for a same microstructure. There has not been enough data to correlate fatigue 

properties based on differing microstructures. Based on the comparison of microstructure types of 

Ti-6Al-4V alloys, Hines and Nalla [12, 13] pointed out that lamellar microstructure had higher HCF 

strength than bimodal microstructure. However, Zuo et al. [10] and Niinomi et al. [14] obtained the 

opposite result. Ivanova et al. [15] and Peters and Lütjering [16, 17] proved that bimodal microstructure 

had higher HCF strength than the equiaxed microstructure, and Peters et al. [17] showed that lamellar 

microstructure also had higher HCF strength than the equiaxed microstructure. However, it was also 

reported [2] that equiaxed microstructure had the highest HCF strength, and according to Ivanova and 
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Adachi [18, 19], lamellar microstructure had a similar HCF strength to bimodal microstructure. The 

reasons for this contradiction have not been well explained. Additionally, the fatigue strength would be 

dependent on microstructural parameters of each Ti-6Al-4V alloy, such as the αp content and αp grain size 

in bimodal microstructure [15, 18, 20], the α grain size in the equiaxed microstructure [2, 18, 21], and the 

lamellar α width in lamellar microstructure [10, 12, 13]. 

  So, there is differing information in the literature concerning the relative strengths of Ti-6Al-4V alloys 

based on microstructure type. These authors did not necessarily use the same bimodal, lamellar, and 

equiaxed microstructures. These differences can make sense if we incorporate the parameters that are 

listed. 

However, the influence of the microstructural parameters on fatigue property is difficult to investigate 

systematically, because the fatigue test costs a lot of human and material resources. A more 

comprehensive evaluation of the influence of the individual microstructure parameters on fatigue 

properties is difficult, because all data presented in a paper are from one research groups. This also limits 

the ability to evaluate additional effects due to variations in specimen preparation, test procedure, 

micro-alloy composition differences, heat treatment, rolling or forging procedure affecting texture, etc. 

[22]. 

Through an analysis on microstructures and HCF strengths of the Ti-6Al-4V alloys based on the 

literature dated from 1972 to present, effects of microstructure types and microstructure parameters on 

HCF properties were investigated systematically. The influences of the microstructure types (bimodal, 

lamellar, equiaxed) on the HCF properties were investigated. Additionally, the effects of the 
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microstructure parameters (αp content and αp grain size, lamellar width) on the HCF properties were 

investigated. 

2. Method 

In this paper, 75 sets of data in 21 references [10, 12-15, 17-21, 23-33] were collected with information 

about the HCF strength data and microstructure parameters of Ti-6Al-4V alloys according microstructure 

types (Fig. 1 and Tables 1-3). No testing was done by the authors but the work relied entirely on the 

literature data. All fatigue tests were performed in room-temperature air under axial loading conditions 

with a sine wave on smooth-bar, unnotched hourglass specimens. 

[Fig. 1(a); Fig. 1(b); Fig. 1(c)] 

Fig. 1. Three typical microstructures. 

  Most of the microstructural parameters (αp content, αp grain size and lamellar width) can be obtained 

from literature, but the ones that are not given clearly are analyzed by the Nano Measurer1.2 software 

according to the SEM images in the references. All these measured parameters are labelled as * in Tables 

1-3. α grain size was measured by linear intercept method [34], and α lamellar width was measured by the 

way described in [35]. Fatigue strength data were obtained from the stress-life (S-N) curves in the 

literature. 

3. Results 

  According to the different fatigue life (105, 106 and 107 cycles), the fatigue strengths of Ti-6Al-4V 

alloys with three typical microstructures (bimodal, lamellar and equiaxed) are presented in Fig. 2. The 

exponential curve fitting is used to show the trend and comparison of the data. Other types of curve could 
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have been used, but they are expected to show similar trend and comparison. Due to the large scatter of 

the data, a comparison using the mean and standard deviation of the HCF strength based on the three 

types of microstructures would not be meaningful, as there will be huge standard deviation values, 

making it apparent that the means overlap. It can be demonstrated that the HCF strength of the three 

typical microstructures is dispersive and overlapped, but as a whole, the bimodal data appear above, then 

lamellar and the equiaxed ones distribute at the bottom. It can be seen from the S-N curves that the 

fatigue life increases as the loading decreases. Generally the HCF strength of different microstructures 

decreases in the order of bimodal, lamellar and equiaxed microstructure. 

