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The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility
of radiobiological studies at extremely high dose rates. Employing the TARANIS
Terawatt laser at Queen’s University, the effect of proton irradiation at MeV-range
energies on live cells has been investigated at dose rates exceeding 109 Gy/s as a
single exposure. A clonogenic assay showed consistent lethal effects on V-79 live
cells, which, even at these dose rates, appear to be in line with previously published
results employing conventional sources. A Relative Biological Effectiveness (RBE)
of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-
ray source. Copyright 2012 Author(s). This article is distributed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.3699063]

I. INTRODUCTION

The use of ion beams in cancer radiotherapy exploits the advantageous energy deposition
properties of ions as compared to more commonly used X-rays. Unlike X-rays, ions are able
to deliver lethal amount of doses into the target tumour while limiting harm to the surrounding
healthy tissues.1 Hadron-therapy has been widely recognized across the globe and several clinical
facilities, employing mainly protons from synchrotron, cyclotron or linac accelerators are operational
and routinely treating a significant number of patients.2 Unfortunately, the cost and size of these
facilities, relative to megavoltage linac sources, are beyond the scope of a typical hospital and limit
both the widespread use of proton treatments as well as employment of heavier ion beams. The idea
of future facilities based on laser driven ion accelerators has been proposed as a way of reducing
complexity and cost.3–5 Significant effort is ongoing to demonstrate the ion beam parameters required
to make this proposition viable. In the meanwhile, several groups have started preliminary work on
the methodology and viability of using laser driven ion source for cell irradiation experiments.6–8

The main aim of these investigations is to establish a procedure for cell handling, irradiation
and dosimetry9 compatible with a laser-plasma interaction environment. Furthermore, one of the
peculiarities of laser-driven ion beams is their ultrashort duration, as ions are emitted in bursts of
picosecond duration at the source and their therapeutic use may result in dose rates many orders of
magnitude higher than normally used. The radiobiology at ultra-high dose rates is virtually unknown
and warrants investigation of the biological effect of these ultrashort pulses at the cellular level.10

In previous studies of dose-dependent cell damage employing ion bursts accelerated by fs laser
systems, e.g. in Ref. 8, doses in the Gy range have been delivered to the cells in several fractions.
Although each pulse delivered a fraction of a Gray in a short time (tens of ns), the average dose rate

2158-3226/2012/2(1)/011209/6 C© Author(s) 20122, 011209-1

Downloaded 10 Sep 2012 to 143.117.90.74. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license.
See: http://creativecommons.org/licenses/by/3.0/

http://dx.doi.org/10.1063/1.3699063
http://dx.doi.org/10.1063/1.3699063
http://dx.doi.org/10.1063/1.3699063


011209-2 Doria et al. AIP Advances 2, 011209 (2012)

FIG. 1. Schematic of the experimental set-up. The blue and red lines represent the undeflected line of sight from the ion
source to the cell plane and the trajectory of a deflected proton, respectively.

over a Gy-level exposure was in the Gy/s range, i.e. not dissimilar from the dose rate normally used
in radiobiology with conventional proton sources.

II. EXPERIMENTAL METHOD

In this paper we report for the first time a quantitative study of dose-dependent biological
effects of MeV protons on cells (V79 Chinese Hamster cell line) in the ultra-high dose-rate regime
(>109Gy/s), with the dose (up to 5 Gy) delivered in a single exposure. The experiment was carried
out at the Queen’s University of Belfast (QUB) using the multi-Terawatt Chirped Pulse Amplified
(CPA) laser system TARANIS.11 This is a Ti:Sapphire-Nd:glass laser working at a wavelength of
1053 nm with a pulse duration of 700 fs and beam energy of up to 20 J. The laser was focused by a
f/3 off-axis parabola (OAP) on 10 μm Al foils, leading to an intensity on target of order 1019 W/cm2.
In this intensity regime, the protons are created from the rear surface of the target by the well-
known Target Normal Sheath Acceleration mechanism (TNSA),12 which leads to broadband proton
energy spectra, typically with particle numbers exponentially decreasing up to a cut-off energy.13

The particles are typically emitted under a full-angle of 45◦ at 1-3 MeV energies, decreasing to
∼10◦ degrees near the cut-off. As detailed in Ref. 13, ps laser-irradiation typically leads to high
particle numbers, allowing for example number densities up to 1011MeV-1Sr-1 at 3 MeV.11 This
allows high doses to be attained in a single shot when irradiating a cell sample. An aperture slit 500
μm wide was located 10 mm behind the foil, and a dipole magnet (100 mm long, with a maximum
field strength of 0.9 T) was placed 10 mm behind the slit in order to deflect the protons and disperse
them according to their energies prior to the cell irradiation (see Fig. 1). Due to the relatively large
entrance slit, each point was irradiated by protons within a certain energy range (see Fig. 2 for
details).

