
Software Release Planning: An Evolutionary and Iterative
Approach

Greer, D., & Ruhe, G. (2004). Software Release Planning: An Evolutionary and Iterative Approach. Information
and Software Technology, 46(4)(4), 243-253. DOI: 10.1016/j.infsof.2003.07.002

Published in:
Information and Software Technology

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen's University Research Portal

https://core.ac.uk/display/10045912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/software-release-planning-an-evolutionary-and-iterative-approach(bad83fc7-5948-4934-9b8d-e60e03e13999).html

Software release planning: an evolutionary and iterative approach

D. Greer, G. Ruhe

University of Calgary, 2500 University Drive NW, Calgary, Canada AB T2N 1N4

Received 26 October 2002; revised 10 May 2003; accepted 22 July 2003

Abstract

To achieve higher flexibility and to better satisfy actual customer requirements, there is an increasing tendency to develop and deliver

software in an incremental fashion. In adopting this process, requirements are delivered in releases and so a decision has to be made on which

requirements should be delivered in which release. Three main considerations that need to be taken account of are the technical precedences

inherent in the requirements, the typically conflicting priorities as determined by the representative stakeholders, as well as the balance

between required and available effort. The technical precedence constraints relate to situations where one requirement cannot be

implemented until another is completed or where one requirement is implemented in the same increment as another one. Stakeholder

preferences may be based on the perceived value or urgency of delivered requirements to the different stakeholders involved. The technical

priorities and individual stakeholder priorities may be in conflict and difficult to reconcile. This paper provides (i) a method for optimally

allocating requirements to increments; (ii) a means of assessing and optimizing the degree to which the ordering conflicts with stakeholder

priorities within technical precedence constraints; (iii) a means of balancing required and available resources for all increments; and (iv) an

overall method called EVOLVE aimed at the continuous planning of incremental software development. The optimization method used is

iterative and essentially based on a genetic algorithm. A set of the most promising candidate solutions is generated to support the final

decision. The paper evaluates the proposed approach using a sample project.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Incremental software development; Release planning; Requirements prioritization; Software engineering decision support; Genetic algorithm

1. Introduction

Incremental software development addresses the time-

to-delivery of software products. Instead of delivering a

monolithic system after a long development time, smaller

releases are implemented sequentially. If applicable, this

approach has many advantages over the traditional

waterfall approach. First, requirements can be prioritized

so that the most important ones are delivered first and

benefits of the new system gained earlier. Consequently,

less important requirements are left until later and so if

the schedule or budget is not sufficient the least

important requirements are the ones more likely to be

omitted. Second, it means that customers receive part of

the system early on and so are more likely to support the

system and to provide feedback on it. Third, being

smaller, the schedule/cost for each delivery stage is

easier to estimate. Fourth, user feedback can be obtained

at each stage and plans adjusted accordingly. Fifth,

perhaps most importantly, an incremental approach

allows for a much better reaction to changes or additions

to requirements.

These advantages have particularly been capitalized on

in agile methods [5]. Agile methods have in common the

idea of release planning. For example, in Extreme

Programming [1], a software product is first described

in terms of ‘user stories’. These are an informal

description of user requirements. In the planning process,

these stories are prioritized using the perceived value to

the user and broken into a series of releases. Based on

estimates of how long each story in an increment will

take to implement, an iteration plan is developed for

delivering that release. Each increment (or release) is a

completed product of use to the customer. At any time

new stories may be added and incorporated into a future

release.

Delivering software incrementally necessitates a process

of analysing requirements and assigning them to incre-

ments. The typical advice from proponents of incremental

0950-5849/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2003.07.002

Information and Software Technology 46 (2004) 243–253

www.elsevier.com/locate/infsof

E-mail addresses: des.greer@qub.ac.uk (D. Greer); ruhe@ucalgary.ca

(G. Ruhe).

http://www.elsevier.com/locate/infsof

delivery is to decide on the increments and then deliver

these according to user value [8]. User value may be

assessed in terms of cost-benefit calculations or a combi-

nation of these and risk assessments [10]. This assumes that

requirements are already assigned to increments and only

then are the increments ordered. However, often the case is

that any given requirement could be delivered in one,

several or even all releases. Deciding which increment to

deliver requirements in and deciding the order of require-

ments is a decision that depends on variables that have a

complex relationship. Different stakeholder and technical

precedence constraints have to be taken into account.

Simultaneously, available and required effort for each

increment has to be balanced.

There are a number of existing approaches to require-

ments prioritization. Some have been studied and compared

in Ref. [16]. Among them are the analytic hierarchy process

(AHP), binary search tree creation, greedy-type algorithms

and other common sorting methods. In AHP, candidate

requirements are compared pair-wise to estimate their

relative importance [15]. Most of the algorithms described

in Ref. [16] need Oðn2Þ comparisons between the n

alternatives. The effort required for this soon becomes

prohibitive for a larger number of requirements. In addition

to that, none of the mentioned algorithms takes into account

different stakeholder perspectives. Release planning includ-

ing effort constraints is not considered by any of the

mentioned algorithms. Finally, the underlying model is

fixed and is not allowing any changes in requirements,

priorities or constraints (if considered at all).

