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Abstract

Chan and Shapiro showed that each (non-trivial) translation operator f(z) |5> f(z 4+ A) acting on the
Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a
universal function of exponential type zero. We show the existence of d-universal functions of exponential
type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every sepa-
rable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing
collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint
mixing collection of Cy-semigroups. We also provide an easy proof of the result of Salas that every infinite-
dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct
an example of a mixing Hilbert space operator T so that (7, T2) is not d-mixing.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with two themes of linear dynamics — the existence of universal functions of
slow growth, and the existence of hypercyclic operators and of operator semigroups on Fréchet
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spaces — and on how they extend to the setting of disjointness in linear dynamics introduced in
[6] and [8].

The study of the first theme was initiated by Duyos-Ruiz [17], who extended a classical result
of Birkhoff [10] by showing the existence of entire functions f of arbitrary small growth order
whose set of translates

f@, f+D, [fiz+2),

is dense in the space H (C) of entire functions on the complex plane and endowed with the com-
pact open topology. Chan and Shapiro [13] showed that each (non-trivial) translation operator

f(z)rgf(z+k)

is not only hypercyclic on H (C) but on Hilbert spaces of entire functions of growth order one
and of exponential type zero. Analogue extensions were done to Seidel and Walsh’s [27] hyper-
cyclicity result on non-Euclidean translations acting on the space H (D) of holomorphic functions
on the unit disc: Bourdon and Shapiro [12] and Gallardo-Gutiérrez and Montes-Rodriguez [18]
showed the existence of slow-growth universal functions by showing the hypercyclicity of these
non-Euclidean translations on the Hardy space and on weighted Dirichlet spaces.

With respect to the second theme, it is well known that every separable, infinite-dimensional
Fréchet space X supports a hypercyclic operator T, thanks to the works of Ansari [1], Bernal-
Gonzilez [5], and Bonet and Peris [11]. Indeed, Grivaux [19] further showed that we may obtain
such T to be mixing. Also, Salas [25] showed that if X is a Banach space with separable dual X*,
then one may obtain 7 to be dual-hypercyclic, that is, so that 7 is hypercyclic on X and its adjoint
T* is hypercyclic on X*. Bermiddez, Bonilla, Conejero, and Peris [4] showed that every separa-
ble infinite-dimensional Banach space supports a topologically mixing holomorphic uniformly
continuous semigroup of operators.

Several of the above mentioned results have been extended to the setting of disjointness (cf.
Section 1.3 for definitions) by Bernal-Gonzalez [6], Salas [26], and the authors [8,29,7,9]. Any k-
tuple (71, ..., Ty) of different (non-trivial) translations is d-mixing on H (C) [6, Proposition 5.5],
[8, Theorem 3.1]. When the k-tuple consists of non-Euclidean translations, it is d-mixing on
H (D) [6, Proposition 5.6], [9, Theorem 4], and also on the Hardy space and on certain weighted
Dirichlet spaces as well [9, Theorem 3]. With regards to the second theme, we know that every
separable, infinite-dimensional Fréchet space X supports a d-hypercyclic k-tuple of operators
(Tq, ..., Ty) of arbitrary length [26, Theorem 3.2], [29, Theorem D]. When X is a Banach space
with separable dual X*, it supports arbitrary long dual d-hypercyclic k-tuples (77, ..., T}), that
is, so that (71, ..., Ty) and (T}, ..., T)) are d-hypercyclic on X and X*, respectively [26, The-
orem 3.4].

1.1. Main results

In this paper we extend the earlier mentioned result of Chan and Shapiro by showing that
any finite collection of different translation operators acting on Hilbert spaces of growth order
one and of exponential type zero is d-mixing (Corollary 2.2). Indeed, we show that this is a
consequence of Theorem 1.3 below, a rather general result about finite k-tuples of operators
induced by series of powers of a “backward shift” operator. To state this precisely, we need the
following definitions.
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Definition 1.1. An operator T on a topological vector space X is called a backward space shift
provided there exists a sequence {X,},ez, of linear subspaces of X such that their sum is dense
in X, Xo={0} and T (X, +1) is a dense subspace of X, for eachn € Z..

For instance, if X is a space of scalar sequences {x;, },cz, such that the sequences with finite
support form a dense subspace of X, then any continuous backward weighted shift on X is a
backward space shift. It is also worth noticing that, without loss of generality, the sequence {X,,}
in Definition 1.1 may be assumed to be increasing. Indeed, nothing changes if we pass from {X,,}
to {Xo+---+ X},

Definition 1.2. Let X be a topological vector space over the real or complex scalar field K and
T € L(X). We say that T is exponentiable if for any z € K and x € X, the series

e Tx =Z.—'T/x
=07

converges in X and defines a strongly continuous group {¢%” }.cxk of continuous linear operators.

Clearly, any continuous linear operator on a Banach space is exponentiable, and so is any
nilpotent continuous linear operator on a topological vector space.

Theorem 1.3. Let X be a topological vector space, T € L(X) a backward space shift, and
T, ..., T, € L(X) be given by the formulae

00
T, = Zaj,lTl withaj; € K,
=0

where the series in the right-hand side converges pointwise. Suppose that a1, ..., am,0 have
modulus one, and that ay 1/ai,0, ..., am.1/am.0 are non-zero and pairwise distinct. Then the m-
tuple (Ty, ..., Ty) is d-mixing. In particular, given pairwise distinct non-zero scalars z1, . .., Zm,
the m-tuple (I + 21T, ..., I + z,T) is d-mixing. If additionally, T is exponentiable, then the
m-tuple {37 | ... e*3T}_cx of operator groups is d-mixing.

As another application of Theorem 1.3 we obtain a short proof of Salas’ result on the existence
of dual d-hypercyclic tuples (71, ..., T,), with the added bonus of 71, ..., T, being pairwise
commuting.

Theorem 1.4. Let X be an infinite-dimensional Banach space with separable dual. Then there
exists T € L(X) such that (T, T2, ..., T") and (T*,T*?, ..., T*") are d-transitive on X and X*
respectively for every r € N.

We stress that there is no hope of replacing d-transitivity by d-mixing in the above theorem.
Indeed, it is easy to show that for a dual hypercyclic operator 7', neither T nor 7* can be mixing.
We also provide results on the existence of d-mixing finite collections of operators and
of operator semigroups acting on separable, infinite-dimensional Fréchet spaces. In particular,
the case » = 1 of Theorem 1.5 below extends the earlier mentioned result of Bermiidez et al.
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[4, Theorem 2.4]. Recall that the Fréchet space w denotes the product of countably many copies
of K.

Theorem 1.5. Let X be a separable infinite-dimensional Fréchet space non-isomorphic to w and
r € N. Then there exist pairwise commuting exponentiable operators Sy, ..., S, on X such that
the r-tuple {e*51, ..., ¥ }.ck of operator groups is strongly d-mixing.

The condition of X being non-isomorphic to @ in Theorem 1.5 is necessary. Indeed, there is
no transitive strongly continuous operator semigroup {7;},>0 on w [14]. However, this condition

can be dropped for discrete semigroups.

Corollary 1.6. Let X be a separable infinite-dimensional Fréchet space and r € N. Then there

exist pairwise commuting operators Si, ..., S on X such that the r-tuple (S1, ..., Sy) is strongly
d-mixing.
Finally, we also study conditions for r-tuples of the form (7, T?2,...,T") to be d-mixing.

When T is a mixing weighted shift on £2(Z) or a mixing composition operator on either H (D)
or a weighted Dirichlet space, its r-tuples are always d-mixing, see Remark 3.5. In contrast, we
construct a mixing Hilbert space operator for which the tuple (7, 7?) is not d-mixing (Theo-
rem 3.8).

1.2. Organization of the paper

The paper is organized as follows: In Section 2 we show how Theorem 1.3 gives that a finite
collection of different translations on Hilbert spaces of entire functions of growth order one and
of exponential type O is necessarily d-mixing. We also provide many examples of backward space
shifts to showcase the applicability of Theorem 1.3. Section 3 is devoted to studying d-mixing on
tuples of operators of the form (7, T2,....T ). In Section 4 we prove the commutative version
of Salas’ result on the existence of dual d-hypercyclic tuples (Theorem 1.4). In Section 5 we
introduce the concept of backward space shift tuples, which we need to obtain Theorem 5.7,
a general result from which on later sections we derive Theorem 1.5 and Corollary 1.6. Since
most of our techniques are based on finite-dimensional matrices, we face these basic results in
Section 6. The proofs of the main results are then given in Sections 7 and 8. Appendix A contains
technical results on Sobolev spaces we use for showing Theorem 3.8, and calculations of special
determinants appearing in the proof of Theorem 1.3.

We conclude this introduction with a subsection on notation and definitions. For general back-
ground on linear dynamics and hypercyclicity, we refer the reader to the recent books by Bayart
and Matheron [3] and by Grosse-Erdmann and Peris Manguillot [20].

1.3. Notation and definitions

All vector spaces in this article are over the field K, being either the field C of complex
numbers or the field R of real numbers and all topological spaces are assumed to be Hausdorff.
As usual, Ry = [0, 00), Z is the set of integers, Z is the set of non-negative integers, N is the
set of positive integers and N, = {1, ..., n} for n € N. We denote by

KM ={z e K™ z; #0for 1 < j<mandz; #z for 1 < j <k <m}. (1.1)
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The symbol L(X) stands for the space of continuous linear operators on a topological vector
space X and X* is the space of continuous linear functionals on X. For a subset A of a vector
space X, span(A) stands for the linear span of A and Span(A) is the closure of span(A). Recall
that an F-space is a complete metrizable topological vector space and that a Fréchet space is a
locally convex F-space.

Definition 1.7. A sequence {(T1 5, - .., Tx,n) }nez, of k-tuples of continuous self-maps on a topo-
logical space X is called d-mixing (respectively, d-transitive), where ‘d’ stands for diagonal or
disjoint, if for any non-empty open subsets Vj, ..., Vi of X,

k
VN [T i) #9
j=1

for any sufficiently large n (respectively, for infinitely many n’s). We say that
{(T1ns - Ten)nez, s d-universal if there is x € X such that the orbit {(T1 ,x, ..., Tg,xx):
n € Z.} is dense in Xk. Such an x is called a d-universal element for {(Tv s T hnez, -
If the set of d-universal elements for {(T1,,..., Tk.n)}nez, is dense in X, we say that
{(T1,ns -y Tkn)Inez, is densely d-universal.

A k-tuple (T4, ..., Ty) of continuous self-maps on X is called d-mixing (respectively, d-
transitive) if the sequence {(T/', ..., Tk")},,ez , 18 d-mixing (respectively, d-transitive). If addi-
tionally X is a topological vector space and T; € L(X), then d-universality goes under the name
d-hypercyclicity.

Remark 1.8. An application of the Baire theorem shows that if X is Baire and second countable,
then a sequence {(T1,, ..., Tk,n)}nez, is d-transitive if and only it is densely d-universal. Clearly,
asequence {(T1,y, ..., Tx,n)}nez, is d-mixing if and only if its every subsequence is d-transitive.

If {(T1k, ..., Tm,k)}kez, is a sequence of m-tuples of continuous self-maps on a topological
space X, we denote

2Tk, .- Tnilkez,) (1.2)
to be the set of (xg, ..., xn) € X™T! for which there exists a sequence {uy}ren in X such that
up — xo and T gup — xj for 1 < j <mas k — 00. If Ty, ..., T), are continuous self-maps on

a topological space X, we write X (T1, ..., T,,) instead of ZJ({T", e T,,];}kezﬂ-

Remark 1.9. It is worth noting that if X is second countable, then X ({T1x, ..., Tnk}kez,)
is closed in X”*! Tt is also easy to see that if X is a topological vector space and Tj are
continuous linear operators on X, then X ({T1 , ..., Tin k}kez, ) is a linear subspace of xm+l

We also consider the following two modifications of the notion of d-mixing sequences adapted
for operator semigroups.

Definition 1.10. Let A be an additive submonoid of R™ and let {7 ;};ea, ..., {Tkz}zea
be strongly continuous operator semigroups on a topological vector space X. A k-tuple
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{T1;,..., Tk ;};ea of operator semigroups is called d-mixing if for any non-empty open sub-
sets Vp, ..., Vi of X, there is r > O such that

VoﬂmT_l(V] #( foranyze A, |z] >

Equivalently, {77, ..., Tk,;}zca is d-mixing if for any sequence {z,},cz, in A satisfying
|zn| — 00, the sequence {(T1 z,, .- ., Tk z,)}nez, is d-mixing.

We say that the k-tuple {71 ;, ..., Tk ;};c4 of operator semigroups is strongly d-mixing if for
any non-empty open subsets Vp, ..., Vi of X, there exists r > 0 such that

Vo ﬂ T_l (V]) #( forany zy,...,zr € A satisfying 1r<n<i2k|zj| >r

SYAS

Equivalently, {Ti.,...,Tk:};ea is strongly d-mixing if for any sequence {z, = (2.1,

<o Zni)}nez, in A satisfying min| << |2n,j] — 00, the sequence {(T' , |, - .., Tk.z, ) Inezs
is d-mixing. Finally, we say that (T1, ..., Tx) € L(X)X is strongly d-mixing if {T", ..., T ez,
is strongly d-mixing.

