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Age-dependent DNA methylation of genes that
are suppressed in stem cells is a hallmark of cancer
Andrew E. Teschendorff,1 Usha Menon,2 Aleksandra Gentry-Maharaj,2

Susan J. Ramus,2 Daniel J. Weisenberger,3 Hui Shen,3 Mihaela Campan,3

Houtan Noushmehr,3 Christopher G. Bell,1 A. Peter Maxwell,4 David A. Savage,4

Elisabeth Mueller-Holzner,5 Christian Marth,5 Gabrijela Kocjan,6 Simon A. Gayther,2

Allison Jones,2 Stephan Beck,1 Wolfgang Wagner,7 Peter W. Laird,3 Ian J. Jacobs,2

and Martin Widschwendter2,8

1Medical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom; 2Department of

Gynecological Oncology, UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London W1T 7DN,

United Kingdom; 3USC Epigenome Center, University of Southern California, Keck School of Medicine, Los Angeles, California

90089-9601, USA; 4Nephrology Research Group, Centre for Public Health, Queen’s University Belfast, Belfast BT9 7AB, Northern

Ireland; 5Department of Obstetrics and Gynaecology, Innsbruck Medical University, Innsbruck 6020, Austria; 6Department of

Histopathology, University College London, London WC1E 6JJ, United Kingdom; 7Helmholtz Institute for Biomedical Engineering–Cell

Biology, Aachen University Medical School, 52074 Aachen, Germany

Polycomb group proteins (PCGs) are involved in repression of genes that are required for stem cell differentiation.
Recently, it was shown that promoters of PCG target genes (PCGTs) are 12-fold more likely to be methylated in cancer
than non-PCGTs. Age is the most important demographic risk factor for cancer, and we hypothesized that its carcinogenic
potential may be referred by irreversibly stabilizing stem cell features. To test this, we analyzed the methylation status of
over 27,000 CpGs mapping to promoters of ;14,000 genes in whole blood samples from 261 postmenopausal women. We
demonstrate that stem cell PCGTs are far more likely to become methylated with age than non-targets (odds ratio = 5.3
[3.8–7.4], P < 10�10), independently of sex, tissue type, disease state, and methylation platform. We identified a specific
subset of 69 PCGT CpGs that undergo hypermethylation with age and validated this methylation signature in seven
independent data sets encompassing over 900 samples, including normal and cancer solid tissues and a population of bone
marrow mesenchymal stem/stromal cells (P < 10�5). We find that the age-PCGT methylation signature is present in
preneoplastic conditions and may drive gene expression changes associated with carcinogenesis. These findings shed
substantial novel insights into the epigenetic effects of aging and support the view that age may predispose to malignant
transformation by irreversibly stabilizing stem cell features.

[Supplemental material is available online at http://www.genome.org. The microarray data from this study have been
submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession nos. GSE19711,
GSE20067, and GSE20080.]

Targets of polycomb group proteins (PCGTs) are repressed in

human embryonic and adult stem cells (Lee et al. 2006). The re-

pression mechanism involves chromatin modifications and is re-

versible, allowing stem cells and multipotent progenitors to dif-

ferentiate into committed cell lineages through expression of

specific PCGTs. Recently, we and others have demonstrated that

stem cell PCGTs in human embryonic stem cells (hESC) are far

more likely to undergo cancer-specific promoter DNA hyper-

methylation than non-targets, suggesting a stem-cell origin model

of cancer. In this model, PCGTs in stem cells would gradually un-

dergo de novo methylation, irreversibly locking cells in an un-

differentiated state of self-renewal and thereby predisposing them

to subsequent malignant transformation (Ohm et al. 2007;

Schlesinger et al. 2007; Widschwendter et al. 2007). However, the

mechanisms and factors contributing to this de novo methyla-

tion are not yet known.

Age is by far the strongest demographic risk factor for cancer.