In this paper we describe an evolutionary and iterative

approach called EVOLVE which offers decision support for

software release planning. There are five sections. Section 2

will discuss and formally describe the problem of release

planning. Section 3 will present our new solution approach

EVOLVE that combines the fundamental ideas of evolution

and iteration. A sample case study in Section 4 is used to

illustrate and initially validate the practicability of the

proposed approach. Section 5 will provide a summary of the

findings and identify potential extensions.

2. Problem statement

2.1. Incremental software delivery

In the incremental software process model, requirements

are gathered in the initial stages and, taking technical

dependencies and user priorities into account and the effort

required for each requirement, the system is divided into

increments. These increments are then successively deliv-

ered to customers. In the simplest case requirements are

fully known and complete at the beginning of the project of

incremental software. It is more likely, however, that, even

during the initial increments, the product will evolve so that

some requirements will change and new ones will be

introduced [23]. In addition to that, priorities and constraints

might have changed as well. Fig. 1 shows the situation.

Typically each increment is a complete system that is of

value to the client. This means, each new increment can be

evaluated by client. The results feed back to the developers,

who then take that information into account when

implementing subsequent phases. This feedback may

introduce changes to requirements or new requirements,

priorities, and constraints.

In implementing this model, it is necessary to determine

the content and priority of the incremental steps. Gilb

suggests that this should be done by ‘user value to cost

ratio’. User value is, however, a subjective measure and may

differ from customer to customer. In the simplest case ‘user

value’ may be monetary benefit, but could also be an

increase in product quality, or a reduction in product risk

[11] for example. More likely, user value is a combination

of many factors and may be different for different

stakeholders. This may be manifested in a difference in

viewpoint between those who will use the software and the

business managers who are commissioning it. The problem

is further compounded by the fact that there are also

technical implications in the ordering of requirements.

Some requirements may have mandatory precedences over

other requirements or a condition that they are delivered in

the same release.

Release planning for incremental software development

includes the assignment of requirements to releases such

that all technical and budget constraints are fulfilled. The

overall goal is to incorporate the different stakeholder

priorities and the supposed impact on business value in an

optimal way. To formulate this problem more formally, we

introduce all the necessary concepts and notation.

2.2. Stakeholder evaluation and effort estimates

One of the challenges to the software engineering

research community is to involve stakeholders in the

requirements engineering process [3]. In any project several

stakeholders may be identified. These are likely to have

differing priorities. We consider two kinds of evaluation.

Both evaluations are on ordinal scale. One input to the

process should be a ranking or scoring of requirements

Fig. 1. Release planning in a changing environment with open number of

releases.

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253244

according to the perceived value (expected relative impact

on business value of the final product). The other one is

prioritization according to the degree of urgency (time-

criticality) of each requirement to each stakeholder.

It is assumed that a software system is initially specified

by a set R1 of requirements, i.e. R1 ¼ {r1; r2…rn}: At this

stage ðk ¼ 1Þ; we wish to allocate these requirements to the

next and future releases. In a later phase k ð. 1Þ; an

extended and/or modified set of requirements Rk will be

considered as a starting point to plan for increment k

(abbreviated by Inck). The requirements are competing with

each other (to become implemented).

Their individual importance is considered from the

perspective of q different stakeholders abbreviated by

S1; S2;…; Sq: Each stakeholder Sp is assigned a relative

importance lp [ð0; 1Þ: The relative importance of all

involved stakeholders is normalized to one, i.e.

Sp¼1;…;qlp ¼ 1:

Each stakeholder Sp assigns a priority denoted by

prioðri; Sp;R
kÞ[{1; 2;…;s} to requirement ri as part of

set of requirements Rk at phase k of the planning approach.

prioðri; Sp;R
kÞ ¼ 1 means highest priority in terms of

urgency of requirement ri [Rk from the perspective of

stakeholder Sp: Typically, different stakeholders have

different priorities for the same requirement. The require-

ments by themselves are assumed to be understandable by

all stakeholders and sufficiently detailed to estimate the

effort for their implementation.

Similarly, each stakeholder Sp assigns a value denoted by

valueðri; Sp;R
kÞ[{1; 2;…; ›} to requirement ri as part of set

of requirements Rk at phase k of the planning approach.

valueðri; Sp;R
kÞ ¼ 1 means highest priority in terms of the

supposed impact of requirement ri to the final business value

of the final product, taken from the perspective of

stakeholder Sp:

2.3. Evolution of increments

As a result of the planning process, different increments

will be composed out of the given set of requirements.