Of course, any strongly d-mixing tuple of semigroups is d-mixing, but the converse is not true.
Indeed, let B be any mixing unilateral backward weighted shift on £;. Then {71, T2 n}nez, =
{B", B?"},cz . is d-mixing [8, Section 4.1], but it is not strongly d-mixing: the sequence {z, =
(2n,n)}nez, in Z% satisfies min< <2 |zn, ;| = 00, but {Ti -, |, T2 2, s nezy = {B*", B*"}pez,
is not d-transitive.

2. Space shifts and translations on Hilbert spaces of entire functions

While we postpone the proof of Theorem 1.3 to Section 7, we show here some of its conse-
quences. Given a sequence v = {v, },ez, of positive weights and 1 < p < oo, we consider the
Banach space

() = {x: () e K5 flx|lP =) fxjlPvj < oo}.

i=0

The backward shift {x;} +£> {xj4+1} is a well-defined continuous operator on £” (v) if and only if
the sequence {%}nez . 1s bounded. B is a backward space shift provided it is continuous.

Similarly, we may consider backward shifts on function spaces on R, . Given a Lebesgue
measurable almost everywhere positive function w : R4 — R, we can consider the space L? (w)
for 1 < p < oo being the space L? (R, iy), where j1y, is the measure on [0, co) with the density
w with respect to the Lebesgue measure. We recall that the norm on L?(w) is defined by the
formula

||f||P=[|f(x)|pw(x)dx.
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As in the sequence space case, it is easy to see that the backward shift f(x) r£> f(x+1)is
continuous on L? (w) if and only if the function x w’é’x(fl) is essentially bounded on [0, 00).
In the latter case B is a backward space shift. Indeed, for » € N we consider the space X, of
f € LP(w), whose support is contained in [n — 1, n]. Then the sum of X,, is dense in L?(w),
B(X1) ={0} and B(X,) is a dense subspace of X,,_ forn > 2.

We are ready to state an immediate consequence of Theorem 1.3.

Corollary 2.1. Let X be either € (v) or L (w), 1 < p < 0o, and assume that the backward
shift B acts continuously on X. Then for each pair 11, I of disjoint, finite subsets of K \ {0}, the
operator tuple {¢*B: 7 € 1} U{I +zB: z € I} is d-mixing. Moreover, for any finitely many pair-
wise different non-zero scalars z1, . . ., 2y, the tuple {928 .. B} i of operator groups is
d-mixing.

We apply Corollary 2.1 to prove the existence of functions of growth order one and of
exponential type zero that are d-mixing for translations. We recall the following terminology

from [13]. We say that an entire function ¥ (z) = Y oo ¥a2" is an admissible comparison func-
tion provided y,, > 0 for n € Z .. and the sequence { % Jnez, is decreasing. Each admissible

¥,
comparison function induces a Hilbert space of entire functions

EXy) =1/ =) fm If I3, =|fm[y,” < °°},

n=0

and the functions in this space have growth order one and of exponential type at most
lim,— o % [13, Propositions 1.3 and 1.4]. Chan and Shapiro, extending a result by
Birkhoff [10], showed that any non-trivial translation operator is hypercyclic on each of these

spaces [13, Theorem 2.1].

Theorem CS. For each admissible comparison function y, the translation operator T) f(z) =
f(z — 1) is hypercyclic on E*(y) for every 0 % A € C.

We now extend Chan and Shapiro’s result to the setting of disjointness.

Corollary 2.2. For any pairwise distinct non-zero complex numbers Ay, ..., A, the translation
operators Ty, ..., Ty, are d-mixing on E%(y).

Proof. Let v = {v,},ez, be an increasing sequence of positive numbers such that the sequence
{v, 1 (n!yn)_z},,eN is bounded. Then the linear map

o
C
®:0(w) > E*(y),  dc=)_ —7"
=0 n!

is continuous and has dense range. Moreover, it is easy to see that 75 @ = ®¢*8 for each A € C.
By Corollary 2.1, the operators e*12 ... ¢*B are d-mixing on £%(v). The equality T, ® = @8
and a standard quasisimilarity argument show that T, ..., T, must be d-mixing on E 2(y). O
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To justify the generality in which Theorem 1.3 is stated, the remaining of this section is
devoted to providing examples of backward space shifts. We start with the following general
observation.

Lemma 2.3. Let X be a topological vector space and T € L(X) such that T(X) = X and
ker*(T) =02 ker T" is dense in X. Then T is a backward space shift.

Proof. Denote X, = ker T" for n € N. Since T is surjective, we have T (X, +1) = X, for each
n € N. Obviously, T (X) = {0}. By Definition 1.1, T is a backward space shifton X. O

Corollary 2.4. Let X be a Banach space and T € L(X) such that T(X) = X and
Moo ((T*)"(X*) ={0}. Then T is a backward space shift.

Proof. The equality (),—(7*)"(X*) = {0} implies that ker*(T') is dense in X. It remains to
apply Lemma2.3. O

Lemma 2.3 and Corollary 2.4 can be applied to various classes of operators, including, for
instance, transfer operators [2] of non-invertible chaotic measure preserving maps. Instead of
giving lengthy definitions, we just provide two examples of such operators. Let ( be the closed
hyperplane in L2[0, 1], consisting of functions with zero Lebesgue integral. Then for any n € N,
n = 2 the operator U, € L(Hy),

1n—l .
U= 3 ()
j=0

is a backward space shift. The above operator is known as the Frobenius—Perron operator of the
Renyi map. Now we consider the measure p on [—1, 1] with the density p(x) = (1 — x)/2 with
respect to the Lebesgue measure. Let 1 be the hyperplane in L?(u), consisting of functions
with zero integral with respect to the measure . The Frobenius—Perron operator U € L(#1) of
the cusp map x — 1 — 24/]x[ on the interval [—1, 1] is given by the formula

1 (1—x)2 (1—1x)2 1 (1—1x)2 (1—1x)?
o3-S,

Applying Corollary 2.4, one can easily see that U is a backward space shift.

We next note that many weighted composition operators on L”-spaces are backward space
shifts. This holds not only for Banach L”-spaces, but also in the case 0 < p < 1. For the
sake of completeness we recall the definition. Let (£2, A, 1) be a measure space with u be-
ing o-finite. Recall that if 0 < p < 1, then L?(§2, ) consists of (classes of equivalence up to
being equal almost everywhere with respect to ¢ of) measurable functions f: 2 — K satisfying
qp(f) = fg | f1? dj < oo with the topology defined by the metric d,,(f, g) = q,(f — g). The
space L9(£2, i) consists of (equivalence classes of) all measurable functions f : £2 — K with the
topology defined by the metric do(f, §) = qo(f — g), where go(h) =Y oo MZ(;QV;) ff?n %Ilfl m
and {£2,},¢z, is a sequence of measurable subsets of §2 such that ©(§2,) < oo foreachn € Z
and £2 is the union of £2,. Although dy depends on the choice of {2, }, the topology defined by
this metric does not depend on this choice. If £2 is a subset of R¥ of positive Lebesgue measure
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and p is the restriction of the Lebesgue measure to £2, we omit the notation for the underlying
measure and o -algebra and simply write L7 (£2).

Proposition 2.5. Let 0 < p < 0o, (£2, A, ) be a measure space with u being o -finite and
let : 2 — 2, a:82 — K be measurable maps such that the formula T f(x) = a(x) f(¢(x))
defines a continuous linear operator on X = LP (82, A, u). Assume also that a(x) # 0 almost
everywhere, ¢ is injective, p(£2) € A, o' : ¢(2) — $2 is measurable and w02, ¢"(82)) =0.
Then T is a backward space shift.

Proof. Let X,, be the closed subspace of X consisting of functions vanishing almost everywhere
on ¢"(£2). The conditions imposed on ¢ and « imply that 7 (X,,41) is a dense subspace of X,
for each n € N and that the union of the increasing sequence {X,} is dense in X. Obviously
T (X1) ={0}. By Definition 1.1, T is a backward space shift. O

It is worth noting that the condition in Proposition 2.5 of T being well-defined and continuous
has double purpose. Apart from allowing us to speak of the operator 7', it prohibits anomalies
such as ¢ sending a set of positive measure to a set of measure zero. Proposition 2.5 is a gener-
alization of the fact observed above that the backward shift operator on a weighted L” (Ry) is
always a backward space shift. The following example illustrates Proposition 2.5.

Example 2.6. Let ¢:[0, 1] — [0, 1] and « € L°°[0, 1] be such that ¢ is absolutely continuous
and strictly increasing, the essential infimum of ¢’ is positive, a(x) # 0 almost everywhere on
[0,1] and ¢(x) < x for 0 < x < 1. Then for any p € [0, 00), the operator T € L(L”[0, 1]),
Tf(x)=a(x)f(p(x)) is a backward space shift.

Proof. The conditions imposed upon ¢ and « ensure that 7' is well-defined and continuous. The
inequality ¢(x) < x for 0 < x < 1 guarantees that [),—, ¢" ([0, 1]) = {0}. It remains to apply
Proposition 2.5. O

We stress that the scope of Theorem 1.3 goes beyond locally convex spaces. Indeed, note
that if X = LP(82, A, n) with 0 < p < 1 and p has no atoms, then X* = {0} (see e.g. [21]). In
particular, L”[0, 1] for 0 < p < 1 has trivial dual. The above example and Theorem 1.3 provide
a supply of d-mixing tuples of any size of operators on F-spaces L?[0, 1] for 0 < p < 1, with
trivial dual. We also note with Example 2.7 below that the concept of a backward space shift
goes beyond backward shifts on sequence and function spaces.

Example 2.7. Let 1 < p < 00, ¢:[0, 1] — [0, 1] be a continuous strictly increasing function
such that ¢(x) < x for0 <x < landlet«: [0, 1] — K be a bounded measurable function almost
everywhere different from zero. Then the operator T € L(L?[0, 1]) defined by the formula

®(x)

Tf(x)= / a(t) f(@)dt

is a backward space shift.
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Proof. Consider the sequence {c,},en in (0, 1] defined by ¢; = ¢(1) and c¢,4+1 = ¢(cy,) for
n € N. Clearly {c,} is strictly decreasing and ¢, — 0. Now let X,, for n € N be the space of
f € LP[0, 1] vanishing almost everywhere on [0, ¢, ]. It is straightforward to verify that the union
of X, is dense in LP[0, 1], T(X1) = {0} and T'(X,,+1) is a dense subspace of X, for any n € N.
Thus T is a backward space shift. 0O

3. d-mixing powers of one operator

In this section we consider the question of when the tuple (T, 72, ..., T") is d-mixing for a
continuous linear operator 7' on a topological vector space X.

Theorem 3.1. Let X be a topological vector space and T € L(X) be such that T — I is a
backward space shift on X. Then (T, T?, ..., T") is d-mixing for each r € N.

Proof. Let S =T — I. Then S is a backward space shiftand 7/ = (I +S)/ =1+ jS+5%p;(S)
for j € N, where p; are polynomials. By Theorem 1.3, (T, T2,...,T") is d-mixing for each
reN. O

Remark 3.2. Theorem 3.1 holds true if we replace the condition of T — I being a backward space
shift by the weaker condition that 7 — z/ is a backward space shift for some z € K satisfying
|z| = 1. The proof requires only slight modifications.

Recall that a continuous linear operator 7" on a topological vector space X is said to satisfy
the Kitai Criterion if there exist dense subsets £ and F of X and a map S: F — F such that
TSy=y, T"x — 0and Sy — 0 for each y € F and x € E. The point of such operators is that
they are all mixing [15]. The above definition differs slightly from the original formulation by
Carol Kitai [22], who also assumed that E = F. In the latter case, we say that T satisfies the
Original Kitai Criterion.

Lemma 3.3. Let {(T1k, ..., Tmk)}kez, be a sequence of m-tuples of continuous self-maps
on a topological space X such that ¥ = X({T1k, ..., Tuilkez,) is dense in X"+ Then
{Tk, -, Tk Ykez, is d-mixing.

Proof. Let Uy, ..., U, be non-empty open subsets of X. Since X is dense in X"+l we can
find x; € U; for 0 < j < m such that (xo, ..., x,;,) € X. By definition of X, there is a sequence
{tk}rez, in X such that up — xo and T gur — x; for 1 < j < m. Hence we can pick r € Z for
which uy € Up and T puy € Uj for 1 < j < m whenever k > r. Hence uy, € UoﬁTlfkl upn---n
Tm_,,l((Ur) for k > r. Thus the last intersection is non-empty if k > r. Thatis, {T1 k, ..., T k}kez,
is d-mixing. O

Theorem 3.4. Let X be a topological vector space and T € L(X). Assume also that T satisfies
the Original Kitai Criterion. Then (T, T2, ..., T7") is d-mixing for each r € N.
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Proof. Since T satisfies the Original Kitai Criterion, there is a dense subset £ of X and a
map S: E — E such that TSx =x, T"x — 0 and S"x — O for each x € E. Fix r € N and
let ug, ..., u, € E. Consider the sequence {xy}rcn in X defined by the formula

xk = uo + Sfur + S%Fus + -+ S"™*u,.