Besides time-dependent DNA damage (Hoeijmakers 2009), there

is now also substantial evidence that aging affects DNA methyl-

ation (DNAm) of specific loci, including cancer-related genes

(Issa et al. 1994, 1996; Ahuja et al. 1998; Nakagawa et al. 2001; So

et al. 2006; Fraga and Esteller 2007; Fraga et al. 2007; Bjornsson

et al. 2008; Christensen et al. 2009). Based on these observations,

we hypothesized that age may induce DNAm of PCGTs, and

thereby predispose to cancer. Although blood and epithelial cells

originate from different germ layers, we speculated that genes

that are mandatory for the differentiation of epithelial cells are

more likely to become methylated with increasing age in non-

epithelial tissue such as blood. Hence, in order to identify age-

dependent CpGs that may be important in the biology of epi-

thelial cancers, we first retrieved an age-dependent signature

from peripheral blood cells, then validated the age signature in

independent blood samples and normal epithelial tissues, and
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finally tested the biological relevance of this signature in epi-

thelial neoplasias.

Results

Age-dependent hypermethylation of PCGTs is independent
of cell type

We first performed DNAm profiling (Illumina Infinium 27k)

(Weisenberger et al. 2008) of peripheral blood samples drawn from

261 postmenopausal women spanning a 30-yr age range (Supple-

mental Fig. 1; Supplemental Tables 1, 2). A stringent quality con-

trol and interarray normalization procedure resulted in a normal-

ized data matrix of methylation scores (b-values, 0 < b < 1) across

261 blood samples (148 from healthy women [Set-1], 113 from

ovarian cancer cases [Set-2]) and 25,642 CpG sites (Table 1; see

Methods, Supplemental material). Unsupervised analysis using

singular value decomposition (SVD) revealed significant compo-

nents of variation associated with age (Supplemental Fig. 2). Next,

using linear regressions, we derived a DNAm signature for aging. To

see if this signature would be dependent on disease status, this

analysis was performed separately for cases and controls. We ob-

served that the age-associated DNAm signature was very similar

regardless of disease status (Fig. 1A). We thus combined the sam-

ples (n = 261) to derive a core DNA methylation signature for aging

(589 CpGs passed a false discovery rate [FDR] threshold of 0.05;

Fig. 1A, Supplemental Table 3). While the majority of CpGs were

hypomethylated with age, we observed that CpGs mapping to

promoters of PCGTs (defined by single occupancy of SUZ12, EED,

or H3K27me3 in human embryonic stem cells [hESC] [Lee et al.

2006]) were preferentially hypermethylated (Fig. 1A). Specifically,

we identified 69 CpGs mapping to 64 unique PCGT loci (Supple-

mental Table 4), which was significantly more than the 20 unique

gene loci expected by chance (Fisher’s exact test, P = 2 3 10�17). We

estimated that PCGT loci were approximately fivefold (odds ratio

[OR]) more likely (median unbiased mid-p test, P < 10�12, Fig. 1B)

to be hypermethylated with age than non-PCGTs, defined by

genes that lack occupancy of SUZ12, EED, or H3K27me3 marks in

hESC (Lee et al. 2006). Similarly, we observed a fivefold OR en-

richment of H3K27me3 marks (Fig. 1C) in hematopoietic stem

cells (HSC) (Cui et al. 2009). In contrast, only 11 PCGTs were

hypomethylated with age, which was somewhat less than ex-

pected by chance (Fig. 1A,B). We verified that PCGT enrichment

among hypermethylated CpGs was not due to an overrep-

resentation of PCGT CpGs within CpG islands, by showing that

the enrichment remained when restricting the comparison to

those CpGs located within CpG islands (OR = 4.2 [3.0–5.7], P <

10�10). The 69 PCGT CpGs displayed an average methylation

profile that increased monotonically over an age range spanning

>25 yr (50–80 yr) (Supplemental Fig. 3).

To investigate the generality of this epigenetic phenomenon,

we next applied the same linear regression approach to derive

DNAm signatures for aging in two independent data sets (Table 1,

Set-5 and Set-6): whole blood (WB) samples from 188 patients (95

women and 93 men) with type 1 diabetes (T1D), and tumor tissue

samples from 177 women with ovarian cancer (OvC). Using the

same FDR cutoff of 0.05, we observed many age-associated CpGs

in WB and OvC tissue (Supplemental Tables 5, 6), with a highly

significant OR enrichment of PCGTs among CpGs undergoing

hypermethylation with age, but not so among CpGs undergoing

hypomethylation (Fig. 1D,E). For the WB T1D samples, we verified

that PCGTenrichment was independent of sex (Supplemental Fig. 4).

