
Towards an understanding of the causes and effects of software
requirements change: two case studies

McGee, S., & Greer, D. (2012). Towards an understanding of the causes and effects of software requirements
change: two case studies. Requirements Engineering, 17(2), 133-155. DOI: 10.1007/s00766-012-0149-0

Published in:
Requirements Engineering

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© Springer-Verlag London Limited 2012
Available under Open Access

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:16. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/10075985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/towards-an-understanding-of-the-causes-and-effects-of-software-requirements-change-two-case-studies(191ee60f-f66e-4227-b9da-344da79b39eb).html

RE’11 BEST PAPERS

Towards an understanding of the causes and effects of software
requirements change: two case studies

Sharon McGee • Des Greer

Received: 29 October 2011 / Accepted: 18 March 2012 / Published online: 9 May 2012

� Springer-Verlag London Limited 2012

Abstract Changes to software requirements not only pose

a risk to the successful delivery of software applications but

also provide opportunity for improved usability and value.

Increased understanding of the causes and consequences of

change can support requirements management and also

make progress towards the goal of change anticipation. This

paper presents the results of two case studies that address

objectives arising from that ultimate goal. The first case

study evaluated the potential of a change source taxonomy

containing the elements ‘market’, ‘organisation’, ‘vision’,

‘specification’, and ‘solution’ to provide a meaningful basis

for change classification and measurement. The second case

study investigated whether the requirements attributes of

novelty, complexity, and dependency correlated with

requirements volatility. While insufficiency of data in the

first case study precluded an investigation of changes arising

due to the change source of ‘market’, for the remainder of

the change sources, results indicate a significant difference

in cost, value to the customer and management consider-

ations. Findings show that higher cost and value changes

arose more often from ‘organisation’ and ‘vision’ sources;

these changes also generally involved the co-operation of

more stakeholder groups and were considered to be less

controllable than changes arising from the ‘specification’ or

‘solution’ sources. Results from the second case study

indicate that only ‘requirements dependency’ is consistently

correlated with volatility and that changes coming from each

change source affect different groups of requirements. We

conclude that the taxonomy can provide a meaningful means

of change classification, but that a single requirement attri-

bute is insufficient for change prediction. A theoretical

causal account of requirements change is drawn from the

implications of the combined results of the two case studies.

Keywords Requirements change � Requirements

evolution � Requirements volatility �
Collaborative case study

1 Introduction

Software requirements continue to evolve during software

development and maintenance, and the associated risk to

cost, project schedule, and quality appeals to the need for

increased understanding of the phenomena. The case

studies presented in this paper are part of a family of col-

laborative empirical initiatives, each of which makes pro-

gress towards the ultimate goal of requirements change

anticipation. Loconsole [1] provides a model to predict

requirements change which utilises the observed correla-

tion between the size of a requirements use case document

and volatility. While correlation is significant, there is no

claim made with respect to causality. Our approach is to

use case studies to increase our understanding of the causes

and effects of requirements change in order to provide an

empirically founded theory upon which to base causal

models. To this end, it is necessary to firstly determine an

informative means by which to classify and measure

change and secondly formulate causal relationships. Two

temporally contiguous case studies address these objectives

and considered together, the results inform the derivation

of a model-based summary of the causes and effects of

software requirements change.

S. McGee (&) � D. Greer

School of Electronics, Electrical Engineering and Computer

Science, Queens University Belfast, Belfast, UK

e-mail: smcgee08@qub.ac.uk

D. Greer

e-mail: des.greer@qub.ac.uk

123

Requirements Eng (2012) 17:133–155

DOI 10.1007/s00766-012-0149-0

A traditional measure of requirements volatility is a

count of all amendments, deletions, and additions that

occur during a specified time period. This has been used in

the prediction of requirements change [1], as the measure

of the health of a project [2], and to support process

technique selection [3]. However, requirements changes

can vary greatly in terms of their cost and value; the metric

‘requirements changes = 2’ that results from the addition

of one change costing £100 to a second change at a cost of

£1,000 is not that informative. One solution is to measure

the size of the change by function points [4, 5]. However,

there may be other qualities, such as value or stakeholder

involvement, which are important considerations for

change management. The first step, therefore, is to estab-

lish a means by which changes can be classified in order to

provide an informative basis for measurement and man-

agement. Drawing upon the literature, a previous study [6]

established standardised constructs, such as ‘new stake-

holder’, or ‘novelty of application’, each of which was

considered to be a cause of requirements change. Using

card sorting, a number of project managers derived a tax-

onomy of change source constructs comprising the five

change domains illustrated in Table 1. The objective of the

first case study presented in this paper is to discover

whether this classification can provide an informative basis

for understanding and analysing requirements changes that

occur during software development. With our industrial

partner, we firstly identify those properties of change, such

as cost and value, most pertinent to the characterisation and

management of requirements change. We then analyse

change data to determine whether these change domains

can be said to represent distinct groups of changes, with

significantly different average values for each change

property.

While the constructs within this taxonomy reflect situ-

ations and events that may give rise to changing require-

ments, it may be the case that some parts of a software

application are more prone to change than others. Nuseibeh

[7] maintains that attempts should be made to answer some

difficult questions, among them ‘‘What classes of require-

ments are more stable than others, and how do we identify

them?’’ While there have been studies undertaken to

investigate the correlation between requirements volatility

and process factors, such as maturity level and elicitation

technique [8, 9], there are no attempts to determine whether

there are attributes of the requirements themselves that

predispose them to change.

Mindful of this objective, our second case study exam-

ines the requirements involved in the first case study and

investigates the correlation between requirements volatility

and some generic attributes of requirements (dependency

complexity and novelty) selected by our industrial partner.

We also consider whether this correlation is replicated

across the change taxonomy.

The following research questions are addressed:

RQ1 Is the taxonomy an informative basis for change

measurement?

RQ2 Do attributes of requirements predispose them to

change and are they similarly prone to changes in all

domains?

The software application development project under

investigation was within the government sector and lasted

16 months. Inclusive of requirements changes, the project

delivered 240 requirements at a total cost of 4,222 days

effort. Overall, 282 requirements changes were recorded at

a cost of 2,405.5 days effort.

This paper is in an extension of a previous publication

[10] wherein the first case study was presented. The paper

is organised as follows. Following a review of related

research in Sect. 2, the research approach, including

detailed research questions and data specification, is

explained in Sect. 3. Section 4 presents the results of both

case studies, and this is followed by a discussion in Sect. 5.

Section 6 concludes and outlines the future direction of this

work.

2 Related work

2.1 Requirements change classification

As far as the authors are aware, there is no existing study

that uses an empirical basis for the evaluation of require-

ments change classifications. This is substantiated in a

comprehensive literature review of change-based studies

undertaken by Banested [11]. In that review, three primary

Table 1 Requirements change source domains

Change

domain

Description

Market Differing needs of many customers, government

regulations

Organisation Changing strategic direction of a single customer,

customer organisation considerations, political

climate

Vision Change to the problem to be solved, product

direction and priorities, stakeholder involvement,

process change

Specification Change to the specification of the requirements of

the established problem, resolution of ambiguity,

inconsistency, increased understanding

Solution Change accommodating new technical

requirements, design improvement, solution

elegance

134 Requirements Eng (2012) 17:133–155

123

objectives for empirical studies of requirements change are

identified, among them the characterisation of evolution. A

traditional classification of change during software devel-

opment includes the categories add, modify, and delete. A

number of alternative classifications have been proposed,

focused upon software development, maintenance, or both,

which often have the intention of meeting different

objectives.

Much empirical and theoretical work focused upon

software maintenance reuses or builds upon Swanson’s

classification [12] which includes corrective, adaptive, and

perfective changes. Chapin et al. [13] provide a thorough

review of literature referring to maintenance change types

and propose a comprehensive classification combining a

focus upon activity (such as enhancement, performance

improvement, and consideration of future maintenance)

with what is being changed (such as interface, properties,

and business rules). This dual approach to classification

echoes that of Kemerer and Slaughter [14] who intend their

observations to contribute to a theory of software evolution

and derive their change classification from empirical data

of 25,000 requirements changes. With the objective of

providing a list of change types to support impact analysis,

regression testing, estimation, or software re-use, a number

of classifications have been proposed which primarily

concern what is being changed. These include domain-

specific business features [15], object-oriented elements

(such as classes, interfaces, methods) [16], and a distinction

between deep structure and semantic changes [17].

By contrast, a classification that will support the needs

of change anticipation must give consideration to the cause

of the change. A categorisation of change types thus

focused is presented by Harker [18] who divides empiri-

cally gathered requirements changes occurring during

software development into five categories depending upon

the source of the change—fluctuations in the organisation

and product market environment, increased understanding

of requirements, consequences of system usage, and

changes necessary due to customer migratory or adaptation

issues. Based on Harker’s study, an appraisal by Som-

merville [19] includes compatibility requirements relating

to business process change in place of migratory and

adaptation issues. Working from data held in a change

control database within an industrial setting, Nurmuliani

[20] catalogues software development volatility by type

(addition, subtraction, deletion), origin, and reason for

change. Noting that most change requests used in the study

had little information about the reason for change, a further

study was undertaken to classify the recorded changes [21].