[Fig. 2] 

Fig. 2. HCF properties of Ti-6Al-4V alloy with three typical microstructures. 

3.1 Bimodal microstructure 

The effect of αp volume fraction (Vα) and αp size of Ti-6Al-4V alloy with bimodal microstructures on 

the HCF properties are shown in Fig. 3 and Fig. 4, respectively. Fig. 3(a-c) shows the analysis results of 

HCF strength at 105, 106 and 107 cycles, respectively. It can be seen that the fatigue strength is highest 

when Vα is in the range of 30% to 50%. For the convenience of comparison, Fig. 3(d) divides the data 

into three groups according to the αp volume fraction. e.g., Vα < 30%, Vα = 30-50% and Vα > 50%. From 

the average data (Fig. 3(d)), the group of Vα = 30-50% has the highest HCF strength. It can be seen that 

the HCF strength of Ti-6Al-4V alloys with bimodal microstructures will increase at first and then 

decrease with the increasing αp volume fraction. By visually looking at the individual cases, it would 

appear that most data is similar, with some outliers in the 30-50% region. Fig. 3(d) was obtained by 

averaging. It summarises available data, but should not be used for quantitative prediction. When 
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presenting individual cases, we deliberately do not differentiate sources of data, so as to treat all sources 

equally. For example, there seems to exist really high data at Vα = 40%, but we do not go into details of 

examining whether they are all from one alloy or reference. 

[Fig. 3(a); Fig. 3(b); Fig. 3(c); Fig. 3(d)] 

Fig. 3. HCF strength of Ti-6Al-4V alloys with bimodal microstructure at different αp volume fractions: (a) 

105 cycles, (b) 106 cycles, (c) 107 cycles and (d) analysis in groups. 

  The HCF strength of Ti-6Al-4V alloys with bimodal microstructures as a function of the αp size is 

shown in Fig. 4. Fig. 4(a-c) shows the analysis results of HCF strength at 105, 106 and 107 cycles, 

respectively. It can be seen that all data have some dispersion, but in general the fatigue strength 

decreases with the increasing of αp size from 2.8 μm to 20 μm. For the convenience of comparison, Fig. 

4(d) divides the data into three groups according to the αp size, e.g., Dα < 5 μm, Dα = 5-10 μm and Dα > 

10 μm. It can be seen from Fig. 4(d) that the HCF strength of Ti-6Al-4V alloys with bimodal 

microstructures declines apparently with the increasing of αp size from 2.8 to 20 μm. It should be noted 

that Fig. 4(d) was obtained by averaging. There are individual cases apparently against the trend shown in 

Fig. 4(d). One should resist the temptation of making a quick conclusion by visually looking at individual 

cases, which was why averaging is used here. Note also that the range division, i.e., Dα < 5 μm, Dα = 5-10 

μm and Dα > 10 μm, is somewhat arbitrary, and there is actually no data for Dα = 5 μm exactly. Different 

results may be obtained by dividing the range differently. 

