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Arcellacea (testate lobose amoebae) communities were assessed from 73 sediment-water interface samples col-
lected from 33 lakes in urban and rural settings within the Greater Toronto Area (GTA), Ontario, Canada, as well
as from forested control areas in the Lake Simcoe area, Algonquin Park and eastern Ontario. The results were
used to: (1) develop a statistically rigorous arcellacean-based training set for sedimentary phosphorus (Olsen P
(OP)) loading; and (2) derive a transfer function to reconstruct OP levels during the post-European settlement
era (AD1870s onward) using a chronologically well-constrained core from Haynes Lake on the environmentally
sensitive Oak Ridges Moraine, within the GTA. Ordination analysis indicated that OP most influenced arcellacean
assemblages, explaining 6.5% (pb0.005) of total variance. An improved training set where the influence of other
important environmental variables (e.g. total organic carbon, total nitrogen,Mg)was reduced, comprised 40 sam-
ples from 31 lakes, and was used to construct a transfer function for lacustrine arcellaceans for sedimentary phos-
phorus (Olsen P) using tolerance downweighted weighted averaging (WA-Tol) with inverse deshrinking
(RMSEPjack-77pp; r2jack=0.68). The inferred reconstruction indicates that OP levels remained near pre-
settlement background levels from settlement in the late AD 1970s through to the early AD 1970s. Since OP runoff
from both forests and pasture is minimal, early agricultural land use within the lake catchment was as most likely
pasture and/or was used to grow perennial crops such as Timothy-grass for hay. A significant increase in inferred
OP concentration beginning ~AD 1972 may have been related to a change in crops (e.g. corn production) in the
catchment resulting in more runoff, and the introduction of chemical fertilizers. A dramatic decline in OP after
~AD 1985 probably corresponds to a reduction in chemical fertilizer use related to advances in agronomy,
which permitted a more precise control over required fertilizer application. Another significant increase in OP
levels after ~AD 1995 may have been related to the construction of a large golf course upslope and immediately
to the north of Haynes Lake in AD 1993, where significant fertilizer use is required to maintain the fairways.
These results demonstrate that arcellaceans have great potential for reconstructing lake water geochemistry
and will complement other proxies (e.g. diatoms) in paleolimnological research.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Arcellacea (also informally known as thecamoebians (Patterson and
Kumar, 2002) or testate lobose amoebae (Mitchell et al., 2008)) are a di-
verse group of unicellular testate rhizopods that occur in a wide array of
aquatic and terrestrial environments from salt marshes to lakes and
ponds to peatlands and damp soils (Medioli and Scott 1983, Warner
and Chmielewski, 1992; Charman et al., 1998; Beyens and Meisterfeld,
2001; Roe et al., 2001; Riveiros et al., 2007; Van Hengstum, et al.,
2008). Among this group, agglutinating forms, primarily Arcellacea,
have tests that are highly resistant to decay and thus fossilize well, a
characteristic thatmakes themparticularly valuable as paleolimnological
indicators (Medioli and Scott, 1983). Arcellaceans are particularly
25; fax: +1 613 520 5613.
terson).
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common in Holocene lacustrine and peatland environments from tem-
perate to Arctic regions (Medioli et al., 1990; Patterson and Kumar,
2002). The use of arcellaceans as quantitative paleoenvironmental indi-
cators is most developed in peatland research where they have been
used in conjunction with other testate amoebae taxa in the reconstruc-
tion of hydrological change (cf. Tolonen, 1986; Mitchell et al., 2001;
Swindles et al., 2007, 2009, 2010; Elliott et al., 2011) and as pollution in-
dicators (Gilbert et al., 1999; Payne, et al., 2010; Meyer et al., 2012).
Arcellaceans have also been widely reported from lakes (Ellison, 1995;
Dalby, et al., 2000; Patterson and Kumar, 2002; Roe and Patterson
2006) where variation in their community assemblages has been used
to qualitatively infer parameters such as impact of land use change and
forest fires, pH, oxygen, temperature, metal contamination and nutrient
fluctuations (Patterson, et al., 1985; McCarthy et al., 1995; Patterson, et
al., 1996; Reinhardt et al., 1998; Patterson and Kumar, 2000a, 2000b;
Patterson et al., 2002; Reinhardt et al. 2005). In spite of this work, the
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ecology of lacustrine arcellaceans is poorly understood (Asioli et al.,
1996) with only a handful of systematic studies carried out that test
the response of arcellaceans to specific gradients such as nutrient load-
ing, metal contamination, pH, temperature; road salt contamination
(e.g. Escobar et al., 2008; Kihlman and Kauppila, 2009; Roe et al.,
2010). Although lacustrine arcellaceans have considerable potential in
paleoenvironmental studies, no transfer functions utilizing the group
have hitherto been applied to fossil core assemblages.

In a reconnaissance study of environmentally sensitive kettle lakes
and ponds across a variety of urban, suburban, agricultural and forested
settings from the Great Toronto Area (GTA), Roe et al. (2010) assessed
arcellacean-environmental relationships for a large number of variables
includingwater property attributes (e.g. pH, conductivity, dissolved ox-
ygen), substrate characteristics, sediment-based phosphorus (Olsen P
(OP)) and 11 environmentally available metals. Roe et al. (2010) recog-
nized a particularly strong association between arcellacean assem-
blages and OP, indicative of the eutrophic status of many area lakes.
They also recognized the influence of locally elevated conductivitymea-
surements on arcellacean communities, which they attributed to road
salt inputs associated with winter de-icing operations.