The protons exited the vacuum chamber though a 50 μm thick Mylar window, which stopped
protons with energies lower than 2 MeV. The distance from the window to the magnets output is
150 mm, with the cell dish placed 1cm from the window. The deflection angle of 10 MeV protons
with respect to the direct source-aperture line-of-sight is about 14◦ (and larger for lower energies),
which avoids cell-spot irradiation by unwanted X-ray radiation from the target collected through the
aperture.

Customized Gafchromic films EBT214 (where the overlaminate and adhesive layers, normally
preceding the active layer, were not present) were used directly behind the cell dish for dosimetry.
The EBT2 films were previously calibrated using the cyclotron at the University of Birmingham.
Prior to cell irradiation an experimental characterization of the proton spectrum at the cell locations
was performed by EBT2 stack dosimetry.15 Using a number of layers in a stack configuration it was
possible at the same time to obtain the spatial proton energy distribution on the RCF films (i.e. the
cell dots plane) and the energy deposition characteristics.
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FIG. 2. Energy spectra of the protons (arbitrary units) delivered to the four cell spots in one of the configurations employed
in the experiment. The entrance LET corresponding to the proton energies is also shown.

Monte-Carlo simulations of the proton propagation through the experimental configuration
have been done using the FLUKA code.16 By the simulation we can closely reproduce the proton
spectrum we observe on the films and then reconstruct the number and spatial distribution of protons
impacting on each cell-spot. Further details of the dosimetric procedure and of method employed
to reconstruct the proton spectrum incident onto the cells can be found in Ref. 17. These energy
characteristics result in a few ns duration of the proton bunch impacting on the cells.

The irradiation was performed on the radiosensitive Chinese hamster fibroblast cells (cell line
V79), whose nuclei have dimensions of ∼10 μm in diameter and ∼ 9 μm in thickness.18, 19 The V79
cells were cultivated in Dulbecco’s minimum essential medium (Lonza, UK) containing 10% FBS
(Fetal Bovine Serum, Lonza, UK), 1% L-glutamine (Lonza, UK), and 1% penicillin/streptomycin
(Invitrogen Ltd, UK). During any preparation of the cells, either pre-irradiation or post-irradiation,
a laminar flow cabinet or a biosafety hood were used to avoid contamination from micro-organisms.
The cells were seeded 10 hours before irradiation on a 175 μm thick Mylar sheet in order to give
them time to multiply and attach to the substrate.

The cell “dots”, i.e. disks of about 2.5 mm diameter, were then cut from the Mylar sheet and
placed in a 50 mm diameter dish plate over a 3.5 μm Mylar film. Six disks were placed in each
irradiated cell dish. Two disks were used as controls, which were not irradiated during the laser shot,
while the proton irradiation was performed simultaneously on four cell dots, taking advantage of the
proton energy spread across the cell plane. The position of the cell dots with respect to the proton
distribution on the plane could be easily identified on the films, from the shadow projected by the
Mylar disks. The dose released on the cell dots could be reconstructed directly by monitoring the
RCF signal above and below the shadow of the disks. This approach allows us to target each dot with
different doses ranging from a fraction of a Gy to a few Gys in a single irradiation, with individual
assessment of the dose delivered to each cell dot. Spectral profiles within the different dots for one
of the configurations used during the experiments are shown in Fig. 2. After the irradiation each
cell dot was immersed into Trypsin to detach the cells from the Mylar support and then diluted in a
prepared solution of medium and Trypsin. The cells were counted by Hemocytometer and a known
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FIG. 3. Survival curve for the V79 cells obtained by irradiation with laser-accelerated proton bursts. The data are obtained
using protons with energies in the range 1 - 5 MeV. A curve obtained by X-ray irradiation on the same cells, and using the
same cell processing methodology, is also shown for comparison.

number of cells was plated into three Petri dishes. These were kept in an incubator in an atmosphere
of 5% CO2 and 95% humidity at 37◦C for about 1 week.

