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Abstract 

MicroRNAs (miRNAs) bind to complementary sequences within the 3 untranslated 

region (UTR) of mRNAs from hundreds of target genes, leading either to mRNA 

degradation or suppression of translation. We found that a mutation in the seed region 

of miR-184 (miR184) is responsible for familial severe keratoconus combined with early-

onset anterior polar cataract, by deep sequencing of a linkage region known to contain 

the mutation. The mutant form fails to compete with miR-205 (miR205) for overlapping 

target sites on the 3 UTRs of INPPL1 and ITGB4. Although these target genes and 

miR-205 are expressed widely, the phenotype is restricted to the cornea and lens 

because of the very high expression of miR-184 in these tissues. Our finding highlights 

the tissue-specificity of a gene network regulated by a miRNA. Awareness of the 

important function of miRNAs may aid identification of susceptibility genes and new 

therapeutic targets for treatment of both rare and common diseases. 

 

Keratoconus (MIM 148300) is a non-inflammatory thinning of the central cornea, which 

results in cone-shaped protrusion of the cornea, alteration in refractive power, reduced 

visual acuity and image distortion. It is the most common corneal dystrophy, with an 

incidence of 1 in 2,0001 and is a major reason for corneal transplantation.2 Keratoconus 

is usually inherited as an autosomal dominant trait with variable expression. Mutations 

in the visual system homeobox 1 gene (VSX1 [MIM 605020]) have been identified in 

patients with keratoconus, however their role in causing disease is controversial.3, 4 The 



 

pathological mechanism behind keratoconus is poorly understood, but evidence points 

towards dysregulation of apoptosis.5, 6 

Small (19-25 nucleotide) regulatory strands of RNA, named microRNAs (miRNAs), bind 

to complementary sequences, usually in the 3 UTR of mRNA of target genes, leading 

to degradation of the mRNA or suppression of translation.7 As part of a RNA-induced 

silencing complex, each miRNA may target mRNA from hundreds of genes.8 Tissue-

specific expression of miRNAs may affect the abundance of proteins in different organs 

and their component parts.  

Within the eye, miR-184 (encoded by MIR184 [MIM 613146]) is expressed in the central 

corneal epithelial basal and suprabasal cells, and in the lens epithelium.9, 10 In both 

tissues it is the most abundant miRNA. MiR-205 is a widely-expressed epithelial miRNA 

encoded by MIR205 (MIM 613147). One observed action of miR-184 is the competitive 

inhibition of the binding of miR-205 to mRNA of the inositol polyphosphate 

phosphatase-like 1 gene (INPPL1, also known as SHIP2 [MIM 600829]).11 Through this 

mechanism, miR-184 prevents knock-down by miR-205 and rescues INPPL-1 

production. Ultimately, this sustains levels of phosphorylated AKT and phosphorylated 

BCL-2-associated death promoter (BAD), which regulate apoptosis.11 

We investigated the cause of disease in a Northern Irish family in which 18 of 38 

individuals from three generations were affected by an autosomal dominant form of 

severe anterior keratoconus and early-onset anterior polar cataract. We previously 

mapped the disease locus in this family to a 5.5 Mb region of chromosome 15q22-q25 

and excluded many positional candidate genes by conventional sequencing.12, 13 



 

Recently, we enriched for all genes within the region by sequence capture. A custom 

sequence capture array (Roche NimbleGen, Madison, Wisconsin, USA) was designed 

to capture 5 Mb of the 5.5 Mb linkage region at 15q22-q25 (a repetitive gene-devoid 0.5 

Mb region was excluded). The array was designed using the Sequence Search and 

Alignment by Hashing Algorithm and comprised 385,000 unique probes.14 Three study 

DNA samples were captured: one affected family member, and two pooled DNA 

samples from 7 affected and 6 unaffected family members, respectively. DNA samples 

were enriched for the targeted sequences using the manufacturer’s protocols. Briefly, 

21 μg aliquots were fragmented and hybridized to the array followed by ligation-

mediated PCR amplification of the enriched fragmented DNA pool. Five micrograms of 

amplified enriched DNA underwent massively parallel sequencing on a Genome 

Analyzer II (Illumina, San Diego, California, USA) with a single sample per flow cell to 

generate single-end reads of 40 bp (GATC Biotech, Konstanz, Germany).  