The purpose of this research is to expand upon thework of Roe et al.
(2010) by specifically assessing the response of arcellacean communi-
ties to a strong OP gradient in selected lakes from the GTA and adjacent
control areas of southern and eastern Ontario, as well as undisturbed
areas to the north in the Lake Simcoe area and Algonquin Park. The ob-
jectives are to: 1) develop a robust arcellacean-based training set for OP
loading; and 2) use the modern response data to develop a transfer
function to reconstruct past OP levels during the post- European settle-
ment era from Haynes Lake, on the Oak Ridges Moraine.
1.1. Nutrient (phosphorus) loading in GTA lakes

Research carried out on lakes within the rapidly urbanizing parts of
the GTA indicates thatmanywater bodies are experiencing a deteriora-
tion in water quality and loss of biodiversity as a result of contaminant
inputs, particularly external nutrient loading (Howard 1999; Diamond
et al. 2002; Howard et al., 2000). Urbanization impacts lake water qual-
ity via hydrological changes associated with increased impervious sur-
face cover, which has a major impact on fluxes and storage of
nutrients (particularly P) in aquatic ecosystems (Bradford and Maude
2002; Van Metre and Mahler 2005). Phosphorus is a macronutrient re-
quired by all forms of life. It is relatively abundant in soils but cycles very
slowly through the environment, as it is not present in a naturally oc-
curring gaseous form. Phosphorus is also a major water pollutant as it
often acts as a limiting factor in controlling productivity in freshwater
environments (Correll, 1999). Phosphorus is often considered the pri-
mary cause of eutrophication in lakes, particularly those subjected to
point source pollution from sewage and/or agriculture (Kerekes et al.,
2004). Algal blooms and eutrophication associated with excess P de-
pletes oxygen levels in aquatic environments, resulting inwater quality
degradation. Phosphorous was singled out in the Great Lakes Water
Quality Agreement (GLWQA) of 1978 under which P detergents were
eliminated and the application of phosphate-based agricultural fertil-
izers was greatly reduced. The agreement also set limits on municipal
wastewater treatment plants discharging effluent into the Great Lakes
watershed, establishing specific loading targets. In the years following
implementation of the GLWQA water quality throughout the Great
Lakeswatershed improved dramatically. Unfortunately the great strides
made in reducing P levels within the boundaries of the GTA following
implementation of the GLWQA is rapidly being undone by significant
population growth in recent years (Fig. 1). With the population of the
GTA expected to reach 7.7 million by 2025 (Ministry of Finance,
2005), total P loading will be an increasingly major problem in many
lakes and aquatic communities across the region unless there is a signif-
icant investment in infrastructure (Diamond et al., 2002).
Within the GTA P primarily originates from residential sources, in-
cluding domestic waste, fertilizers and pesticides, and sewage inputs
resulting from occasional sewer overflows (TRCA, 2008). Suspended
solid inputs associated with urban development are also of concern
because these solid particles act as a transport vector for many con-
taminants, including P (TRCA, 2008). Phosphorus enters lakes across
the GTA via multiple pathways, including surface runoff, storm
sewer networks and groundwater seepage (Diamond et al. 2002).

2. Materials and methods

2.1. Sampling design

2.1.1. Sampled lakes
In an analysis of arcellacean communities from 21 lakes across an

urban, suburban, rural, forest gradient within the GTA, Roe et al.
(2010) identified OP as having the greatest influence on assemblage
distribution, although other parameters such road salt (conductivity)
also influenced assemblage composition in some lakes. To better
characterize the influence of OP on arcellacean communities and indi-
vidual species, 73 samples from 33 lakes deemed to span a continu-
ous P gradient were analyzed. These included 23 lakes from urban
to rural environments within the GTA as well as primarily forested
areas in Algonquin Park, the Lake Simcoe area and eastern Ontario.
This data set was supplemented with samples from 10 lakes from
the Roe et al. (2010) GTA study, which contained arcellacean commu-
nities primarily controlled by OP (Fig. 1). A summary of the various
lake types is found in Supplementary Appendix 1.

2.1.2. Sediment-water interface samples
Seventy-three sediment-water interface samples were collected

from the study lakes and ponds using an Ekman grab sampler deployed
from a boat, retaining the upper 0.5 cm of the sediment for analysis.
Since arcellacean assemblages are sensitive to changes in water depth
(Patterson and Kumar, 2002) multiple samples were collected from
lakes characterized by varying intra-lake limnological conditions. The
water depths for each sampling station were determined using a retail
market Hummingbird fish finder. Other field-based environmental var-
iables measured included ammonia, chloride, conductivity, dissolved
oxygen, nitrate, pH, redox potential and temperature, which were de-
termined using YSI Professional Plus handheld multi-parameter instru-
ments equipped with quatro cables.

2.1.3. Haynes Lake core samples
The Haynes Lake core HYCI (43°57′55″N; 79°24′48″W) was

obtained using a Livingstone corer in August, 2005. The 269.5 cm core
was subsequently stored at 4 °C in a cold storage facility at CarletonUni-
versity. The core was logged and also X-rayed using the Kevex instru-
ment at the Canadian Museum of Natural History, Ottawa. The top
32 cm was comprised of very dense, finely layered clay, with a sharp
contact to variously laminated and cross-bedded samples below
(Fig 2). Only the top 56 cm of core HYCI was included in this research
as 14C and 210Pb dating indicates that this interval encompasses the
mid-late 19th century European settlement boundary (see Section 2.4
below (Fig. 3)). Thirty-two one-cc samples were subsampled from the
upper 56 cm of the core for arcellacean analysis. As described below,
the training set for OP derived from the arcellacean communities in
the sediment-water interface samples was used to develop a transfer
function to estimate OP levels in Haynes Lake from the Pre-European
settlement interval through to 2005.