For 0 < j < r, using the equality 7 Sx = x for x € E, we obtain

Tjkxk =uj+ ZT(j_l)ku] + Z S(m_j)kum.

I<j m>j
Since T"x — 0 and S"x — O foreach x € E, Tkak — u;j for 0 < j <r.Hence (ug,...,u,) €
2(T,...,T"). Since uo, ..., u, were arbitrary elements of E, we have E™tl C 2(T,...,T").

Since E is dense in X, X (T,...,T") is dense in X+, By Lemma 3.3, (7, T2, ..., T") is d-
mixing. O

Remark 3.5. Theorem 3.4 implies that for any mixing bilateral weighted shift T on £, (%) for
1< p<oooroncy(Z)andany r €N, (T, T?,...,T") is d-mixing. Indeed, it is easy to verify
that any mixing bilateral weighted shift satisfies the Original Kitai Criterion with E being the
space of sequences with finite support and S being the inverse of the restriction of T to E.
In general, for a bilateral weighted shift T, the r-tuple (7, T2, ..., T") is hereditarily densely
d-hypercyclic with respect to a sequence {ny}xen if and only if the direct sum 7 ---  T" is
hereditarily hypercyclic with respect to {n}, see [8]. Also, any hypercyclic composition operator
T on either H(D) or a weighted Dirichlet space satisfies that (7, T2,...,T") is d-mixing [9,
Corollary 23].

Theorems 3.1 and 3.4 and Remark 3.5 may make one wonder whether (7', T2, ..., T") must
be d-mixing for any mixing 7. It turns out that such a conjecture is false. Surprisingly, a coun-
terexample is rather hard to come by. We start with a non-linear example, which is considerably
easier.

Example 3.6. Let M = {0, 1}Z be endowed with the metric d(a,b) = 3.1>°  271"|a, — b,|.
Then d defines the product topology on M with {0, 1} naturally carrying the discrete topology.
Thus (M, d) is a compact metric space. Let S: M — M be the shift: (Ma)r = ar+1. Obviously
S is invertible and S, S~ ! are Lipschitz and therefore continuous. Let

X ={aeM: ap+ ap4n + axy2, <2 forany k € Z and n € N}.

It is easy to see that X is a closed subset of M and S(X) = X. Thus X is a compact metric space
and the restriction 7: X — X of S to X is a homeomorphism from X onto itself. Then T is
mixing and (7, T2) is not d-transitive.

Proof. First, observe that B = {a € X: {n € Z: a, = 1} is finite} is a dense subset of X.
Let a,b € B. It is easy to verify that ¢, =a + T~ "b belongs to X for any sufficiently large
n € N, where + stands for the coordinate-wise sum of sequences. Moreover, ¢, — a and
T"c, =b+ T"a — b as n — oo. Hence (a,b) € X(T), where X(T) = X ({T"}) is defined
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in (1.2). Since a and b are arbitrary elements of B, B% C X(T) and therefore X (T) is dense
in X2. By Lemma 3.3, T is mixing. Using the definition of X and T, we have

{(x, T"x, Tz”x): neN, xeX}c0={(,b,c)e X3 ap+bp+cp <2forke Z}.
It is easy to see that Q is closed and nowhere dense in X 3 Hence (T, T?) is not d-transitive. O

The linear case is far more difficult. We did not manage to construct a mixing continuous
linear operator T for which (T, T2) is not d-transitive. That is, the following question remains
open.

Question 3.7. Does there exist a mixing continuous linear operator T on a separable Banach
space, such that (T, T2) is not d-transitive?

We note that replacing the word “mixing” by “hypercyclic” in Question 3.7 was asked by
Bernal-Gonzélez [6, Problem 1] and has a simple answer in the affirmative [9, p. 855]. The
following theorem provides an answer to another weaker version of Question 3.7.

Theorem 3.8. There exists T € L({y) such that T is mixing and the sequence {2T" — T*"}, N
is non-mixing. In particular, (T, T?) is not d-mixing.

We need some preparation. Recall that for 1 < p < 00, —00 <a <b < 400 and k € N, the
Sobolev space W5 ?[a, b] is the space of functions f € C¥~![a, b] such that f*~D is absolutely
continuous and f®) € LP[a, b]. The space W5 ?[a, b] endowed with the norm

b

k ' 1/p
£l wppa,p) = ( / (Z|f<”<x>|”) dx)

j=0

is a Banach space isomorphic to L?[0, 1]. Clearly Wk2[a, bl isa separable infinite-dimensional
Hilbert space for each k € N. We consider a family of operators on separable complex Hilbert
spaces built from a single operator. Let M € L(W?2[—, 7]) be defined by the formula

M W [—7, 7] > W>?[—n, ], Mf(x) =™ f(x). (3.1

Denote ‘H = Wz’z[—rr, m]. In our context, it is more convenient to speak of the dual operator
M* rather than the Hilbert space adjoint M*. By the Riesz representation theorem, H* is also a
separable infinite-dimensional Hilbert space. Since M € L(H), we have M* € L(H*). For each
t € [—m, ], the functional §; : H — C, 8;(f) = f(¢) belongs to H*. It is easy to see that the map
t +> §; from [—m, 7] to H* is norm-continuous. For a non-empty compact subset K of [—m, 7],
we denote

X = span {8;: t € K}, (3.2)
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where the closure of span{§;: ¢ € K} is taken with respect to the norm of H*. Clearly, the func-
tionals §, are linearly independent. Hence Xk is always a separable Hilbert space and X is
infinite-dimensional if and only if K is infinite. It is easy to see that

M*$, =¢''s, foreachte[—m,7]. (3.3)
Hence each X is an invariant subspace for M*. This allows us to consider
Ok €L(Xx),  Qx=M"|, . (3.4)
First, we figure out when Qg is mixing or transitive.

Proposition 3.9. Let K be a non-empty compact subset of [—n, w]. If K has no isolated points,
then Qk is mixing. If K has an isolated point, then Qk is non-transitive.

Proof. If K has an isolated point s, then we can pick f € H such that f(s) =1 and f(z) =0 for
eacht € K\ {s}. Now we consider ¢ € X% defined by the formula ¢(y) = y(f). Itis easy to see
that Q% ¢ = e'*¢. Hence Q% has non-empty point spectrum and therefore Q¢ is non-transitive.

It remains to consider the case when K has no isolated points. For each ¢t € [—m, w] we
consider the functional §; € * defined by the formula §;(f) = f'(z). It is easy to see that %
converges to §; in the norm of H* as s — . Since K has no isolated points, §; € X g for each
t € K. Direct computation shows that Q8 = M*8, = €' (8, + i8,) for each t € K. Using this
equality and (3.3), we have

0%8 =€, and Q%8 =" (8] +ind,) foranyneZiandteK.  (3.5)

Now let u, v € E = span{§;: t € K}. We can choose a finite subset A of K such that

u=>Yy o8 and v=Y B4, (3.6)

teA teA
where «;, B; € C. For each n € N, we consider x, € X defined by the formula
e—int (,3 —a )
= Z(#a; Faid, ).
teA
According to the last two displays x;,, — u. Using (3.5), we have

Qlxn = Z(%éi +ﬂt5t>,

teA

which together with (3.6) implies that Q% x, — v. Thus E? C ¥(Qk), where X(Qk) =
2 ({Q% Jnez, ) is defined in (1.2). By Lemma 3.3, Qg is mixing. O

According to Proposition 3.9, Theorem 3.8 will be proven if we find a non-empty compact
set K C [—m, 7] with no isolated points such that the sequence {20 — Q%?},,eN is non-mixing.
A few technical lemmas are needed, which are included in Appendix A.
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Consider the set

0
K=1% 2me,27%: eec{0.1}"}. (3.7)

n=1

Itis easy to see that K is a compact subset of [—, ] with no isolated points. By Proposition 3.9,
the operator Ok € L(Xg) is mixing.

Proposition 3.10. Let K be the compact subset of [—m, 7] defined in (3.7). Then the sequence

{ZQ];;' — Q%‘"}HGN of continuous linear operators on X is non-universal, where k, = 20" for
neN.

Proof. For f € W>2[—x, ], we can consider @ € X} defined by the formula @ ¢ (y) = y(f)
(recall that X g consists of linear functionals on W22 [—nx, m]). It is easy to see that [|® | <
I f w22z ) and that @y = &, if f|x = g|k. Thus

1@l < inf{liglly2zi_qr: flx =glx}- (3-8)

We use the symbol 1 to denote the constant 1 function in the space W22[—m, 7r]. Clearly, the
functional @1 € X% is non-zero. Indeed, @1(5;) = 1 foreach t € K. Denote T, = 2Q1;§ - Qék" €
L(X k). We shall estimate || 7, ®1]|. By definition of Qg , we have Q% @y = @ foreach f €
W22[—m, ], where M is the multiplication operator defined in (3.1). It follows that 7, @1 =
Dy, » where h, (1) = 2¢™ — ¢*". By Lemma A.3, there is a bounded sequence { f, }sen in the

Hilbert space W22[—x, ] such that Jfn(t) = hy(t) whenever |t — 2’;—k| < n% for some k € Z.

Now let t € K. Then ¢t = Z?il 27,:& for some ¢ € {0, I}N. For eachn € N, we have t = y 4+ u,
J

e, e,
where y =37"_ % andu =332, . % Clearly, y = ZZT’" for some m € N and

o o0
1 : ,
0<u<2r 3 =<2 ) 277 =4n2™" = dmk® < 2k
j=n+1"7 j=6n+1

Hence |t — ZZ—H’”l =u < 2kn’5. Thus fi,(t) = hy,(¢t) for each t € K and n € N. By (3.8)

Py, | < |l fr, lw22[—z.7) for n € N. Since {f,} is bounded in W?22[—x, ], the sequence
{ll®n,, I} is bounded. That is, there is C > 0 such that ||@y, || < C for each n € N. Since
T, &1 = Py, , it follows that |@1(T,x)| = |T,P1(x)| < C|lx| for each x € Xk. Since Py is
a non-zero continuous linear functional on Xk, {T,,x: n € N} cannot be dense in Xk for any
given x € Xg. Thatis, {T,,: n € N} is non-universal. O

Proof of Theorem 3.8. Let K be the compact subset of [, ] from (3.7) and Qg € L(Xk)
be the operator defined in (3.4). By Proposition 3.9, QO is a mixing operator on the separable
infinite-dimensional Hilbert space X k. By Proposition 3.10, {ZQ% — Q%‘” }neN 1S non-universal
and therefore non-transitive for some strictly increasing sequence {k,},en of positive integers.
Hence {2Q% — Q%(”}nez . is non-mixing and therefore (Qg, Q%() is not d-mixing. Since all
separable infinite-dimensional Hilbert spaces are isomorphic to £, there is 7 € L(£2) such that
T is mixing, {2T" — T?"},cy is non-mixing and (7, T?) is not d-mixing. O
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4. Existence of dual d-mixing tuples on Banach spaces

We recall that Salas’ result on the existence of dual d-mixing tuples on any Banach space
with separable dual required a long, technical proof [26]. We provide here a short proof of The-
orem 1.4, a slight enhancement of Salas’ result. We first show the following lemma dealing with
bilateral shifts.

Lemma 4.1. Let X be a separable Banach space and let {x,},cz, { fn}nez be bounded sequences
in X and X* respectively such that span{x,: n € Z} is dense in X, f,(xy,) =0 whenever n £ m
and f,(x,) # 0 for each n € Z. For a € £1(Z), let T, € L(X) be defined by the formula

Tox=x+ Y anfur1(x)x, (4.1)

nez

(boundedness of {x,} and { f,} and summability of {|a,|} imply absolute convergence of the
above series and continuity of T,). Then the set

I = {a € l1(2): (Ta, Taz, e, Tak) is d-transitive for each k € N} 4.2)
is a dense Gg-subset of £1(Z).

Proof. Since X is a separable Banach space, we can pick a sequence {U|};en of non-empty
open subsets of X, which form a basis of the topology of X. It is straightforward to see that
(T, ..., Tak) is d-transitive if and only if for any m = (mo, ..., my) € Nkt there exists n € N
such that ($_o(7/") ™! (Up,) # . That is, the set IT, = {a € £,(Z): (Ty. ..., T¥) is d-transitive}
can be written in the following way

k
I = ﬂ UMm,n,k, where My, x = 1 a € €1(Z): ﬂ(Taj")_l(Um,)7é@}~

meNk+1 neN j=0

Hence

00
11 = ﬂ Il = ﬂ ﬂ Nm,ka where Nm,k = U Mm,n,k-
k=1

keN peNk+1 neN

It is easy to see that the map a +— T, from £;(Z) to L(X) is norm-continuous (even Lipschitz).
It follows that each M,, , x is open in £1(Z). Hence each N,k is open in £1(Z). According to
the last display and the Baire theorem, in order to show that I7 is a dense Gs-subset of £1(Z), it
suffices to verify that the open sets Ny, i are dense in £1(Z).

