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Abstract: This study investigates one of the most fundamental issues of integrating fuel cell (FC) generation into power systems –
its effect on power system small-signal stability when it operates jointly with conventional power generation. The study first
presents a comprehensive mathematical model of the solid oxide fuel cell (SOFC) power plant integrated with the single-
machine infinite-bus power system. Based on the model, conventional damping torque analysis is carried out to study the
effect of SOFC power generation on power system small-signal stability. The analysis concludes that system small-signal
stability can be affected either positively or negatively by the SOFC power plant when system operating conditions change.
Two examples of power systems with gird-connected SOFC power plants are presented. Small-signal stability of the first
example of single-machine power system was examined when the power system operated at different load conditions and
levels of mixtures of conventional and FC power generation. The second example is a four-machine two-area power system
where the power supplied by the gird-connected SOFC power plant is variable. Results of simulation using full non-linear
model of the power systems and the SOFC power plants are given. All the results from the example power systems confirm
and further demonstrate the analysis presented and conclusions obtained.

1 Introduction

Fuel cell (FC) power generation is of low to zero emission
with high efficiency (35–60%) and is classified into various
groups according to the electrolyte types, among which the
high-temperature solid oxide fuel cell (SOFC) is considered
to have the most significant potential as the future grid-
connected clean power generation source [1, 2]. With the
fast advancement of FC generation technology, it is
foreseen that in near future, grid-connected operation of
large-scale FC generation will affect not only the
distribution networks but also transmission grid and the rest
of the generators. The effect of large-scale FC power
generation on the security and stability of future power
system must be investigated carefully [3–7], including
power system small-signal stability, which is the subject of
this paper. However, so far there have been very few
publications about the impact of penetration of FC
generation on power system stability. Dynamic model of
FC generation and its integration into power systems are
discussed in [3–5]. Pioneering work presented in [6, 7]
contributes to the very foundation of the research topic –
FC dynamic model and its impact on power system control
and stability.

The objective of this paper is to gain a clear understanding
on and deep insight into the effect of FC generation on power
system small-signal stability when it operates jointly with
conventional power generation. Power system small-signal

stability is predominantly affected by conventional
generation, that is, the performance of synchronous
generators. This paper investigates that when the
penetration of FC generation reaches the level of
conventional generation in a power system, how and why
the system small-signal stability is influenced. As the first
step in the study, this paper considers a simple single-
machine infinite-bus power system integrated with a SOFC
power plant. The capacity of the SOFC power plant is
assumed to be comparable to that of the synchronous
generator in the power system. This can be the case that the
SOFC power plant could represent the effect of a
congregation of many FC generation units or that it is a
single FC generation unit in a future power system. In this
paper, a conventional and effective method of damping
torque analysis [8–10] is used to examine the damping
torque contribution from the SOFC power plant to the
electromechanical oscillation loop of the synchronous
generator. Theoretical analysis in this paper indicates that
the SOFC power plant can contribute either positive or
negative damping to power system oscillations. The reason
is that the damping torque contribution from the SOFC
power plant changes from negative to positive damping
torque when system operating conditions change. It is
revealed that the decisive factor affecting the variations of
damping torque contribution from the SOFC power plant is
the angle between the ac voltage at the terminal of dc–ac
converter of the SOFC power plant and the d-axis of the
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synchronous generator. There exists a critical angle when the
damping torque contribution from the SOFC power plant
changes sign. Hence this paper proposes that the critical
angle is defined as the stability limit of the operation of the
SOFC power plant, as far as the small-signal stability of the
single-machine infinite-bus power system is concerned.

In order to demonstrate the possibility to extend the
analytical conclusions obtained in the paper to the more
complex case of a multi-machine power system, a second
example of a four-machine two-area power system with a
grid-connected SOFC power plant is presented. The SOFC
power plant adopts a different control scheme to that used
for the study of the single-machine infinite-bus power
system in the paper. Results of modal computation and
simulation show that the effect of the SOFC power
generation on the small-signal stability of the example
power system changes with the variation of the operating
conditions of the SOFC power plant and the conclusion is
obtained in the paper for the single-machine infinite-bus
power system.

2 Modelling a SOFC power plant into
a power system

Fig. 1 shows the configuration of a SOFC power plant
connected to a simple single-machine infinite-bus power
system. Xts, Xsb, Xcs and Xfs denote the equivalent reactance
of transformers or/and transmission line. General
mathematical model of the synchronous generator can be
written as Ẋg = F(X g, �I ts), where Xg is the state variable
vector associated with generator dynamics (see (1) below)
and �I ts is the interface variable between the generator and
rest of the system. In d–q coordinate of the generator, �I ts
can be expressed by its d and q component, itsd and itsq,
respectively. In this paper, the following generator model is
used, which is sufficient for the study of power system
small-signal stability [8]

ḋ = vo(v− 1)

v̇ = 1

M
[Pm − Pt − D(v− 1)]

Ė
′
q = 1

T ′
d0

(−Eq + Efd)

Ė
′
fd = − 1

TA

E′
fd +

KA

TA

(Vtref − Vt)

(1)

with Xg = [ d v E′
q E′

fd ]T and where

Pt = E′
qitsq + (xq − x′d)itsditsq

Eq = E′
q − (xd − x′d)itsd

Vt =
���������
v2

td + v2
tq

√
=

��������������������������
(xqitsq)2 + (E′

q − x′ditsd)2
√ (2)

Fig. 2 shows the function block diagram of the SOFC
generation, dynamic model of which is given as follows
[3–7]:

1. FC electrical dynamic describes the conversion of FC
control to the requirement of control of FC output current,
Ifc. That is

Ifc-ref =
Pfc-ref

Vfc

(3)

To ensure the FC operation within the safe operating area, Ifc-ref

is limited by the following boundaries

Ifc-ref-max = Umax

2Kr

qh2-in, Ifc-ref-min = Umin

2Kr

qh2-in,

Kr =
N0

4F
(4)

where Umax and Umin is the maximum and minimum fuel
unitisation, respectively, N0 is the number of cells in series in
the FC stack, qh2-in is the hydrogen input flow rate and F is
the Faraday constant. Electrical dynamic describes the
chemical reaction to restore the charge that has been drained
by the load, which is generally fast. A first-order transfer
function is used to model the dynamic with the time constant
around 0.08 s.