These increments are planned up-front but the possibility of

re-planning after any increment is allowed. This re-planning

may involve changing some requirements, priorities and

constraints and/or introducing new ones. It necessitates a re-

assignment of requirements (not already implemented in

former releases) to increments. Throughout the paper, we

assume that the number of releases is not fixed upfront. The

complete modeling and solution approach remains valid

with only minor modifications for the case of fixed number

of releases.

Phase k of the overall planning procedure EVOLVE

is abbreviated by EVOLVE(k). The input of EVOLVE(k)

is the set of requirements Rk: The output is a definition

of increments Inck; Inckþ1; Inckþ2;… with Inct ,Rk for all

t ¼ k; k þ 1; k þ 2;… The different increments are disjoint,

i.e. Incs>Inct ¼ B for all s; t [{k; k þ 1; k þ 2;…}:

The unique function vk assigns each requirement ri of set

Rk the number s of its increment Incs; i.e. vk : ri [
Rk ! vkðriÞ ¼ s [{k; k þ 1; k þ 2;…}:

2.4. Effort constraints

Effort estimation is another function assigning each pair

ðri;R
kÞ of requirement ri as part of the set Rk the estimated

value for implementing this effort, i.e. effort() is a function:

ðri;R
kÞ! Rþ where Rþ is the set of positive real numbers.

Please note that the estimated efforts can be updated during

the different phases of the overall procedure.

Typically project releases are planned for certain dates.

This introduces a size constraint Sizek in terms of available

effort of any released increment Inck: We have assumed that

the effort for an increment is the sum of the efforts required

for individual requirements assigned to this increment. This

results in constraints SrðiÞ[IncðkÞ effortðri; RkÞ # Sizek for all

increments Inck:

2.5. Precedence and other dependency constraints

In a typical real world project, it is likely that some

requirements must be implemented before others. There

might be logical, technical or resource related reasons that

the realization of one requirement must be in place before

the realization of another. Since we are planning incre-

mental software delivery, we are only concerned that their

respective increments are in the right order. More formally,

for all iterations k we define a partial order C k on the

product set Rk £ Rk such that ðrirjÞ[C k implies

vkðriÞ# vkðrjÞ:

With similar arguments as earlier there might be logical,

technical or resource related reasons that the realization of

one requirement must be in place in the same increment as

another one. Again, since we are looking at incremental

software delivery, we are only concerned that their

respective increments are in the right order. More formally,

for all iterations k we define a binary relation jk on Rk such

that ðrirjÞ[jk implies that vkðriÞ ¼ vkðrjÞ:

2.6. Problem statement for software release planning

At any phase k; we assume an actual set of requirements

Rk: Taking into account all the notation, concepts and

constraints as formulated above, we can now formulate our

problem as follows:

For all requirements ri [Rk determine an assignment vp

with vpðriÞ¼ s [{1; 2;…} to increments Incs such that

(1) SrðiÞ[IncðmÞ effortðri; RkÞ # Sizem for m ¼ k; k þ 1; …

ðEffort constraintsÞ

(2) vpðriÞ # vpðrjÞfor all pairs ðrirjÞ [C kðPrecedence �

constraintsÞ

(3) vpðriÞ ¼ vpðrjÞ for all pairs ðrirjÞ [j k ðCoupling �

constraintsÞ

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253 245

(4) A ¼ Sp¼1…;qlp½SrðiÞ;rðjÞ[RðkÞ penalty ðri; rj; Sp; Rk; v
pÞ�

) min! with penaltyðri; rj; Sp; Rk; vpÞ U

(4.1) 0 if½prioðri; Sp; RkÞ 2 prioðrj; Sp; RkÞ�½vpðriÞ2

vpðrjÞ� . 0

(4.2) lprioðri;Sp;R
kÞ2prioðrj;Sp;R

kÞl if vpðriÞ ¼vpðrjÞ

(4.3) lvpðriÞ2vpðrjÞlif prioðri;Sp;R
kÞ ¼ prioðrj;Sp;R

kÞ

(4.4) ½prioðri;Sp;R
kÞ2prioðrj;Sp;R

kÞ�½vpðrjÞ2vpðriÞ�

otherwise

(5) B¼Sp¼1…;qlp½SrðiÞ[RðkÞ benefitðri;Sp;v
pÞ�)max!with

benefitðri; Sp; Rk; vpÞ ¼ ½› 2 valueðri; Sp; RkÞ þ 1� �

½t 2 vpðrj; Þ þ 1� and t ¼ max{vpðriÞ : ri [Rk}

(6) CðaÞ ¼ ða21ÞAþaB)max!witha[ð0;1Þ

(7) Determine K best solutions from Cða1Þ; Cða2Þ; Cðða3Þ

with 1 # K # 10 and 0 , a1 , a2 , a3 , 1:

The function (4) is to minimize the total penalties

defined as the degree of deviation of the monotonicity

property between requirements. Monotonicity property

between two requirements is satisfied if one requirement

is evaluated more promising than another, and this is true

also for the sequence of the assigned increments.