Let k € N and m = (my, ..., mi) € N1, Pick a non-empty open subset V of £1(Z). For
J€N,let X; =span{x_;,...,x;} and E; =spanf{e_j, ..., e;}, where {e,},ez is the canonical
basis of £1. Since span{x,: n € Z} is dense in X and span{e,: n € Z} is dense in £|(Z), there
is jeNsuchthat E; NV #@ and X; N Uy, # ¥ for 0 <1 < k. Since E; NV # @, we can
pick a € V such that ¢; =0 for / < —j and a; # 0 for [ > —j. Consider Y = Span{x;: [ > —j}.
Since a; =0 for [ < —j, T,(Y) € Y. Moreover, (T, — I)x_; =0 and (T, — I)x; = ¢;x;— for
l > —j+ 1 with ¢; € K\ {0}. Hence (T, — I)|y is a backward space shift on Y. By Theorem 3.1,
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(Tuly, -, Tak|y) is d-mixing on Y. Since X; N Uy, # ¥ for 0 <I <k and X; C Y, the sets
V) = Uy, N'Y are non-empty open subsets of ¥ for 0 </ < k. Since (Zly, ..., Takly) is d-
mixing on Y, we can find n € N and x € Vj such that 7" x € V; for 1 < j <k. Since a € V and
Vi € Uy, we have (a,x, T)'x, ..., Tak"x) €V xUpyx---xUp,.Hence a € My, ik C Ny k.
Since V is an arbitrary non-empty open subset of £1(Z), Ny, x is dense in £1(Z). O

Under the conditions of Lemma 4.1, the dual of 7, defined in (4.1) acts according to the
formula

Tif=F+) an1f ) fu

nez

Denoting g, = f—, and considering h, € X** defined as h,(f) = f(x—,), we can rewrite the
above display in the following way

Tif=f+) a 1-nhup1(f)gn.

nez

Clearly {g,} and {h,} are bounded in X* and in X™** respectively, h,(gn) = f-m(x_,) =0 if
n#mand h,(g,) = f-n(x_p) # 0 for n € Z. If we additionally assume that span{ f,: n € Z}
is dense in X*, then 7" has the same shape as defined in (4.1) with the sequence a replaced
by a = {a_1_n}nez. Now, observing that the map a + a is a homeomorphism from £ (Z) onto
itself, we can apply Lemma 4.1 to conclude that the set

n= {a € L1(Z): (Ta*, Ta*z, . Ta*k) is d-transitive for each k € N} 4.3)

is a dense G s-subset of £1(Z) provided span{ f,: n € Z} is dense in X*. Since the intersection of
two dense Gg-sets in a Baire topological space is again a dense G;-set, we obtain the following
corollary.

Corollary 4.2. Let X be a separable Banach space with separable dual and let {x,},cz, { fulnez
be bounded sequences in X and X* respectively such that span{x,: n € Z} is dense in X,
span{ f,,: n € Z} is dense in X*, f,(xy) = 0 whenever n = m and f,(x,) # 0 for each n € Z.
Then the set of a € £1(Z) for which (T, Taz, ey Tak) is d-transitive on X and (T, Ta*z, e, Ta*k)
is d-transitive on X* for any k € N is a dense Gs-subset of £1(Z), where T, € L(X) are defined
in (4.1).

Proof of Theorem 1.4. According to Pelczynski [23], we can pick sequences {x,},cz and
{fulnez in X and X™* respectively such that span{x,: n € Z} is dense in X, span{f,}nez is
dense in X*, f,(x,y) = 8y.m foreachm,n € Z and ||x, || <2, || fn|l < 2 for each n € Z. By Corol-
lary 4.2, there is a € £1(Z) such that (T, T2, ..., Tk) is d-transitive on X and (T*, T+, ..., T*k)
is d-transitive on X™* for any k € N, where T =T, € L(X) is defined in (4.1). O
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5. Backward space shift tuples

The purpose in this section is to introduce tuples of backward shifts in different ‘directions’,
which will allow us to state Theorem 5.7, from which Theorem 1.5 and Corollary 1.6 will be
derived. We use the following notation. Form e N, 1 < j <m, let

e;j EZm, (ej)szsj,la (5.1)

where §; x is the Kronecker delta. For a, b € Z™, we write a < b if a; < bj for 1 < j < m. Thus
< is a partial ordering which is not a total ordering if m > 2. Also, let m, n € N and a topological
vector space X be given. We say that a family {X,},cs of linear subspaces of X, labeled by
J=N"or by J =N is a filtration of X if X; € X, whenever b < a and | J,.; X, is dense
in X.

ael

Definition 5.1. Let m, n € N, X a topological vector space and { X, }4enm a filtration of X. We say
that (71, ..., Tn) € L(X)™ is a backward shift m-tuple with respect 1o {X g }aenm if for 1 < j <m
anda € N/, Tj(X4) = {0} when aj =1, and 7 (X4) = Xq—e; When aj = 2.

What we are really interested in is in the following related notion.

Definition 5.2. Let m € N, X a topological vector space and (71, ..., T,;) € L(X)™. We say that
(T, ..., Ty) is a backward space shift m-tuple if there is a filtration {X,},enn in X and for any

n €N, there is a filtration {ngn)}aeN;y of X(u,...n) such that ¥, = X EZ)  is invariant for each T

----- Wh

and (Tly,, ..., Tuly,) € L(Y,)™ is a backward shift m-tuple with respect to {X((ln)}aeN,’f-

Remark 5.3. Note that in the case m = 1, Definition 5.2 recovers the concept of a backward space
shift. Also, the concept of a backward space shift tuple of operators admits a simpler formulation
in the case when the operators commute. Namely, let m € N, X a topological vector space and
Ti, ..., T, € L(X) be pairwise commuting. Then (71, ..., T;,) is a backward space shift m-tuple
if and only if there is a filtration {X,}senn of X such that T;(X,) = {0} if a; =1 and T;(X,)
is a dense subspace of Xu,ej otherwise. Indeed, for n € N and a € NI, it is enough to consider

XL(ln) — Tn_al . Tn”1_arrl (Xn

| ») and observe that all conditions of Definition 5.2 are satisfied.

yeees

At this point an example will be in order.

Example 5.4. Let X = H(C™) be the Fréchet space of entire functions of m complex variables
Z1,...,2m and for a € N, let X, be the subspace consisting of polynomials whose z;-degree
is less than a; for 1 < j <m. Clearly {X,}qsenn is a filtration of X. Let now T; = % be the
derivation operator with respect to the jth variable. It is easy to see that 7;(X,) = {0} if a; =1

and 7 (X4) = Xa—e; otherwise. Thus all conditions of Definition 5.2 are satisfied with XL(,") =
X, and therefore (T4, ..., T,,) is a backward space shift m-tuple.

Remark 5.5.Let m e N, 1 < j <m, X atopological vector space and {e,},en» a linearly inde-
pendent sequence in X with dense linear span. We say that (77, ..., T,) € L(X)™ is a backward
shift m-tuple with respect to {e,} if Tje, =0 whenever a; =1 and Tje, is a linear combination
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of eg_e joeeesCa—(aj—)e; with the coefficient near e, _o ; being non-zero otherwise. It is straight-
forward to see that a backward shift m-tuple (71, ..., T;,) with respect to {e,} is also a backward

space shift m-tuple. Indeed, one has just to take X, = XE,") = span{ep: b < a}.

With Example 5.6 we note that a backward space shift 7-tuple of operators need not come as
a backward shift tuple with respect to a linear independent sequence labeled by N”.

Example 5.6. Letm e N,0 < p <ooand X = LP(RY}). Letalso ay, ..., o, € L (R") be such

that each o is non-zero almost everywhere. Consider T1, ..., T, € L(X) defined by the formula
ij(x15"'5xj717~xj5'xj+1’-"’xm)
=a;(xr, X)) f(X1, XL X+ L X, X)), T <m.
Then (T1, ..., T;,) is a backward space shift m-tuple of operators on X.

Proof. For a € N, we set X, to be the space of f € X supported on [0, a;] x --- x [0, a;,]. It
is an easy exercise to verify that all conditions of Definition 5.2 are satisfied. O

We state the main result of this section.

Theorem 5.7. Let m € N, X a topological vector space and (T, ..., Ty) € L(X)"™ a backward
space shift m-tuple. Then the m-tuple (I + Ty, ..., I + T,,) is strongly d-mixing. If additionally,
T; is exponentiable for 1 < j < m, then the m-tuple (€21, ..., e¥Tm}.cx of operator groups is
strongly d-mixing.

Noting that L (R%) is isomorphic to L?[0, 1] for each m € N and p € [0, 00), we see that
LP[0, 1] supports a backward space shift m-tuple of operators for any m € N. Combining this
remark with Theorem 5.7, we get the following corollary.

Corollary 5.8. Let 0 < p < 1 and m € N. Then there exist Ty, ..., T, € L(L?[0, 1]) such that
(Th, ..., Ty,) is strongly d-mixing.

We finish the section by exhibiting with Proposition 5.9 more examples of backward space
shift tuples. We note that the proposition admits a number of generalizations. First, we can con-
sider a wider class of spaces. Second, we can consider different topologies on the tensor products.

Proposition 5.9. Let Y]/,\. .. ,Xm be Banach spaces, S; € L(Y}) backward space shifts for 1 <
J<mandlet X =Y®---Q®Yy be the completion of the tensor product of Y; with respect
to the projective topology. Let also T; € L(X) for 1 < j < m be defined by the formula T; =
I® - ®I®QS;®IQ---Q1, where S; sits in the jth. Then (T4, ..., Ty) is a backward space
shift tuple.

Proof. Since §; are backward space shifts, we can pick increasing sequences {Yj , }sen of linear
subspaces of Y for 1 < j < m such that §;(Y; 1) = {0} and S; (Y} »+1) is a dense subspace of

Yj, forneN. For aeN" denote Xy =Y14, @ - ® Yy q,- It is easy to see that {X,},enm is
a filtration of X, T;(X,) ={0}ifa; =1 and Tj(Xa) = Xa—e; if aj > 2. It remains to notice that
T; are pairwise commuting and apply Remark 5.3. O
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6. Shifts on finite-dimensional spaces

The core of several of our main results is actually based on finite-dimensional matrices. We
intend to present in this section the corresponding notions and results, with the only exception of
certain determinants that are calculated in Appendix A.

Definition 6.1. We say that an n x n matrix A = {a;, 1};’ ;— with entries in K is nicely upper
triangularif aj; =0for j >l and a; j;1 =1for 1 < j <n —1.Thatis, A is upper triangular,
has zero main diagonal and has the diagonal immediately above the main one filled with 1’s.

The following lemma is our main tool. It is a much stronger form of a lemma by Salas [24]
that he used to prove that any perturbation of the identity by adding a backward weighted shift on
£ is hypercyclic. To be more precise, we obtain a multi-approximation version of Salas’ lemma,
with fine estimates.

Lemma 6.2. Let n,m €N, {ey, ..., e4} a basis in a q-dimensional Banach space X with q >
nm+1), ze K" and Sy, ..., S, linear operators on X with nicely upper triangular matrices
with respect to the basis {e1, ..., e4}. Then for any bounded subset B of E = span{ey, ..., e},

sup inf|w|-max{ ul—ewz‘s‘xH,... um—e"’z’”s”’x”} < 00.
wekK, [w>1 ¥€X
Uup, ..., un€B

6.1)

Proof. For x € X we denote the coefficients of x decomposed by the basis {ej,...,e,} as
X1,...,%q. That is, x = x1eq + --- + x4e,4. Fix a bounded subset B of E and assume that
Uug, ..., Uy € B.

For w € K, we attempt to find y € X such that

=0 forl<lI<g—nm and (ewZ’S’(uo+y))j=(ur)j forl<r<mand1<j<n.