[Fig. 4(a); Fig. 4(b); Fig. 4(c); Fig. 4(d)] 

Fig. 4. HCF strength of Ti-6Al-4V alloy with bimodal microstructure at different αp size: (a) 105 cycles, (b) 

106 cycles, (c) 107 cycles and (d) analysis in groups. 
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3.2 Equiaxed microstructure  

  Fig. 5 gives the correlation between HCF strength and α grain size of Ti-6Al-4V alloys with equiaxed 

microstructure. Fig. 5(a-c) shows the analysis results of HCF strength at 105, 106 and 107 cycles, 

respectively. It can be seen that, both the HCF strength at 105 (Fig. 5(a)) and 106 (Fig. 5(b)) cycles 

decrease when the average α grain size increases. However, there are some sets of extremely high HCF 

strength data around 10μm grain size, as illustrated in Fig. 5(c). The literature containing this data only 

tested the HCF strength at 107 cycles. For the convenience of comparison, these six extremely high data 

in Fig. 5(c) are eliminated and the data are divided into 2 groups according to 6μm grain size, as shown in 

Fig. 5(d). It can be seen that, the average HCF strength of the group with α grain size less than 6μm 

(including 6 μm) is larger than that of the other ones.  

[Fig. 5(a); Fig. 5(b); Fig. 5(c); Fig. 5(d)] 

Fig. 5. HCF strength of Ti-6Al-4V alloy with equiaxed microstructure at different α grain size: (a) 105 

cycles, (b) 106 cycles, (c) 107 cycles and (d) analysis in groups. 

3.3 Lamellar microstructure  

 Fig. 6 gives the connection between the HCF strength and α lamellar width of Ti-6Al-4V alloys with 

lamellar microstructure. The linear curve fitting is used to show the trend of the data. Other types of curve 

could have been used, but they are expected to show a similar trend. From both the limited results and 

fitting lines (not good fits to the data) of HCF strength at 105, 106 and 107 cycles, respectively, the HCF 

strength declines with the increasing of α lamellar width. It should be noted that these fitting lines are not 

good fits to the data, but are used to show trends. 

[Fig. 6(a); Fig. 6(b); Fig. 6(c)] 
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Fig. 6. HCF strength of Ti-6Al-4V alloy with lamellar microstructure at different α lamellar width: (a) 105 

cycles, (b) 106 cycles and (c) 107 cycles. 

4 Discussion 

  From all the results above, the HCF strength of the Ti-6Al-4V alloy with three typical microstructures 

may overlap among themselves in some ranges because of the limited material manufacturing industry 

[36]. However, generally the HCF strengths of different microstructures decrease in the order of bimodal, 

lamellar and equiaxed microstructure [37]. Though the conclusion of the bimodal microstructures having 

best high cycle fatigue is in contradiction with some literature, there are also ample explanation on the 

effect of bimodal structure on the crack growth [38], and statements that the bimodal structure generally 

ensures good fatigue endurance of the Ti–6Al–4V alloy [39] and a bimodal grain structure seems 

beneficial [40]. These references should be consulted for discussions on the mechanisms. Experimentally, 

bimodal Ti-6Al-4V alloys with best high fatigue properties has been found in many publications used to 

develop the analysis in this paper, as well as in publications not used, for example [39]. Therefore, it will 

be much more beneficial to choose bimodal microstructure if the work pieces need strict fatigue 

properties. Manufacturers can optimize the HCF strength of bimodal microstructures by controlling the αp 

volume fraction and αp size, respectively. From the present analysis results, it is beneficial to choose the 

microstructure with αp volume fraction ranging from 30%-50% and αp size as small as possible. For 

equiaxed or lamellar microstructures, the HCF strength can be controlled by α grain size or α lamellar 

width [37,41]. However, due to the limited data, there is no definite conclusion. Therefore this work will 

continue until definite conclusions are drawn from the increasing database in the future. 
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5. Conclusion  

Through an analysis on the microstructures and HCF strengths of Ti-6Al-4V alloys which dated from 

1972 to date, the effects of microstructure types and microstructure parameters on the HCF strength were 

investigated systematically. Based on this analysis, the following conclusions can be drawn: 

(1) The microstructure types of Ti-6Al-4V alloy have significant influence on the HCF strength. 

Generally the HCF strengths of different microstructures decrease in the order of bimodal, lamellar and 

equiaxed microstructure. 