In addition, using data generated on a different platform,

with a different set of CpGs (Goldengate assay; Christensen et al.

2009), we confirmed that PCGTs undergo preferential hyper-

methylation with age in normal tissues other than blood, in-

cluding normal pleura and lung samples (Supplemental Fig. 5).

Given the common enrichment of PCGTs across multiple

tissue types, we next asked if this result could be due to a specific

‘‘core’’ subset of PCGTs, or if instead the age-PCGT signature is

largely tissue-specific. To address this question, we took the specific

subset of 69 PCGT CpGs, as identified in the training set of 261 WB

samples, and asked if they showed a consistent pattern of increased

methylation with age in the validation data sets (Table 1). We

found that the average methylation profile of the 69 CpGs corre-

lated significantly with age in blood samples from 108 healthy

individuals (Fig. 2A, Set-3), 122 ovarian cancer cases (Supplemental

Fig. 3, Set-4), 188 patients with T1D (Fig. 2B, Set-5), and in ovarian

cancer tissue from 177 women (Fig. 2C, Set-6). Moreover, we ob-

served that the 69 PCGT CpGs exhibited a significant skew toward

hypermethylation with age in all validation sets examined (Fig.

2E–G; Supplemental Fig. 3; Supplemental Table 4). The skew to-

ward hypermethylation remained significant relative to random

choices of 69 CpGs. Furthermore, we observed that the 69 PCGT

Table 1. Main methylation data sets used in this study

Set
Sample

size Cell type
Sample

characteristics
Age range

(yr)
Methylation

assaya Use Reference

Set-1 148 WB Healthy women 52–78 Infin. 27k Training Song et al. 2009
Set-2 113 WB Ovarian cancer before treatment 50–84 Infin. 27k Training Song et al. 2009
Set-3 108 WB Healthy women 52–78 Infin. 27k Validation Song et al. 2009
Set-4 122 WB Ovarian cancer after treatment 49–91 Infin. 27k Validation Song et al. 2009
Set-5 188 WB Type-1 diabetics (93 male + 95 female) 24–74 Infin. 27k Validation —
Set-6 177 Ovarian cancer Women with ovarian cancer 24–88 Infin. 27k Validation Widschwendter et al. 2004
Set-7 8 Mesenchymal

stem cells
Bone marrow from healthy donors 21–85 Infin. 27k Validation Bork et al. 2010

Set-8 110 Solid tissues Normal tissue from healthy
donors + cancer patients

Top age-CpGs
provided

GG 1.5k v2 Validation Christensen et al. 2009

Set-9 46 Lung Normal adjacent + lung cancer
tissue from 23 patients

NA GG 1.5k v1 Validation Bibikova et al. 2006

Set-10 48 Cervix LBC samples 26–43 Infin. 27k Validation —

aIllumina Infinium 27k or GoldenGate-GG 1.5k v1.
(WB) Whole blood, (NA) not available.
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CpGs exhibited higher levels of methylation than non-age-asso-

ciated PCGT CpGs and that the difference in methylation between

these two groups increased with age in all validation sets examined

(Supplemental Fig. 6).

We next asked if the 69 PCGT CpG DNAm signatures could be

reflected in multipotent progenitor and stem cell pools. To this

end, we investigated the DNA methylation profiles of cultured

mesenchymal stromal/stem cells (MSC) derived from the bone

marrow of eight healthy individuals spanning a wide age range

(21–85 yr; Set-7) (Bork et al. 2010). Despite the small sample size,

the average methylation profile exhibited a significant linear in-

crease with age (t-test for linear trend, P = 0.003, Fig. 2D), with 59

of the 69 age-hypermethylated CpGs

demonstrating corresponding increases

in methylation, while 14 of the 20 age-

hypomethylated CpGs demonstrated co-

ordinate decreases (Fisher’s exact test, P =

4 3 10�6; Fig. 2H; Supplemental Table 4).

All these results demonstrate that

although the magnitude of methylation

changes differed between studies and tis-

sues (Supplemental Table 4), the 69 PCGT

CpGs (henceforth ‘‘age-PCGT’’ CpGs) de-

fined a robust age-related DNAm signa-

ture, exhibiting the same directional DNAm

changes independently of disease state, sex,

tissue, and cell type.