2.2. Laboratory methods

In the laboratory, particle size analysis (% clay, silt and sand) was
carried out on each sediment sample using a Beckman-Coulter LS 13
320 Particle Size Analyzer. Sedimentary P was measured to determine



Fig. 1. Location of sampling sites.
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the trophic status of each lake, using the Olsen's phosphorus (Olsen P)
extraction method (Olsen et al. 1954). Zhou et al. (2001) demonstrated
that this approach provides a measure of bio-available P and is a suit-
able extraction method for samples of neutral to alkaline pH. Phospho-
rus concentrations were measured using the phosphomolybdate
colormetric technique (Watanabe and Olsen 1965). Total organic car-
bon (TOC) was measured in each sample using the method described
by Hesse (1971). Environmentally availablemetals known to be impor-
tant by-products of urban run-off (Ca, Mg, Na, K, Fe, Mn, Zn, Cu, Pb, Cr,
Ni) were also analysed from the sediments using an ICP-MS following
the US EPA 6010-C methodology (Jones et al., 1987; EPA, 2011) (Sup-
plementary Appendix 2).

Prior to arcellacean analysis 2 cc subsamples were agitated for one
hour using a Burrell wrist shaker and subsequently screened with a
250 μm sieve to remove coarse organic debris and then with a 37 μm
sieve to remove fine organic and mineral detritus. The 37–250 μm size
fraction was selected for arcellacean analysis to allow comparability
with other recent lake-based studies (Patterson and Kumar, 2002). The
37–250 μm fraction samples were subdivided into aliquots for quantita-
tive analysis using a wet splitter (Scott and Hermelin 1993). The wet al-
iquots were subsequently examined under an Olympus SZH10
dissecting binocular microscope (40–80× magnification) until a statisti-
cally significant number of specimens were quantified (Patterson and
Fishbein, 1989). In most cases >150, and often >250 arcellaceans were
counted per sample.

Identification of arcellaceans followed Roe et al. (2010) and was
undertaken with reference to standard reference keys (e.g. Medioli
and Scott, 1983; Kumar and Dalby, 1998). Lacustrine arcellacean spe-
cies can display a significant amount of ecophenotypically controlled
morphological variability (Medioli and Scott 1983; Medioli et al.
1987; Medioli et al., 1990). The accepted practice by lacustrine re-
searchers is to designate informal infra-subspecic ‘strain’ names for
these ecophenotypes to avoid describing possibly unwarranted new
species (Asioli et al. 1996; Patterson and Kumar 2002). Although
the International Code of Zoological Nomenclature stipulates that
infrasubspecic level designations have no status (International
Commission on Zoological Nomenclature, 1999), they are useful
for delineating environmentally significant populations within la-
custrine environments (Reinhardt et al. 1998; Patterson and
Kumar 2000a, 2000b; Roe and Patterson 2006; Escobar et al.
2008; Kihlman and Kauppila, 2009). Arcellacean strain designa-
tions were thus quantified during counting (Supplementary
Appendices 2, 3). Scanning electron micrograph images of com-
mon species and strains were obtained using a Tescan Vega-II
XMU VP scanning electron microscope at the Carleton University
SEM facility (Fig. 4).
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2.3. Statistical methods

Twenty six arcellacean species and strains were identified in the 73
collected sediment/water interface samples and an additional 32 sam-
ples from Haynes Lake. The standard error (Sxi) associated with each
taxon was calculated using the following formula:

Sxi ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi 1−F1ð Þ

Ni

s

where Fi is the relative fractional abundance of each taxon and Ni is the
total of all the species counts in that sample. This methodology requires
that if the calculated standard error is greater than the fractional abun-
dance for a particular species in all samples then that species is not in-
cluded in successive multivariate analyses (Patterson and Fishbein,
1989). As all arcellacean species were found in statistically significant
numbers in at least one sample all were included in the multivariate
data analyses.

The 73 samples quantified were also assessed to determine which
ones were statistically significant. The probable error (pe) for each of
the total sample counts was calculated using the following formula:

pe ¼ 1:96
sffiffiffiffiffi
Xi

p
 !
where s is the standard deviation of the population counts and Xi is
the number of counts at the station being investigated. A sample
was judged to have a statistically significant population (SSP) if the
total counts obtained for each taxon were greater than the pe
(Fishbein and Patterson, 1993). All 73 sediment samples were deemed
to have SSP counts. The Shannon Diversity Index (SDI) was used to ex-
amine the community diversity of the species found in each sample and
provides an indication of the relative health of the lakes and ponds
(Shannon 1948). The SDI is defined as:

SI: ¼ −
XS
i¼1

Xi

Ni

� �
� ln

Xi

Ni

� �
ð1Þ

where Xi is the abundance of each taxon in a sample, Ni is the total
abundance of the sample, and S is equal to the species richness of the
sample. Environments are considered to be healthy if the SDI falls be-
tween 2.5 and 3.5, in transition between 1.5 and 2.5, and stressed be-
tween 0.1 and 1.5 (Magurran 1988; Patterson and Kumar 2000b). Low
SDI values characterise environments where harsh conditions severely
limit species numbers.

The relationships between arcellacean assemblages and mea-
sured environmental variables follow environmental gradients,
which were assessed by means of several statistical techniques
using CANOCO version 4.5 and CANODRAW (ter Braak 1987, 2002;

image of Fig�2
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Šmilauer, 1992; ter Braak and Šmilauer 2002). The gradient length
was determined using Detrended Correspondence Analysis (DCA)
of the species data and Detrended Canonical Correspondence Anal-
ysis (DCCA) on the species data and selected single environmental
variables.