Ifc =
1

1 + Tes
Ifc-ref (5)

2. Fuel processor depicts the dynamic of fuel supply by a
first-order transfer function

qh2-in = 2Kr

Uopt

1

1 + Tf s
Ifc-ref (6)

where Uopt is the optimal fuel utilisation and Tf is the time
constant of dynamic of fuel supply.

Fig. 1 Configuration of a SOFC power plant connected to a
single-machine infinite-bus power system Fig. 2 Function block diagram of a SOFC
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3. Blocks of ‘conversion constants’ and ‘chemical reaction’
in Fig. 2 represent the chemical process of fuel reaction
inside the FC stack. Its dynamic is described by three first-
order transfer functions for hydrogen, oxygen and water,
respectively.

qo2-in = 1

rho

qh2-in

ph2 = 1

Kh2

1

1 + Th2s
(qh2-in − 2KrIfc)

po2 = 1

Ko2

1

1 + To2s
(qo2-in − KrIfc)

ph2o = 1

Kh2o

1

1 + Th2os
2KrIfc

(7)

where rho is the ratio of hydrogen to oxygen, Kh2, Ko2 and
Kh2o is the valve molar constant for hydrogen, oxygen and
water, Th2, To2 and Th2o is the time constant for hydrogen,
oxygen and water flow, and ph2, po2 and ph2o the hydrogen,
oxygen and water partial pressure, respectively.
4. The FC stack voltage is given by the following equation

Vfc = N0 E0 +
RT

2F
ln

ph2 × p0.5
o2

ph2o

( )[ ]
− rIfc (8)

where E0 is the ideal standard potential, R is the universal gas
constant, T is the absolute temperature and r is the ohmic loss.
5. Power electronics interface of the SOFC power plant with
the power system consists of a dc–dc converter; a dc–ac
converter (as shown in Fig. 2) and their associated
controllers. FC output current control is realised by the
regulation of dc–dc converter

dc = dc0 + Tdc(s)(Ifc-ref − Ifc) (9)

where dc is the duty cycle, Tdc(s) is the transfer function of FC
current controller.

From phasor diagram of Fig. 3a, in the d–q coordinate of
the generator, the ac voltage at the terminal of dc–ac
converter can be obtained to be [11]

�V c = mkVdc(cosc+ j sinc) = mkVdc/c (10)

where k is the converter ratio dependent on its structure
(typically, k ¼ 3/4 [11]), m and f in Fig. 3 is the
modulation ratio and phase of the pulse width modulation
(PWM) control algorithm of the dc–ac converter,
respectively [11]. Active power received by the grid from
the SOFC power plant is

VdcIdc1 = isdvcd + isqvcq = isdmkVdc cosc+ isqmkVdc sinc

where isd and isq is the d and q component of �I s, vcd and vcq

that of �V c, respectively. Hence

Idc1 = isdmk cosc+ isqmk sinc (11)

The active power supply from the SOFC power plant is
Pfc ¼ IfcVfc ¼ Idc2Vdc and Vdc ¼ Vfc/(1 2 dc). Hence

Idc2 = (1 − dc)Ifc (12)

Dynamic equation of the dc–ac converter is

V̇ dc =
1

Cdc

Idc =
1

Cdc

(Idc2 − Idc1)

= 1

Cdc

[(1 − dc)Ifc − (isdmk cosc+ isqmk sinc)] (13)

In order to implement the PWM control algorithm to realise
dc–ac conversion, the dc voltage across the capacitor, Vdc,
should be maintained constant [5, 11]. This is the request
from the PWM algorithm and it is met by applying a dc
voltage controller [5, 11]. The modulation ratio is usually
controlled to regulate the magnitude of the ac voltage Vs,
that is, exchange of reactive power between the SOFC
power plant and the power system. That is

dc voltage control:f = f0 + Tvdc(s)(Vdc − Vdc-ref )

ac voltage control: m = m0 + Tvac(s)(Vs − Vs-ref )
(14)

where Tvdc(s) and Tvac(s) is the transfer function of dc and ac
voltage controller, respectively.

Fig. 3 Phasor diag Q2ram of power system of Fig. 1
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From Fig. 1 it can have

�V t = jxts
�I ts + �V s

�V s = −j(xcs + xfs)�I s + �V c = −jxs
�I s + �V c

�V s − �V b = jxsb(�I ts + �I s)

(15)

The above equations give

− jxs
�I s + �V c − �V b = jxsb(�I ts + �I s)

�V t = jxts
�I ts + jxsb(�I ts + �I s) + �V b

(16)

In d–q coordinate of the generator, as shown by Fig. 3, from
(15) it can be obtained that

xsb xs + xsb

xq + xts + xsb xsb

[ ]
itsq

isq

[ ]
=

−Vc cosc+ Vb sin d

Vb sin d

[ ]

xsb xs + xsb

x′d + xts + xsb xsb

[ ]
itsd

isd

[ ]
=

Vc sinc− Vb cos d

E′
q − Vb cos d

[ ]

(17)

The complete mathematical model of the power system of
Fig. 1 is thus established, which consisted of the model of
generator of (1), SOFC power plant of (3)–(9), (13) and
(14), and integration of the generator and the SOFC power
plant with the rest of the power system of (17).

The dynamic model of SOFC is the same as that of the low-
temperature proton exchange membrane fuel cell (PEMFC),
which is the most widely used type for the portable,
vehicular and residential applications [12, 13]. Hence the
following work should also be applicable to the PEMFC.
However, for the grid-connected applications of stationary

power generation, the SOFC is considered to have more
significant potential, as the PEMFC is of relatively lower
efficiency and depends on pure hydrogen as the fuel input
[1, 2]. Hence the SOFC is used in this paper.