The age-PCGT signature discriminates
normal from preinvasive and invasive
cancer

We observed that in ovarian cancer tissue,

methylation levels of age-PCGT CpGs

were higher than those of PCGT CpGs

not associated with age (Supplemental

Fig. 7). This suggested to us that the im-

plicated genes could be contributing

to carcinogenesis. We therefore hypothe-

sized that this age-PCGT signature could

be present in preinvasive lesions. As there

is still debate over the cell of origin, and

there is no well-defined preneoplastic

lesion for ovarian cancer, we used the

uterine cervix as a model to test this hy-

pothesis. We performed DNAm profiling

of 48 age-matched cervical smear samples

from premenopausal women (Table 1,

Set-10) with normal smears (HPV-positive

and -negative) and smears exhibiting dys-

plasia (all HPV-positive; Supplemental

material). We verified that the age of

samples with dysplasia did not differ from

the normal smears (Wilcoxon test, P =

0.86). Despite the relatively small sample

size and narrow age range of this pre-

menopausal sample set, we found that

PCGTs and our 69 age-PCGT CpG sub-

set were preferentially hypermethylated

with age (Supplemental Fig. 8). In addi-

tion, we observed that the 69 age-PCGT

CpGs were more highly methylated in

the HPV-positive samples exhibiting dysplasia compared with

HPV-positive and -negative normal samples (Fig. 3A). In contrast,

DNAm of PCGT CpGs that underwent hypomethylation in whole

blood did not correlate with progression (Fig. 3B), and non-

age-associated PCGT CpGs also did not exhibit methylation dif-

ferences between dysplasia and normal conditions (P = 0.47, Fig.

3C). In only 0.5% of 10,000 random choices of other 69 PCGTs

CpGs did we observe an association as strong as the one provided

by the age-PCGTs (P < 0.01, Fig. 3C). Clustering the 48 samples

over the 69 CpG methylation profiles also demonstrated that

inferred clusters correlated significantly with dysplasia (Fisher’s

exact test, P < 0.001, Fig. 3D).

Figure 1. DNAm signatures for aging and enrichment of PCGTs. (A) Flowchart depicting the deri-
vation of the ‘‘core’’ DNA methylation signature for aging. First, the supervised analysis was performed
separately for the blood samples from 148 healthy and 113 ovarian cancer cases. This yielded 293 CpGs
and 420 CpGs passing a FDR (q) cut-off of 0.3. There was a strong overlap between these two signatures
(Fisher’s exact test, P = 10�30) with >80% concordance. Healthy and pretreatment samples were thus
combined and supervised analysis was performed on this larger set to identify with more confidence
a DNA methylation signature for aging. This gave 589 age-associated CpGs (q < 0.05), termed the
‘‘core’’ aging signature. Distribution of these 589 CpGs in terms of hyper- and hypomethylation patterns
demonstrated a skew toward hypomethylation (binomial test, P = 6 3 10�9). Among the 226 hyper-
methylated CpGs, 69 mapped to polycomb group targets (PCGTs) (64 unique gene loci), while among
the 363 hypomethylated CpGs this number was only 20 (11 unique gene loci). Thus, relative to the
‘‘core’’ aging signature, PCGTs were preferentially hypermethylated (69 vs. 20 compared with 226 vs.
363, Fisher’s exact test, P < 4 3 10�12). Here, PCGTs were defined by promoter occupancy of any one of
SUZ12, EED, or H3K27me3 in human embryonic stem cells (Lee et al. 2006). (B,C ) Enrichment odds
ratios with 95% confidence intervals for PCGTs (B) and for H3K27me3 marks (C ), among the 226 age-
hypermethylated and 363 age-hypomethylated CpGs. H3K27me3 marks were defined by trimethylation
of H3K27 within gene body, promoter, and gene body + promoter regions in CD133+ hematopoietic
stem cells (HSC) (Cui et al. 2009). (D,E ) Independent validation: enrichment odds ratios with 95% con-
fidence intervals for PCGTs among CpGs undergoing significant hyper- and hypomethylation with age in
188 blood samples from patients with type-1 diabetes (D) and 177 ovarian cancer samples (E ). (Dashed
line) Line of unit odds ratio. Two-tailed P-values of enrichment (i.e., deviation from this line) are given.
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Of the 64 age-PCGT genes, many have been reported to un-

dergo hypermethylation in cancer (Ongenaert et al. 2008). No-

tably, TP73 and SFRP1 have been reported to undergo hyper-

methylation in not less than 10 different cancers (Supplemental

Table 7). In line with this, we also observed that methylation levels

of age-PCGTs discriminated other cancers from their normal

counterparts (Supplemental Fig. 9; Bibikova et al. 2006).