(2) The primary α content and grain size in bimodal microstructure of Ti-6Al-4V alloy has significant 

influence on the HCF strength. The HCF strength increases at first, then declines with the increasing of 

the αp volume fraction; and the HCF strength decreases with the increasing of the αp size.  

(3) The α grain size in equiaxed microstructure or α lamellar width in lamellar microstructure has 

significant influence on the HCF strength. The HCF strength declines with the increasing of either α grain 

size or α lamellar width.  
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Table and figure captions 

 

Table 1. Database of bimodal microstructure parameters and HCF data of Ti-6Al-4V alloys 

Table 2. Database of equiaxed microstructure parameters and HCF data of Ti-6Al-4V alloys 

Table 3. Database of lamellar microstructure parameters and HCF data of Ti-6Al-4V alloys 

 

 

Fig. 1. Three typical microstructures: (a) bimodal [10], (b) equiaxed [24], (c) lamellar [12] 

Fig. 2. HCF properties of Ti-6Al-4V alloy with three typical microstructures. 

Fig. 3. HCF strength of Ti-6Al-4V alloys with bimodal microstructure at different αp volume fractions: (a) 

105 cycles, (b) 106 cycles, (c) 107 cycles and (d) analysis in groups. 

Fig. 4. HCF strength of Ti-6Al-4V alloy with bimodal microstructure at different αp size: (a) 105 cycles, (b) 

106 cycles, (c) 107 cycles and (d) analysis in groups. 

Fig. 5. HCF strength of Ti-6Al-4V alloy with equiaxed microstructure at different α grain size: (a) 105 

cycles, (b) 106 cycles, (c) 107 cycles and (d) analysis in groups. 

Fig. 6. HCF strength of Ti-6Al-4V alloy with lamellar microstructure at different α lamellar width: (a) 105 

cycles, (b) 106 cycles and (c) 107 cycles. 
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Table 1. Database of bimodal microstructure parameters and HCF data of Ti-6Al-4V alloys 

No. Ref. Bimodal/μm Frequency/Hz Stress ratio (R) HCF strength/MPa  

  Vα Dα   105 106 107 

-1 450 400 390 

0.1 667 611 556 

0.5 860 800 640 

1 Bellows et al. [25] 60 13* 60 

0.8 950 920 900 

2 Hines and Lütjering [12] 35 7.5* 90 -1 545 470 445 

60.5 8 - - 467 3 Ivanova et al. [15] 

24.8 8.5 

30 0.1 

830 

(3×104) 

620 

(2×106) 

550 

0.1 700 600 540# 4 Nalla et al. [13] 64 20 25 

0.5 850 780 640# 

5 Peters and Lütjering [17] 60 20 90 -1 480 400 375 

6 Zuo et al. [10] 55 10 20000 -1 - 546 518 

- 4 900 865 850 7 Oguma and Nakamura [20] 

- 10 

120 0.1 

860 810 650 

- 4 800 720 640 

- 4† 800 720 690 

8 Nagai et al. [26] 

- 2.8 

20 0.01 

800 740 720 

9 Broichhausen and Kann [27] - - - -1 588 547 539 

10 Peters et al. [21] - 6 80 -1 710 675 675 

- -1 470 400 380 

- 0.1 700 550 500 

11 Hines et al. [28] 

- 

9.7* 90 

0.5 - - 650 

60.5 8 462 441 414 

24.8 8.5 455 421 407 

28.7 5.5 

-1 

510 497 490 

60.5 8 720 582 491 

24.8 8.5 720 613 551 

12 Ivanova et al. [18] 

28.7 5.5 

30 

0.1 

798 751 720 
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- 725 700 680 20† 

- - 775 580 

13 Rudinger and Fischer [29] 

50 - 

130 0 

700 590 480 

-1 - - 550 

0.2 - - 700 

-1 - - 540 

10 

0.2 - - 600 

-1 - 790 770 

0.2 1125 1075 1050 

-1 740 730 730 

14 Adachi et al. [19] 40† 

6 

90 

0.2 1100 875 800 

15 Nalla et al. [30] 64 20 5 -1 450   

- -1 660 660 660 

- -0.5 827 827 827 

16 Nakanura et al. [31] 

- 

4 120 

0.1 911 878 844 

17 Zuo et al. [32] 55 10 25 -1 570 530 - 

*Measured by the authors. 