(6.2)

Since each S, has a nicely upper triangular matrix with respect to the basis {ey, ..., e;}, we easily
see that

’er Zp,,,(z) — forxeX, teK, 1<j<gand1<r<m, (6.3)

)!

where p; j , is a polynomial in ¢ of degree [ — j with the leading coefficient 1.
According to (6.3), (6.2) is equivalent to the following system of nm linear equations with nm
variables:

nm

Pq nm+l]r(wzr) o
;m g—nm+1 =vj, forl<j<nand1<r<m,
=1

where vj , = (u,)j — Z L(;r)(uo)z (6.4)
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and py ; , are the polynomials from (6.3). Enumerating the set N, x N, by elements of Ny, as
specified in (A.18), we can rewrite the system (6.4) in the following way:

nm

> PiaW)ygomir=vjw) for 1 < j<nm, (6.5)
=1

Pg—nm+l,aj,s; (wzs_,-)
(g—mn-+l—a;j)!

where v;(w) = Vaj,s; and p;;(w) = (6.6)

with a; and s; defined in (A.18). Thus (6.5) can be written as A,y = v, where A, =
{pj,l(w)};?';':l, Y= Vg—nm+1s--->Yg) and v = (v1, ..., Uy ). According to (6.3) and (6.6), each

k+n+l aj
pj,i(w) is a polynomial in w of degree k + n + [ — a; with the leading coefficient m
By Corollary A.11, det A,, is a polynomial in w of degree exactly u = "2’”Z+”++2nk’”, where
k=q —n(@m + 1). Thus we can find b > 0 and ¢y > 0 such that
|det Ay | = blw|*  for |lw| = co. 6.7)

In particular, det A,, # 0 for |w| > c¢ and therefore the system (6.5) has a unique solution for
any w € K with |w| > ¢o. Thus for such w, there exists a unique y = y* € X satisfying (6.2).
Since v;(w) is a polynomial in w of degree at most n — aj, whose coefficients are bounded when
ug, ..., Uy € B, there is ¢; > 0 such that

n—aj

lvj(w)| < er|w for [w| > co and 1 < j < nm. (6.8)
We use the Cramer’s formula for the solution of a uniquely solvable system of linear equations.
To this end, for 1 </ < nm, we consider the matrix A, ;, being A,, with the /th column replaced
by the vector v(w) defined in (6.6). Note that all the entries of A, are polynomials in w. Tak-
ing into account the degrees of these polynomials together with (6.8), we see that det A,,; is a
polynomial in w of degree at most u — g + (m + 1)n — [, whose coefficients are bounded when
ugp, ..., u, € B. Hence there is ¢ > 0 such that

|det A, ;| < co]w|*™ a+m+Dn=l = for 1 < j <nm and |w| > (6.9)
By the Cramer’s formula, y{’;’_ amal = ddeett':"” for 1 <1 < mn. According to (6.7) and (6.9), we

have

Y | < b Jw|M+Dn=a=1 for 1 <1 <nm and |w| > (6.10)

Since y’ =0 for 1 <! < g — nm, (6.10) implies that there is ¢3 > 0 for which [|y*| <
c3|w|TDr=a=1 whenever |w| > co. By (6.3) and (6.10), there is ¢4 > 0 such that

(2 (g + y" ))| calw" 7 for1<r<m,n<j<gand|w|>co. (6.11)

By (6.2), (e®%Sr (ug + y¥))j=,)jfor 1 <j<nand1<r < m. Hence (6.11) ensures the
existence of c5 > 0 for which [Ju, — e %5 (ug + yw)|| < C5|w| r whenever |w| > cg. Denoting
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x =ug + y¥, we get |ug — x|| < c3lw|" D=4~ and ||u, — ¥ S x|| < cslw|! for w € K,
|w| = co. Thus

sup sup inf M(x, w,uog,...,un,) <max{cs, cs}, where
wek, [w|=co ug,....umeB XEX

M(-wisu()’"'?um)

= [w| - max{|w|4" "V ug — x]|, |Juy — 9 51x |, ...,

Uy — ewz'”s’”x” }

For 1 < |w| < ¢g, we have M (0, w, ug, ..., ty) < ccg+l_n('"+l)

c for any u € B. Hence

, where ¢ > 1 is such that |ju|| <

) l—n(m+1
sup sup inf M(x,w, uo, ..., un) < ccgJr n(m+1),

wekK, 1<|w|<co ug,-...umeB ¥EX

By the last two displays, the left-hand side in (6.1) does not exceed max{c3, cs, ccg+17”(m+])}

and therefore it is finite. O

Introducing multiplicity into Lemma 6.2 does not change anything, but it will allow us to
obtain a coordinate-free version of the previous lemma that will be needed in the sequel.

Lemma 6.3. Let n,m,r €N, {ej;: 1 < j<r, 1 <1< q} abasisina qr-dimensional Banach
space X withqg >2n(m+1), z € K™ and Sy, ..., Sy linear operators on X such that each X j =
spanfe;;: 1 <1< q} isinvariant for each S; and each S;|x ; has a nicely upper triangular matrix
in the basis {ej 1, ...,ejq}. Then (6.1) holds for any bounded subset B of E = span{e;;: 1<
J<r, 1<I<n}.

Proof. Let B be a bounded subset of £ and E; =span{ej i,...,ej,} for 1 < j <r. Clearly,
E=FE; ®---® E,. Since E is finite-dimensional, we can find bounded subsets B; in E; for
1 < j <r for which B C By +---+ B,. By Lemma 6.2 applied to the restrictions of S; to X,

sup inf |wl| - max{|w|? """ D|ug — x|,
wek, lw|>1 *€X;
UQ,.nny um€B;

wzlSle
ey

Uy —e um—ewz"’s’”x”}

=C; <X

for 1 < j < r. Using the facts that B € By + --- + B,, the triangle inequality and the above
display, we see that the left-hand side in (6.1) does not exceed c1 + --- + ¢5 and therefore is
finite. O

As we announced, the following is a coordinate-free version of Lemma 6.2.

Lemma 6.4. Let m,n,qg €N, g >nim+ 1), z € KM X a finite-dimensional Banach space,
T € L(X) and E a subspace of X such that T"(E) = {0} and E C T97"(X). Assume also that
Ti,..., Ty € L(X) are given by T; = z;T —i—aj,sz +aj’3T3 + .-+, where aj; € K and the
series converges pointwise. Then for any bounded subset B of E,
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sup inf |w|~max{|w| -
wek, [w|>1 ¥€X
ug,....um €B

< 0Q. (6.12)

eV

— e

Proof. Fix a bounded subset B of E and let r = dimE. Since £ € T797"(X), we can pick
an r-dimensional subspace F of X such that T97"(F) = E. Let g{,..., g, be a basis in F.
Consider a gr-dimensional Banach space Z with a basis {e;;: 1 <j<r, 1 <I<g} and let
S € L(Z) be defined as Sej 1 =0 and Se;; =ej;_1 if [ > 2. We also consider a linear map
C:Z — X defined by Ce;; = T‘I_’gj. Since T4(F) =T"(E) = {0}, we have T9g; =0 and
therefore Xo = C(Z) is invariant for 7. Moreover, it is easy to see that RC = CS, where
R € L(Xp) is the restriction of T to X¢. Since E = span{T9 "g,...,T97"g,}, we see that
E C C(G), where G =span{e;;: 1< j<r, 1<I<n}. Since G is finite-dimensional and B
is a bounded subset of E, there is a bounded subset By of G such that B C C(B;). Now let
Sj=z; i S +a;2S?+a;353 + - - (convergence is not an issue since S¢ = 0). Clearly, the opera-
tors z ;- S satisfy all the conditions of Lemma 6.3, which implies that

1
sup inf |w] - max{|w|¢"" D ug — v, o — ey,
wek, [w|>1YEZ
Vs eees vm€B

om = ey} = ¢ < oo

Applying the operator C, we get

sup 1nf|w|-max{|w|"_”(’”+l)||Cvo— —Cewsly”,..., —Cews"’y”}
wekK, |w|>1 YEZ
V0., Un €B1

< cflC < oo.

Using the definitions of §; and T together with the equality RC = CS with R being the re-
striction of T to X, we see that e'”RJ C = Ce¥Si, where R; € L(Xy) is the restriction of T to
the invariant subspace Xg. This observation together with the inclusion B € C(Bj) and the last
display show that

sup inf |w| -max{|w|q_”(’"+l) luwog — —e

wekK, lw|>1 Y€Z
UQyeeey un€B

.

m—e"Cyll}

< 00.
Since C takes values in X, the above display implies (6.12). O

Corollary 6.5. Letm € N, z € KM X a topological vector space, T € L(X), Ty, ..., T,y € L(X)
are given by Tj =1+ z;T +a;2T? +a;3T> + -+, where aj s € K and the series converges
pointwise and

A (T) = span( U T (ker T(m+1)")>. (6.13)
neN
Then for each uy, ...,u, € Ay (T), there is a sequence {xi}ren in X such that xx — ug and

Tkxk — uj for 1 < j <m. If T is exponentiable and {wy}rez, is a sequence in K satisfying
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|wi| — 00, then there is a sequence {yi}kez, in X such that yx — ug and ew"zf'Tyk — uj for
I<j<m

Proof. The set ¥ of (uq,...,un,) € X"™*! for which there exists a sequence {x}rey in X
such that x;z — ug and T}‘xk — uj for 1 < j < m is clearly a linear subspace of xmHIf
T is exponentiable and {w;},cz, is a sequence in K satisfying |wg| — oo, then the set Xy
of (ug, ..., upm) € X! for which there exists a sequence {Vk}kez, in X such that y; — ug
and e*%i Ty, — uj for 1 < j < m is also a linear subspace of X"+l We have to show that
Ap(TY"1 C X and A,,(T)"t! C Xy. Since X and Xy are linear subspaces of X" *1, it is
enough to verify that

(T’"” (ker T(”“Ll)"))m+1 CX¥ and (T’"” (ker T(”‘Jrl)”))"H_1 C Xy foreachneN.
(6.14)

Let n € N and ug,...,uy € T™ (ker Tty Pick vy,..., v, € ker TV guch that
TMy; =u; for 0 < j < m. Clearly, Xo = span{T’v;: 0< j <m, 0<I< (m+ Dn}is
invariant for 7 and for all 7}, and that the restriction R € L(Xo) of T to Xg is nilpotent.
Moreover, T"(E) = {0}, where E = span{ug, ..., u,,} and T""(X¢o) 2 E. The nilpotency of
R implies that the restrictions R; € L(Xo) of T; to Xo can be written as R; = ¢5, where
S;i=zjR+ b‘/,2R2 + bj,_a,R3 + ---. Now we equip X with any norm || - ||. By Lemma 6.4 with
g=n(m+1),

sup inf |w|max{[luo — x|, |ur — e”S'x|, ..., |um —e”Smx|} <oo and
weK, |w|>1 ¥€Xo
sup inf |wlmax{llug — x|, |ur — " Rx|[,.... um — " Rx |} < cc.

wek, lw|>1 *€Xo

Since Rf. = ¢XSi and R ; 1s the restriction of T; to Xy, the first equality in the above display
implies that there is a sequence {x }xen in X such that ||ug — x¢|| = O(k~") and llue; — T}‘ka =
O(k’l) as k — oo. Hence x; — ug and T}‘xk — ujin X.

Since R is the restriction of 7 to Xo, the second equality in the above display implies that
there is a sequence {yi}kez, in Xo for which [lug — yill = O (Jwx|™") and flu; — ezl y | =
O (Jwg|™") as k — oo. Since |wg| — 00, yx — ug and T;‘yk — uj in X. That is, (6.14) is satis-
fied. O

Lemma 6.4 in the case m = 1 and z = 1 immediately implies the following corollary.

Corollary 6.6. Let n,q € N, g > 2n, X a finite-dimensional Banach space, T € L(X) and E a
subspace of X such that T"(E) = {0} and E C T?7"(X). Then for any bounded subset B of E,

sup inf max{|w|‘1+172”||uo — x|, |w| ||u1 —evTx H} < 0. (6.15)
wekK, [w|>1 ¥€X
uo,u1€B

We need the following elementary lemma.
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Lemma 6.7. Let X be a Banach space, n €N, S € L(X) and x € X such that §S"x = 0. Then for
each z € K with 2] > 1, le?Sx]| < 2"~ x[le!SI.

Proof. Let z € K, |z| > 1. Since $"x =0, eSx=x+z8x+---+ %S"‘lx. Hence

s - |21/ j n—1 = IS1/ n—1 [N
eS| <30S Ixl <l el Y === <zl o
J! J!
j=0 j=0

The next application of Lemma 6.2 deals with backward shift tuples of linear operators. It
will be key to derive Theorems 1.5, 5.7 and Corollary 1.6. Note that if (T, ..., T;;) € L(X)™ is
a backward shift m-tuple with respect to a filtration {Xa}aeN;;u then T;’ =0for1 <j<m.In
particular, each T is nilpotent and therefore exponentiable.

Lemma 6.8. Let n,m € N, g =2"n, X a topological vector space, (T1,...,T,) € L(X)" a
backward shift m-tuple with respect to a filtration { X, }aeNg' of X. Assume also that || - || is a norm
on X and E is a finite-dimensional subspace of X (... n). Then there exists a finite-dimensional
subspace Y of X such that E CY and, for any bounded subset B of E,

sup glelf/|Z1| ~max{llug — x|, |ur — e x|, ..., [um — e Tmx ||} < 0.

UQseens um€B
zeKM 1<) 1<K zm
(6.16)

Proof. We use induction with respect to m. In the case m = 1 we have T|'(E) = {0} and
E C T'(X). Pick a finite-dimensional subspace G of X such that E = T{"(G) and let ¥ =

G+ T G)+---+ Tl'rl(G). Applying Lemma 6.4 with m = 1 and ¢ = 2n to the restriction
of T to Y, we get the required estimate.