In addition to frequent hypermethylation, PCGTs also exhibit

frequent underexpression in cancer (Ben-Porath et al. 2008). We

therefore compared gene expression profiles in ovarian and cer-

vical cancer samples with their respective normal tissues (Scotto

et al. 2008; Mok et al. 2009). In both cases, we observed that age-

PCGTs exhibited average expression profiles that were signifi-

cantly lower in cancer compared with normal tissue (Fig. 3E,F). We

also observed that age-PCGTs were generally better discriminators

of ovarian cancer than 1000 random choices of other 64 PCGTs

(P = 0.06). Clustering over age-PCGTs further confirmed their

power to discriminate ovarian and cervical cancer from their re-

spective normal tissues (Supplemental Fig. 10). Interestingly, age-

PCGT mRNA expression also showed a gradual decrease with

cancer progression in a data set including preneoplastic lesions

(Supplemental Fig. 11; Wurmbach et al. 2007).

Discussion
In this paper we have described a consistent directional change of

DNAm with age, characterized by hypermethylation of PCGTs

(Fig. 1; Supplemental Figs. 4, 8). While effect and sample sizes were

not large enough for us to ascertain which genes undergo age-

associated hypermethylation in a tissue-specific manner, the fact

that we were able to identify a subset of 64 PCGTs exhibiting a clear

trend toward hypermethylation with age across multiple cell types

(blood, ovarian cancer, cervix, mesenchymal stem cells) indicates

that a component of the identified signature is largely nonspecific

(Fig. 2; Supplemental Figs. 6–8). It is also very unlikely that the

identified age-PCGT signature is caused by age-related variation in

cell-type composition. Indeed, as demonstrated in our recent work

(Teschendorff et al. 2009), we were able to correlate the age-asso-

ciated hypomethylation signature in blood with changes in blood

cell-type composition, but not so for the age-hypermethylated

Figure 2. External validation of specific age-associated PCGT DNAm signature. (A–D) Average beta-methylation values over the 69 age-hyper-
methylated PCGTs (y-axis) as a function of age (x-axis) in validation data sets. Number of samples in each age group are given above the x-axis. t-test
P-values for linear trend derived from a robust linear regression are given; (green dashed line) best linear fit. (E–H ) Validation of age-associated (69
hypermethylated and 20 hypomethylated) PCGT CpGs in test sets. (X-axis) t-statistic of the linear regression test of age vs. methylation in the training set
(blood samples from 148 healthy + 113 pretreatment ovarian cancer cases). Colors reflect directionality: (red) hypermethylated, (green) hypomethylated.
(Y-axis) t-statistic of the linear regression test of age vs. methylation in the test set. We provide the number of CpGs displaying significant hyper/hypo-
methylation in the training set and hyper/hypomethylation in the test set, as well as the corresponding Fisher’s exact test P-value. (A,E) Test set of blood
samples from an independent set of 108 healthy individuals spanning an age range of 50–80 yr. In A, age was categorized into six age groups (50–55,
56–60, 61–65, 66–70, 71–75, >75). (B,F ) Test set of blood samples from 188 T1D patients spanning an age range of 24–74 yr. In B, age was categorized
into six age groups (#35, 36–40, 41–45, 46–50, 51–60, >60). (C,G) A test set of ovarian cancer samples from 177 ovarian cancer patients spanning an age
range 24–88 yr. In C, age was categorized into six age groups (#40, 41–50, 51–60, 61–70, 71–75, >75). (D,H ) A test set of eight bone marrow mes-
enchymal stromal cell samples from healthy donors of the following ages: 21, 24, 25, 50, 53, 79, 85, 85 (Bork et al. 2010).
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signature. Consistent with this, we were also not able to validate

the age hypomethylation signature in tissues other than blood

(Supplemental Fig. 12), or to implicate it in carcinogenesis (Fig. 3B;

Supplemental Fig. 13). In contrast, the age-hypermethylated PCGT

signature was able to discriminate preneoplastic from normal cells

and was found to be aggravated in invasive cancer leading to re-

duced expression of affected genes (Fig. 3; Supplemental Figs. 9–11).