The gradient lengths were consistently long (>2 SD units),
suggesting that linear-based methods are not appropriate for these
data (Birks, 1995). To overcome this problem the datawas transformed
using the Hellinger distance, which allows the use of Euclidean-based
methods for ordination rather than the chi-squared distance used in Ca-
nonical Correspondence Analysis (CCA), which has been shown to
sometimes be problematic (Rao, 1995; Legendre and Gallagher, 2001).
Redundancy analysis (RDA)was used to investigate taxon–environment
relationships in coenospace (Supplementary Appendices 4–6). Forward
selection of environmental variables in combination with aMonte Carlo
permutation test (999 permutations under a full model) were used to
determine the minimum number of variables needed. Variables were
removed until a level of significance pb0.05 was reached. Summary
statistical measures (e.g. concentration, Shannon Diversity Index) were
included as supplementary environmental variables. The relative
contribution of environmental variables was investigated using a
series of partial redundancy analyses (pRDA).

As the multivariate statistical analyses revealed the importance of
OP as a major environmental control on arcellaceans in the study
sites, transfer functions for OP were developed using weighted averag-
ing (WA), inverse weighted averaging-tolerance (WA-Tol) with classi-
cal and inverse deshrinking, weighted averaging with partial least
squares (WA-PLS) and maximum likelihood (ML) methods (Table 1).
The performance of themodelswas assessed using r2, rootmean square
error of prediction (RMSE), root mean square error of prediction
(RMSEP) and maximum bias, calculated as apparent values and with
cross-validation based on leave-on-out cross validation (jacknifing).
The transfer function models were improved by data screening to re-
move sampleswhere environmental variables other thanOP influenced
arcellacean assemblage composition (e.g. low DO near thermocline, el-
evated conductivity in road side sites contaminated by road salt during
winter deicing, coarse substrate influencing productivity, etc.). Samples
with a high residual value were removed and a justification of each re-
moval was given (Supplementary Appendix 7). The refined model for P
based on WA-Tol (Inv) was applied to a fossil sequence and sample-
specific prediction errors were generated through 1000 bootstrap
cycles.

2.4. Haynes Lake core chronology

2.4.1. Radiocarbon dating
Radiocarbon dates presented for Haynes Lake coreHYC1 are reported

in calibrated radiocarbon years before present (cal BP; Table 2; Fig 3).
Calibrationwas carried out using the IntCal09 dendrochronological data-
base for terrestrial material (Reimer et al., 2009). Calibrated bulk organic
dates obtained from the top 150 cm of this core were not used in the de-
termination of the sedimentation rate as an ~1500 age offset with cali-
brated dates obtained from two unidentified and macerated plant
macrofossil samples (UBA017176, UBA17177) indicates that “old car-
bon” may have influenced the bulk dates. Formerly oligotrophic lakes,
such as Haynes Lake, where organic concentrations are low, present dif-
ficulties for obtaining accurate 14C dates. This is because there are usually
only limited identifiable organic remains preserved, making it generally
necessary to date bulk sediments (Abbott and Stafford, 1996). Such bulk
samples tend to include carbon from various sources that may not be

image of Fig.�3
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contemporaneous with the sedimentation (e.g. influx of detritus from
the lake catchment), resulting in erroneous old ages (Cohen, 2003).
The sedimentation rate for the portion of the core deposited below
32 cmwas ~0.02 cm/yr.

2.4.2. Lead-210 dating
Thirteen samples from the 0–36.5 cm interval of the core were

dated for 210Pb at the St. CroixWatershed Research Station at the Uni-
versity of Minnesota using the alpha spectrometry method, which can
accurately determine sediment age through the past 100–150 years
(Eakins andMorrison, 1978). Dates and sedimentation rates were cal-
culated using the constant rate of supply model (Appleby and
Oldfield, 1978) with confidence intervals determined by first-order
error analysis of counting uncertainty (Binford, 1990). The lowermost
reliable 210Pb date was an estimate of AD 1877±11.4 at 32 cm in the
core (Table 3), which also delineated the base of the fine clay unit that
comprised the upper part of the core (Figs. 2, 3). Based on 210Pb re-
sults the sedimentation rate through the upper 32 cm of the core
was 0.26 cm/yr, a rate more than an order of magnitude higher than
the deposition rate lower in the core. Settlers cleared the land
around Haynes Lake in 1878 (Canniff 1869; McGill University
2001). The fine clays and accelerated sedimentation in the lake
through the upper 32 cm were therefore most likely related to ero-
sional rate changes in the lake catchment brought on by the clearing
of trees and the building of the road that skirts the lake to the east
(Fig. 2).

3. Results and discussion

3.1. Partial redundancy analysis

Partial redundancy analysis (pRDA) provides a quantification of
the proportion of the variance in the arcellacean dataset that can be
attributed to the measured environmental variables (Fig. 5; Supple-
mentary Appendix 2) and confirms that several factors influenced
the community distribution in the 73 studied samples. Not surpris-
ingly, the most significant control on arcellacean distribution is OP,
which explains 6.5% (pb0.001) of the total variance. This is a signifi-
cant result, which highlights the sensitivity of lake arcellaceans to eu-
trophication. Other significant controls include total organic carbon
(TOC at 4.8%; pb0.003)), total nitrogen (TN at 3.8%; pb0.006) and
Mg (4.2%; pb0.005).

The concentration of TOC in a lake is a basic parameter for character-
izing the amount of organic matter in sediments (Meyers and Teranes,
2001). There is in turn a close correlation between TOC and dissolved
organic carbon (DOC) with DOC=0.9 of the value for TOC (Wetzel,
2001). In humic lakes, which include the majority of lakes in this
study, DOC derived from adjacent terrestrial settings dominates most
organic carbon (Weyhenmeyer and Karlsson, 2009). This terrestrially
derived DOC plays a key role in lacustrine ecosystems because it im-
pacts a number of metrics including lake productivity, community
structure and metabolic balances (Jones, 1998; Jansson et al., 2007), as
well as the availability of dissolved nutrients and metals (Franco and
Heath, 1983). Between lakes the DOC concentration is impacted by fac-
tors such as runoff and catchment slope (Sobek et al., 2007). In regions
where land use change resulting from urbanization is occurring DOC
concentration is directly impacted by point (e.g. wastewater discharge)
and non-point (e.g. impervious pavement, lawns) sources (Harbott and
Grace, 2005).