#Frequency is 1000 Hz. 

†Fatigue specimens with different textures. 
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Table 2. Database of equiaxed microstructure parameters and HCF data of Ti-6Al-4V alloys 

No. Ref. α grain size/μm Frequency/Hz Stress ratio (R) HCF strength/MPa 

     105 106 107 

1 Hines and Lütjering [12] 2.5* 90 -1 550 505 485 

0.1 710 610 570 2 Nalla et al. [13] 1.5* 25 

0.5 860 800 740 

3 Zuo et al. [10] 1.5* 20000 -1  533 492 

-1 510 490 483 4 Ivanova et al. [18] 0.92 30 

0.1 782 736 704 

- 700 660 600 

- 660 620 620 

5 Rudinger and Fischer [29] 

- 

130 0 

690 660 660 

-1 740 690 680 6 Adachi et al. [19] 0.5 90 

0.2 - 1050 1000 

7 Niinomi et al. [14] 1.5* 10 0.1 750 660 600 

*Measured by the authors. 
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Table 3. Database of lamellar microstructure parameters and HCF data of Ti-6Al-4V alloys 

No. Ref. Lamellar width/μm Frequency/Hz Stress ratio/R HCF strength/MPa  

     105 106 107 

650 630 620 

750 730 720 

700 690 690 

660 630 625 

1 Peters et al. [23] 1.5† 80 -1 

620 590 590 

70 - - 722 

400 

0.1 

- - 778 

70 - - 800 

400 - - 880 

1800 

0.5 

- - 1040 

70 - - 1000 

2 Morrissey et al. [24] 5.7* 

400 

0.8 

- - 1000 

6.8 830 (3.5×105) - 467 3 Ivanova et al. [15] 

8.5 

30 0.1 

830 (2.4×105) 620 (3×106) 451 

2 650 625 620 4 Peters et al. [21] 

12 

80 -1 

530 500 500 

6.8 483 435 400 

8.5 

-1 

421 393 366 

6.8 689 536 444 

5 Ivanova et al. [18] 

8.5 

30 

0.1 

673 551 476 

*Measured by the authors. 

†Fatigue specimens with different textures. 
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(a) bimodal [10] 

 

(b) equiaxed [24] 

 

(c) lamellar [12] 

Fig. 1. Three typical microstructures. 

 

(a) 

(b) 

(c) 
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Fig. 2. HCF properties of Ti-6Al-4V alloy with three typical microstructures. 

 

   

   
Fig. 3. HCF strength of Ti-6Al-4V alloys with bimodal microstructure at different αp volume fractions: (a) 105 cycles, (b) 

106 cycles, (c) 107 cycles and (d) analysis in groups. 
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Fig. 4. HCF strength of Ti-6Al-4V alloy with bimodal microstructure at different αp size: (a) 105 cycles, (b) 106 cycles, (c) 

107 cycles and (d) analysis in groups. 
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Fig. 5. HCF strength of Ti-6Al-4V alloy with equiaxed microstructure at different α grain size: (a) 105 cycles, (b) 106 

cycles, (c) 107 cycles and (d) analysis in groups. 
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Fig. 6. HCF strength of Ti-6Al-4V alloy with lamellar microstructure at different α lamellar width: (a) 105 cycles, (b) 106 

cycles and (c) 107 cycles. 
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Highlights 

 

• The effects of microstructure on fatigue properties were studied 

• Fatigue strength decreases in the order of bimodal, lamellar, and equiaxed microstructure 

• A method of choosing microstructure for fatigue property was established 

• Fatigue properties are functions of microstructural parameters 

 