Besides the 64 age-PCGTs identified here, it is likely that other non-

PCGT genes that also undergo hypermethylation with age in blood

may also be broadly implicated in aging and carcinogenesis (Sup-

plemental Figs. 12, 13).

To obtain direct functional proof that simultaneous silencing

of age-PCGT genes predisposes a cell to become malignant is not

possible with currently available technology. In the absence of

a functional test, there are, however, other lines of evidence sup-

porting the role of age-PCGTs in carcinogenesis: (1) 36% (24/64) of

the 64 age-PCGT genes have already been published to be aber-

rantly methylated and deregulated in cancer; (2) 34% (22/64) of

these genes are transcription factors known to be involved in

normal differentiation. For instance, FOXC1 has been shown to

play an essential role in development (Myatt and Lam 2007) and is

also implicated in cancer (Bloushtain-Qimron et al. 2008). GATA4

belongs to the family of zinc finger–containing GATA transcrip-

tion factors, which play critical roles in cell lineage specification

during early embryonic development and organ formation. GATA4

is expressed in human ovarian surface epithelial cells and is im-

portant for the formation and maintenance of the differentiated

state of these cells (Capo-chichi et al. 2003; Caslini et al. 2006).

Loss of GATA4 expression precedes neoplastic transformation of

ovarian surface epithelia (Cai et al. 2009), and GATA4 is also

Figure 3. Biological and clinical significance of age-PCGT DNAm signature. (A,B) Average methylation values of the 69 age-hypermethylated and 20
age-hypomethylated PCGT CpGs as a function of disease status in 48 cervical cytology samples. (HPVneg) Normal cervical sample not infected with HPV,
(HPVpos) normal cervical sample infected with HPV, (HPVpos-Dysplasia) samples infected with HPV and displaying dysplasia. Wilcoxon test P-value
between normal and dysplastic condition is given. Number of samples in each group given below boxplots. (C ) Histogram distribution of�log10(P-values)
from 1000 randomly selected 69 non-age-associated PCGT CpGs. P-values were derived from the Wilcoxon test. (Red line)�log10(P-value) for the 69 age-
hypermethylated PCGT CpGs, (blue line)�log10(P-value) for PCGT CpGs not mapping to age-PCGTs. In less than 0.5% of runs (P < 0.01) were P-values as
extreme as the observed one, indicating that the age-PCGTs discriminate the dysplastic condition better than a random set of PCGTs. (D) Heatmap of the
48 cervival samples over the 69 age-hypermethylated PCGT CpGs. Samples were clustered using a Gaussian mixture model and three optimal clusters
were inferred using the Bayesian Information Criterion (see Supplemental material). (Orange, brown, pink) Distinct clusters. The disease status of samples
is labeled as a color bar (PROGR): (light green) HPVneg, (green) HPVpos+normal, (red) HPVpos+dysplasia. CpGs were clustered according to hierarchical
clustering with a Pearson correlation metric. Prior to sample and CpG clustering, methylation profiles of invividual CpGs were renormalized to mean zero
and unit standard deviation. Heatmap reflects, for each CpG, relative methylation levels across samples as determined by the renormalized methylation
profile. (Blue) Relative high methylation, (yellow) relative low methylation. (E,F ) Average gene expression intensity (Affymetrix) values for the 64 age-
hypermethylated PCGTs in normal ovarian (OvN) and ovarian cancer tissue (OvC) and in normal cervix (CVX-N) and cervical cancer (CVX-T). Number of
samples of each type and Wilcoxon test P-values are given.
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heavily methylated in ovarian cancer (Wakana et al. 2006). An-

other age-PCGT transcription factor is DLX5, which is increasingly

methylated and silenced in MSC by both replicative senescence in

vitro and aging in vivo (Bork et al. 2010). As a final example, TP73

(also known as p73) shares many functional properties with the

TP53 (also known as p53) tumor suppressor and is also involved in

mediating DNA damage-induced apoptosis as well as suppressing

polyploidy and aneuploidy when p53 is inactivated, which suggests

that age-dependent methylation and suppression of TP73 may

potentially lead to genetic alterations and increased predisposition

to cancer (Irwin et al. 2000; Moll and Slade 2004; Talos et al. 2007).