3 Small-signal stability analysis

3.1 Linearised model

From (10) it can have Vc ¼ kmVdc, that is,
DVc = k(m0DVdc + Vdc0Dm), linearisation of (17) can be
obtained to be (see equations at the bottom of the page)

The above equation can be written as

[Ditsd Ditsq ]T = Bg-fc[Dd DE′
q DVdc Dm Dc ]T

[Disd Disq ]T = Bfc-g[Dd DE′
q DVdc Dm Dc ]T

(18)

where

Bg-fc =
b31 b32 b33 b34 b35

b11 b12 b13 b14 b15

[ ]

Bfc-g =
b41 b42 b43 b44 b45

b21 b22 b23 b24 b25

[ ]

Linearisation of (14) is

dc voltage control: Df = Tvdc(s)DVdc

ac voltage control: Dm = Tvac(s)DVs

Ditsq

Disq

[ ]
=

xsb xs + xsb

xq + xts + xsb xsb

[ ]−1
−k cosc0(m0DVdc + Vdc0Dm) + Vb cos d0Dd+ Vc0 sinc0Dc

Vb cos d0Dd

[ ]

= 1

x2
sb − (xs + xsb)(xq + xts + xsb)

xsb −xs − xsb

−xq − xts − xsb xsb

[ ]

Vb cos d0 0 −k cosc0 m0 −k cosc0Vdc0 Vc0 sinc0

Vb cos d0 0 0 0 0

[ ]
Dd

DE′
q

DVdc

Dm

Dc

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

=
b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

[ ]
Dd

DE′
q

DVdc

Dm

Dc

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

Ditsd

Disd

[ ]
=

xsb xs + xsb

x′d + xts + xsb xsb

[ ]−1 k sinc0(m0DVdc + Vdc0Dm) + Vc0 cosc0Dc+ Vb sin d0Dd

DE′
q + Vb sin d0Dd

[ ]

= 1

x2
sb − (xs + xsb)(x′d + xts + xsb)

xsb −xs − xsb

−x′d − xts − xsb xsb

[ ]

Vb sin d0 0 k sinc0 m0 k sinc0Vdc0 Vc0 cosc0

Vb sin d0 1 0 0 0

[ ]
Dd

DE′
q

DVdc

Dm

Dc

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

=
b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

[ ]
Dd

DE′
q

DVdc

Dm

Dc

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

4 IET Renew. Power Gener., pp. 1–14

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-rpg.2010.0024

www.ietdl.org



Since �V s = jxs
�I s + �V c and Vs =

����������
v2

sd + v2
sq

√
, it can have

vsd = −xsisq + kmVdc cosc, vsq = xsisd + kmVdc sinc

By using (18), linearisation of the above equations can be
obtained to be (see details in Appendix 1)

DVs = B1Dd+ B2DE′
q + BdcDVdc + B3Dm + B4Dc

Hence

dc voltage control:Df = Tvdc(s)DVdc

ac voltage control:Dm = −Tvac(s)(B1Dd+ B2DE′
q

+ BdcDVdc + B3Dm + B4Dc)

(19)

Linearisation of mathematical expressions of the SOFC
power plant of (3)–(14) is (see details in Appendix 2)

Ẋ fc = A′
fcX fc + B′

fc1 Disd Disq

[ ]T+B′
fc2 Dm Dc
[ ]T

where X fc = DVdc DIfc Dqh2-in Dph2 Dph2o

[
Dpo2 X d]T. By using (18), the above equation becomes

Ẋ fc = A′
fcX fc + B′

fc1Bfc-g Dd DE′
q DVdc Dm Dc

[ ]T

+ B′
fc2 Dm Dc
[ ]T

= AfcX fc + Bfc1 Dd DE′
q

[ ]T+Bfc2 Dm Dc
[ ]T

(20)

By using (17), linearisation of (2) can be obtained to be

DPt = K1Dd+ K2DE′
q + KpdcDVdc + KpmDm + KpcDc

DEq = K4Dd+ K3DE′
q + KqdcDVdc + KqmDm + KqcDc

DVt = K5Dd+ K6DE′
q + KvdcDVdc + KvmDm + KvcDc

(21)

where

K1 = [E′
q0 + (xq − x′d)itsd0]b11 + (xq − x′d)itsq0b31

K2 = [E′
q0 + (xq − x′d)itsd0]b12 + itsq0 + (xq − x′d)itsq0b32

Kpdc = [E′
q0 + (xq − x′d)itsd0]b13 + (xq − x′d)itsq0b33

Kpm = [E′
q0 + (xq − x′d)itsd0]b14 + (xq − x′d)itsq0b34

Kpc = [E′
q0 + (xq − x′d)itsd0]b15 + (xq − x′d)itsq0b35

K3 = 1 − (xd − x′d)b32, K4 = −(xd − x′d)b31

Kqdc = −(xd − x′d)b33

Kqm = −(xd − x′d)b34, Kqc = −(xd − x′d)b35

K5 = vtd0

Vt0

xqb11 −
vtq0

Vt0

x′db31

K6 = vtd0

Vt0

xqb12 +
vtq0

Vt0

(1 − x′db32)

Kvdc =
vtd0

Vt0

xqb13 −
vtq0

Vt0

x′db33, Kvm = vtd0

Vt0

xqb14 −
vtq0

Vt0

x′db34

Kvc = vtd0

Vt0

xqb15 −
vtq0

Vt0

x′db35

Thus linearisation of dynamic model of the generator of (1)
can be obtained to be

Dḋ = voDv

Dv̇ = 1

M
(−K1Dd− DDv− K2DE′

q − KpdcDVdc

− KpmDm − KpcDc)

DĖ
′
q = 1

T ′
d0

(−K4Dd− K3DE′
q + DE′

fd − KqdcDVdc

− KqmDm − KqcDc)

DĖ
′
fd = − 1

TA

DE′
fd −

KA

TA

(Dd+ K6DE′
q + KvdcDVdc

+ KvmDm + KvcDc)

(22)

Equations (19), (20) and (22) form the complete linearised
model of the power system integrated with the SOFC power
plant, which can be shown by Fig. 4. In Fig. 4, the block of
ac and dc voltage control function is given by (19). This
linearised model of Fig. 4 is quite similar to the
conventional Phillips–Heffron model [8, 14, 15] based on
which the technique of damping torque analysis was
developed for the study of power system small-signal
stability. In Fig. 4, DTET is the electric torque contribution,
which can be decomposed into the synchronising torque

Fig. 4 Linearised model of the power system integrated with the
SOFC power plant of Fig. 1
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and the damping torque. The damping torque component
decides the damping of power system oscillation [8, 15].