Sequence data were converted from Solexa to Sanger standard format by use of Maq 

0.7.1 and aligned to the NCBI v37 reference sequence using the BWA 0.5.9 short 

alignment algorithm.15 Sorting, indexing and removal of duplicates were performed with 

Samtools 0.1.14.16 Picard 1.43 was used to edit read groups information. Functions of 

Genome Analysis Toolkit (GATK)17 were used to recalibrate base calls, realign reads at 

the sites of possible insertions, duplications and deletions, and call polymorphisms 

(Unified Genotyper). Version 130 of dbSNP and the 4th August 2010 release of Dindel 

data for Europeans from the 1000 genomes project were employed for realignment. 

VCFtools 0.1.5 was used to compare variant calls from the three sample groups. 

Sequence was visualized with Integrative Genomics Viewer 1.5.18 We used GATK to 



 

annotate the polymorphisms with gene information from the RefSeq Genes track (made 

by the Genome Sequencing and Analysis group at the Broad Institute from the UCSC 

RefSeq Genes Track, itself derived from NCBI mRNA reference sequences collection; 

see Web Resources). Polymorphisms outside gene exons were excluded from further 

analyses. All variant calls from the three samples were entered into a database, which 

was queried for instances where the affected individual and affected pool shared any 

genetic variation that was not present in the unaffected pool. Mean depth of coverage 

was 23-28 reads in each sample, with 70-77% having >15x coverage. Twenty-six 

variants (25 single nucleotide variants and one deletion of two bases) within exons and 

untranslated regions of coding and non-coding genes were identified that fitted this 

pattern (Table 1). We searched dbSNP and the 1000 Genomes Project data release of 

May 2011 for these polymorphisms. All but two SNPs were already known and were 

identified in European populations at a frequency of greater than 7.5% and were thus 

excluded from further consideration. A deletion of two bases was not recorded in 

dbSNP or the 1000 Genomes Project. Three possible causative mutations were 

therefore identified (Table 2).  

We searched public databases for information about the function and expression of 

MIR184, DNAJA4 and IREB2. MiR-184 is the most abundantly expressed microRNA in 

the corneal and lens epithelia, and is known to be involved in the regulation of protein 

levels in those tissues.9 The novel heterozygous C-to-T transition (r.57c>u) within miR-

184 (Figure 1) is in the central nucleotide of the functionally essential seven-base 

miRNA seed region. DNAJA4 is expressed in a wide range of tissues. Its product is a 

chaperone molecule involved in cholesterol biosynthesis.19 The two bases are deleted 



 

from the start codon of an alternatively spliced first exon. The deletion is predicted to 

prevent formation of isoform 3 of DNAJA4 from this allele. Relatively little is known 

about this gene, but it is not known to have any important role in the eye. IREB2 (MIM 

147582) encodes an iron-responsive element binding protein which regulates iron 

metabolism.20 The mutation in IREB2 in the 3 UTR is not predicted by MicroCosm 

Targets to interact with any miRNA. 21, 22 

In light of its role and specific abundance in the cornea and lens, the mutation altering 

the seed region of miR-184 (r.57c>u) was the compelling candidate of the three 

previously unknown variants detected within exons. The gene is conserved in all 65 

species known to have a copy of miR-184 (Figure 2A). We performed conventional 

sequencing of MIR184 (Table S1) in 167 unscreened controls and found no mutation 

within the mature miRNA. The miR-184 (r.57c>u) mutation was not reported in the 

1,094 individuals in the 1,000 Genomes Project data release of May 2011.23 Predictions 

of RNA folding using Mfold24 suggest that the mutation does not destabilize the 

secondary structure of the mir-184 pre-miR (Figure 2B). 