AswithOP, a primary source of TN to lakes is through terrestrial run-
off, which is closely related to urbanization (Guilford and Hecky, 2000).
Although both are nutrients the relative concentration and ratio of P
and N within a lake can vary significantly and are related to absolute
supply of nutrients from external sources, nutrient regeneration rates
by micrograzers, mineralization rates by bacteria and loss rates due to
sedimentation (e.g. Hecky et al., 1993; Howarth et al., 1996).
The magnesium signal is probably in part derived from Mg-rich
groundwater percolating through the coarse textured glacial deposits
of the region. Magnesium is also a major constituent of fertilizers and
de-icing salts and is common in urbanized areas due to its widespread
use in ferrous alloys, electrical and industrial products (Tracy and
Baker, 2005).

3.2. Development of a transfer function

The highly significant taxa–environment result for OP indicated in
the RDA and pRDA suggests that a transfer function can be developed
for OP based on this dataset (Figs. 5 and 6). Detrended Canonical Corre-
spondence Analysis (DCCA) was carried out to establish the gradient
length of the data to determine whether unimodal or linear-based re-
gression models would be most appropriate (Birks 1995; Swindles et
al. 2007, 2009). As the gradient length was greater than 2σ units
unimodal models were selected (Birks, 1995). Several transfer function
models were developed based on this training set using weighted aver-
aging (WA), tolerance downweighted weighted averaging (WA-Tol),
weighted averaging partial least squares (WA-PLS) regression andMax-
imum Likelihood (ML) using C2 software (Juggins 2003). The model
performance was assessed using the root mean square error of predic-
tion (RMSEP) and the coefficient of determination (r2) calculated as ap-
parent and leave-one-out cross-validated (‘jack-knifed’) values
(Table 1).

The best performing model with the lowest RMSEP value for OP is
WA with inverse deshrinking (RMSEPjack=212.70, r2jack=0.17)
(Table 1). Other, more complex models offer no improvement in
model performance (Table 1). Analysis of observed and model estimat-
ed variables indicate that there are some outlier samples with high re-
sidual values (Fig. 7). As discussed above other variables strongly
influenced arcellacean assemblages at some lake sampling stations. To
develop a more accurate predictive relationship between arcellacean
assemblages and OP, residual outlier samples at the top and bottom
15% of the total range in the predicted residual data were thus removed
to improve model performance, leaving 40 in the improved training set
(Supplementary Appendix 7). The improved transfer function for OP is
based on WA-Tol with inverse deshrinking and has an RMSEPjack of
77 ppm and r2jack=0.68 (Table 1).

Tolerance and optima values for the 24 arcellacean taxa analyzed
are plotted in Fig. 8. All taxa plot out along a distinct gradient with
Difflugia proteiformis “claviformis” Lamark 1816 being most OP toler-
ant (up to ~450 ppm) and the soil taxa Cyclopyxis kahli (Deflandre
1929) being intolerant of OP levels above ~225 ppm. The general
trend of arcellacean taxa tolerance to OP is similar to the findings of
Roe et al. (2010), the major difference being that the uppermost
thecamobian tolerance in that study was nearly 800 ppm, much
higher than found here. Specifically targeting P in the this study, as
opposed to utilizing lakes characterized by a broader suite of variables,
has resulted in a more refined determination of tolerance ranges for
some taxa. For example, the estimated P tolerance range of thevery com-
mon indicator strain of eutrophism, Difflugia oblonga Ehrenberg, 1832
strain “oblonga”, has been refined here in the improved training set to
~100–350 ppm as opposed to ~150–600 ppm in Roe et al. (2010). The
tolerance ranges for some taxa remain essentially unchanged though
(e.g. Centropyxis constricta (Ehrenberg, 1843) strain “constricta”) with
an estimated range of 25–225 ppm in both this study and Roe et al.
(2010). Caution must be used when utilizing the estimated ranges for
rarer taxa (e.g. Difflugia bidens Penard, 1902) as the statistical basis for
the OP tolerance levels is lower than for more common taxa.

Prior to application in a transfer function, training sets derived
from environmental variables constraining community distribution
must be tested against control samples to test their predictive ability
(Walker et al. 1991). To test the utility of the transfer function, the
WA-Tol with inverse deshrinking model was applied to six samples
from four lakes distributed through southern Ontario (Fig. 9). The
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WA-Tol Inv transfer function was applied to the contemporary
arcellacean data from Teapot Lake, Innisfil Recreation Lake, Bell Lake
and Cedar Mills Lake with sample-specific prediction errors being
generated by 1000 bootstrap cycles. The results based on these sam-
ples indicate that observed OP measurements lie within the bootstrap
error range of the model-inferred OP value (Fig. 9). These results from
four lakes clearly indicate the applicability of this transfer function for
prediction of OP in eutrophic lakes.
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3.3. Phosphorus reconstruction for Haynes Lake core

A primary goal of this research has been to elucidate the control that
OP loading has had on contemporary lake arcellacean distribution aswe
assess the relationship between land use, community assemblages and
lake sediment and water property data. As the settlement and land use
history of the ORM is well known, application of the OP transfer func-
tion to a segment of core from Haynes Lake provides an ideal test bed
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Table 1
Arcellacean-phosphorus transfer function performance statistics. WA Inv weighted averaging with inverse deshrinking, WA Cla weighted averaging with classical deshrinking, WA-
Tol Inv weighted averaging-tolerance downweighted with inverse deshrinking, WA-tol Cla weighted averaging-tolerance downweighted with classical deshrinking,WAPLS weight-
ed averaging partial least squares (with component number), ML Maximum Likelihood. The performance statistics are shown as apparent and jack‐knifed (Jack) measures. RMSEP
root mean square error of prediction. Values for the best performing model for the whole dataset (WA Inv) and the screened dataset. (WA-Tol (Inv)) are shown in italics.