According to the principle of superimposition of linear
systems, the forward path from the SOFC power plant to
the electromechanical oscillation loop of the synchronous
generator is obtained by setting K1 ¼ K4 ¼ K5 ¼ 0 [8–10,
15, 16]. Thus electric torque DTET is contributed purely
from the SOFC power plant and its associated control
functions. DTET can be divided into the direct electric
torque contribution, DTDET, and the indirect electric torque
contribution, DTIET, as shown in Fig. 4. Usually, the direct
electric torque is much greater than the indirect electric
torque [16]. From Fig. 4 it can be seen that obviously, the
coefficient, Kpdc, Kpc and Kpm mostly affect the amount of
electric torque contribution from the SOFC power plant and
its associated control functions and

Kpdc =
∂Pt

∂Vdc

, Kpc = ∂Pt

∂c
, Kpm = ∂Pt

∂m
(23)

3.2 Explicit expression of active power delivered
along the transmission line

From (15) it can have

�I s =
�V c − �V s

jxs

Thus

�V s − �V b = jxsb
�I ts +

xsb

xs

�V c −
xsb

xs

�V s

The above equation gives

�V S = jxsb

1 + (xsb/xS)
�I ts +

xsb

xS(1 + (xsb/xS))
�V C +

�V b

1 + (xsb/xS)

(24)

That gives

�V t = jxts
�I ts + �V S = j xts +

xSxsb

xS + xsb

( )
�I ts +

xsb

xS + xsb

�V C

+ xS

xS + xsb

�V b = jx�I ts + �V a (25)

where

x = xts +
xSxsb

xS + xsb

( )

�V a = xsb

xS + xsb

�V C + xS

xS + xsb

�V b = a�V C + b�V b

For a single-machine infinite-bus power system WITHOUT
the SOFC power plant, the terminal voltage equation of the
generator is

�V t = jxt
�I t + �V (26)

where xt is the equivalent reactance of the transmission line, �I t
is the line current and �V is the voltage at the infinite busbar.
The explicit mathematical description of the active power

supplied by the generator is

Pt =
E′

qV

x′dS
sin d− V 2

2

(xq − x′d)

x′dSxqS

sin 2d (27)

where d is the angle (load angle) between E′
q (q-axis of the

generator) and �V and x′dS = xt + x′d , xqS = xt + xq.
Comparing (25) and (26) it can be seen that the power

system integrated with the SOFC power plant of Fig. 1 is
electrically equivalent to a power system without the SOFC
power plant with an equivalent line reactance to be x and
voltage at the ‘infinite busbar’ to be �V a. Hence by replacing
xt and V in (27) by x and �V a, respectively, the explicit
mathematical description of the active power supplied by
the generator in the power system of Fig. 1 can be obtained
to be

Pt =
E′

qVa

x′dS
sin d′ − V 2

a

2

(xq − x′d)

x′dSxqS

sin 2d′ (28)

where d′ is the angle between E′
q and �V a and

x′dS = x + x′d , xqS = x + xq. Normally, in (28) the first part
is much greater than the second part [6]. Hence it can have

Pt ≃
E′

qVa

x′dS
sin d′ (29)

From the phasor diagram of Fig. 3b it can have Va sin d′ ¼
bVb sin d+ aVc cos c, from which and (29) it can have

Pt ≃
E′

q

x′dS
(bVb sin d+ aVc cosc) (30)

where Vc ¼ mkVdc.
Hence from (23) and (30) it can have

Kpdc =
E′

q0

x′dS
am0 k cosc0

Kpc = −
E′

q0

x′dS
am0 kVdc0 sinc0

Kpm =
E′

q0

x′dS
akVdc0 cosc0

(31)

3.3 Damping torque analysis

From Appendix 1 it has

Dc = gDf+ g1Dd+ g2DE′
q + gdcDVdc + g3Dm (32)

When only the electric torque through the ac voltage control
is considered (Df ¼ 0 hence DVdc ¼ 0), from (19) and (32) it
can have

Dm = −Tvac(s)[(B1 + B4 g1)Dd+ (B2 + B4 g2)DE′
q

+ (B3 + B4 g3)Dm]
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Thus

Dm = Tvac(s)

1 − (B3 + B4 g3)Tvac(s)
[(B1 + B4 g1)Dd

+ (B2 + B4 g2)DE′
q] (33)

The direct electric torque contribution from the SOFC
generation through the ac voltage controller (the indirect
electric torque is ignored, that is equivalent to that DE′

q ≃ 0
in the computation of electric torque) can be obtained from
(31), (33) and Fig. 4 to be

DTDET =
E′

q0

x′dS
akVdc0 cosc0

Tvac(s)

1 − (B3 + B4 g3)Tvac(s)

× (B1 + B4 g1)Dd (34)

Based on (34), effect of the FC AC voltage control on power
system small-signal stability can be examined. For example, if
it is a proportional controller with Tvac(s) ¼ Kvac, (34)
becomes

DTDET =
E′

q0

x′dS
akVdc0 cosc0

Kvac

1 − (B3 + B4 g3)Kvac

× (B1 + B4 g1)Dd (35)

The electric torque is mainly the synchronising torque and
hence the ac voltage control is of very small influence on
the damping of power system oscillations. Same conclusion
has been established for other types of power system
devices [15, 16] by using the similar analysis.

When only the direct electric torque (equivalent to set
DE′

q ≃ 0) from the SOFC power plant through the dc
voltage control is considered (Dm ¼ 0), from (19), (31),
(32) and Fig. 4, it can have

DTDET =
E′

q0

x′dS
am0 k( cosc0DVdc − Vdc0 sinc0Dc)

= −
E′

q0

x′dS
am0 kVdc0 sinc0 g1Dd

+
E′

q0

x′dS
am0 k( cosc0DVdc − Vdc0 sinc0 gdcDVdc

− Vdc0 sinc0 gDf)

= −
E′

q0

x′dS
am0 kVdc0 sinc0 g1Dd

+
E′

q0

x′dS
am0 k[ cosc0 − Vdc0 sinc0 gdcVdc0

− sinc0gTvdc(s)]DVdc (36)

According to the damping torque analysis given in
Appendix 3, at the angular oscillation frequency, vs, DVdc

is approximately in the same phase with Dv in small-
signal power oscillations, that is, DVdc ≃ CDDv. Hence
the damping torque (component in DTDET which is
proportional to Dv) provided by the SOFC power plant

can be obtained to be

Damping torque:DTDDET ≃
E′

q0

x′dS
am0kCD

× (cosc0 − Vdc0 sinc0 gdcVdc0

− RVdc0g sinc0)CDDv

(37)

where R is the real part of Tvdc( jvs). In deriving the above
equation, the first equation in (22) in the frequency domain,
Dd ¼ 2j(v0/vs)Dv, is used.