This resulted in a list of ‘super-ordinate constructs’ clas-

sified by reason for change—product strategy, hardware/

software environment changes, scope reduction, design

improvement, missing requirements, clarification changes,

testability, and functionality enhancement. A later study

[22] added change sources of internal and external. Clearly,

there is dissimilarity in the terminology used in these

cause-focused classifications, and it would seem at first

sight that studies to date have little commonality. This may

be due to the different contextual basis of the studies, or

perhaps that classification was established at different

levels. It is possible, for example, that Nurmuliani’s change

reason of ‘missing requirement’ is included within Har-

ker’s change source of ‘increased understanding’.

The derivation of the taxonomy, which is the focus for

the case studies presented in this paper, used the expert

knowledge of experienced project managers to consolidate

and classify 73 change source constructs elicited from the

cause-focused classifications described above [18, 19, 21]

in addition to other empirical studies including [2, 9].

Using individual card sorting and workshops, a classifica-

tion of change sources was derived comprising the five

change domains illustrated in Table 1. In addition, an

important distinction was made between constructs relating

to a situation such as ‘insufficient stakeholder involvement’

and those relating to an event such as ‘business process

change’. A full taxonomy relating the domains in Table 1

to uncertainties (situational constructs) and triggers (event

constructs) can be found in the ‘‘Appendix’’. With the

initial focus on software development, the taxonomy was

extended to include the maintenance phase of a project

[23].

The constructs in the requirements change source tax-

onomy bear little synergy with change reasons derived by

Nurmuliani [21] as many of these reasons such as ‘missing

requirement’ and ‘new functional feature’ were considered

to be consequences of other events, rather than sources of

change. However, Nurmulianis ‘external’ change source

[22] bears semblance to Harker’s ‘mutable’ class defined as

‘‘changes that arise in response to demands outside the

system’’ and is comparable to the combined market and

customer organisation domain sources. By making the

distinction between changes that occur in response to

market demands and those answering to customers’

organisational considerations, the taxonomy reflects the

difference between customer-driven and market-driven

software development. Harker’s ‘emergent’ requirements,

‘‘direct outcomes of the process of engagement in the

development activities’’, correspond to constructs in both

the project vision and requirements specification domain.

Differentiating between the domains of project vision and

requirements specification reflects the difference between

variation in the product to be developed and change due to

better understanding of the problem. The solution domain

has no direct parallel in any classification but reflects the

reality that changes to the technical solution, though per-

haps less visible, pose a risk to timely development. The

Requirements Eng (2012) 17:133–155 135

123

means of taxonomy derivation was empirical in contrast to

the theoretical approach taken by Perry [24], who states

that the needs of a software system must address a number

of realms. However, it is possible to draw sensible com-

parison between Perry’s ‘real world’ and the domains of

‘market’ and ‘organisation’, his ‘model of the real world’

with the domain of ‘vision’, his ‘system requirements’ with

‘requirements specification’, and his ‘technical theory’

with ‘solution’.

2.2 Empirical studies of requirements volatility

during software development

While there are many studies focused upon software evo-

lution (see [11]), these concentrate upon changes made

between consecutive software product releases. Further to

those change classification studies discussed in the previ-

ous section, there are few experience reports of require-

ments change during software development. An

investigative survey [9] concluded that requirements vol-

atility has a significant impact on schedule and cost over-

run, but can be constrained by effective communication,

definable methodology, and requirements inspections.

These findings are echoed by Ferriera et al. [8] in a survey

completed by over 300 software development practitioners,

who also note that higher levels of project maturity appear

to reduce volatility. Jones [4] recommends elicitation and

inspection techniques for mitigating the negative effects of

volatility. However, Weiss [25] observes that more than

75 % of changes took a day or less to make and that rel-

atively few changes resulted in errors. In a case study using

change request data, Nurmuliani [22] reports a significant

positive correlation between changes coming from external

sources and the effort required to make those changes.

Weiss [25] further discerns that while changes are non-

localised with respect to individual components, they are

localised with respect to subsystems, with the majority of

changes being made in one or two subsystems. From a

different perspective, Nakatani et al. [26] consider that

different types of requirements mature at different times in

the development process, and recommend the categorisa-

tion of groups of requirements according to maturation.

2.3 Requirements change prediction

From case study data collected in retrospect on fourteen

Use Case Models (UCM) comprising 39 use cases, Lo-

console [1] observed a significant correlation between the

number of lines in a UCM and requirements volatility, and

recommended modularization of larger UCMs. In contrast

to the predictive approach by correlation, a number of

researchers are seeking to develop and evaluate more

complex causal relationships [27–29]. In particular, Fenton

[29, 30], whose causal models were engineered to predict

defect rates, argues that many models using small numbers

of prediction variables ignore ‘causal’ factors such as

programmer ability, or design quality. Further, models that

reflect true causal mechanisms facilitate understanding and

explanation as well as prediction. Most illuminating about

Fenton’s work is the observation that results of studies to

examine the relationship between requirement complexity

and defect rate disagree entirely and argues that without

including some measure of ‘testing effort’, the relationship

between complexity and defect rate is arbitrary [30].

3 Research approach

The two case studies presented here are part of a sequential

family of studies [31] in which research questions are

formulated at each stage to deepen our understanding and

support our overall goal. The first case study was designed

prior to the commencement of the software development

project, and conducted during the entire lifecycle. Once

data analysis was underway, we began the process of

determining research questions for the next sequential case

study that would support progress towards our longer-term

goal of requirements change anticipation. Both case studies

were designed in accordance with the case study guidelines

outlined by Runeson and Host [32], which reviews termi-

nology from other sources such as Wohlin et al. [33] and

Yin [34] and adapts them for Software Engineering

research. They provide recommended practices and an

extensive empirically derived and evaluated 50-point

checklist to support case study research, which includes

items relating to the design of the case study, data collec-

tion, analysis, and reporting. Both case studies are single-

unit studies, in which the unit of analysis in the first is the

change and in the second is the requirement. Although they

were based upon the same project, they were carried out

sequentially and had differing data collection protocols that

are detailed below.

3.1 Case study context

3.1.1 Organisation

Our industrial partner in this research employs 300 staff,

has offices in England and Ireland, and delivers IT solu-

tions to clients across both the public and private sectors.

Most of their contracts involve a single customer, and

roughly 80 % of these relate to governmental work. Of

importance to collaborative research, their involvement is

supported by both upper and middle management and

reflects their stated initiative to become a centre of project

management excellence.

136 Requirements Eng (2012) 17:133–155

123

3.1.2 Project

The project of interest in this study is in the government

sector, has an estimated cost in excess of a million pounds,

comprises on average 15 software developers and analysts,

and follows a traditional waterfall lifecycle. Beginning in

April 2009, the project was completed in August 2010 and

data for the first case study were collected during the entire

development lifecycle. Since the software development

work was the result of a successful tender, at the com-

mencement of the project, the requirements made available

to the software provider during that tendering process

became the basis of the initial requirements specification

effort. There were four main stakeholder groups involved,

comprising the software provider and three departments on

the customer side.

3.2 Identification of detailed research questions

and data specification

3.2.1 Case study 1: Is the taxonomy an informative basis

for change measurement?

As well as supporting the needs of the academic objective,

the data to be collected will also replace the company’s

existing change control database and be used for project

retrospective analysis. Effort was therefore required to

clearly identify the research questions and define mutually

expedient case study data. With our industrial partner, the

goal question metric (GQM) approach [35] was largely

adhered to in order to firstly articulate research questions

and secondly identify the case study data. Past change data

were used as the basis of discussion, and this was supported

by UML modelling of project processes and work products,

which enabled the identification of the possible values of

the variables under study. A researcher and two project

managers were present at these meetings.

In addition to examining the cost and value of change,

our industrial partner was interested in other issues that

were considered to be important for change management.

As well as discovering when change was happening, and

whether it represented an opportunity to add functionality

or attend to a defect in the requirements specification, they

wanted to determine whether a greater number of involved

stakeholders influenced the number of changes seen. Also

of concern was the level of control that the project manager

had of change discovery. In other words, ‘with hindsight

could/should this change have been discovered earlier’

perhaps by the use of alternative techniques or additional

resources?

To answer RQ1 ‘‘Is the taxonomy an informative basis

for change measurement?’’ the following detailed ques-

tions are addressed:

Across change domains, is there a significant difference

in:

RQ 1.1 change cost;

RQ 1.2 change value;

RQ 1.3 proportion of opportunity versus defect-related

change;

RQ 1.4 the number of stakeholders involved in agreeing

the change;

RQ 1.5 the activities during which changes are found;

and

RQ 1.6 the level of project management control?

The selection and practical implementation of metrics to

answer the research questions was not straightforward. In

the main, a pragmatic approach was taken, which often

required compromise between research and practice. It was

considered too labour intensive to include metrics for

change KLOC, or function points. However, it was also

noted that ‘change cost’ was not always reflective of

change size, since average change costs may increase as

the project progresses due to supportive documentation and

architectural rework as well as increased functionality. The

addition of the data item ‘phase’ (Requirements Specifi-

cation, Design and Code, System Test, User Acceptance

Test) was included to allow temporally staged cost com-

parison. Cost was measured in days and defined as the

difference between any unused portion of the previous

estimate (if it existed) and the effort required to implement

the change. This was agreed between the customer and the

software development organisation. Expressing value in

monetary terms was impossible in most situations. How-

ever, the customer had used the consideration of business

value previously to prioritise requirements, so a Likert

scale, subjectively assessed by the customer, was employed

instead. Perhaps not surprisingly, particularly towards the

latter phases of the project, the customer and software

provider experienced increased difficulty in coming to

agreement about whether the change represented an

opportunity to add functionality or to address a defect in

the requirements specification. This was evidenced in cases

where the customer was expecting functionality not stated

explicitly within the agreed documentation. Therefore, an

allowable value—‘Undefined’—was added to the original

allowable values of the ‘opportunity?’ data item. Values for

‘project management control’ were provided by the project

manager. The additional data items ‘trigger’ and ‘domain’

were added to relate changes to the change domains in

Table 1. No classification scheme had been previously

used by the company, though ad-hoc reasons for change

were included in descriptive text.