Total dataset (all samples n=73) WA Inv WA Cla WA-Tol (Inv) WA-Tol (Cla) WAPLS 1 WAPLS 2 WAPLS 3 WAPLS 4 WAPLS 5 ML

Phosphorus (OP) ppm
RMSE 193.38 353.65 190.48 336.80 193.38 174.18 168.36 163.12 160.34 246.72
r2 0.3 0.3 0.32 0.32 0.3 0.43 0.47 0.5 0.52 0.35
Average bias −3.52E−13 −9.82E−13 4.05E−13 9.84E−13 2.30E−02 6.99E−02 6.85E−02 4.59E−02 2.94E−02 −2.93E+01
Maximum bias 756.88 316.17 750.55 362.70 756.93 554.31 571.41 529.63 497.37 935.78
Jack r2 0.17 0.19 0.15 0.18 0.17 0.18 0.14 0.11 0.09 0.28
Jack average bias 1.76 5.36 3.06 8.60 1.78 4.80 4.01 1.34 −2.36 −22.11
Jack maximum bias 844.42 636.39 837.63 935.19 844.47 681.87 832.28 870.36 945.14 911.89
RMSEP 212.70 375.80 215.77 365.68 212.70 220.56 233.69 249.91 264.78 256.43

Dataset after screening (n=40) WA Inv WA Cla WA-Tol (Inv) WA-Tol (Cla) WAPLS 1 WAPLS 2 WAPLS 3 WAPLS 4 WAPLS 5 ML
Phosphorus (OP) ppm
RMSE 66.66 76.50 64.76 73.67 66.66 57.28 54.68 53.50 52.61 73.09
r2 0.76 0.76 0.77 0.77 0.76 0.82 0.84 0.84 0.85 0.77
Average bias −6.82E−14 −8.69E−14 2.15E−13 2.69E−13 4.01E−02 2.28E−02 8.98E−03 3.94E−03 −5.23E−04 −2.31E+00
Maximum bias 90.71 55.13 91.12 58.23 90.81 99.40 91.86 75.92 76.09 79.31
Jack r2 0.68 0.69 0.68 0.69 0.68 0.63 0.61 0.57 0.50 0.61
Jack average bias 1.80 2.06 1.44 1.70 1.84 11.63 10.89 14.59 13.45 −2.46
Jack maximum bias 101.53 68.09 104.08 73.83 101.61 118.58 114.17 104.73 107.69 97.96
RMSEP 76.65 83.70 76.63 81.74 76.65 87.83 88.91 96.84 106.03 93.25
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to assess the accuracy of a temporal OP reconstruction (Supplementary
Appendix 3).

The laminated and variously cross-bedded interval of the core de-
posited between 56 and 32 cm (~1200 yBP to AD 1861–1864) was
laid down as episodic sedimentary deposits. These beds are probably
the result of periodic flooding during large storms, and/or spring fresh-
et, and have as their source the normally small inlet stream immediately
to the east of Haynes Lake (Fig. 2c). These sediments are variously clas-
tic and organic rich. The variable nature of the sediments is reflected by
the OP reconstruction with intervals characterized by higher organic
content having higher reconstructed OP values.