The known competition between miR-184 and miR-205 for the 3 UTR of INPPL1 

(Figure 2C) facilitated a relatively straightforward functional assessment for miR-184 

(r.57c>u). INPPL1 is expressed constitutively by HeLa cells, but neither miR-184 nor 

miR-205 is expressed.25, 26 We used computational target prediction (the MicroCosm 

Targets v.521, 22 implementation of the miRanda algorithm 27) to search for other 

instances where miR-184 and miR-205 had overlapping target sites in a 3 UTR. This 

yielded only one other target, integrin beta 4 (ITGB4 [MIM 147557]), which is the main 



 

structural protein of hemidesmosomes that connect corneal basal epithelial cells to the 

basement membrane.28 

We adapted Yu et al.’s experiment11 to test the ability of the mutant (r.57u) and wild-

type miR-184 to interfere with miR-205 knockdown of INPPL1 and ITGB4 transcripts in 

HeLa cells, by immunohistochemical staining and by western blotting. 

Blunt-ended double-stranded miRNA mimics for the predominant isoforms of miR-184  

and miR-205 (Figure S1), and for the mutant miR-184 (r.57u) were synthesized by 

Invitrogen (Table S2). HeLa cells (which express INPPL1 and ITGB4, but not miR-184 

or miR-205) were grown to 70% confluence in 24-well plates in DMEM medium without 

antibiotics, and transfected with miRNA mimics (20 nmol/L) using Santa Cruz 

transfection reagent according to the standard protocol. Cells were cultured for 72 h 

before harvesting for western blotting and staining with anti-INPPL1 (NEBiolabs; 

#2839), anti-ITGB4 antibody (Abcam; #29042) or anti-α-tubulin (Abcam; #4074) at a 

dilution of 1:1000. Donkey anti-rabbit and chicken anti-mouse HRP-linked secondary 

antibodies were used for western blotting and donkey anti-rabbit FITC-linked secondary 

antibodies (Abcam) with Alexa Fluor-555-labelled phalloidin (Invitrogen) used for 

immunofluorescence. Western blots were performed for five sets of transfections. 

Luminescence was detected and quantified using a UVP BioSpectrum AC Imaging 

System. 

Cells from an additional set of transfections were stained with fluorescently labeled 

antibodies. Immunofluorescence was detected using an Olympus IX51 microscope and 

Spot Diagnostics V4.1 (Diagnostic Instruments Inc.) software. Semi-quantitative 



 

analysis was carried out on a minimum of 30 cells for each condition using Adobe 

Photoshop CS3. Statistical analyses were carried out using PASW statistics v18.0.0 

(SPSS Inc., Chicago, IL, USA) and charts plotted with the gplots package29 within R 

v2.10.1.30 

The levels of INNPL-1 (Figure 3A) and ITGB4 (Figure 3B) in HeLa cells in response to 

transfection with combinations of synthetic miRNAs was measured by western blotting. 

Knockdown of INNPL-1 was minimal with miR-184 mimic (4.4%; p=0.03) and negligible 

with mutant miR-184 mimic (1.8%; p=0.33). Transfection with miR-205 mimic reduced 

the amount of INPPL-1 detected to 47% of that in control cells which underwent the 

process of transfection without any synthetic miRNA (p=3.5x10-5). Transfection with 

miR-205 mimic in combination with wild-type miR-184 mimic resulted in rescue of levels 

of INPPL-1 to 86% of controls (p=2.5x10-3). However, transfection with miR-205 mimic 

in combination with mutant miR-184 mimic resulted in failure to rescue INPPL-1 levels 

(44% vs 47%; p=0.57 compared to miR-205 mimic alone).  

Knockdown of ITGB4 was moderate with miR-184 mimic (13%; p=3.4x10-4) and 

negligible with mutant miR-184 mimic (3%; p=0.24). Transfection with miR-205 mimic 

reduced the amount of ITGB4 detected to 47% of that in control cells which underwent 

the process of transfection without any synthetic miRNA (p=2.8x10-5). Transfection with 

miR-205 mimic in combination with wild-type miR-184 mimic resulted in rescue of levels 

of ITGB4 to 80% of controls (p=4.0x10-3). However, transfection with miR-205 mimic in 

combination with mutant miR-184 mimic resulted in failure to rescue ITGB4 levels (44% 

vs 47%; p=0.50 compared to miR-205 mimic alone). 