(3) Finally, alongside transcription factors, there are numerous

other genes in the age-PCGT panel that have been demonstrated to

be involved in carcinogenesis, including ALOX5 (Catalano et al.

2005), SFRP1 (Wnt pathway) (Baylin and Ohm 2006), and KLF14

(TGF-beta signaling) (Truty et al. 2009).

In summary, we have found that age may contribute to car-

cinogenesis by irreversibly silencing genes that are suppressed in

stem cells. To our knowledge, this constitutes the first report of a

molecular (epigenetic) signature common to the processes of aging

and carcinogenesis. Our findings may have broad implications

for cancer prevention, risk prediction, detection, prognosis, and

therapy.

Methods

Clinical samples
All DNAm data sets used in the study are summarized in Table 1.
The primary sample set consisted of 491 whole blood samples
drawn from the United Kingdom Ovarian Cancer Population
Study (UKOPS) (Table 1; Supplemental Table 1, Data Sets 1–4; Song
et al. 2009). Blood samples were taken at ages spanning a wide age
range (50–85 yr) (Table 1). A total of 256 samples were from healthy
postmenopausal women (Set-1 and Set-3). The remaining samples
(n = 235) consisted of postmenopausal women diagnosed with pri-
mary epithelial ovarian cancer. About half of these (pre-treatment
[preT] cases; n = 113; Set-2) gave their blood at the time of their
diagnosis prior to treatment, and the other half (post-treatment
[posT] cases; n = 122; Set-4) gave their blood at some stage during
their follow-up visits after primary treatment (mean 2.4 6 2.7 yr
between diagnosis and blood sample taken). The distribution of all
these samples across batches is given in Supplemental Table 2. Set-5
consisted of 188 whole blood samples from patients with type 1
diabetes mellitus (CG Bell, AE Teschendorff, V Rakyan, AP Maxwell,
S Beck, and DA Savage, in prep.). Set-6 consisted of 177 ovarian
cancer tissue specimens from pre-and postmenopausal women.
Clinical characteristics of this cohort are provided in Supplemental
Table 8. Details of the age distribution of samples per study is
shown in Supplemental Figure 1. Full experimental methods and
descriptions of other sample sets used in this study and any asso-
ciated references are available in the Supplemental material. Ethi-
cal approval has been obtained for all sample sets.

DNA methylation profiling and quality control

Methylation analysis was performed using the validated Illumina
Infinium Human Methylation27 BeadChip (Weisenberger et al.
2008). The methylation status of a specifc CpG site was calculated
from the intensity of the methylated (M ) and unmethylated (U )
alleles, as the ratio of fluorescent signals b = Max(M,0)/[Max(M,0) +

Max(U,0) + 100]. On this scale, 0 < b < 1, with b-values close to 1 (0)
indicating methylation (no methylation). Quality control pro-
cedures are described in the Supplemental material. After quality

control, singular value decompositions (SVD) were used to assess
unwanted variation caused by experimental factors (variable bi-
sulfite conversion efficiency, plate and chip effects) and to test the
efficiency of interarray normalization procedures (full details are in
the Supplemental material).

All primary data used in this study are available at the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE19711, GSE20067, and GSE20080.

Statistical analysis

Unsupervised analysis was performed using singular value de-
composition (SVD), adapted to the methylation data, to determine
the number of significant components of variation and their as-
sociation with phenotypes (here, age). Supervised analyses were
performed for each CpG site separately, using a robust linear re-
gression model with age as the response and DNAm as the pre-
dictor, including covariates to model the batch, DNA input, and
bisulfite conversion efficiency effects. FDRs were evaluated ana-
lytically (q-values) (Storey and Tibshirani 2003) as well as using
random permutation of sample labels to take potential correlations
between CpG sites into account. When data from potentially
confounding experimental factors were not available, we used the
surrogate variable analysis (SVA) framework (Leek and Storey 2007,
2008) to perform the supervised analysis and FDR estimation.
Further details of methodology and software used are available in
the Supplemental material.
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