Given the need to define an agreed and standardised list

of activities to facilitate analysis, UML modelling sessions

led by the researcher and involving project managers as

Requirements Eng (2012) 17:133–155 137

123

available gave rise to the production of an activity diagram

and a domain model that captured the development pro-

cesses and work products. These were used during data

review as a basis for communication and understanding.

The data specified (excluding those relevant only to prac-

tice such as originator, dates) are illustrated in Table 2.

It will be noted that many of the data items are sub-

jective measures. While appreciating the limitations

imposed by non-objective measurement upon the analytical

significance of results, the collection of subjective mea-

sures is becoming more widely accepted and advocated

[36, 37]. In this case, some of these items, such as cost and

opportunity/defect, constituted a contractual agreement

between the customer and the software development

organisation and were the basis for customer invoicing.

3.2.2 Case study 2: Do attributes of requirements

predispose them to change and are they similarly

prone to changes in all domains?

Rather than software application–specific attributes such as

‘financial system interface’, the intention was to identify

generic qualities that could be attributed to any set of

software requirements, so that results may support the

formulation of general predictive models. Once again using

the GQM approach [35], a project manager and senior

analyst identified requirement qualities that, in their opin-

ion, were most likely to give rise to change. A potential list

of six attributes were identified, and reduced to require-

ments dependency, complexity, and novelty, to reduce data

collection effort. Those not included in this study are

framework (COTs) usage, business criticality, and number

of involved stakeholders. It was felt that both novelty and

complexity had a technical as well as a business faculty. To

answer our question ‘‘Do attributes of requirements pre-

dispose them to change and are they similarly prone to

changes in all domains?’’ the following detailed questions

are addressed:

RQ 2.1 Do requirements that have a high volatility in

one domain also experience high levels of volatility in

others?

Does requirement volatility correlate with

RQ 2.2 requirement dependency;

RQ 2.3 requirement business complexity;

RQ 2.4 requirement technical complexity;

RQ 2.5 requirement business novelty;

RQ 2.6 requirement technical novelty?

The data were to be collected solely for the purpose of

research, and as such ease of collection was an important

Table 2 Data specification for requirements changes (case study 1)

Name/research question Description Allowable values

ID Unique identifier

Trigger (RQ 1.1–1.6) Change source trigger e.g. Change to business case,

Increased customer understanding, new technology

available (nominal, objective)

A complete list can be found in the ‘‘Appendix’’

Domain (RQ 1.1–1.6) Change source classification. This was derived where

possible from the trigger using the taxonomy in

‘‘Appendix’’ and reviewed (nominal, objective)

Market, organisation, vision, specification, solution

Cost (RQ 1.1) Change cost expressed in days (ratio, subjective)

Phase (RQ 1.1) Project phase when change identified (nominal,

objective)

Requirements (Req), design and code (D&C), system

test (SysTest), User Acceptance Testing (UAT)

Value (RQ 1.2) Business value to the customer (ordinal, subjective) Very low, low, medium, high, very high

Opportunity? (RQ 1.3) Opportunity or defect (nominal, subjective) Opportunity, defect, undefined

Stakeholders (RQ 1.4) Number of stakeholder roles involved agreeing the

change (ordinal, objective)

1, 2, [2

Discovery_activity (RQ

1.5)

Activity during which change was identified (nominal,

objective)

Provide business case, define goals, define vision, derive

initial requirements, define functional requirements,

define technical requirements, define quality

requirements, balance requirements, approve

requirements, define manual processes, derive system

requirements, specify scenarios, define architecture,

build and unit test, system test, specify UAT, perform

UAT, implement solution

Project_manager_control

(RQ 1.6)

Project manager’s control of change identification

(ordinal, subjective)

Very low, low, medium, high, very high

Description Free text—qualitative

138 Requirements Eng (2012) 17:133–155

123

consideration during data specification. Rather than a

Likert scale for each subjective data item, a short

description for each allowable value 1–5 was identified by

our industrial collaborators (see Table 3) enabling agree-

ment between individual data collectors. The changes

recorded in case study one were attributed to the appro-

priate requirements, and change frequency and cost for

each requirement were calculated. For simplicity, the cost

of a change was divided equally among the involved

requirements.

Following Barry, who advocates that a measure of

volatility should include dimensions of amplitude as well

as frequency [38], we calculate relative percentage vola-

tility by dividing the change cost by the original cost

estimate. Change frequency can be calculated for each

requirement by counting the number of changes. However,

the focus of our analysis is upon change cost, since this

better reflects the size of the change and is considered by

our industrial partner to be a greater risk to timely and cost-

effective software development. Since change cost was

defined in case study one as (revised cost—unused original

estimate), our definition of volatility for each requirement

is as follows:

Relative volatility

¼
P
ðrevised cost� unused previous estimateÞ

original estimate
� 100

This yields a volatility for each requirement, which is

reflective of the extent of change to that requirement during

the entire development lifecycle. In order to compare

requirements volatility in each change domain, there are

five measures of volatility as follows:

Vol(tot) = Total volatility for each requirement

Vol(domain 1–4) = Volatility for all changes where

‘domain’ is one of those specified in the change source

taxonomy evaluated in case study one (Organisation,

Vision, Specification, Solution).

3.3 Data collection protocol

Data for the first case study were collected for the duration

of the development lifecycle. As changes were discovered,

data were collected on a spreadsheet, by either the project

manager or the senior analyst. Initially, bi-monthly meet-

ings took place wherein a researcher and one member of

the project team reviewed the changes gathered, though

these became less frequent due in part to the urgency of

project delivery. Data were made available for research at

the end of each project phase, though the analysis did not

begin until the end of the project. The data was owned by

the company until project sign-off, whereupon the

company removed any company-confidential data before

the transference of the data spreadsheet to the researchers.

Upon project completion, the data for case study two

were gathered. Requirements data were extracted for all

240 requirements from the requirements specification

documentation by the project manager and technical

architect, who each worked independently on a subset of

requirements. These were entered into a spreadsheet, and

in situations where there was uncertainty about individual

data items, it was agreed by all parties that they would be

left blank, and reconsidered during data validation.

3.4 Data validation

Since change data in the first case study were collected as it

occurred, not only were the data fresh in the minds of the

practitioners, but there were opportunities for data review

by a researcher during the project lifecycle. We believe

these factors contributed significantly to the quality of the

data. Effort was made to ensure that correct values had

been entered against each change record collected in case

study one. Data triangulation is a process by which an item

of data is verified from two or more sources, either by two

participants (observer triangulation) or by two means of

data collection (methodological triangulation) [32]. This

increases the precision of empirical research especially in

cases of subjective measurement [32]. Observer triangu-

lation was applied in the case of ‘cost’, and ‘opportunity’

by the customer and project manager and remaining data

items by project manager and senior analyst. Methodo-

logical triangulation between the qualitative ‘change

description’ and the quantitative factors was achieved

during the change review meetings with a researcher and

project manager. A number of changes, randomly selected,

were reviewed at these meetings. Roughly 60 % of changes

were re-examined, though data quality was high and only a

small percentage of changes were amended, usually due to

the completion of missing data items.

Once the spreadsheet of data from case study two was

made available for analysis, data were checked visually for

completeness. Since both practitioners were familiar with

all of the requirements, data items left blank by one par-

ticipant were requested from the other participant, and a

small sample of data was also sent for cross-validation.

3.5 Data review process

During the data review meetings in the first case study, in

addition to data validation, the trigger placement within

each change domain was reviewed and the taxonomy

amended as required. For example, the change trigger

‘New Market Technology’ was added to the domain of

market to differentiate it from the trigger ‘New technology’

Requirements Eng (2012) 17:133–155 139

123

Table 3 Data specification for requirements (case study 2)

Name/research question Description Allowable values

ID Unique identifier

Change ID (s) (RQ 2.1–2.6) Change identifiers

Cost (RQ 2.1–2.6) Effort estimate of original requirement

expressed in days (ratio, subjective)

Dependency (RQ 2.2) Pervasiveness of requirement (ordinal,

subjective)

1. Requirement has no dependency to any others

2. Requirement has dependencies with non-functional

requirements, for example, security, performance

3. Requirement may have dependencies upon non-

functional requirements and also dependencies to

other requirements within a single business functional

area, e.g. maintain address, manage messages

4. Requirement had dependencies to other requirements

within a single business function and consumes

services from generic components (those without

business rules)

5. Requirement is a consumer of many other requirements

throughout the solution

Business complexity

(RQ 2.3)

Difficulty of requirement expression by

the customer (ordinal, subjective)

1. Simple—can be captured with a checklist

2. Some thought needed of documented process

3. Multiple pages captured via use cases with only a few

variant flows

4. Requires an experienced user. Multiple variant business

flows that need supporting documentation styles

5. Very challenging requiring an experienced user. Multiple

media and techniques such as animation, wire frames,

prototypes

Technical complexity

(RQ 2.4)

Difficulty of technical solution (ordinal,

subjective)

1. Simple—set of parameters to proven code

2. Some thought needed—linear script met by one single

language/tool/product

3. Either uses many technologies, new/untried technologies

or has many interfaces

4. Requires two of: many technologies, new/untried

technologies, many interfaces

5. All three of: many technologies, new/untried

technologies, many interfaces

Business novelty (RQ 2.5) How novel is the requirement to existing

business processes? (ordinal, subjective)

1. Part of day job

2. Occasionally used

3. Occasionally used but not in this job

4. Familiar with concept

5. Entirely new idea

Technical novelty

(RQ 2.6)

How novel is the technical requirement to

the design, build and test teams?