By the beginning of the 19th century European settlerswere pouring
into southern Ontario, including the ORM, where they established sus-
tenance farms. Roads were built to facilitate settlement starting with
the construction of Yonge Street beginning in 1795, which is located
3 km west of Haynes Lake (Stamp, 1991). Roads were laid out in a
grid pattern along section boundaries and by ca. 1861–1865 a north–
south roadwas built that skirted the eastern shore of Haynes Lake. Con-
struction of the road resulted in a major change in drainage with the
former meandering stream that fed the lake now being restricted to
small culverts. This change to the lake inflow resulted in a complete
change in sedimentary pattern within the lake with sediments deposit-
ed after construction of the road being comprised exclusively finely
laminated silts and clays. By AD1878 the land immediately surrounding
Haynes Lake was cleared and settled by several landowners including
George Spraxton, Quetton St. George, Peter Baker and Christopher
Fig. 4. 1–30. Scanning electron micrographs of selected arcellacean tests from the study lakes
(2) Centropyxis aculeata (Ehrenberg 1832) strain “discoides”, ventral view, from Mytopo Lake
spine, from Mytopo Lake. (4) Centropyxis aculeata (Ehrenberg 1832) strain “aculeata”, ventra
1832) strain “aculeata", ventral view, test constructed of diatoms, from Mew Lake. (5) Centrop
hollow, fromMytopo Lake. (6) Centropyxis constricta (Ehrenberg 1843) strain “spinosa”, ventra
oblique and side views, from Swan Lake. (9) Difflugia urceolata Carter, 1864 strain “urceolata”,
(11,12) Difflugia corona Wallich, 1864, side and apertural views, from Mew Lake. (13) Lesquer
1874, side view showing typical constriction at base of neck, fromMewLake. (15) Pontigulasia c
at base of neck, fromMew Lake. (16) Difflugia oblonga Ehrenberg, 1832 strain “oblonga”, side v
fromMytopo Lake. (18) Difflugia oblonga Ehrenberg, 1832 strain “spinosa”, side view, fromMyt
Lake. (20) Difflugia oblonga Ehrenberg, 1832 strain “triangularis”, side view, from Island Lake. (
Lake. (23) Difflugia protaeiformis Lamark 1816 strain “protaeiformis”, side view, from Mytopo
heavy agglutination on neck typical of many specimens, from Mytopo Lake. (25) Difflugia p
protaeiformis Lamark 1816 strain “acuminata”, side view, from Swan Lake. (27) Difflugia pro
glans Penard, 1902 strain “glans”, side view, from Jake Lake. (29)Difflugia glans Penard, 1902 str
side view, from Jake Lake.
Smith (Canniff, 1869;McGill University, 2001). Land clearance often re-
sults in a significant increase in sedimentation rates to impacted water
bodies (e.g. Colman and Bratton, 2003), which based on the derived age
model for Haynes Lakes, occurred at this site as well (Fig 3). Another
common side effect of land clearance and agricultural activity adjacent
to lakes is eutrophication (Reinhardt et al., 2005). Although both N
and P contribute to eutrophication, P is usually the limiting nutrient in
lacustrine trophic systems (Janus and Vollenweider, 1981; Ongley,
1996). Manure produced by cattle, pigs and poultry are characterized
by high concentrations of soluble P and are therefore important sources
of organic fertilizer throughout the world (Dou et al. 1999). Livestock
manure would similarly have served as an important fertilizer for the
newly established subsistence farms adjacent to Haynes Lake. Although
a large portion of P in manure is soluble in H2O through precipitation
and run-off, the horse drawn manure spreaders that would have been
usedby settlers leave semi-solid composted clumps ofmanure onfields,
which generally leach P slowly to the environment (Walter et al., 2001).
As P is strongly absorbed by soil solids, P runoff from permanently vege-
tated areas such as pastureland or forests isminimal and largely occurs as
traces of orthophosphate (POP4-3) ions in solution (Evanylo and Beegle,
2006). On the subsistence level farms that were established in the area
of Haynes Lake it would have taken a considerable time for P to build
up in the relatively nutrient poor soils of recently deforested land to a
level high enough to contribute significantly to the eutrophication of
Haynes Lake. In contrast, cleared areas where annual crops are grown
using conventional tillage, P is moved with eroding soil and immediately
. Scale bars=100 μm. (1) Arcella vulgaris Ehrenberg 1830, ventral view, from Bond Lake.
. (3) Centropyxis aculeata (Ehrenberg 1832) strain “aculeata”, specimen with only single
l view, test constructed of diatoms, from Mew Lake. (4) Centropyxis aculeata (Ehrenberg
yxis aculeata (Ehrenberg 1832) strain “aculeata”, dorsal view, illustrating that spines are
l view, from Island Lake. (7,8) Centropyxis constricta (Ehrenberg 1843) strain “constricta”,
side view, from Mew Lake. (10) Difflugia bidens Penard 1902, side view, from Mew Lake.
esia spiralis (Ehrenberg, 1840), side view, from Mew Lake. (14) Lagenodifflugia vas Leidy,
ompressa (Carter 1864), face viewof compressed test showing typical v-shaped depression
iew, fromMytopo Lake. (17) Difflugia oblonga Ehrenberg, 1832 strain “tenuis”, side view,
opo Lake. (19) Difflugia oblonga Ehrenberg, 1832 strain “lanceolata”, side view, from Bond
21, 22) Cucurbitella tricuspis (Carter 1856), side views, fromMount Hope Lake and Island
Lake. (24) Difflugia protaeiformis Lamark 1816 strain “protaeiformis”, side view showing
rotaeiformis Lamark 1816 strain “acuminata”, side view, from Mew Lake. (26) Difflugia
taeiformis Lamark 1816 strain “claviformis”, side view, from Mytopo Lake. (28) Difflugia
ain “magna”, side view, from Jake Lake. (30)Difflugia glans Penard, 1902 strain “distenda”,



Table 2
Radiocarbon ages obtained from Haynes Lake. OxCal v4.1.7 Bronk Ramsey (2011); r:5; Atmospheric data from Reimer et al (2009).

Sample ID Laboratory
number

Description Depth (cm) 14C age Calibrated age
ranges (yr BP)

IntCal09
HYNL_69–70 cm Beta-275540 Bulk organic 69–70 3330±40 3553±89
DC969 UBA-17176 Plant macrofossil 74–75 2017±35 1972±88
C1-2-3-5 Beta-260148 Bulk organic 97 4900±40 5652±66
C1-2-36-38 Beta-260149 Bulk organic 130 5350±40 6108±108
DC971 UBA-17177 Plant macrofossil 130–131 4226±37 4695±68
C1-3-53-54 Bulk organic 241–242 11110±60 12955±197
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impacts adjacent water bodies (Evanylo and Beegle, 2006). As the
reconstructed phosphorus values in the post settlement period remain
relatively low from the AD 1870 s (~32 cm) through to ca. AD 1968
(14 cm), this may suggest that that farmed areas near Haynes Lake
were primarily used as pasture supporting a relatively modest livestock
herd, or to grow hay which requires only periodic tilling.

Beginning ~AD 1972 (12 cm) there was a dramatic increase in in-
ferred OP that persisted through to ~AD 1985 (7 cm) that must have
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(Wetzel, 2001). As one kg of P can grow 1500 kg of algae the damage
caused by excess P inputs to lacustrine environments was tremendous
(Beeton, 1971). Although the US continued to use P in detergents the
CanadaWater Act of 1970 resulted in a drastic reduction in laundry de-
tergent P (Knud-Hansen, 1994) so households near the lake were un-
likely to have contributed to a P increase in Haynes Lake that began
~AD 1972. A more likely source was chemical inorganic fertilizers,
which contain P as a significant macronutrient (Smil, 2000; Binford,
2006). The use of these inorganic fertilizers became wide spread in
the decades following WWII (Mills and Jones, 1996; Erisman et al.,
2008). The P component in inorganic fertilizers binds strongly with
many elements, compounds and the surfaces of clay minerals in soil
but is rapidly released for biological update as these P-bearingminerals
dissolve (Mullins and Hansen, 2006). Rainwater flowing across a soil
surface can thus easily mobilize P through dissolution and transport of
soluble P, or erosion and direct transport of particulate P. In areas
where P bearing inorganic fertilizer has been applied for many years
leaching and subsurface lateral flow of P can also occur. As virtually all
transported P is biologically available both soluble and sediment
bound P can contribute to excessive growth of aquatic organisms lead-
ing to eutrophication (Mullins and Hansen, 2006).