Obviously, in Tvdc( jvs), R is proportional to the gain of the
dc voltage controller. If Vdc , Vdcref (DVdc , 0), the dc
voltage control should enable the dc capacitor of dc–ac
converter to absorb more active power from the power
system to charge the capacitor. From Fig. 3 it can be seen
that c should decrease such that c , c0 (Dc , 0 and
Df , 0) to enable the injection of active power into the
dc–ac converter from the power system. On the other hand,
if Vdc . Vdcref (DVdc . 0), c should increase such that
c . c0 (Dc . 0 and Df . 0) to enable the injection of
active power into the power system from the dc–ac
converter. Hence, design of dc voltage controller must have
R . 0. Similarly and according to (32), g should also be
positive. On the other hand, from Fig. 3 it can be seen that
c0 changes with the variations of power system load
conditions. Since Vdc0 . 0, (37) indicates that the damping
torque contribution from the SOFC power plant varies with
changes of load conditions of the power systems. Especially
it changes sign when ( cosc0 − Vdc0 sinc0
gdcVdc0 − RVdc0g sinc0) = 0, which gives

c0-critical ≃ tan−1 1

Vdc0gdcVdc0 + RgVdc0

( )
(38)

c0-critical in the above equation defines a critical angle as far
as the effect of the SOFC power plant on the small-signal
stability of the power system is concerned. When the SOFC
power plant operates beyond the critical angle, the SOFC
power plant provides negative damping torque and hence
affects power system small-signal stability negatively.
Similar to the concept of steady-state stability limit in the
single-machine infinite-bus power system which is defined
to be the maximum load angle dmax in the phasor diagram
of Fig. 3 (normally dmax ¼ 908 [8]), the critical angle,
c0-critical, can be defined as the stability limit of operation of
the SOFC power plant, as far as the small-signal stability of
power system is considered. In Appendix 4, an algorithm is
demonstrated to compute the accurate value of c0-critical.

4 Example of single-machine infinite-bus
power system

Parameters and initial operating conditions of an example
single-machine infinite-bus power system integrated with a
SOFC power plant of Fig. 1 are given in Appendix
5. Computational results of damping torque contribution
from the SOFC power plant, confirmed by the
computational results of system oscillation mode, from the
complete linearised model of (19), (20) and (22) are given
in Tables 1 and 2. In Table 1, the total active power
supplied by the generator and SOFC power plant to the
load at the infinite busbar is fixed at 1 p.u., but the level of
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mixture of conventional and SOFC power generation varies.
In Table 2, the SOFC power generation is fixed to be
0.3 p.u., but the active power supply from the generator
changes. In Tables 1 and 2, Pt0 and Pfc0 is the active power
supplied by the conventional generator and the FC power
generation unit, respectively, DTDdc and DTDddc the total
and direct damping torque provided by the FC power
generation unit, respectively, and DTDdco is the total
damping torque provided by the FC power generation unit
with its AC voltage control function being switched off.
From Tables 1 and 2, it can be seen that

1. The direct damping torque contribution, DTDddc, from the
SOFC power plant is approximately equal to its total damping
torque contribution DTDdc, as indicated in the analysis of
above section, suggesting that it is appropriate to ignore the
indirect damping torque.
2. The damping torque contribution from the SOFC power
plant changes very little when its AC voltage control
function is switched on or off (DTDdc ≃ DTDdco). This
confirms the previous analysis that the AC voltage control
function of the SOFC power plant affects the power system
small-signal stability very little.
3. Damping torque supplied by the SOFC power plant
changes at different levels of mixture of conventional and
FC power generation, which can be positive or negative
(Table 1), thus improving or reducing power system small-
signal stability as concluded in the above section.
4. Damping torque supplied by the SOFC power plant also
changes from positive to negative at different levels of
conventional power generation even though the FC power
generation is fixed (Table 2), thus helping or damaging the
damping of power system small-signal oscillation.

5. Estimation from (38) is c0-critical ≃ 738 for the example
power system. A more accurate calculation gives
c0-critical ¼ 65.27048 (see Appendix 4). This is confirmed
by the results in Tables 1 and 2, as damping torque
contribution from the SOFC power plant changes sign
between c0 ¼ 65.18 and c0 ¼ 70.78 (Table 1) or
c0 ¼ 69.18 (Table 2). Hence operation of the SOFC power
plant should avoid c0 . c0-critical when it provides negative
damping to the power system oscillation.

In order to demonstrate the correctness of the above
analysis and the computational results obtained from the
linearised model of the power system, non-linear simulation
of the example power system was carried out by using the
full non-linear model of the power system integrated with
the SOFC power plant described by (1)–(9), (13), (14) and
(17). It simulated the response of the example power system
when a small increase of 1% mechanical power input to the
conventional power generation occurred at 1 s of simulation
for 100 ms. Fig. 5 gives the results of simulation at two
different levels of mixture of conventional and SOFC power
generation when the total power received by the load at the
infinite busbar was fixed at 1 p.u. Fig. 6 shows the results
of simulation at two different levels of conventional
generation and the SOFC power generation was fixed at
0.3 p.u. These results of non-linear simulation confirm both
the analysis in the above section and the computational
results presented in Tables 1 and 2.

1. When the total power received by the load is fixed (Fig. 6),
by comparing the system response (i) in Fig. 5a
(Pfc0 ¼ 0.1 p.u.) and the response (i) in Fig. 5b
(Pfc0 ¼ 0.9 p.u.), it can be seen that the heavier the load

Table 1 Computational results of the example power system when total active power received at the infinite busbar is fixed at 1.0 p.u.

(Pt0 + Pfc0 ¼ 1.0 p.u.)

Pt0, p.u. Pfc0, p.u. c0 (degree) DTDdc DTDddc DTDdco Electromechanical oscillation mode

1.0 0.0 48.9 5.37 5.38 5.37 20.5729+ j3.8590

0.9 0.1 54.1 3.31 3.29 3.31 20.4271+ j3.9725

0.8 0.2 59.5 1.60 1.57 1.60 20.3121+ j4.0866

0.7 0.3 65.1 0.19 0.15 0.20 20.2208+ j4.4944

0.6 0.4 70.7 20.99 21.03 20.98 20.1472+ j4.2940

0.5 0.5 76.4 21.99 22.03 21.99 20.087 + j4.3856

0.4 0.6 82.3 22.85 22.87 22.84 20.0371+ j4.4701

0.3 0.7 88.2 23.58 23.60 23.57 0.0045+ j4.5491

0.2 0.8 94.1 24.22 24.24 24.22 0.0393+ j4.6240

0.1 0.9 100.1 24.79 24.80 24.79 0.0684+ j4.6960

Table 2 Computational results of the example power system when the SOFC power generation is fixed at 0.3 p.u. (Pfc0 ¼ 0.3 p.u.)