(ordinal, subjective)

1. Very similar to something done before by many of the

team

2. Some of the team have done something similar

3. We have examples but no direct experience

4. We are aware that something similar has been done

before but we have no examples

5. We believe we may be able to do this but we aren’t sure

how

Cost total changes

(RQ 2.2–2.6)

Total cost of all changes made to that

requirement (ratio, calculated from

‘cost’)

Domain change cost

(RQ 2.2–2.6)

Cost of changes in each domain made to

that requirement (one data item for each

domain) (ratio, calculated from ‘cost’)

140 Requirements Eng (2012) 17:133–155

123

residing in the solution domain. Also, some overlap

between triggers in the specification domain and those in

the vision domain were identified. For example, ‘Increased

Customer Understanding’ could change both the vision and

the specification. A revised taxonomy can be found in the

‘‘Appendix’’.

3.6 Analysis procedures

Descriptive tables and graphs are complemented by statis-

tical methods to test data relationships in order to answer the

research questions. These procedures were selected on the

basis of underlying distribution and variable scale assump-

tions. Data pertaining to change cost did not follow a normal

distribution (see results Sect. 4.2 ‘The Cost of Change’), and

many of the data items have a nominal (categorical) scale as

indicated in Tables 2 and 3. What follows are short

descriptions of the appropriate statistical test, and the

research questions that they are employed to address.

3.7 Statistical methods

The Kruskal–Wallis test allows the comparison of groups of

data scores (ordinal or scale type) and tests whether the

scores could be thought to come from different groups, that

is, that there is a significantly different central tendency for

each group. Simply put, when data do not conform to a

normal distribution (as is the case with the change costs

recorded in case study one and the volatility used in case

study two), using this test is one of the ways groups can be

compared without reference to mean values. This test uses

score rankings in place of actual scores to perform the

statistical test. Post hoc procedures include the examination

of pairs of groups to determine where the main differences

lie (Mann–Whitney test). These tests will be used to

examine the change costs observed for changes within each

change domain (research question 1.1). The chi-squared test

looks for relationships between two categorical variables,

by comparing the observed frequencies in certain categories

with expected frequencies. This test is appropriate for

examining the ordinal scale for value as well as the nominal

variables selected to represent managerial considerations

(research questions 1.2–1.6). Spearman’s rho is also based

upon ranks rather than scores, and tests for correlation

between two sets of data that do not display a normal dis-

tribution. We can test for positive or negative correlation

(two-tailed), or positive correlation only (one-tailed). A

one-tailed test is used to determine whether requirements

that have a high degree of change in one domain also have a

similarly high level of change in other domains (research

question 2.1). A two-tailed test is used to explore the cor-

relation between requirement dependency, complexity and

novelty, and volatility (research questions 2.2–2.6). The

reader is referred to [39] for details of these tests.

3.8 Limitations of study validity

Following Yin [34], Runeson [32] identifies four aspects of

validity which may limit the trustworthiness of the

results—construct, internal, external, and reliability. Con-

struct validity reflects the extent to which the data speci-

fication is similarly understood by all parties involved, and

accurately meets the needs of the research question. Since

the data were discussed and specified through meetings

with researcher and practitioners, there is a shared under-

standing of the meaning of the data items. They were

defined specifically to answer the questions in these stud-

ies. In the first case study, two of the four subjective

measures (‘cost’ and ‘opportunity’) were agreed by two

roles (customer and software development project manager

or analyst), ensuring agreement of both interpretation and

collection. Similarly, in the second case study, all sub-

jective measures involving cost (those collected and those

derived) were agreed between two practitioner roles. The

remainder of the subjective measures in the second case

study was collected by only one participant. However, a

subset of data collected by each practitioner was sent to

another practitioner for validation, which resulted in no

changes.

Internal validity is of concern when causal relations are

examined, given that a third invisible (confounding) factor

that is not included in the study may affect the results. The

first case study is not concerned with causal relations.

However, the second begins our investigation of

Table 3 continued

Name/research question Description Allowable values

Volatility (RQ 2.2–2.6)
P
ðchange costÞ

original estimate
� 100 (ratio, calculated

from ‘cost’)

Domain volatility

Vol(Org), Vol(Vis),

Vol(Req Spec), Vol (Sol)

(RQ 2.2–2.6)

Volatility for each domain (four data

items) (ratio, calculated from ‘cost’)

Requirements Eng (2012) 17:133–155 141

123

requirements change causality through the examination of

correlation. In this instance, care has been taken with

regard to causal claims, and awareness of the presence of

confounding factors, especially in the light of other

research, enriches our understanding of results.

No claims to external validity can be made, in that

without study replication, it is impossible to draw conclu-

sions about the application of results to software develop-

ment environments that are different to the study context

described here. Ideally, this study should be replicated

firstly within a similar context for results comparison

before applying it in alternative software development

environments. Subsequently, widening software develop-

ment context reflects Sjoberg’s recommendation [40] to

‘‘formulate [research] scope relatively narrowly to begin

with and then extend it gradually’’.

Attempt has been made to ensure study reliability which

is defined as ‘‘the extent to which the data and analysis are

dependent upon specific researchers’’ [32]. Threats to this

aspect of validity are, for example, if it is not clear how

data were specified and collected. Details of data specifi-

cation and collection protocol are provided for use by other

researchers. Efforts were made to encourage a high level of

data quality through data reviews with a practitioner and a

researcher and cross-validation (where a second industrial

participant checks the data collected). While the results

rely upon subjective measures, the participants in this study

can be considered experts since their knowledge of both the

business and the software development domain is exten-

sive. All participants have at least 10 years’ experience in

their respective software development roles and at least

5 years’ experience of software application development

within the government sector.

4 Results

4.1 Overall look at changes during the developmental

lifecycle

From project inception to delivery, over a period of

16 months, a total of 282 requirements changes were

recorded, at a cost of 2,405.5 days effort which represents

more than 50 % of the final project cost of 4,222 days.

Table 4 illustrates the phase during which these changes

were discovered, and the change source domain. Since the

project followed a strict traditional waterfall process, the

phases are temporally contiguous.

As can be seen, a high proportion of these changes

occurred during the User Acceptance Testing and Design

and Code phases of the project. Since this was a project

intended for a particular customer- rather than a market-

based initiative, it is not surprising that there is only one

market change (which related to following market trends in

COTS usage). This change (costing 30 days effort) was

removed for all subsequent analysis and means that this

study is limited to the examination of the remaining four

change domains. In addition, changes involving only

requirement deletions (12) at zero cost are excluded from

future analysis, reducing the total number of changes

considered from 282 to 269.

4.2 The cost of change

The analysis of change cost discounts the 12 deleted

requirements. Figure 1 illustrates the frequencies of change

costs for the entire project across all change domains.

Change cost is not normally distributed (Shapiro–Wilk

W = 0.669, p \ 0.001) and is highly positively skewed

due to the lower limit of zero cost being fixed. Since the

examination of mean values for cost is therefore less

meaningful, future analysis uses the median values as

representation of central tendency.

Table 5 shows a breakdown of these costs as they per-

tain to project phase and change domain. Although the

most significant cost was experienced during the initial

phase of requirements confirmation, a high percentage of

change cost occurred during User Acceptance Testing

Table 4 Number of changes per phase per domain

Req. D&C SysTest U.A.T. Total

Market 0 1 0 0 1

Organisation 30 4 0 0 34

Vision 15 1 1 7 24

Specification 22 58 5 102 187

Solution 0 33 3 0 36

Total 67 (24 %) 97 (34 %) 9 (3 %) 109 (39 %) 282

Cost (Days)

C
o

u
n

t

Fig. 1 Frequencies of change costs across all change domains

142 Requirements Eng (2012) 17:133–155

123

(38 %). By far, the largest percentage of cost came from

the specification domain (46 %).

Figure 2 illustrates a comparison between median and

total cost for each change domain. While total costs are

significantly higher in the specification domain, the medi-

ans of these costs illustrate that on average changes due to

organisation changes are the most expensive, followed by

changes to the vision, then specification, and with the

lowest average cost being in the solution domain. The

Kruskal–Wallis test indicated that the differences are sig-

nificant (H(3) = 75.038, p \ 0.001) to the extent that these

changes could be thought of as coming from different

groups. While this indicates that there is a difference

overall, it does not inform us of where the major differ-

ences lie. Performing selected Mann–Whitney tests to test

for differences between adjacent domains reveals that the

median of the domain of organisation does not vary sig-

nificantly to that of vision (U = 229.5, z = -1.787,

p [0.05), but that vision differs from specification

(U = 851.500, z = -4.879, p \ 0.001) and similarly

specification differs from solution (U = 1,901, z =

-4.006, p \ 0.001). Since costs change over time, it is

useful to explore the differences in domain costs for each

phase of the project.