 

Cells transfected with miR-205 mimic combined with either mutant or wild-type miR-184 

mimic were stained for INPPL-1 and ITGB4. Cells treated with the mutant miR-184 

mimic showed a 37% reduction of INPPL-1 compared to cells treated with wild-type 

miR-184 mimic (Figures 4A, B and C; p=1.3x10-4). Cells treated with the mutant miR-

184 mimic showed a 48% reduction of ITGB4 compared to cells treated with wild-type 

miR-184 mimic (Figure 4D, E and F; p=7.5x10-6). 

The tissue-specific expression of miR-184 is of prime importance in the phenotypic 

effects that the mutation causes. Within the cornea, miR-184 expression is restricted to 

central basal and suprabasal epithelial cells,9 under which the stromal thinning occurs in 

keratoconus. Within the lens, the epithelium lies anteriorly and, paralleling the cornea, 

has less proliferative capacity centrally.31 This anterior lens epithelium expresses miR-

184,9 adjacent to the site of cataract in the affected family.  

In the cornea, ITGB4 forms part of the α6β4 heterodimer, which is the principal 

component of corneal basal epithelial hemidesmosomes.28 Following corneal injury, 

hemidesmosomes in the basal epithelial layer are degraded to allow epithelial cell 

migration and are subsequently rebuilt. Expression of miR-184 is halted at the site of 

corneal injury, and returns after healing.9 Dysregulation of the expression of ITGB4 in 

the central cornea (the site of miR-184 expression) may therefore also be important. 

The stromal keratocytes underlying the site of an injury undergo rapid apoptosis as a 

defense mechanism.6 Therefore the role of INPPL-1 in regulation of apoptosis may also 

be vital in the development of keratoconus and cataract.  



 

Expression of as many as 1,000 genes may be regulated by miR-184, independently or 

in competition with other miRNAs, which may lead to complex effects on the levels of a 

large number of proteins. The harmful effects of mutant miR-184 may be mediated 

through proteins other than INPPL-1 and ITGB4. Among the predicted targets of miR-

184 are a major lens transcription factor (FOXE3 [MIM 601094]) and a major intrinsic 

protein of eye lens fiber (MIP [MIM 154050]), mutations in both of which cause lens 

abnormalities in humans.32 The competition between miR-184 and miR-205, identified 

by Yu et al, and confirmed in our study, illustrates the complexity of miRNA action. We 

do not, at present, know why miR-184 is less effective than miR-205 at knock-down of 

INPPL-1 and ITGB4. Further studies are required to illuminate the molecular 

mechanisms involved. 

In some cases, myopia is due to a steeply curving cornea. A genome-wide association 

study identified a small region encompassing MIR184 as a major myopia locus,33 and 

focused on RASGRF1 (MIM 606600), which is adjacent to MIR184. Our finding that a 

MIR184 mutation causes keratoconus suggests that this gene warrants further 

investigation with respect to myopia.  

The role of miRNAs in human diseases and possible treatments is a new and 

expanding field of study. This is the second report of a mutation in a miRNA associated 

with a human mendelian disease. The previous report identified two mutations in miR-

96 that resulted in hereditary deafness in two Spanish families.34 

Our report demonstrates that variation in miRNAs can cause disease that is specific to 

the tissue in which the miRNA is expressed. This knowledge may open new lines of 



 

enquiry for those investigating the causes of diseases, and may indeed suggest 

possible treatments: the therapeutic use of miRNA in eye diseases is a real and 

noteworthy prospect.  

Supplemental Data 

Supplemental Data include two tables and one figure and can be found with this article 

online at http://www.cell.com/ASHG 
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Legends to figures 

Figure 1. Multiple alignment of massively parallel sequence reads spanning the seed 

region of miR-184 from (A) a single individual affected with familial keratoconus and 

cataract, (B) a pool of 7 affected members of the same family and (C) a pool of 6 

unaffected members of the same family. All nucleotides that vary from the reference 

sequence, shown below, are indicated. Read depth and heterozygosity are designated 

at the top of each column. 