In this environment, the cells which didn’t experience lethal damage can start the process of
repair post-irradiation and then multiply, forming cell colonies. After the incubation period the Petri
dishes were stained with crystal violet to highlight the colonies, making them visible as violet dots,
which can then be easily counted.

III. RESULT AND DISCUSSION

The Surviving Fractions (SF) were calculated as SF = Num. of Colonies/(Num. of Cultured cell
× PE), where PE is the plating efficiency. Finally, for comparison, cell samples prepared according
to the same procedure were irradiated with an X-ray source XRAD 225 kVp from PXI Inc. shielded
by a 2 mm thick Cu filter to cut off the low energy part of the spectrum. Dosimetry for the X-ray
exposures was performed using a Farmer chamber cross calibrated to a secondary standard detector.

The resulting survival curve is shown in Fig. 3, where the data has been fitted using a linear-
quadratic model. The cells were irradiated with doses ranging from 0.8 to 5 Gy. The uncertainty in
dose is mainly due to the finite size (2.5 mm) of the cell dots, while the error bars of the SF refer to
the uncertainty associated with the method used in processing the cells and it is about 20% of the
data point value.

The survival curve obtained with protons shows the expected higher biological efficiency of
protons with respect to X-rays. From the comparison between proton and X-ray data, a Relative
Biological Effectiveness (RBE) of 1.4±0.2 can be calculated at 10% SF. Direct comparison with
results available in the literature is not straightforward, as the points in the curve are obtained
using different cell dots irradiated at central energies in the range 1 - 5 MeV. However, the RBE
value obtained is in the range of published values for MeV proton inactivation of V79 cells; in
particular, Folkard et al.20 obtain RBEs at 10% SF which range from 1.25 to 1.9 for proton energies
(monochromatic) in the range 1-3.7 MeV, corresponding to Linear Energy Transfers (LET) of
10-30 keV/μm - a RBE of 1.4 is obtained for a LET of 17.8 keV/μm (1.8 MeV energies).

In Fig. 4, the points of the proton survival curve of Fig. 3 are grouped according to their LET.
The LET for each of the proton data point is here considered as a volume averaged value on the cells,
obtained using the energy spectrum associated with the corresponding cell dot, as done for example
in Ref. 8. The Monte Carlo code SRIM21 is used for simulating the energy deposited (LET) in the
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FIG. 4. Survival curve of Fig. 3, where the LET is indicated for each of the data points. The LET is a volume average over
the cell monolayer, calculated by SRIM according to the spectra of the protons entering the cell dot.

FIG. 5. Direct comparison between selected data from Fig. 3 and published data with comparable LET and proton energies.
Solid blue squares have LET=10 keV/μm (central energy 5 MeV), open squares have LET= 14 keV/μm (central energy:
3.7 MeV). Solid red squares are data points from Ref. 20, obtained with protons of 3.7 MeV (10 keV/μm LET) (Reproduced
with permission from, Int. J. Radiat. Biol, 69, 729 (1996). Copyright 1996 Informa Healthcare). Green triangles are data
points from Ref. 22, obtained with protons of 3.2 MeV (11 keV/μm LET) (Reproduced with permission from, Int. J. Radiat.
Biol, 63, 331 (1993). Copyright 1993 Informa Healthcare).

cell monolayer according to the proton spectrum, and the uncertainty in the LET is given by one
standard error of the mean.

The survival rates observed are in line with published results obtained using conventional
sources, as plotted in Fig. 5. In this figure SF data taken with peak energy of 3.7 MeV (14 keV/μm
LET) and 5 MeV (10 keV/μm LET) are compared with data obtained at similar energy or similar
LET using conventional proton irradiation of V79 cells.20, 22 The data indicates that, at the dose levels
investigated, the ultrahigh dose rate employed has no significant effect on cell survival all-be-it that
the cell handling methodologies were different.

This is an encouraging result in view of potential future therapeutic use of ultrashort bursts
of laser-driven ions, as, in realistic arrangements, proton pulse durations on the cells will be of ns
order or more, as employed in the measurements reported here. We note that similar conclusions
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on independence of survival results from dose rate (although employing a different cell line and
protons with different LET) have been very recently reached in experiments employing a pulsed
ion microbeam,23 operating at similar dose rates and pulse durations as in the experiment presented
here.

We believe that, with an optimized set-up, it will be possible in the near future to increase the
dose rate deliverable by laser-accelerated protons by a further 2 orders of magnitude, which will
allow testing for the emergence of collective effects as predicted in Ref. 10.
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