Figure 3 shows median change costs for each domain in

each phase. It can be seen that the trend in all domains is

generally reflective of the results we saw when all phases

were included, with the most expensive changes occurring

in the organisation domain and the least expensive in the

solution. Costs tend to fall in the second and third phases

and in the case of the vision and specification domain rise

sharply during User Acceptance Testing. From quantitative

data alone, it is impossible to assess whether this rise in

cost is due to increased change size (more function points

per change) or rework of existing code and architecture.

Performing the Kruskal–Wallis test on phase one data

alone indicates that there is significant difference in the

costs in the three domains of organisation, vision, and

specification (H(2) = 15.239, p \ 0.001).

Similarly, overall cost medians are significantly differ-

ent in phase two (H(3) = 10.692, p \ 0.05). As can be

seen though, there is no difference in this phase between

costs in the domains of specification and solution. It is not

possible to do median comparisons for phases three and

four due to insufficient data.

The results support an affirmative answer to RQ1.1,

‘‘Across change domains, is there a significant difference in

change cost?’’ Change costs are not consistent across

change domains; the most expensive changes come from

the domain of organisation and costs decrease through the

domains of vision, specification, and solution.

Table 6 illustrates the proportion of subjectively asses-

sed value accruing from these changes across the change

Fig. 2 Median and total cost for each change domain

Table 5 Change cost per phase per domain

Req D&C SysTest UAT Total

Organisation 638.0 64.0 0.0 0.0 702.0

Vision 266.0 5.0 2.0 163.0 436.0

Specification 193.9 222.0 4.5 737.0 1,156.5

Solution 0.0 78.0 2.5 0.0 81.0

Total 1,097.0

(46 %)

369.5

(16 %)

9.0

(0.4 %)

900.0

(38 %)

2,375.5a

a Excludes market change at a cost of 30 days

Fig. 3 Median change costs per domain per phase

Requirements Eng (2012) 17:133–155 143

123

domains. Just over half of all changes are of a very low

value (51 %), and of those, the greatest proportion (74 %)

was in the specification domain.

The highest value changes are only in the domains of

organisation and vision. By contrast, most of the changes

in the solution domain are of very low value (91 %) A chi-

squared test (performed with value ‘high’ and ‘very high’

changes added together due to low frequencies in these

groups) reveals that there is an uneven distribution of

values across the four domains (X2(9) = 144.354,

p \ 0.001).

These results indicate a positive answer for RQ1.2,

‘‘Across change domains, is there a significant difference in

change value?’’ From the perspective of value, these

requirements changes could be thought of as coming from

different groups according to the change domains specified.

The highest value changes come from the domain of

organisation and the lowest from solution.

4.3 Opportunity/defect

Changes can represent opportunities to enhance function-

ality as well as correction of previous errors. Table 7

illustrates how these are spread across the change domains.

Changes representing an opportunity comprise the majority

of changes in the domains of organisation (89 %), vision

(75 %), and specification (57 %) and represent a total cost

of 1,677 days effort.

Defects costing a total of 559 days effort are more often

the cause of change in the solution domain (56 %). When

the customer and software provider have not been able to

arrive at an agreement about whether the change represents

an opportunity or a defect, it has been referred to as

‘Undefined’. In this case, most of these changes were

related to assumptions regarding functionality implemen-

tation methods. They represent a small proportion of all

changes (\10 %), have a cost of 139.5 days effort, and are

mostly in the specification domain. The chi-squared test is

significant (X2(6) = 21.662, p = 0.001), confirming that

there is an uneven distribution of opportunity change

across these change domains.

In answer to RQ 1.3, ‘‘Across change domains, is there a

significant difference in the proportion of opportunity-

versus defect-related change?’’ these results show that the

proportion of changes representing an opportunity as

opposed to a defect are not evenly spread across domains.

Opportunity change is more often seen in the domains of

organisation and vision, while defects predominate the

domains of specification and solution.

4.4 Number of stakeholders

As the software provider was considered a stakeholder,

changes involving only one stakeholder were either those

that required decisions to be made without customer

involvement or those where a single customer stakeholder

group was able to make changes that required only

agreement rather than negotiation with the software pro-

vider. A stakeholder number of ‘3’ means three or more

stakeholders groups involved in agreeing the change.

Table 8 illustrates stakeholder groups involvement in each

change domain. In all domains, there is greater proportion

of changes requiring more than one stakeholder group.

(89 % of organisation changes, 96 % of vision changes,

90 % of specification changes, and 56 % of solution

changes).

However, in the domains of organisation and vision,

there are proportionally more changes requiring the

involvement of three or more stakeholders (22 and 33 %,

Table 6 Change value per domain

Value

Very low Low Medium High Very high Total

Organisation 0 7 9 5 6 27

Vision 2 9 11 0 2 24

Specification 102 64 13 3 0 182

Solution 33 2 1 0 0 36

Total 137 (51 %) 82 (30 %) 34 (13 %) 8 (3 %) 8 (3 %) 269a

a Market change and changes representing requirements deletions removed

Table 7 Numbers of changes by domain categorised as opportunity,

defect, or undefined

Opportunity Defect Un-defined Total

Organisation 24 2 1 27

Vision 18 5 1 24

Specification 104 62 16 182

Solution 13 20 3 36

Total 159 (59 %) 89 (33 %) 21 (8 %) 269a

a Market change and changes representing requirements deletions

removed

144 Requirements Eng (2012) 17:133–155

123

respectively) compared with the specification domain

(8 %) and solution (0 %). In the solution domain, we see a

greater proportion of single stakeholder changes (44 %)

than in any other domain. A chi-squared test indicates that

there is dissimilarity in these domains when considering

the numbers of stakeholder groups usually involved in the

change (X2(6) = 50.795, p \ 0.001). Interestingly, median

costs also rise as the number of involved stakeholders

increases. The median cost when one stakeholder group is

involved is 2 days effort, compared with 4 days for 2

stakeholders and rising sharply to 10 days for 3 or more

stakeholder groups.

These results indicate a positive answer to RQ 1.4,

‘‘Across change domains, is there a significant difference in

the number of stakeholders involved?’’ More often, a

higher number of stakeholders are involved with organi-

sation and vision change.

4.5 Discovery activity

As shown in Table 9, a high proportion of specification

changes were discovered during UAT (55 %), though

many of the organisation changes (63 %) and vision

changes (46 %) were discovered during the ‘define func-

tional requirements’ activity. Solution changes in the main

were discovered during build and test (64 %).

A visual analysis of these changes, presented in Table 9,

would suggest therefore that changes in different domains

are discovered during different activities in the develop-

mental lifecycle. However, there are insufficient data to

perform a chi-squared test for inequality of change dis-

covery activity spread among domains. Subsequent to this

case study and publication [10], this question was revisited

and the activities were grouped in order to reduce their

number. This resulted in the four activities contained in

Table 10. Demo (demonstration) was understood to be any

communication or review by any stakeholder of a part of

the application, either by presentation or by prototype

demonstration to any number of people. ‘Translate’

described the process of using a previously created work

product to create a new one, for example creating code

from specification. ‘Test’ is any activity related to testing,

and ‘external’ is an event outside of the remit of the project

manager. A high percentage (59 %) of organisation change

was discovered through external activity, whereas all

solution changes were discovered through translation

activities. Vision changes are more frequently discovered

through demonstration activities (50 %). A high percentage

of specification changes (63 %) were discovered through

activities related to testing. A chi-squared test confirms that

there is a significant difference between activities that

Table 8 Changes categorised as numbers of stakeholder groups

involved in agreeing change per domain

Stakeholder groups

1 2 3 Total

Organisation 3 18 6 27

Vision 1 15 8 24

Specification 19 149 14 182

Solution 16 20 0 36

Total 39 (14 %) 202 (75 %) 28 (10 %) 269a

a Market change and changes representing requirements deletions

removed

Table 9 Change discovery activity per change domain

Org. Vis. Spec. Sol. Total

Define vision 1 1 0 0 2

Define functional

reqs

17 11 14 1 43

Define technical

reqs

1 1 3 0 5

Balance Reqs 0 0 1 0 1

Approve bus reqs 1 0 0 0 1

Derive system

reqs

4 2 5 2 13

Specify scenarios 0 0 2 0 2

Define

architecture

1 0 0 2 3

Build and unit

test

0 1 25 23 49

System test 0 1 5 8 14

Specify UATs 0 0 26 0 26

Perform UAT 0 7 101 0 108

No activity 2 0 0 0 2

Total 27

(10 %)

24

(9 %)

182

(68 %)

36

(13 %)

269a

a Market change and changes representing requirements deletions

removed

Table 10 Change discovery event per change domain

Event Total

Demo Translate Test External

Domain

Organisation 7 4 0 16 27

Vision 12 7 1 4 24

Specification 7 61 114 0 182

Solution 0 36 0 0 36

Total 26

(10 %)

108

(40 %)

115

(43 %)

20

(7 %)

269a

a Market change and changes representing requirements deletions

removed

Requirements Eng (2012) 17:133–155 145

123

discover change in each of the domains (X2(9) = 265.4,

p \ 0.01).

These results indicate a positive answer to RQ 1.5,

‘‘Across change domains, is there a significant difference in

the activities during which changes are found?’’