Pt0, p.u. c0 (degree) DTDdc DTDddc DTDdco Electromechanical oscillation mode

0.1 90.7 23.4 23.4 23.4 20.0348+ j4.7497

0.2 86.3 22.9 22.9 22.9 20.0645+ j4.6975

0.3 81.9 22.4 22.4 22.4 20.0940+ j4.6330

0.4 77.6 21.8 21.9 21.8 20.1239+ j4.5539

0.5 73.3 21.3 21.3 21.3 20.1546+ j4.4572

0.6 69.1 20.6 2-0.7 20.6 20.1866+ j4.3391

0.7 65.1 0.2 0.2 0.2 20.2208+ j4.1944

0.8 61.1 1.1 1.2 1.1 20.2584+ j4.0165

0.9 57.2 2.3 2.5 2.3 20.3012+ j3.7950

1.0 53.4 3.8 4.1 3.8 20.3518+ j3.5119
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Fig. 5 Simulation at two different levels of mixture of conventional and SOFC power generation when the total power received by the load at
the infinite busbar was fixed at 1.0 p.u.

a Pt0 ¼ 0.9 p.u. and Pfc0 ¼ 0.1 p.u.
b Pt0 ¼ 0.1 p.u. and Pfc0 ¼ 0.9 p.u.

Fig. 6 Simulation when the generator operated at two loading conditions and the SOFC power generation was fixed at 0.3 p.u.

a Pt0 ¼ 1.0 p.u. and Pfc0 ¼ 0.3 p.u.
b Pt0 ¼ 0.1 p.u. and Pfc0 ¼ 0.3 p.u.
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condition of the SOFC power plant operates at, the more it
will damage the damping of power system oscillation;
2. When the SOFC power generation is fixed (Fig. 6), by
comparing the system response (i) in Fig. 6a
(Pt0 ¼ 1.0 p.u.) and the response (i) in Fig. 6b
(Pt0 ¼ 0.1 p.u.) it can be seen that the lighter the load
condition of the conventional power plant is, the more
negative damping torque is provided by the SOFC power
plant.
3. In Figs. 5 and 6, system response (see (ii) in Figs. 5 and 6)
when the AC and DC voltage control functions of SOFC
power plant are implemented by proportional integral (PI)
controllers is presented. From these results it can be seen
that same observations to cases (1) and (2) above are
obtained.
4. In Figs. 5 and 6, system response (see (iii) in Figs. 5 and 6)
with the AC voltage control function of the SOFC power
plant being switched off is given. It shows that indeed it
imposes very little influence on power system small-signal
stability.
5. In order to demonstrate that the small-signal stability of
the example power system is truly attributed to the
dynamic and control functions of the SOFC power plant
rather than simply because of the injection of active
power from the SOFC power plant midway between the
conventional generator and the large power system at the
infinite busbar, in Figs. 5 and 6, system response (see
(iv) in Figs. 5 and 6) when the dynamic and control
functions of the SOFC power plant are switched off.
This switching off is achieved by setting the DC voltage
across the capacitor to be a constant (equivalent to
installing a capacitor with very large capacitance) and
with open-loop ac and dc voltage controllers. In this
case, the SOFC power plant is connected to the system
purely as an active power source. From those results
(response (iv) in Figs. 5 and 6) it can be seen that
without the influence of the dynamic and control
functions of the SOFC power plant, the damping of
power oscillation changes significantly less when the
loading conditions vary. These results confirm that it is
truly the dynamic and control functions of the SOFC
power plant that affects the power system small-signal
stability.

5 Example of multi-machine power system

Fig. 7 shows the configuration of a four-machine two-area
power system integrated with a SOFC power plant. This is

the modified example power system used in several
occasions for the study of power system small-signal
stability in [17–20] (without the SOFC power plant).
Parameters of the example power system are given in [20]
and Appendix 5. The SOFC adopts a current control
scheme (the SOFC in the previous example uses a voltage
control scheme, see Appendix 5). Power supply is through
the tie line from G1, G2 and the SOFC power plant to the
main load L5 in the system. Table 3 gives the computational
results of system inter-area oscillation mode [17–20] when
the mixture of conventional generation from G1 and G2
and the SOFC power plant changes (other eigenvalues of
the system are not listed in Table 3). From Table 3 it can be
seen that with the variation of the generation mixture,
the damping of system inter-area oscillation mode
changes, indicating the variation of system small-signal
stability. This is exactly the same to the results given in
Table 1.

Fig. 8 gives the results of system simulation when the
mixture of generation from G1, G2 and the SOFC changes.
At 0.2 s of the simulation, the mechanical power input to
G4 increased by 10% and the returned to the original value
at 0.3 s of the simulation. From Fig. 8a it can be seen that
the damping of power oscillation varies when the SOFC
generation changes, although the total amount of power
delivered from G1, G2 and the SOFC power plant to L5

(i.e. P65) keeps unchanged to be 2 p.u. In fact, damping of
power oscillation of P26 is also different at the different
level of mixture of conventional and the SOFC generation
(see Fig. 8b). Hence Fig. 8 confirms the results presented in
Table 3 that the small-signal stability of the example four-
machine two-area power system is affected by the variation
of the loading conditions of the grid-connected SOFC
power plant.

Fig. 7 Example of multi-machine power system integrated with a SOFC generation plant

Table 3 Computational results of system inter-area oscillation

mode when the mixture of generation from G1, G2 and SOFC

changes (PB is fixed at 2.0 p.u.)

Mixture of generation

from G1, G2 and the

SOFC

System inter-area

oscillation mode

P26 ¼ 1.9 p.u., PSOFC ¼ 0.1 p.u. 20.0112 + j3.473

P26 ¼ 1.45 p.u., PSOFC ¼ 0.55 p.u. 20.0600 + j3.426

P26 ¼ 1.0 p.u., PSOFC ¼ 1.0 p.u. 20.1043 + j3.369
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6 Conclusions

This paper investigates the effect of the grid-connected SOFC
generation on power system small-signal stability by using
the conventional technique of damping torque analysis. It is
concluded in this paper that power system small-signal
stability can be affected by the gird-connected SOFC
generation either positively or negatively depending upon
the power system’s operating conditions. It is revealed in
this paper that a stability limit of the operation of the SOFC
power plant integrated in a single-machine infinite-bus
power system, as far as system small-signal stability is
concerned. The SOFC power plant should operate below
the stability limit to avoid its negative effect. Results of
numerical calculation and non-linear simulation of an
example power system are given, which confirm the
analysis presented and conclusion obtained in this paper.