There was a steady decline in inferred OP concentration in Haynes
Lake after AD 1985 (7 cm) through to ~AD 1995 (3 cm), which most
likely corresponds to reduced use of chemical fertilizers. Therewas a re-
alization, beginning in the early 1980s that applying excessive amounts
of chemical fertilizers have negative environmental impacts, provide no
additional crop yields and can even be as detrimental as under fertiliza-
tion; a waste of farmers time and money (Smil, 2000; Tilman et al.,
2002). Beginning in ~AD 1995 (3 cm) there was a dramatic increase
in P levels in Haynes Lake that by the time of the collection of the core
in AD 2005 were inferred to be as high as those of the AD 1980s.
Although changing agricultural practicesmay have been a factor, anoth-
er possible nearby source may have been the Diamond Back Golf and
Country Club, which was built in AD 1993 up a slope and immediately
to the north of Haynes Lake. In other areas, golf courses, which heavily
fertilize their turf to maintain flawless fairways, have been identified
as a major source of nutrient loading in adjacent aquatic ecosystems
(Dillon and Winter, 2005). Development of this transfer function indi-
cates that arcellaceans have utility as a proxy in the reconstruction of
OP, and as such they promise to become a useful complement to other
more established paleolimnological proxies like diatoms.

4. Conclusions

This research provides evidence that there is a quantitative link
between arcellacean communities and OP, based on 73 sediment-
water interface samples from 33 lakes. The lakes were selected to
span a continuous P gradient and included urban to rural environ-
ments within the GTA, as well as lakes from undisturbed forested
areas in eastern Ontario and Algonquin Park. Ordination (pRDA)
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Fig. 8. Phosphorus (OP) tolerance and optima statistics for the 24 arcellacean species
and strains present in statistically significant numbers in this study.

Table 3
210Pb dates obtained from Haynes Lake Core C3-1. Atmospheric data
from Reimer et al (2009); OxCal v4.1.7 Bronk Ramsey (2011); r:5.

Sample depth (cm) 210Pb date (AD)

0.5 2002.9±4.84
2.5 1996.6±5.42
4.6 1990.0±6.22
8.6 1980.2±3.59
12.7 1972.4±3.75
16.7 1963.1±3.94
19.8 1954.7±3.58
23.3 1941.5±3.76
25.3 1927.9±4.19
27.4 1917.0±4.82
29.4 1893.0±7.83
31.4 1877.9±11.38
35.5 1829.1±47.29
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confirmed that OP has the greatest influence on assemblage variance,
explaining 6.5% (pb0.001) of the total variance, providing further ev-
idence of the sensitivity of arcellaceans to eutrophication (Roe et al.,
2010). TOC (4.8%; pb0.003), TN (3.8%; pb0.006) and Mg (4.2%;
pb0.005) also influenced the makeup of arcellacean community as-
semblages though.

To reduce the influence of TOC, TN, Mg and other variables the
transfer function developed for OP was based on an improved train-
ing set comprising samples from 31 of the studied lakes. The best per-
forming model was derived using WA-Tol with inverse deshrinking
(RMSEPjack=77 ppm; r2jack=0.68). Testing of the WA-Tol inferred
OP (ppm) reconstruction against contemporary arcellacean data
from Teapot Lake, Innisfil Recreation Lake, Bell Lake and Cedar Mills
Lake indicates that observed OP measurements fall within the boot-
strap error range of the model-inferred OP value.

The model was subsequently applied to fossil arcellacean datasets
from Haynes Lake on the ORM where the settlement history of the re-
gion is relatively well known, and using data from a core that is chrono-
logically well‐constrained. The results indicate that initial clearance of
the area around Haynes Lake in the AD 1870s had little impact on OP
concentrations in the lake. This indicates that initial land use of the
area in the immediate lake catchment was either as pasture or was
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Fig. 9. Application of WA-Tol transfer function to three contemporary arcellacean sam-
ples from the Oak Ridges Moraine and surrounding area. Sample-specific prediction er-
rors generated by 1000 bootstrap cycles show that the observed OP measurements lie
within the bootstrap error of the model-inferred P value. Black square=WA Inv esti-
mated P; gray square=measured P value. TEA=Teapot Lake; INN=Innisfil Recreation
Lake; BEL=Bell Lake; CED=Cedar Mills Lake.
used to grow a perennial crop such as Timothy-grass for hay, as OP run-
off from pastureland and the pre-settlement forests would have been
minimal. After ~AD 1972 there was a dramatic increase in OP concen-
tration in the lake that was probably related to the introduction of
chemical fertilizers within the lake catchment. A rapid decline in in-
ferred OP concentration after ~AD 1985 likely corresponds to a reduc-
tion in use of chemical fertilizers, possibly related to advances in crop
science that permitted a much more precise determination of required
application levels. Levels of inferred OP increased significantly again
after ~AD1995, possibly related to the construction of a large golf course
to the immediate north and upslope of Haynes Lake, where significant
fertilizer use is required to maintain the grounds. The transfer function
result indicates that arcellaceans are useful for reconstructing paleo-OP
concentrations in lakes, providing an excellent complement other pal-
eolimnological proxies (e.g. diatoms). Further research using more re-
fined training sets targeted at other water property variables may
result in their use to characterize other parameters as well (e.g. road
salt contamination).

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.palaeo.2012.05.028.
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