Assume now that m > 2 and the required estimate is correct for any smaller m. Consider the
elements b= (n,...,n),d=1(q/2,...,q/2,n) and g = (¢/2,...,q/2,q) of N, Fix a finite-
dimensional linear subspace E of Xj. It is straightforward to see that (T|x,, ..., Tu-1lx,) €
L(Xd)m’1 is a backward shift m — 1-tuple on X4 with respect to {Xa,n}aENm/;l . By the induction

q

hypothesis there exists a finite-dimensional subspace V of X, such that E C V and for any
bounded subset B of E,

a(B)
= sup inf |zllmax{||uo—y||, |u1—eZ'T1y| ey umfl—eZm"T"“]yH}
UQ, ..., Uy—1€B yev
L0 Gl NIRRT
< 0. (6.17)

Next, since V C Xy is finite-dimensional, 7! (X,) = {0} and X,z C T,1 "(X,), we can find a
finite-dimensional subspace Y of X, such that 7,(Y) €Y and V C T.7"(Y). Now we can
apply Corollary 6.6 to the restriction of T,, to the invariant subspace Y to ensure that for any
y >0,
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B(y)= sup inf max{|z|9T 2" |y — £l lzl|v — T £} <00, (6.18)
zeK, |z|>1 fey
yveV, IylI<y, vy

Let now B be a bounded subset of E, z € K", 1 <|z1| <--- < |zm| and let & = «(B) > 0
be the number defined by (6.17). By (6.17), there is y € V such that

luo — yll < 2alz1|™! and  [u; — 5Ty <2alzi|7! for1<j<m—1. (6.19)
In particular, ||y|| < |luoll + lluo — y|| < ¢ + 2, where ¢ = sup{||lu||: u € B}. Since u,, € B, we
have u,, € E C V and |luy || < ¢ < c+2a. Thus we canuse (6.18) with y =c+2a tofindh e Y
such that
2] <2Blzm> 7" and  Jum — eI (v + B < 2Blzml ™ (6.20)
where 8 = f(c + 2a). Now let x = y + h. According to (6.19) and (6.20),
luo — Il < lluo — ¥l + 121l < 2elzi| ™" +2Blzm* 17" < 2@+ Bl (6.21)
From (6.20) it immediately follows that
|um — e ™mx | < 2Blzm| " <2Blz1l ™" (6.22)
Now let 1 < j <m — 1. Using (6.19), we get
ey = x| < g = 93] + [e5m] < 2eler ™ + erTh].
smmhexwﬁmh=u$meﬁ=mﬂy=Y+nwyk~+@ﬁkmmamm4mmmmm

subspace of X invariant for 7). Let c; be the norm of the restriction of 7' to Y¥;. By Lemma 6.7,
le=sTin| < |z;19727 | k]le. Since [h]] < 2Blzm|** 797" and || < |z |, we obtain

T, _ . . _ L . _om—1,__
|5 Tin| < 121972 M lhlle® < 2B 1zm 7> zm |1 797" = 286 2|1~ 2" 72,

Since m > 2, 2n — 2™ lp — 2 < —2 < —1 and therefore |z,,1|2”’2'"71”’2 <lzm!™ ' < a7
Thus the last two displays imply that |lu; — ilix|| < 2(a + Bei)|zy| ™ for 1 < j<m— 1.
Combining this estimate with (6.21) and (6.22), we see that

_ezmxn’“., m—eZ"'T'”x||}<5=2Ol+2/3 max e .

1<j<m—1

|21 max{]|

Hence the left-hand side in (6.16) does not exceed &, which proves (6.16). O

We would like to get rid of the condition |z1]| < -+ < |z,| in Lemma 6.8. For z € K", we
denote

v(z) = min |zj|. (6.23)
1<;<

SIS
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Lemma 6.9. Let n,m € N, g =2"n, X a topological vector space, (T1,...,Ty) € L(X)™ a
backward shift m-tuple with respect to a filtration {Xa}aeN'q" of X. Assume also || - || is a norm
on X and E is a finite-dimensional subspace of X (,... n). Then there exists a finite-dimensional
subspace Y of X such that E C Y and for any bounded subset B of E,

— e x|, Jum — e x|} <oco.  (6.24)

sup inf v(z) - max{
ug,....umeB  X€Y
zeKlml v(z)>1

Proof. As usual, S, is the group of permutations of N,,. Direct application of Lemma 6.8 en-
sures that for any o € S, there exists a finite-dimensional subspace Y, of X such that £ C Y,
and for any bounded subset B of E,

as (B)

—elelx”,..., m —ez'"T’”xH}

= sup inf |z4(1)| - max{
x€Ysy

2K 1<]z6 (1) 1<K zo om) |
< 0.

Now, the left-hand side in (6.24) with ¥ =" __ s,, Yo does not exceed max,es,, do (B), which
proves (6.24). O

Corollary 6.10. Let n,m € N, g =2™n, X a topological vector space, (T, ..., T,) € L(X)™
a backward shift m-tuple with respect to a filtration {X, }aeNg’ of X. Then for any uy, ..., u, €
X(n ..... 2
sequence {xy}rez, in X such that x; — ug and eI xp — ujforl <j<m

n) and any sequence {zy = (2,1, .. ., Zk,m) keZ, in Klm] satisfying v(zx) — 00, there is a

Proof. According to the hypothesis, E = span{uy, ..., u,,} is a finite-dimensional subspace of
,,,,, n)- Consider any norm || - || on X. By Lemma 6.9, there is a finite-dimensional subspace Y
of X such that

—eZ‘T'x”,..., ZmT’"x||}<oo.

sup inf v(z) ~max{
2eK, v(z)>1 ¥€Y

Hence we can pick a sequence {xt}kez, in Y such that [lug — xill = O(w(zx)™ ") and flu; —
e*ilixe|l = O(w(zx)™ ") for 1 < j < m as k — oo. Since v(zz) — 00, we have ||x; — ug|| = 0
and |ju; — ek Tixe]l = 0. For 1 < j < m let Yi=Y+T;Y)+ -+ Tq_l(Y) Clearly
Y CY; and Y; are finite-dimensional. Since T]q =0, we have T;(Y;) € Y;. Smce Y; is finite-
d1mens10nal the norm topology on Y; coincides with the topology 1nher1ted from X. Since
ug, Xy €Y and uj, e“iTixy, € Yj,xk—> ug and e Tix, — ujinX. O

7. Proofs of Theorems 1.3 and 5.7

Proposition 7.1. Ler m € N, z € K", X a topological vector space and T € L(X) such that
A (T), defined in (6.13), is dense in X. Assume also that Ty, ..., T, € L(X) are given by the
formulae Tj =1+ z;T + Y 2, aj,lTl with aj; € K, where the series in the right-hand side
converges pointwise. Then (T1, ..., Ty,) is d-mixing. If additionally, T is exponentiable, then the
m-tuple {e¥3T ... ewnTY, cx of operator groups is d-mixing.
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Proof. By Corollary 6.5, X(Ti, ..., T,,) is dense in X! and X ({ewsa1 T, ... ekinT )y ) is
dense in X" *! whenever |wy| — oo, provided T is exponentiable. The conclusion now follows
by Lemma3.3. O

Proof of Theorem 1.3. By [28, Proposition 4.9], we may assume without loss of generality that
ap,j =1foreach 1 < j <m.Let(zy,...,2n) :=(ai,1,...,ai,m). By Proposition 7.1, it suffices
to demonstrate that the space A, (T) defined in (6.13) is dense in X. Since T is a backward space
shift, there is a sequence {X,},cn of linear subspaces of X such that the sum of X, is dense,
T(X1)=1{0} and T (X,+1) is a dense subspace of X, for each n € N. Let ¥;, = T""(X,,iu+1))
for n € N. Since T (Xy41) is a dense subspace of X for each k € N, Y,, is a dense subspace of X,
for each n € N. On the other hand, since X,,4,+1) S ker 7m+D) "y < A, (T) for each n € N.
Since A, (T) is a linear space, it contains the sum Z of Y;,. Since the sum of X,, is dense in X
and each Y, is dense in X,,, Z is dense in X. Hence A,,(T) isdense in X. O

Proof of Theorem 5.7. Let m € N, X be a topological vector space and let (T1,...,T,) €
L(X)™ be a backward space shift m-tuple. By definition, there is a filtration {X,},en» of X and

for any n € N, there is a filtration {Xfl")}aeN;;t of X(4,....n) such that ¥,, = X((Z) ) is invariant for

,,,,,,

each Tj and (Tily,, ..., Tuly,) € L(Y,)™ is a backward shift m-tuple with respect to {Xfln)}aeNg.

Let {rr = (rk,15...»"k,m)}kez, be a sequence in N™ and {zx = (zx,1, ..., Zk,m) ez, a Se-
quence in K" such that v(ry) — oo and v(zz) — oo, where v is defined in (6.23). In order
to show that (I + T1,..., 1 + T,,) is strongly d-mixing, it suffices to verify that the sequence
(I + T, ..., + Tp)™ ) kez, is d-mixing. By Lemma 3.3, it is enough to demonstrate
that

S=2({d+ T, T+ Ty }kem) is dense in X" 1. (7.1)

Similarly, in order to prove that {¢%7!, ..., e?T"}, .k is a strongly d-mixing m-tuple of semigroups
provided 7 are exponentiable, it suffices to verify that the sequence {(ezk-lsl, .., e%km Sm)}kez 4
is d-mixing. By Lemma 3.3, it is enough to show that

o= 2({e2k-171, ..., e%kmTm }k€Z+) is dense in X" !, (7.2)

Since {X,...,
der to prove (7.1) and (7.2), it suffices to demonstrate that X' N XZ’JI_’”) is dense in X

nlneN is an increasing sequence of subspaces of X with dense union, in or-

m+1
(n,..., n)

for each n € N and that Xy N XZ;-Hn) is dense in XZ’lH n for each n € N provided 7 are

.....

exponentiable. Now let n € N and g = 2"n. Then X EZ)

’’’’’ ) 1s dense in X,

n)- Moreover,

,,,,,

(Tq |yq, e, Tm|yq) is a backward shift m-tuple on Y, with respect to {Xéq)}aeN;n. By Corol-
lary 6.10, (XEZ’)_M”))’"+1 C X. Since XEZ,),..,n) is dense in X, ), it follows that Xy N XZ;H”)

is dense in X ";H for each n € N provided T are exponentiable, which proves (7.2). Now, if

Rj=Tijly, € L(Y,y), then the operators

oo (_1)1 ; q—1 (_l)l ;
S./IIH(I-FRJ'):Z ; Rj:Z ] Rj forl1<j<m
=1 =1
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(we use the equalities R? = 0) also form a backward shift m-tuple on Y, with respect to

{Xc(,q)}aeN;n. By Corollary 6.10, for any uq, ..., u, € X((Z’)m’”) there is a sequence {xi}ren in
Y, such that x; — uo and eiSix, — uj. Since eis
the invariant subspace Y, we have (uo, ..., u,) € X. Thus (XEZ)__' n))”H'1 C X. Since XEZ)... )

. omel .
,,,,,,,,,, n) 1 dense in X(n’_“,n) for each n € N, which

proves (7.1). O

J is exactly the restriction of (1 + T;)™%/ to

8. Proofs of Theorem 1.5 and Corollary 1.6
According to Theorem 5.7, Theorem 1.5 will be proved if we verify the following proposition.

Proposition 8.1. Let X be a separable infinite-dimensional Fréchet space non-isomorphic to @
and r € N. Then there exists a linearly independent sequence {e;}qenr in X with dense linear

span and 81, ..., Sy € L(X) such that the operators S; are exponentiable, pairwise commuting
and (S1,...,S;) is a backward shift r-tuple with respect to {e,}qaenr (see Remark 5.5 for the
definition).

Proof. The main lemma in [11] ensures the existence of sequences {x,},en in X and { f;; }nen
in X* such that x, — 0, E = span{x,: n € N} is dense in X, the set {f,,: n € N} is uniformly
equicontinuous, f;(x,;;) =0ifn #m and f,(x,) # 0 for any n € N. The latter condition implies
the linear independence of {x,},eN. Fix a bijection y : N" — N and let e, = x (o) and g4 = fy ()
for a € N". Then ¢, are linearly independent and spanf{e,: a € N} = E is dense in X. Moreover,
galeq) Z0fora e N and g,(ep) =0 when a # b. Forn € N, n > r, we denote

en =min{|ga(e)|: a €N, la|=n+1}, wherela|=a;+ - +a, foraeN".
Since gq(eq) #0, &, > 0 for n > r. Pick any sequence {ay}, >, of positive numbers satisfying

1

opt1 =2"ape, foranyn >r 8.1

and consider the operators S;: X — X for 1 < j < r defined by the formula

a|a|8a+e~(x)
Six=>_ - f(e Jéa- (8.2)
aenyr Ylal+18ate;Cate;

Since {f,: n € N} ={g,: a € N} is uniformly equicontinuous, there exists a continuous semi-
norm p on X such that each |g,(x)| < p(x) for each x € X and a € N". Since x, — 0, the
closed balanced convex hull K of {x,: n € N} is a compact subset of X. Hence the Minkowskii
functional g of the set K is a norm on Xg = span(K), defining a topology stronger than the
one inherited from X. It is also well known that (X, ¢) is a Banach space since K is compact.
Clearly g(e;) < 1 for each a € N,. From (8.1) and the definition of ¢, it follows that the series
defining §; can be written as
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Six = Z Cja8ate;(X)eq With0 <|cjq| <2719 and therefore

aeN"
D lejal<c= )27l

aeN’" aeNr

Thus the series defining S; converges absolutely in the Banach space (Xg, g) and therefore
converges in X. Moreover, g(S;x) < Cp(x) for each x € X. Thus §; are continuous as linear
operators from X to the Banach space Xk and therefore S; € L(X) From the above dis-
play it also follows that Sje, =0if a; =1 and Sje, = cj 4 e;8a (eq)eqa— e otherwise. Hence
(81,...,8;) is a backward shift r-tuple with respect to {e,}4enr. Using the definition of S; and
the equalities g, (ep) = 0 for a # b, it is easy to verify that S;Sje, = §;Sje, for 1 < j <I<r
and a € N". Indeed, if either a; =1 or ¢ = 1, we have S;Sje, = S;Sje, =0. If a; > 2
and a; > 2, then S;Sie, = SiSje, = ar';l‘a“z €q—cj—e - Since E is dense in X, then Sy,..., S,
are pairwise commuting. It remains to show that each §; is exponentiable. Let 1 < j < r.
As we have already shown ¢(S;x) < Cp(x) for each x € X. Since K is compact and p is
continuous, there is ¢ > 0 such that p(x) < ¢ for each x € K. Hence p(x) < cq(x) for any
x € Xk. Thus q(Szx) Cp(Sjx) < Ceq(Sjx) < C2cp(x). Iterating this argument, we get
Sn
converges absolutely in the Banach space X k. Thus we can define a linear operator ¢5i : X — X
by the formula e?Six = x + >°°° S”x Moreover,

q(S;'x) C*c*~ 1p(x) for each n € N. Hence for any x € X and z € K, the series Y o¢

nln'

l’lln'

o |Z|ncncn7]
q(ezij —x) < p) E —— :C-*l(eccm _ l)p(x).
n!

n=1

Thus each ¢?5/ is a continuous linear operator from X to Xk and therefore e*Si e L(X). The
above display also implies that e*5ix — x as z — 0 for any x € X, which ensures strong conti-
nuity of the operator group {e%5i},cx. O

As already mentioned, Proposition 8.1 and Theorem 5.7 imply Theorem 1.5. It remains to
prove Corollary 1.6.