In order to explore the generality of the conclusions
obtained in the paper from the simple case of a single-
machine infinite-bus power system integrated with a SOFC
power plant, an example multi-machine power system with
a grid-connected SOFC power plant is presented. The
SOFC in the example of multi-machine power system
employs a different type of control scheme, current control,

for the network integration to that (the voltage type of
control) adopted in the study of the single-machine infinite-
bus power system. Results of modal computation and
simulation confirm that the SOFC operating conditions
affect the system small-signal stability.
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9 Appendix 1

vsd = −xsisq + kmVdc cosc, vsq = xsisd + kmVdc sinc

By using (18), linearisation of the above equations is

Dvsd = −xsDisq + kVdc0 cosc0Dm + kmm cosc0DVdc

− km0Vdc0 sinc0Dc

= −xsb21Dd− xsb22DE′
q + (kmm cosc0 − xsb23)DVdc

+ (kVdc0 cosc0 − xsb24)Dm

− (km0Vdc0 sinc0 + xsb25)Dc

Dvsq = xsDisd + kVdc0 sinc0Dm + km0 sinc0DVdc

+ km0Vdc0 cosc0Dc

= xsb41Dd+ xsb42DE′
q + (kmm sinc0 + xsb43)DVdc

+ (kVdc0 sinc0 + xsb44)Dm

− (km0Vdc0 cosc0 − xsb45)Dc (39)

By using (39), we can have

DVs =
Vsd0

Vs0

Dvsd +
Vsq0

Vs0

Dvsq

( )
= B1Dd+ B2DE′

q

+ BdcDVdc + B3Dm + B4Dc (40)

where

B1 = −Vsd0

Vs0

xsb21 +
Vsq0

Vs0

xsb41

B2 = −Vsd0

Vs0

xsb22 +
Vsq0

Vs0

xsb42

Bdc =
Vsd0

Vs0

(kmm cosc0 − xsb23) +
Vsq0

Vs0

(kmm sinc0 + xsb43)

B3 = Vsd0

Vs0

(kVdc0 cosc0 − xsb24) +
Vsq0

Vs0

(kVdc0 sinc0 + xsb44)

B4 = −Vsd0

Vs0

(km0Vdc0 sinc0 + xsb25)

−
Vsq0

Vs0

(km0Vdc0 cosc0 − xsb45)

From Fig. 3 we can have

c = f+ tan−1 vsq

vsd

(41)

By using (39), linearisation of the above equation can be
obtained to be

Dc = Df+ 1

1 + (vsq0/vsd0)2

1

vsd0

Dvsq −
vsq0

v2
sd0

Dvsd

( )

= Df+ 1

v2
sd0 + v2

sq0

(vsd0Dvsq − vsq0Dvsd)

= Df+ g′
1Dd+ g′

2DE′
q + g′

dcDVdc + g′
3Dm + g′

4Dc

(42)

where

g′
1 = 1

v2
sd0 + v2

sq0

(vsd0xsb41 + vsq0xsb21)

g′
2 = 1

v2
sd0 + v2

sq0

(vsd0xsb42 + vsq0xsb22)

g′
dc =

1

v2
sd0 + v2

sq0

[vsd0(kmm sinc0 + xsb43)

− vsq0(kmm cosc0 − xsb23)]

g′
3 = 1

v2
sd0 + v2

sq0

[vsd0(kVdc0 sinc0 + xsb44)

− vsq0(kVdc0 cosc0 − xsb24)]

g′
4 = 1

v2
sd0 + v2

sq0

[−vsd0(km0Vdc0 cosc0 − xsb45)

+ vsq0(km0Vdc0 sinc0 + xsb25)]

Hence

Dc = gDf+ g1Dd+ g2DE′
q + gdcDVdc + g3Dm (43)

where

g = g

1 − g′
4

, g1 = g′
1

1 − g′
4

, g2 = g′
2

1 − g′
4

g3 = g′
3

1 − g′
4

, gdc =
g′

dc

1 − g′
4

10 Appendix 2

Linearisation of (3), (5), (6), (7), (9), (11), (12) and (13)
gives

DIfc-ref = −Pfc-ref0

V 2
fc0

DVfc

DIfc =
1

1 + Tes
DIfc-ref

Dqh2-in = 2Kr

Uopt

1

1 + Tf s
DIfc

Dqo2-in = 1

rho

Dqh2-in

Dph2 = 1

Kh2

1

1 + Th2s
(Dqh2-in − 2KrDIfc)

Dpo2 = 1

Ko2

1

1 + To2s
(Dqo2-in − KrDIfc)

Dph2o = 1

Kh2o

1

1 + Th2os
2KrDIfc

DVfc = c1Dph2 + c2Dpo2 + c3Dph2o + c4DIfc

(44)

Ddc = −Tdc(s)DIfc (45)
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DIdc1 = m0 k cosc0Disd + m0 k sinc0isq

+ (isd0k cosc0 + isq0k sinc0)Dm

+ (isq0m0 k cosc0 − isd0m0 k sinc0)Dc

DIdc2 = (1 − dc0)DIfc − Ifc0Ddc

DV̇ dc =
1

Cdc

(DIdc2 − DIdc1) (46)

Let the state-space realisation of (45) (dc–dc converter
control) to be

Ẋd = AdX d + BdDIfc

Ddc = CdXd + DdDIfc

(47)

From (44)–(47) it can be obtained that

CdcDV̇ dc = (1−dc0)DIfc − Ifc0CdXd +DdDIfc − f1Disd

− f2c0Disq − f3Dm− f4Dc

DIfc =− 1

1+Tes

Pfc-ref0

V 2
fc0

(c1Dph2 + c2Dpo2

+ c3Dph2o + c4DIfc)

Dqh2-in =
2Kr

Uopt

1

1+Tf s
DIfc

Dph2 =
1

Kh2

1

1+Th2s
(Dqh2-in −2KrDIfc)

Dpo2 =
1

Ko2

1

1+To2s

1

rho

Dqh2-in −KrDIfc

( )