4.6 Project management control

As stated, the process followed in this project adhered to a

waterfall approach wherein attempts are made to define all

requirements at the beginning of the project. ‘Project man-

ager control’ captures a subjective assessment by the project

manager regarding the ease by which these changes may

have been discovered earlier. It was felt that some changes

would have been impossible to find (project manager con-

trol = ‘very low’) even with improved techniques. An

example of a change such as this is changing the list of

Internet browsers that the system was intended to be com-

patible with, following an organisational study of browser

usage. By contrast, those that the project manager believed

may have been uncovered with more time, or different

techniques (project manager control = ‘very high’) would

include changes such as screen layout modification.

These results, illustrated in Table 11, indicate that all of

the changes over which the project manager has the most

control lie within the domains of specification and solution.

There is a proportionally greater volume of ‘very low’

control change in the domain of organisation (26 %) than

in vision (4 %), specification (2 %), and solution (3 %). As

it stands, the data are insufficient to perform a chi-squared

test. However, when project manager control = ‘very low’

and ‘low’ and project manager control = ‘high’ and ‘very

high’ are compressed into single categories, the data meet

the criteria necessary for this test and are significant

(X2(6) = 85.113, p \ 0.001), indicating that in general the

level of project management control differs according to

the domain from which the change arises.

These results indicate a positive answer to RQ 1.6,

‘‘Across change domains, is there a significant difference in

the level of project management control?’’ It was consid-

ered that a higher proportion of solution and specification

changes could have been discovered earlier by the use of

alternative approaches or techniques, while much organi-

sation and vision change would have occurred regardless of

the analysis effort.

4.7 Overall look at changing requirements

The developed application had a total of 240 requirements,

of which only 40 were change free. Per requirement, change

counts range from 0 to 16 with the mean being 3.5 changes

per requirement for the entire development lifecycle. How-

ever, on average, a requirement changes 2.5 times from

specification changes, in contrast to an average of less than

one in each of the other change domains. Figure 4 shows the

frequency of changes made to requirements. Thirty

requirements were subject to volatility (measured by cost,

see Sect. 3.2.2) greater than 500 %, and the highest volatility

recorded was 1,831 %. Figure 5 shows the frequency of total

volatility values per requirement.

A much higher percentage of requirements (75 %)

underwent changes coming from the domain of specification

compared to other domains where between 23 and 31 %

requirements were affected. Relating to Boehm’s observation

Table 11 Extent of management control over changes per domain

Project management control Total

Very low Low Medium High Very high

Organisation 7 4 16 0 0 27

Vision 2 3 18 1 0 24

Specification 3 13 126 31 9 182

Solution 1 1 5 18 11 36

Total 13 (5 %) 21 (8 %) 165 (61 %) 50 (19 %) 20 (7 %) 269a

a Market change and changes representing requirements deletions removed

Fig. 4 Frequency of total changes per requirement

146 Requirements Eng (2012) 17:133–155

123

[41] that 80 % of maintenance effort was absorbed by 20 %

software modules, a Pareto analysis reveals that 80 % change

cost actually involves 31 % of requirements. Interestingly,

80 % of organisation and vision-related rework were attrib-

uted to less than 11 % of the requirements. This is in contrast

to the 36 % of requirements contributing to 80 % of the

specification domain change cost.

4.8 Patterns of requirements volatility across change

domains

Further scrutiny of this Pareto analysis reveals that there is

no single requirement contributing to 80 % of the change

cost in all change domains. However, a one-tailed Spear-

man’s rho test1 reveals that there is a weak but significant

correlation between volatility in the domain of organisation

and all other change domains. {(Vol(org) and Vol(vision)

= 0.38, p \ 0.05; r (Vol(org) with Vol(req Spec)) = 0.21,

p \ 0.05; r (Vol(org) with Vol(sol)) = 0.14, p \ 0.05}.

There is no significant correlation between volatility in the

remaining domains. For example, a requirement experi-

encing vision volatility is not necessarily also subject to

specification domain changes.

The results suggest a negative answer to RQ 2.1, ‘‘Do

requirements that have a high volatility in one domain also

experience high levels of volatility in others?’’ There is a

weak correlation between volatility in the domain of

organisation and all other domains.

4.9 Requirement dependency

Figure 6 shows the distribution of median volatility by

requirement dependency for all changes. In this graph, and

all the graphs to follow, there are two measures illustrated.

The bars indicate the median volatility, and the line shows

a sum of the changes that occurred during the development

lifecycle. It is clear from this that a higher requirements

dependency gives rise to both increased change frequency

and higher volatility. This is reflected in the Spearman’s

rho test that identifies significant positive correlation

between dependency and Vol(tot) [r = 0.587, p \ 0.01]. A

further exploration of the domain-specific volatility reveals

a similar pattern (see Fig. 7), and Spearman’s rho confirms

that requirements dependency is positively correlated with

volatility in all domains [Vol(Org) = 0.563, p \ 0.01;

Vol(Vis) = 0.380, p \ 0.01; Vol(Req Spec) = 0.342,

p \ 0.01; Vol(Sol) = 0.203, p \ 0.01]. The strongest

correlations are with total volatility and organisation

volatility.

In answer to RQ 2.2, ‘‘Does requirement volatility cor-

relate with requirement dependency?’’ the results indicate a

positive correlation in all domains between requirements

dependency and requirement volatility.

4.10 Business complexity

There is a less clear relationship between business com-

plexity and volatility. Indeed, as can be seen in Fig. 8,

frequency of changes is highest when business complexity

is at level 2 (Value 2: ‘some thought needed …’ in

Table 3). A Spearman’s rho test confirms that there is no

significant correlation between business complexity and

any of our measures of volatility. [Vol(Tot) = -0.76,

p [0.05; Vol(Org) = 0.07, p [0.05; Vol(Vis) = 0.06,

p [0.05; Vol(Req Spec) = -0.71, p [0.05; Vol(Sol) =

0.07, p [0.05].

The results indicate a negative answer to RQ 2.3, ‘‘Does

requirement volatility correlate with requirement business

complexity?’’

Fig. 5 Frequency of volatility per requirement
Fig. 6 Median volatility for requirement dependency

1 For simplicity, the results of the Spearman’s Rho test replace ‘r’

with the associated volatility description.

Requirements Eng (2012) 17:133–155 147

123

4.11 Technical complexity

Once again, the distribution of volatility for technical

complexity (Fig. 9) is not straightforward and would seem

to suggest that less technically complex requirements are

changing more frequently and have higher rates of vola-

tility. The Spearman’s rho test confirms that both total

volatility and specification volatility are weakly negatively

correlated with technical complexity. There is no signifi-

cant correlation in the remainder of the domain volatilities.

[Vol(Tot) = -0.17, p \ 0.05; Vol(Org) = 0.1, p [0.05;

Vol(Vis) = 0.10, p [0.05; Vol(Req Spec) = -0.21,

p \ 0.01; Vol(Sol) = 0.144, p \ 0.05].

In answer to RQ 2.4, ‘‘Does requirement volatility cor-

relate with requirement technical complexity?’’ the results

indicate that technical complexity negatively correlates

with requirements volatility, but this correlation is not

observed in all change domains.

4.12 Business novelty

The somewhat confusing distribution illustrated in Fig. 10

not only reveals that though, in general, volatility is lower

for less novel requirements, the frequency of change is

higher. Further exploration of the distributions for change

domain volatilities reveals a contrasting distribution shape

between organisation volatility and specification volatility

(se Fig. 11). A Spearman’s rho confirms a moderately

strong positive correlation between organisation volatility

and business novelty and a weaker negative correlation

with specification volatility. [Vol(Tot) = 0.08, p [0.05;

Fig. 7 Median domain volatility for requirement dependency

Fig. 8 Median volatility for business complexity

148 Requirements Eng (2012) 17:133–155

123

Vol(Org) = 0.423, p \ 0.01; Vol(Vis) = 0.39, p \ 0.01;

Vol(Req Spec) = -0.25, p \ 0.01; Vol(Sol) = 0.27,

p \ 0.01]. There is no significant correlation with total

volatility, and the same is true for the remainder of change

domain volatility.

In answer to RQ 2.5, ‘‘Does requirement volatility cor-

relate with business novelty?’’ the results provide no evi-

dence that there is a correlation between total volatility and

business novelty. However, organisation volatility is pos-

itively correlated, while specification volatility is nega-

tively correlated.

4.13 Technical novelty

A more straightforward distribution of volatility is

observed when we consider the attribute technical novelty.

It can be seen in Fig. 12 that requirements with a higher

technical novelty have higher overall volatility. However, a

Spearman’s rho test is illuminating in that the only change

domain where volatility even weakly positively correlates

with technical novelty is the requirements specification

domain. [Vol(Tot) = 0.28, p \ 0.01; Vol(Org) = 0.07,

p [0.05; Vol(Vis) = 0.07, p [0.05; Vol(Req Spec) =

0.362, p \ 0.01; Vol(Sol) = 0.06, p [0.05]. There is no

significant correlation in any other domains.

In answer to RQ 2.6, ‘‘Does requirement volatility cor-

relate with technical novelty?’’ the results indicate a weak

correlation which is only evident in the domain of

specification.