Proof of Corollary 1.6. Let X be a separable infinite-dimensional Fréchet space. The case when
X is non-isomorphic to w follows immediately from Theorem 1.5. It remains to consider the case
when X is isomorphic to . In this case we can interpret X as the space K with the coordinate-
wise convergence topology. Consider S; € L(X) defined by the formula (S;x), = Xa+te,- It is
straightforward to see that (S, ..., S,) is a backward shift r-tuple with respect to the canonical
basis of KV, By Theorem 5.7, (I + S1, ..., I + S;) is strongly d-mixing. O
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Appendix A
A.l. Sobolev spaces
Lemma A.l. Let f € W22[—n, 7], f(—7) = f(n), f'(=7) = f'(), co = | f | L%[—r.x] and

et = 1F" 2y Then | fllwezi—gny < /3¢5 + €5

Proof. For n € Z, let f, = [7_ f(x)e™""* dx be the nth Fourier coefficient of f. Using the
Parseval identity and the equalities f(—x) = f(7) and f'(—m) = f/(7), we get

1 N
1o = 55 2P 1 F [ Dnm :

nez nEZ

2 1 A2
H f””Lz[fn,n] = o Z‘ann|

nez

Hence [ f12, o < IF02s o + 1ol and 1 F 2 my < 17" 2oy That s,
1/ 2y < €1 and 1125 g < €& + 3. Thus

VA A R Vol ) A P 1 e =

Lemma A.2. Let —o0 < a < 8 < 00 and ay, a1, by, b1 € C. Then there exists f € CZ[Ol, B1 such
that

f(a) =aop, fl@)=ay, f(B) =bo, f'(B)=bu, (A.D)
e < lao + bol n lap — bol n (B —a)(la1| + |b1|)’ (A2)
2 2 5
P 24|ag — bo|? 12
17" 2oty < Gt i (11 + 161 2). (A3)

Proof. For brevity, we denote T = 8 — «. Consider the following polynomial of degree at most 3:

b

—aop (3l-[3) + T(Cll +b1)

< (P —1). (A9

ap + bo n (a1 — by)

> . (1-1%)+

q(t) =
The reason for considering g is that it is the unique polynomial of degree at most 3 satisfying

, Tap , by
g-D=a, q)=b ¢ (-D=—7 and ¢'(1)=—. (A.5)

Using (A.4), we immediately see that for each r € [—1, 1],

ap+ b Tla; —b —b
|ao 0|+ lai 1|(1_t2)+| ol

|+ T|lay + b
2 8

|3t — |t — 13|

lg()| <
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Taking into account that for each r € [—1, 1], 1 — 2 <1, |3t —t3| 2and |t — ¢t | ? < %,
we obtain
o laotbol | tlai—bil | lao—bol | Tlai+bi]
llgllLoop—1,17 < sttt
ap+b ap—>b t(la|+|b
< I o2 0|+| 02 0|Jr (| 1|5 | 1|). (A6)

Differentiating ¢ twice, we get g” (t) = t(h‘;‘”) + (3(“02_}"’) + 3T(“f[’]))t. Integrating |¢” (1)|? =
q"(t)q" (¢) from —1 to 1, we get

22|by — a1 |* + 3|2(ap — bo) + t(a1 + b1)|?

||q ”L2[ L= 3
2 2
t°lby —a 3
< T A i — ol + e2lar + b
8 4
Using the easy inequality 121 ““ + 3|b‘+““2 < 3l 'Hbll ) we get
" 2 3‘[2 2 2
4" 21,1y < 3la0 = bo + = (lar P + b1 ). (A7)

Now we consider the polynomial f defined by the formula f(x) = q(% “J{‘g ). It is straight-

forward to see that f(a) = q(=1), f(B) =q(D), f'(@) = 2q'(~1) and f'(B) = 24'(1).
These equalities together with (A.5) imply (A.1). Clearly || fllzo[a,8] = lgllLoo[—1,1]- Hence
(A.6) implies (A.2). Finally, f”(x) = ;q”(z — %) Making the linear change of variables
t= %x — 2*B in the integral defining ||f”||L2 @ p]’
equality together with (A.7) gives (A.3). O

we have ”f//”LZ [ /3] ”q//”LZ[ 1,11 - This

Lemma A.3. There exists a sequence {f,}nen of 2m-periodic functions on R such that
fall=n,71 € W22[—x, 7], the sequence {|| fu ||W2~2[—n,n]}neN is bounded and f,(x) = 2™ —

M|<n%fors0mekeZ.

e2"Y ywhenever |x — m

Proof. For n € N, let 4, : R — C, hy(x) = 2™ — e2inx, Clearly h,, is periodic with the pe-
riod 27” Let also «, = n% and 8, = o n% By Lemma A.2, there is g, € C¥ay, Bn] such

n
that

gn(an) = hy(ay), gn(,Bn) =ha(Bn), g;,(an) = h;,(an)a g;l(,Bn) = h;,(,Bn)a (A.8)

(Bn — an) (1, ()| + |hy, (B D)
5 ,

lgnllLola,. b1 < max{|hn(an)i» ihn(ﬂn”} +

24| hy (on) — hn(,Bn)|2 12 , 2 ’ 2
&7 210 1 < sl CACH B UACH DR CR

(A9)

Periodicity of h, with the period 27” and the equalities (A.8) imply that there is a unique
fn € C'(R) such that f, is periodic with the period 27”, Jullan.g,1 = &n and fn|[ 5

2 =
n,Tﬂ‘Fan]
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h,,|[ B 20 4o Indeed, the last two equalities define f,, on [oy, 27” + o], while (A.8) ensures

C!-gluing at the point f, as well as the boundary condition f,(e,) = fn(27" + o), filay) =
f,:(%” + a;,), which makes a periodic C!-extension possible. Periodicity of f, with the period
27" and the equality fyljz 2v,, 1= hnlig, 2, | imply that f,(x) = 2ei1% _ ¢2inX \whenever

27Tk|

ay]
lx — 2 for some k € Z. Since f, is piecewise Cc?, Sull=n,7] € W22[—x, 7]. Tt re-

mains to estlmate | fullw22[—5 71- Obviously, [, (x)| < 3 for each x € R. Since fn|[ﬁ M) =

hnlg,. 2 4, WE get
)| = B <3 and W full g, 22y <3 (A1)
Using the obvious inequality |¢i” — ¢/%| < |t — 5| for £, s € R, we obtain
|1 ()| = |1, (Bo)| = |2in (262" — & )| < 2n - 207 * = 4n 73, (A.12)
Next,
@) — b (B)| = |2(e27 " — e 2m7%) — (7" — =4 )| = |4 sin(2n~*) — 2sin(4n )|

= 4sin(2n_4)(1 - cos(2n_4)) = 16sin’ (n_4) cos(n_4)
<16n712. (A.13)

Using (A.9), (A.11)—(A.13) and the equality 8, — o, = 2nn~! —4n73, we obtain
I full Lootan 1 <3 +51(2mn~! —4n™°)8n3 <9 foreachn e N.
From the above display, the second inequality in (A.11) and 27”-peri0dicity of f,, we obtain
Il fullLoop—,7) < max{3,9} = (A.14)

Direct computation shows that f,/(x) = h) (x) = —2n%ei" 4 4n2e?n* and therefore | 7)) <
6n? for x € [,Bn + oy, ]. Hence

||f//||L2;3 240, <4n’5-36n4=144n*1.

Using (A.10), (A.12), (A.13) and the equality B, — a, =2n~! —4n=>, we get

2 24 16> n=%* 24 -16n=°
+
” I HLz[a,l,ﬁ,,] = Qrn~' —4n=5)3  2an—! —4n—

- <24 32072 424 .80 <9600,

By the last two displays

” fr;/HiZ[a,l,ZT”+an] — ” f’;/||iz[ﬁ,,,27”+a,,] T H fl’:/“iz[(xn,ﬁn] < 144071 +960n™> < 11040~ 1.
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Since f” is periodic with the period 27”, from the above display it follows that
7112 "2 —1
| £ ||L2[_M] =n| ﬁ1’||L2[%2’_1,,+an] <n-1104n~1 < 1104. (A.15)
According to Lemma A.1, inequalities (A.14) and (A.15) imply that

I fallw2e—ga) S V92 +3-1104 <64 foreachn e N.
Thus the sequence { f,,} satisfies all desired conditions. O
A.2. Determinants

For a,k e N, a > k, we consider the k x k Toplitz matrix

| k
Cop=1— . (A.16)
ok {(a+l_J)!}j,l_1

Lemma A4. For any a,k € N, a > k, the matrix C, i is invertible. Moreover,

deLC 1 deLC 1 120 (k= 1)!
e =—, e =
«l = “2= Na+ 1) aa+ ... (atk—1!

fork >3. (A.17)

and detC, =

Proof. The case k = 1 is obvious. Indeed, det C 1 = bl! for any b € N, which agrees with (A.17).
It remains to consider the case k > 2. For 2 < j < k we subtract the (j — 1)th row of Cy
multiplied by a — j 4 2 from the jth row of C, k. The resulting k x k matrix N must have the
same determinant as C, . On the other hand, the first column of N has shape (%, 0,...,0).
Thus, detCy x = det N = % det K, where K is the (k — 1) x (k — 1) matrix obtained from N
by eliminating the first row and the first column. From the way the matrix N was constructed

it follows that K k;i ;- Dividing the /th column of K by /, we obtain the matrix
Cy+1,k—1- Hence

_ l
= (a7,

k—1)!
— detCapr k-1

1
detCy = —detK =
’ a!

Applying the recurrent formula in the above display k — 1 times and the equality detCjp | = bi!,
we get the required formula for det C, x. Since det Cy x 7# 0, C, i 1s invertible. O

We also need to compute the determinants of the following Vandermonde-like matrices. Let
n,m,k € Nandzy,...,z, € C. For 1 < j < nm, we consider positive integers s; and a; such
that

J=Gj—Dn+aj, wherel<s;<mandl<a;<n. (A.18)
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It is easy to see that the map j — (s;, a;) is a bijection from N, to N, X N;,. Another way to
view this map is to say that it enumerates N, x Nj, in lexicographical ordering. We consider the
nm X nm matrix

Zk+"+l_a.i mn
s
A =A LyevsZm) =4 ———— . A.19
n,m,k n,m,k( 1 m) (k+n+l—aj)! i ( )
Another way to introduce the matrix A, ,,; £ (21, ..., Zm) is by listing its rows. For a, b € N and
z € C we consider the vector
74 Zu+1 Za+b71
AL, ==, eCP. (A.20)
’ al (a+1)! (a+b-1)!
If Ay,..., A, are r vectorsin C", then A =[Ay, ..., A,] stands for the r x r matrix in which A ;
occupies the jth row. Then
An,m,k = An,m,k(zl, ey Zm)
_ a2 z1 21
- [An+k,nm’ An+k—1,nm’ too Ak—i—l,nm’
22 22 22
An+k,nm’ An+k—1,)1m’ e Ak—H,nm’ T
Zm 21 Zm
An+k,nm’ An+k—1,nm’ e Ak+1,nm]'
Proposition A.5. The determinant of Ay m (21, ..., 2m) has the shape
" 2
_ n(n+k) N
det Apm i (21, - Zm) = anmi [ | 2 [] @-z)". (A21)
j=1 1< j<l<m

where

(12! (n—DH"
m+)n+k+D-...-(am+k—1D!

(A.22)

Ap.m,k =

Most of this section is devoted to the proof of Proposition A.5. We start with several observa-
tions. Obviously, det A,y £ (21, - .., Zn) is @ polynomial in z1, ..., z,, with rational coefficients
and therefore can be considered as an element of the ring P = C|z1, ..., z;;] of polynomials in
21, ..., 2m with complex coefficients. It is straightforward to see that AlZ o = 7 Bfnm, where
z _ (1 z /!