Dph2o =
1

Kh2o

1

1+Th2os
2KrDIfc

Ẋ d =AdXd +BdDIfc

(48)

where

f1 = m0 k cosc0, f2 = m0 k sinc0isq

f3 = isd0k cosc0 + isq0k sinc0

f4 = isq0m0 k cosc0 − isd0m0 k sinc0

Define the state variable vector of the state-space
representation of the above linearised model of SOFC
power generation plant to be

X fc = DVdc DIfc Dqh2-in Dph2 Dph2o Dpo2 X d

[ ]T

Equation (48) can be written as

Ẋ fc = A′
fcX fc + B′

fc1 Disd Disq

[ ]T + B′
fc2 Dm Dc
[ ]T

where (see equations at the bottom of the page)

11 Appendix 3

From (13) we can have

VdcV̇ dc =
1

Cdc

Idc =
1

Cdc

(VdcIdc2 − VdcIdc1)

= 1

Cdc

(Pfc − Ps) (49)

Hence

Vdc0DV̇ dc + DV̇ dc0DVdc = Vdc0EV̇ dc

= 1

Cdc

(DPfc − DPs) (50)

Power balance equation of the power system is
Pt 2 Ps + Pa ¼ Pm, where Pa is the accelerating power
gained by the generator in dynamic operation of the power
system. DPt ¼ DPs 2 DPa, that is, in the dynamic operation,
DPs is in the same phase with DPt, lagging Dv by 908. From

A′
fc =

0
(1 − dc0) + Dd

Cdc

0 0 0 0
−Ifc0Cd

Cdc

0 − 1

Te

− 1

Te

Pfc-ref0

V 2
fc0

c4 0 − 1

Te

Pfc-ref0

V 2
fc0

c1 − 1

Te

Pfc-ref0

V 2
fc0

c3 − 1

Te

Pfc-ref0

V 2
fc0

c2 0

0
2Kr

UoptTf

− 1

Tf

0 0 0 0

0 − 2Kr

Kh2Th2

1

Kh2Th2

− 1

Th2

0 0 0

0
2Kr

Kh2oTh2o

0 0 − 1

Th2o

0 0

0 − Kr

Ko2To2

Kr

Ko2To2rho

0 0 − 1

To2

0

0 Bd 0 0 0 0 Ad

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B′
fc1 =

−f1
Cdc

−f2
Cdc

0 0

⎡
⎣

⎤
⎦, B′

fc2 =
−f3
Cdc

−f4
Cdc

0 0

⎡
⎣

⎤
⎦
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(50) it can be seen that DVdc which is caused by DPs should
lead DPs by 908. Therefore DVdc is in the same phase with Dv.

12 Appendix 4

From (30), the active power supplied by the generator can be
written as

Pt =
E′

q

x′dS
(bVb sind+ aVc cosc)

−
(xq − x′d)

x′dSxqS

(bVb sind+ aVc cosc)(bVb cosd+ aVc sinc)

=
E′

q

x′dS
(bVb sind+ aVc cosc)

−
(xq − x′d)

x′dSxqS

b2V 2
b sindcosd+ baVcVb sind sinc

[

+ abVbVc cosc cosd+ 1

2
a2V 2

c sin 2c

]

where Vc = mkVdc, Dc = KvdcDVdc. Hence

DTDDET = ∂Pt

∂Vdc

+ ∂Pt

∂Vdc

R

=
amkE′

q0

x′dS
( cosc0 − RVdc0 sinc0)

−
(xq − x′d)

x′dSxqS

[mkabVb0 sin d0(RVdc0 cosc0 + sinc0)

+ amkbVb0 cos d0( cosc0 − RVdc0 sinc0)

+ m2 k2a2Vdc0( sin 2c0 + RVdc0 cos 2c0)]

= 0

(51)

By solving (51), the accurate value of c0-critical can be
computed.

13 Appendix 5

Per unit values of the following parameters are used,
including for the relevant dc-system in the examples.

1. Parameters of the example single-machine infinite-bus
power system (machine damping coefficient includes the
effect of a PSS. A relatively low gain AVRQ6 is adopted.)

Transmission line: xts=0.3 p.u., xsb =0.3 p.u., xs =
0.3 p.u., Generator: xd = 1.3 p.u., xq = 0.47 p.u., x′d =
0.3 p.u., M = 7.4 s, D = 4 p.u., T ′

d0 = 5 s
AVR: TA ¼ 0.1 s, KA ¼ 10 p.u.
Initial load condition: Vt0 ¼ 1.0 p.u., Vs0 ¼ 1.0 p.u.,

Vb0 ¼ 1.0 p.u.
Converters (voltage control scheme)

m = m0 + Kvac +
Kvaci

s

( )
(Vs-ref − Vs)

f = f0 + Kvdc +
Kvdci

s
)(Vdc-ref − Vdc)

Cdc = 1.0 p.u., Vdc0 = 1.0 p.u., Kvac = 0.1, Kvaci = 0.3,

Kvdc = 0.3, Kvdci = 0.3, Kdc = 5

2. Parameters of the example four-machine two-area power
system
DC/DC inverter: dc = dc0 + (Kfc + (Kfci/s))(Ifc-ref − Ifc);
Kfc = 3; Kfci = 1.57

DC/AC converter (current control scheme)

m = m0 + Kr(s)[Isq0 − Isq + Kac(s)(Vs-ref − Vs)]

f = f0 + Ka(s)[Isq0 − Isq + Kdc(s)(Vdc-ref − Vdc)]

Kdc(s) = Kdcp + Kdci/s Kac(s) = Kacp + Kaci/s

Kr(s) = Krp + Kri/s Ka(s) = Kap + Kai/s

Kdcp = 0.2; Kdci = 2; Kacp = 0.15; Kaci = 0.0001

Krp = −0.001; Kri = −0.001

Kap = 0.001; Kai = 0.001;

Parameters of the example system are given in [20] with
parameters of the AVR for four generators to be KA ¼ 100;
TA ¼ 0.01;

3. Parameters of the SOFC:

SOFC: T = 1273, F = 96487, R = 8.314, E0 = 1.18

N0 = 384, Kr = 0.966e− 6, Umax = 0.9, Umin = 0.8,

Uopt = 0.85, Kh2 = 8.43× 10−4, Kh2o = 2.81e− 4

Ko2 = 2.52× 10−3, th2 = 26.1, th2o = 78.3

to2 = 2.91, r = 0.126, Tf = 5, Te = 0.08

rho = 1.145
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