5 Discussion of results

The analysis of data collected in the first case study data

has allowed us to assess whether there is any correlation

between the change taxonomy groups and change attributes

reflecting change size, value, stakeholder involvement, and

project management control. Results indicate that there is a

distinction between changes falling into the classifications

in this taxonomy. Not only do changes arising due to

customer organisation changes cost more on average and

accrue more value but they were also considered by the

participants to be more difficult to uncover, and generally

involve the agreement of a higher number of stakeholder

roles. This is in stark contrast to solution changes which are

in the main controllable and less costly than changes from

other sources. These results are in accordance with those of

Nurmuliani [22] who observed that changes coming from

sources external to the project require more effort to

implement. The implication of this analysis is that the

management approach and assessment of risk to project

schedule, cost, or quality should be reflective of different

type of changes, and that change measurement and moni-

toring would be more informative if classified in this way.

For example, to reduce the uncertainty associated with

higher risk of customer organisational change, it would be

necessary for project analysts to broaden the scope of

application analysis to wider organisational concerns. As

well as differences in cost and value, there are also dif-

ferences in management considerations between changes

due to vision changes and those coming from specification.

While it was possible to uncover changes from specifica-

tion issues during build and test, any vision changes not

already discovered were not found at this stage and

remained until User Acceptance Testing.

Maintaining change data in this way across multiple

projects would allow software providers to assess the

efficacy of analysis techniques and guide future process

selection decisions. For example, the high number of vision

changes discovered during hands-on system usage during

User Acceptance Testing may provide empirical support

Fig. 9 Median volatility for technical complexity

Fig. 10 Median volatility for business novelty

Requirements Eng (2012) 17:133–155 149

123

for the use of more agile techniques such as early proto-

typing or iterative development. Indeed, while it may be

the case that agile techniques assuage late vision change,

the observation that many specification changes were dis-

covered during build and test may imply that the onus is

upon analysis techniques as well as process procedures to

reduce the types of changes that arise from specification

issues.

Since a higher proportion of organisation and vision

changes represent an opportunity to enhance previously

agreed functionality as opposed to the correction of defects,

the taxonomy also captures the notion that some change

should be encouraged and some types of change avoided.

Despite the concerning fact that this project increased in

size by over 50 % due to requirement changes, over 70 %

of these changes represented an opportunity to enhance

previously agreed functionality rather than correct errors.

The results are visualised in Fig. 13. The arrow indicates

the tendency for increasing cost, value, and opportunity

change from the solution domain through the specification,

vision to the organisation domain. At the same, the level of

project management control is decreasing. While this study

did not investigate the changes arising from the domain of

market, it has been included here for completeness in

lighter shading. There is no direct mapping between a

requirement and an element in this taxonomy. A single

requirement can be thought to comprise a slice consisting

of elements of all 5 domains in differing proportions

depending upon the developmental phase and position

within the requirements hierarchy. Any requirement is

Fig. 11 Median domain volatility for business novelty

Fig. 12 Median volatility for technical novelty for all changes

150 Requirements Eng (2012) 17:133–155

123

therefore subject to change arising from any change source

domain.

The second case study set out to determine whether

there are identifiable attributes of requirements that render

them prone to change, and also investigated whether

requirements exhibited the same pattern of volatility in the

change domains evaluated in case study one. Representa-

tives of our industrial partner identified these requirement

attributes specifically because they expected that they

would give rise to changes. However, apart from require-

ment dependency, which positively correlated with all

measures of volatility, some of the results are counterin-

tuitive. That business complexity bears no correlation with

requirements changes raises the possibility of a con-

founding factor, and mirrors the observation by Fenton [29]

that complexity alone has an arbitrary relationship to

software defects. Most interesting, however, is the result

that technical complexity is negatively correlated with

volatility. Less technically complex requirements are

changing with more frequency and cost with respect to

their original cost estimation. Taken together, these results

indicate that a prediction of changing requirements will not

be achieved based solely upon the requirement attributes

examined in this study. Further consideration of more

complex causal factors, such as the process factors and

analysis techniques that have been found to correlate with

requirements volatility [8, 9], and also levels of effort and

ability thought to influence the likelihood of defects [30].

The results of this case study also deepen our under-

standing of the distinction between the change domains

contained within the requirements change source taxon-

omy. The implication from the results is that changes

coming from sources of organisation, vision, specification,

and solution are affecting different groups of requirements.

Requirements with a higher level of business novelty

change more often and with a higher change cost only from

changes coming from the domain of organisation. We may

infer that in addressing organisation change, there is

increased certainty that novel requirements meet business

needs, and as a result are less prone to other types of

changes. This inference is supported by the contrasting

observation that requirements with a lower level of busi-

ness novelty are changing more frequently from specifi-

cation changes. No such inference can be made about

requirements with a higher level of technical complexity

since there are no instances of a positive correlation with

volatility. However, the only domain in which there was a

negative correlation was specification, which, as we dis-

covered in the first case study, has a higher instance of

change from specification defects rather than opportunity.

Fenton’s argument [29] that more complex requirements

may be afforded more resource, and therefore are likely to

contain fewer (code) defects, is one possible explanation

for these results.

Figure 14 illustrates a simplified cause and effect dia-

gram that captures the salient implications of the results of

these two case studies combined with conclusions drawn

by other researchers. Clearly evident in the diagram is the

two-sided causal nature of requirements change, which is

reflective of the two types of constructs in the change

source taxonomy (see the ‘‘Appendix’’). These are

‘uncertainties’, which are situations that affect the dispo-

sition of a requirement to change, and ‘triggers’, which are

events that promote change discovery. In the first case

study, we attributed the event constructs to four activities

that are contained here within the box labelled ‘‘Trigger’’.

The curve over the arrows from the Change Triggers to the

‘Changes Found’ node indicates that only one trigger is

required in order to discover change. As discovered in the

second case study, apart from requirements dependency, no

single attribute correlates with requirements volatility in all

change domains. Previous studies have noted an influence

of environmental factors, software development process

and techniques, and effective communications upon

requirements change [8, 9]. Therefore, all factors are

causally relevant and must work in combination to affect

requirements uncertainty, as illustrated in the box labelled

‘‘Uncertainty’’. In a fully developed causal model, each of

the factors would consist of a number of attributes, or

variables, and there may be requirements attributes in

addition to dependency, novelty, and complexity that affect

requirements uncertainty. Those such as effort and skill

would affect both the uncertainty of a requirement and the

likelihood of change discovery. Since a requirement con-

tinues to change subsequent to software delivery, there is

an amount of uncertainty remaining even after changes

Fig. 13 Requirements change taxonomy

Requirements Eng (2012) 17:133–155 151

123

have been discovered during development. This is included

here, alongside cost and value, as a consequence of chan-

ges found.

As depicted in Fig. 13, the change domains within the

taxonomy are characterised by not only by cost and value,

but also by stakeholder involvement and change control-

lability. In addition, in case study two, we determined that

there were different relationships between requirements

attributes and volatility depending upon the change domain

source. Further, environment stability attributes will differ

according to change domain. For example, solution domain

changes are not directly brought about by a change to

customer’s business process. Instead, this would result in

project vision volatility. This distinction of character and

variable influence is captured here by layering seen in

Fig. 14.

6 Conclusions and further work

In an on-going empirical endeavour to better understand

the phenomena of requirements change, two related case

studies were undertaken in collaboration with our industrial

partner. The first evaluated whether the requirements

change source taxonomy could provide an informative

means to measure change. The second examined attributes

of the requirements for correlation with volatility and

determined whether this pattern was replicated across the

change domains investigated in the first study.

The software requirements change source taxonomy

contains the change domains of Market, Organisation,

Vision, Requirements Specification, and Solution. Infor-

mally, the question asked here is ‘‘How does this classifi-

cation help me understand the consequences of change and

why and when it is happening, so that I may be able to

monitor and manage better’’. Researchers worked closely

with an industrial partner to identify, collect, and validate

suitable data to facilitate this investigation. While no

results are available for the domain of Market, findings

indicate the following:

• There are significant differences in cost, value, control,

and stakeholder involvement between changes arising

from each of the non-market sources.

• Generally, changes from the organisation domain are

more costly, have a higher value, more often represent

an opportunity rather than a defect, but also have

increased stakeholder group involvement, considered

less easy to control.

• From Vision to Specification to Solution, change costs

fall, stakeholder involvement decreases, and there is an

increased level of control.

• Changes coming from activity considered external to

the project are all from the Organisation and Vision

domains.

The implication is that the assessment of risk and

management of changes should be tailored according to

the characteristics of these change domains. As a means

Fig. 14 Layered causal account of software requirements change

152 Requirements Eng (2012) 17:133–155

123

of monitoring and measurement, use of the requirements

change taxonomy is feasibly practical and will aid

understanding of software evolution during development

as well as providing opportunities for retrospective pro-

ject analysis to aid future process and technique

tailoring.

To discern whether there were generic requirements

qualities that lead to increased volatility, the changes from

case study one were attributed to the requirements

involved. Our industrial partner identified and collected

three attributes that they felt were most influential to

changing requirements—dependency, complexity, and

novelty. The results can be summarised as follows:

• Some requirements are more change-prone than others

given that 80 % changes involved 31 % requirements.

• In the main, changes coming from the domains sources

effected different groups of requirements.

• The only clear correlation with requirements volatility

was dependence, which was positively correlated in all

domains.

• Requirements business complexity showed no correla-

tion with volatility, while technical complexity was

negatively correlated but only in the domain of

Specification.

• Requirement business novelty exhibited different rela-

tionships with volatility in each of the domains.