Bl’j = (3, T (l+j—1)!)' It follows that

m n
det An,m,k =det Bn,m,k . l_[ HZ];'—H =(z1--- Zm)n(n+2k+l)/2 det Bn,m,lﬁ (A23)
j=11=1

where the matrix B, k is obtained from A, ,, x by replacing the rows Af’nm with BlZ ’nm The ma-
trix By, m « has the property that any entry in its jth column is a monomial in zy, ..., z,, of degree
Jj — 1. By definition of the determinant, det B, ,, x is a homogeneous polynomial in zy, ..., Z;
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of degree 1 +2+ -+ (nm — 1) = M (zero polynomial is considered as a homoge-

neous polynomial of any degree we like). Combining this observation with (A.23), we see that
nm(nm—1) + mn(n+2k+1) _ n’m?+n’m+2nkm
2 2 - :

det A, .k is a homogeneous polynomial of degree
Note also that if we swap z; and z; with j # [, the corresponding Ay ;; x matrices can be ob-
tained from one another by n transpositions of rows. Since a transposition of rows of a matrix
multiplies its determinant by —1, we see that the polynomial det A,, ,, x is symmetric if n is even
and is antisymmetric if n is odd. These observations are summarized in the following lemma.

. . 2,2, 2
Lemma A.6. det A, ,, i is a homogeneous polynomial of degree w and det Ay, .k
is symmetric if n is even and is antisymmetric if n is odd.

We also need a couple of general algebraic results. One is the existence and uniqueness of
prime factorization of polynomials of several variables over any field [16, Theorem 5, p. 149].
This result combined with the obvious observation that a polynomial of degree (exactly) one is
always prime gives the following lemma.

Lemma A.7. Let Q € P, ki, ..., ks € Nandletuy, ...,us € P be pairwise linearly independent
polynomials of degree 1 such that uk is a divisor of Qfor 1< j<s.Then ”1 . uf‘ is a divisor

of Q.

In order to formulate the next lemma, we introduce the following notation. For Q € P,
1< j < m and I € N, we denote the /th derivative of Q with respect to z; by g) That is,

1
0¥ =
Lemma A.8. Let Q € P, k € Nand u € P a polynomial of degree 1: u = ag+a1z1+-- -+ @mzm.
Fix 1< j <m suchthataj #0. Then u is a divisor of Q if and only if Q(w) = Q;j (w)y=---=
Q;’;fl)(w) =0 for any w = (wy, ..., wy) € C" such that u(w) =
Proof. Case k =1 is elementary. Indeed, it means that a polynomial vanishing on a hyperplane

must be a multiple of the degree 1 polynomial defining this hyperplane. The rest is a straightfor-
ward induction with respectto k. O

Remark A.9. Lemma A.7 holds true for polynomials over any field. Lemma A.8 holds for poly-
nomials over any infinite field and fails over finite fields.

The following lemma is the key ingredient of the proof of Proposition A.5.

n(n+k)

Lemma A.10. The polynomials z, and (zp — zl)”2 are divisors of det Ay m k (21, - - -+ Zm)-

Proof. According to Lemma A.8, Lemma A.10 will be proved if we verify that

9/
—detAn m k(21,5 2m) =0 forj<n(mn+k) and (A.24)
BZ{ z71=0
97
— det Apm k(21 Zm) =0 forj <n?. (A.25)
821 Z1=22
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Thus it remains to prove (A.24) and (A.25). In order to do that, we have to remind how one
differentiates the determinant. Let s € N and let A = {a j,l}j', ;— be an s x s matrix such that each
aj, is a differentiable function of a variable ¢. Let also Ay, ..., Ay be the rows of the matrix A.
In our notation A =[Aq, ..., As]. Then

d > d
EdetA:Zdet[Al"”’AjI’EAj’AjJF]""’As]
j=1

The above formula allows us to find higher derivatives of det A provided the matrix entries are
differentiable the appropriate number of times,

a

d al a” daYs
ﬁdetA: Z ﬁdet[dtlelv,WAs} for each a € N.

veZ’ , vi+-+vy=a

Thus the function 572 det A is a linear combination with positive integer coefficients of the func-
tions

a’! dvs
det|:dt“1 A, ..., WAS}, where vy € Zy and vy +--- + vy =a.

Since the rows of A, ,, x(z1, ..., 2m) starting from the (n + 1)th row do not depend on z, the
polynomial (det A,,,m,k)g) is a linear combination of det A;,m’k, where v = (v1,...,v,) € Z",
vi+---+v,=jand A,‘;’m’k is obtained from A,y £ (21, - . ., 2m) by differentiating with respect
to z; the first row vy times, the second row v, times, etc. Thus (A.24) and (A.25) will be proved
if we verify that

detAy , ; @1o.ezm)|, =0 forveZi, vi+---+v, <n(n+k) and (A26)

detAZ’m’k(zl, e zm)|Z1=Zz =0 forveZi,vi+- -+, < n2. (A.27)
In order to prove (A.26) and (A.27), we need to differentiate the rows of A, k(21 ..., Zm)-

That is, we differentiate the vectors Afh » defined in (A.20). The following is easily verified:

v v
T Az’b ZAZ—u,b ifO0<v<a and g Afhb=0 ifv>a+b, (A.28)

d’ Z2 Zcz+b—1—v

- Z —_ P N 1

dz"A”’b_ (O,...,O, 1,z, TR — —v)!) ifa<v<a+b. (A.29)

Using (A.28), we also see that

d’ dv? .
dZ—VlAzlvb = mAéz’b if ay — vy =day — V. (A30)

From (A.28) and (A.29) it immediately follows that



J. Bes et al. / Journal of Functional Analysis 263 (2012) 1283-1322 1319

d\)
AS L =(0,...,0) ifO<v<a—1lorv=a+b, (A.31)
dzv 4P| _
z=0
dU
o i =(0,...,0,1,0,...,0) withlin (v —a+ l)thplaceifa<v <a-+b.
25 =0
: (A.32)
Recall that for 1 < j < n, the jth row of A, ,, « is Akl ame Where kj =n +k — j+1. By

(A.31) and (A.32), the Jth row of A} 4 lz=0 for 1 < j<niszeroif 0 <vj <nt+k—jorv>
nm+n+k— j and is the (v;+ j —n—k)th basic vector otherwise. The only way for det A,‘;’m’k lz,=0
to be non-zero is for its first n rows to be pairwise different basic vectors. Thus det AZ,m, tlai=0=
O unless m; =v;+j—n—k for 1 < j < n are pairwise different numbers from Ny,,,. If m ; are
pairwise different positive integers, thenmq +---+m, > 1 +---+n. Using the definition of m ;,
we see that the latter inequality is equivalent to vy +---+v, > n(n+k). ThusdetA, . |;,=0 =0
unless vi + - -+ + v, > n(n + k), which proves (A.26) and therefore (A.24).

In order to complete the proof it suffices to verify (A.27). Let v € Z}. Since the jth

. . . d J z
row of Apm i 1S An+k i+lam for 1 < j < n, the jth row of Az,m,k is = Anl—i-k i+lam:
If v; <n+k—j+1, formula (A.28) implies that the jth row of A,”Lm,k(zl, ..., Zm) is exactly

A;er JH1—vjm® If n+k—j+1—v; > k + 1, the matrix Az,m,k|11=zz has exactly the same row
as the jth row appear among the rows with numbers from n 4+ 1 to 2n. In the latter case
det A,‘; m.klzi=22 = 0 as required. Thus it remains to consider the case n+k—j+1—v; <k or
equlvalently vi 2n—j+1for1 < j<n If 1< j <[ <n, then, according to (A.30), the jth
and the /th rows of A” m.k coincide if j +v; =1+ v;. Hence det An mk = = 0 unless the num-
bers 1 + vi,2 4+ vy,...,n + v, are pairwise different. Thus it remains to consider the case
when 14 v1,2 4 v2,...,n + v, are pairwise different and v; + j > n + 1 for each j. The
sum of n pairwise different integers > n + 1 is at least (n + 1) + (n + 2) + --- + 2n. Hence
Yo+ ) =Y n+ j. It follows that vy + - + v, > n®. Thus detA) | lo=; =0

unless vy + - - - + v, > n2, which proves (A.27) and therefore (A.25). O

Proof of Proposition A.5. By Lemma A.6, det A, »,  is either symmetric or antisymmetric.

n(n—+k)

Hence Lemma A.10 implies that z; and (z; — 2 j)"2 are divisors of det A, ,, x whenever

[ # j.ByLemma A.7,

m

n(n+k 2

Qn,m,kzQn,m,k(zla---szm)znzj( ) 1_[ (Zl_zj)n
j_

1<j<I<m

. .. 2,2, .2 .
is a divisor of det A, ; k. Now, deg Qp m.kx = w By Lemma A.6, det A, , x is a
homogeneous polynomial of degree deg O, . k. Since Qp .k 1s a divisor of det A, ;, ., there is

a constant a, m, x € C such that det A, p k = @y, m.k OQn.m k- It remains to compute a, k.
n+k+l J

We start with the case m = 1. In this case A, 1x(z1) = {m} =t It immediately
follows that det A, 1 x(z1) = z"("+k) det Cpyx.n, Where the matrix C,4x., is defined in (A.16).

120 (n— 1), n(n+k)

n1.k(@1) = GEIGe DL G- Hence

By Lemma A.4, we have det A

12! .. (n—1)!
ik = . (A.33)
T D+ k+ DRk — 1)
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Now we consider the case m > 2. It is straightforward to see that the z,,-degree of Q, ,, « 1S
exactly ;- = mn? 4 nk. Moreover,

m
Qn,m,k(zls cey Zm) = Z Rj(Zlv ceey Zm—l)zilnv where R;L = Qn,m—l,ka
Jj=0

and each R; is a polynomial in the variables z1, ..., z» 1. According to the above display,
ﬂ .
det An,m,k = Zan,m,kRj (z1,---» Zm—l)Zzn with Ru, = Qn,m—l,k~ (A.34)
j=0
Denoting the (j, [)th entry of A, ; x by ot = (21, ..., 2m), we see that
nm
detAymi= Y s(0)As, where As =[] ajo().
oc€Sum j=1
Spm is the group of bijections of N, and s(0) = 1 if the permutation o is even, s(o) = —1 if
o is odd. It is straightforward to see that the z,,-degree of the monomial A, is u = mn? + nk if
the set {n(m — 1) + 1, ..., nm} is invariant for ¢ and is less than u otherwise. Thus according to

(A.34) and the above display,

anm ke Onm—1k= Y Zs(a)s(n)BaDF( > s(a)&;)(Zs(n)Dn),

UGS,L(,,,,U HES,, O'GS,,(,,,,U HES,,
n(m—1) n
where B, = l_[ aj () and Dy = l_[ D (m—1)+jnm—)+7(j)- (A.35)
j=l1 j=1

The first factor in the right-hand side of (A.35) is det A, ,u—14(21, ..., 2Zm—1), while the second
factor is z,, det C, wm+k.n- Hence

an,m,an‘mfl,k(Z], cey Tm—1) = detAn,mf],k(Zlv ceey mel)detcnerk,n‘

Using Lemma A.4 and the equality det A, n—1.k = @n.m—1.k Qn.m—1k, We can rewrite the above
display:

m....-.(n—1n!

mm 4+ mm+k+ D - (mm+ 1) +k—1D! (A.36)

An.m,k = An,m—1,k

From (A.33) and (A.36) we immediately obtain the explicit formula (A.22) for a, k. O

We conclude this section by deriving the following corollary of Proposition A.5.
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Corollary A.11. Let m,n, k€N, z=(z1,...,2m) € K" and pji(w) for 1 < j,I < nm be
polynomials in one variable w such that the leading term p;; of p; is

k+n+l—aj

A <sj k+n+l—a;
5w i A.37
31 ) (k—}—n—}—l—aj)!w ( )

nm

where s; and aj are defined in (A.18). Then the determinant of the matrix Ay, = {pj,l(w)}] =1

. o 2,2, 2
is a polynomial in w of degree exactly w

Proof. Let A\w be the matrix composed of leading terms of the polynomials p; ;: Zw =
{p il (w)};?’;’:l. Using the standard formula for the determinant, we see that

detAy= ) s(0)Pr(w) and detA,= Y s(0)Ps(w),

o €Sum 0€Sum
nm nm

where Py (w) = [ [ pj.ocy(w) and Po(w) = [ | Bjo(jy(w).
j=1 j=1

Just considering the degrees of the polynomials involved, we see that each f’:,(w) is a mono-

n2m24n?m+2nkm
2

mial in w of degree exactly u = and is the leading term of the polynomial

P, (w). Hence deg(P, — I/D\g) < u for each o € S,;,. Thus, according to the last display,

o~

QO(w) =detA, — detA, is a polynomial of degree strictly less than w. Next, according to
(A.19) and (A.37), Xw = Ay mr(wzy, ..., wzy). By Proposition A.5, detKw = bwH, where
b=>b(z1,...,2m) # 0 since z € K", Thus detA,, = bw* + Q(w) with b # 0 and deg Q < .
It follows that degdetA,, = . O
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