 

Figure 2. Variants of miR-184 and conservation across species; structure of miR-184, 

miR-205 and mutant miR-184; Interactions of miR-184 and miR-205. (A) Multiple 

alignment of miR-184 sequences from different vertebrate species. The mutation site 

(miR-184 r.57c>u; blue arrow) is fully conserved across all species. Changes from the 

human reference sequence are shown in green type, the mature miRNAs are shown in 

red type, with the seed regions in bold. hsa, Homo sapiens; ptr, Pan troglodytes; ppy, 

Pongo pygmaeus; mne, Macaca nemestrina; mdo, Monodelphis domestica; gga, Gallus 

gallus; ssc, Sus scrofa; rno, Rattus norvegicus; mmu, Mus musculus; xtr, Xenopus 

tropicalis; dre, Danio rerio. Fifty-four additional species showed full conservation of the 

mature miR-184 sequence. (B) Secondary structures and free energies of wild type 

miR-184, mutant miR-184 (r.57u) predicted by Mfold. (C) Target sites of miR-184 and 

miR-205 in the 3' UTRs of INPPL1 and ITGB4 predicted by MicroCosm with energies 

shown in kcal/mol. 

 



 

Figure 3. Western blot of INPPL-1 and ITGB4. Knockdown for miRNAs was performed 

in HeLa cells. Signal strengths are shown for INPPL-1 and ITGB4 relative to a sham 

transfected control, all normalized for α-tubulin loading. One representative image is 

shown from five replicated experiments. (A) There was no rescue of miR-205 

knockdown of INPPL-1 by the mutant miR-184 mimic compared to wild-type miR-184 

mimic. (B) There was no rescue of miR-205 knockdown of ITGB4 by the mutant miR-

184 mimic compared to wild-type miR-184 mimic. 

 

Figure 4. Immunofluorescence staining of INPPL-1, ITGB4 and actin. Representative 

micrographs showing (A and B) INPPL-1 (green) and actin (red) for cells transfected 

with (A) miR-184 mimic and miR-205 mimic and (B) mutant miR-184 and miR-205. 

Scale bar: 50 μm. (C) Semi-quantitative analysis of mutant miR-184 knockdown relative 

to wild-type miR-184, both with miR-205 and standardized for actin. Representative 

micrographs showing (D and E) ITGB4 (green) and actin (red) for cells knocked down 

with (D) miR-184 mimic and miR-205 mimic and (E) mutant miR-184 and miR-205. 

Scale bar: 50 μm. (F) Semi-quantitative analysis of mutant miR-184 knockdown relative 

to wild-type miR-184, both with miR-205 and standardized for actin. 



 

Table 1. Annotation of massively parallel sequence. Genetic variants detected in both 

affected individual and affected pool, but not in unaffected pool, categorized by site.  

Site of Variant 
Coding Gene 

   Total             Known 

Non-coding Gene 

   Total             Known 

Coding sequence 9 9 5 4 

5 or 3 UTR 12 10 - - 

 

Table 2. Novel exonic variants. 

Gene Sequence Variant 

DNAJA4 g.2099_2100delAT (NC_000015) 

IREB2 c.*2043G>T (NM_004136) 

MIR184 r.57c>u (NR_029705) 
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Mutation altering the miR-184 seed region causes familial keratoconus with cataract 
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Figure S1. Relative abundance of isomiRs of miR-184 and miR-205 

Counts of isomiR sequencing data for the major and minor forms of miR-184 and miR-

205 taken from miRBase (http://www.mirbase.org/) accessed 19 August 2011. MiR 

mimics were based on the sequence of the major form of miR-184 and of miR-205. 

Primer Name Sequence 

MIR184 F 5-ACGTCCATTTACATCTTGTCCTGC-3 

MIR184 R 5-ACACAAAGGCTACCCCAGCATCC-3 

Table S1. PCR primer sequences 

miRNA mimic  Sequence 

miR-184 5-UGGACGGAGAACUGAUAAGGGU-3 

miR-184 (r.57u) 5-UGGAUGGAGAACUGAUAAGGGU-3 

miR-205 5-UCCUUCAUUCCACCGGAGUCUG-3 

Table S2. MiRNA mimic sequences 

 

http://www.mirbase.org/