Notable were the positive correlation between business

novelty and volatility in the domain of organisation and

the contrasting negative correlation in the domain of

requirements specification.

Clearly, some requirements change more than others,

and the results corroborate the distinction between cate-

gories in the taxonomy. However, although some influence

can be observed, there is an implication that these attributes

alone are not sufficient for predictive models. Instead, we

have complex causal relationships involving attributes that

influence the change—proneness of an individual require-

ment as well as factors related to project process and

techniques that effect the software development as a whole.

Importantly, we also must consider the effort expended

upon the activities that promote change discovery.

These results have significant implications for the fea-

sibility of change anticipation. Not only does requirements

volatility arise in response to changes in the immediate

‘small world’ of the development environment, but more

challengingly, the ‘larger world’ of the organisation and

market whose needs must be met by the software. Changes

discovered through ‘external action’ (16 % change cost in

case study one) are going to be very difficult if not

impossible to predict. However, our intention at this

juncture is to build and test a set of predictive causal

models, using a combination of expert judgment, previ-

ously published studies, and software development change

data. These will be founded upon implications derived

from the results of the case studies presented here. We will

begin by concentrating upon the more controllable change

domains of solution, specification, and vision.

Acknowledgments We would like to thank the project manager and

analysts who gave their valuable time to data specification and the

collection for the purposes of this investigation.

Requirements Eng (2012) 17:133–155 153

123

Appendix: Software requirements change source

taxonomy

References

1. Loconsole A, Borstler J (2005) An industrial case study on

requirements volatility measures, In: Proceedings 12th Asia-

Pacific software engineering conference (APSEC’05),

pp 249–256

2. Costello R, Liu D (1995) Metrics for requirements engineering.

J Syst Softw 29(1):39–63

3. Boehm B, Turner R (2004) Balancing agility and discipline:

evaluating and integrating agile and plan-driven methods, In:

Proceedings 26th international conference on software engi-

neering, pp 718–719

4. Jones C (1996) Strategies for managing requirements creep.

Computer 29(6):92–94

5. Kulk GP, Verhoef C (2008) Quantifying requirements volatility

effects. Sci Comput Program 72(3):136–175

6. McGee S, Greer D (2009) A software requirements change source

taxonomy. In: Proceedings 4th international conference on soft-

ware engineering advances, pp 51–58

7. Nuseibeh B (2001) Weaving together requirements and archi-

tectures. IEEE Comput 34(3):115–117

8. Ferreira S, Shunk D, Collofello J, Mackulak G, Dueck A (2011)

Reducing the risk of requirements volatility: findings from an

empirical survey. J Softw Maint Evol Res Pract 23(5):375–393

9. Zowghi D, Nurmuliani N (2002) A study of the impact of require-

ments volatility on software project performance. In: Proceedings

9th Asia-Pacific software engineering conference, pp 3–11

10. McGee S, Greer D (2011) Software requirements change taxon-

omy: evaluation by case study. In: Proceedings 19th IEEE

international requirements engineering conference, pp 25–34

11. Benestad H, Anda B, Arisholm E (2009) Understanding software

maintenance and evolution by analyzing individual changes: a

literature review. J Softw Maint Evol Res Pract 21(6):349–378

12. Swanson E (1976) The dimensions of maintenance. In: Pro-

ceedings 2nd international conference software engineering,

pp 492–497

13. Chapin N, Hale J, Khan K, Ramil J, Tan W (2001) Types of

software evolution and software maintenance. J Softw Maint

Evol Res Pract 13(1):3–30

154 Requirements Eng (2012) 17:133–155

123

14. Kemerer C, Slaughter S (1999) An empirical approach to studying

software evolution. IEEE Trans Softw Eng 25(4):493–509

15. Stark G, Skillicorn A, Ameele R (1999) An examination of the

effects of requirements changes on software maintenance relea-

ses. J Softw Maint Res Pract 11(5):293–309

16. Xing Z, Stroulia E (2004) Understanding class evolution in

object-oriented software. In: Proceedings 12th IEEE international

workshop on program comprehension, pp 34–43

17. Heales J (2000) Factors affecting information system volatility.

In: Proceedings 21st international conference information sys-

tems, Brisbane, Australia, pp 70–83

18. Harker SDP, Eason KD, Dobson JE (1993) The change and

evolution of requirements as a challenge to the practice of soft-

ware engineering, In: Proceedings IEEE international symposium

on requirements engineering, pp 266–272

19. Sommerville I (2010) Software engineering, 9th edn. Addison

Wesley, Reading

20. Nurmuliani N, Zowghi D, Powell S (2004) Analysis of require-

ments volatility during software development life cycle, In:

Proceedings Australian software engineering conference,

pp 28–37

21. Nurmuliani N, Zowghi D, Williams SP (2004) Using card sorting

technique to classify requirements change. In: Proceedings 12th

IEEE international conference on requirements engineering,

pp 240–248

22. Nurmuliani N, Zowghi D, Williams SP (2006) Requirements

volatility and its impact on change effort: evidence-based

research in software development projects. In: Proceeding 11th

Australian workshop on requirements engineering. http://awre

2006.cis.unisa.edu.au/proceedings/paper%207%20Nurmuliani.pdf

23. McGee S, Greer D (2010) Sources of software requirements

change from the perspectives of development and maintenance.

Int J Adv Softw 118–200

24. Perry D (1994) Dimensions of software evolution. In: Proceed-

ings of international conference on software maintenance,

pp 296–303

25. Weiss DM, Basili VR (1985) Evaluating software development

by analysis of changes—some data from the software engineering

laboratory. IEEE Trans Software Eng 11(2):157–168

26. Nakatani T, Hori S, Tsuda M, Inoki M, Katamine K, Hashimoto

M (2009) A proprosal for the prince model. In: Proceedings of

international conference software and data technologies,

pp 145–150

27. Card DN (2006) Myths and strategies of defect causal analysis.

In: Proceedings of the Pacific northwest software quality

conference

28. Höfer A, Tichy WF (2007) Status of empirical research in soft-

ware engineering. In: Basili et al. (eds) Experimental software

engineering issues: assessment and future directions, Springer,

Berlin, pp 10–19

29. Fenton NE, Neil M (1999) A critique of software defect predic-

tion models. IEEE Trans Software Eng 25(5):675–689

30. Fenton N, Neil M, Marsh W, Hearty P, Radliński L, Krause P

(2007) Project data incorporating qualitative factors for improved

software defect prediction. In: Proceedings of the 3rd interna-

tional workshop on predictor models in software engineering

31. Perry DE, Porter A, Votta L (2000) Empirical studies of software

engineering: a roadmap. In: Proceedings ICSE ‘00: proceedings

of conference on the future of software engineering, pp 345–355

32. Runeson P, Host M (2009) Guidelines for conducting and

reporting case study research in software engineering. Emp Softw

Eng 14(2):131–164

33. Wohlin C, Host M, Henningsson K (2003) Empirical research

methods in software engineering. Lect Notes Comput Sci

2765:145–165

34. Yin RK (2003) Case study research. Design and methods, 3rd

edn. Sage, London

35. Basili VR (1985) Quantitative evaluation of software methodol-

ogy, University of Maryland, TR-1519

36. Fenton N, Neil M (2000) Software metrics: roadmap. In: Pro-

ceedings of conference on future of software engineering,

pp 359–370

37. Pfleeger SL (2008) Software metrics: progress after 25 years?

IEEE Softw 25(6):32–34

38. Barry EJ, Kemerer CF, Slaughter SA (2006) Environmental

volatility, development decisions, and software volatility: a lon-

gitudinal analysis. Manage Sci 52(3):448–464

39. Field A (2009) Discovering statistics using SSPS, 3rd edn. Sage

Publications ltd, London

40. Sjoberg DIK, Dyba T, Jorgensen M (2007) The future of

empirical methods in software engineering research. In: Pro-

ceedings future of software engineering, pp 358–378

41. Boehm B, Basili VR (2005) Software defect reduction top 10 list.

In: Boehm B, Rombach HD, Zelkowitz MV (eds) Foundations of

empirical software engineering. Springer, Berlin, pp 426–431

Requirements Eng (2012) 17:133–155 155

123

http://awre2006.cis.unisa.edu.au/proceedings/paper%207%20Nurmuliani.pdf
http://awre2006.cis.unisa.edu.au/proceedings/paper%207%20Nurmuliani.pdf

	Towards an understanding of the causes and effects of software requirements change: two case studies
	Abstract
	Introduction
	Related work
	Requirements change classification
	Empirical studies of requirements volatility during software development
	Requirements change prediction

	Research approach
	Case study context
	Organisation
	Project

	Identification of detailed research questions and data specification
	Case study 1: Is the taxonomy an informative basis for change measurement?
	Case study 2: Do attributes of requirements predispose them to change and are they similarly prone to changes in all domains?

	Data collection protocol
	Data validation
	Data review process
	Analysis procedures
	Statistical methods
	Limitations of study validity

	Results
	Overall look at changes during the developmental lifecycle
	The cost of change
	Opportunity/defect
	Number of stakeholders
	Discovery activity
	Project management control
	Overall look at changing requirements
	Patterns of requirements volatility across change domains
	Requirement dependency
	Business complexity
	Technical complexity
	Business novelty
	Technical novelty

	Discussion of results
	Conclusions and further work
	Acknowledgments
	Appendix: Software requirements change source taxonomy
	References