The function (5) is to maximize the total benefit. For

a fixed stakeholder, the benefit from the assignment of an

individual requirement to an increment is the product of

some value difference and some difference in increment

numbers. The product is the higher, the earlier the

requirement is released and the more impact on final

business value is supposed. Finally the overall objective

function (6) for one fixed value of a is to maximize a

linear combination of (4) and (5). The case of a close to

0 means to give a (strong) priority to stakeholder

priorities. In a similar way, a close to 1 means a

(strong) priority is given to the achieved benefits of

assignment vp:

All optimal solutions determined from this approach

are known to be non-dominated (Pareto-optimal) [12].

The limitation of this approach is that in case of non-

convex problems, only solutions located at the convex

hull in the objective space are determined. However, our

emphasis is to generate a (small) set of promising

solutions from which the decision-maker finally can

select. As optimality cannot be guaranteed anyway, this

limitation is not a real restriction in our case.

To offer a final set of K best solutions, three different

values of a are considered. They reflect the different kinds

of priorities including a balanced linear combination of the

two criteria. The actual number K depends of the concrete

problem. Typically, it will not more than 10 to provide an

overview of the existing (most promising) solutions. Both K

and the individual values of a are supposed to be

determined by the actual decision-maker.

3. Solution approach EVOLVE

3.1. Genetic algorithms

Genetic algorithms have arisen from an analogy with the

natural process of biological evolution [7,13]. They are

particularly well suited to NP-complete problems that

cannot be solved by deterministically polynomial algor-

ithms. One commonly discussed problem area to which

genetic algorithms have been applied is the travelling

salesman problem (TSP) [4]. It has been empirically shown

that genetic algorithms can generate high quality solutions

being optimal or near-optimal even for large-scale pro-

blems. In the area of software engineering, this approach

was successfully applied [2] to devise optimal integration

test orders.

Genetic algorithms maintain a population of solutions or

chromosomes. The ‘optimal’ population size is a matter for

debate. Some have suggested higher populations [9] while

others indicate that population sizes as low as 30 are

adequate [20]. A large population size improves the

probability of obtaining better solutions and so should

speed up the optimization process, although this is at the

expense of computation time. Each member of the

population receives a fitness measure, i.e. the value of

the objective function. This measure relates to how good the

chromosome is at solving the stated problem.

Main operations applied to chromosomes of the popu-

lation are selection, crossover, and mutation. Selection is

effected by choosing two parents from the current

population, the choice being determined by relating the

fitness score to a probability curve [18]. In the case of the

‘order method’ of the Palisade RiskOptimizer tool [19], as

used in this research, the crossover operator takes two

parents, randomly selects items in one parent and fixes their

place in the second parent (for example, items B and D in

Fig. 2). These are held in position but the remaining items

from the first parent are then copied to the second parent in

the same order as they were in originally. In this way some

of the sub-orderings are maintained.

Mutation is carried out after crossover and is intended to

introduce variance and so avoid terminating at a local

solution. Thus, mutation introduces new orderings in

Fig. 2. Illustration of crossover and mutation operators.

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253246

the population that might not be reached if only crossover

operations were used. Since the values in the chromosome

must remain constant, the normal approach to mutation

where one or more variables are randomly changed will not

work. Hence, in the order method as provided by the tool,

mutation is effected via random swapping of items in the

new offspring. The number of swaps is proportional to the

mutation rate.

An example is shown in Fig. 2 for the items A and

C. The new offspring is ranked in the current population and

the bottom ranked chromosome is discarded. Hence the

population size retains a steady state. The extent of mutation

is controlled by the parameter mutation rate. The choice of

‘best’ mutation and crossover rates is sensitive to the type of

problem and its characteristics [14].

At each generation, members of the population are

assessed for fitness. Frequently in using genetic algorithms

this fitness refers to a cost function that has to be minimised

or a payoff function that should be maximized. The

processes of evaluation, selection, crossover and mutation

continue, and the net effect is a gradual movement towards

higher fitness scores in the population. Since genetic

algorithms operate on a population rather than a single

entity, the possibility of becoming stuck at local optima is

reduced. The choice of when to terminate the algorithm may

be determined by a pre-defined number of iterations, a

preset elapsed time or when the overall improvement

becomes negligible.

3.2. Proposed approach

The proposed approach called EVOLVE combines the

computational strength of genetic algorithms with the

flexibility of an iterative solution method. At each iteration,

a genetic algorithm is applied to determine an optimal or near-

optimal (related to the objective function (6)) assignment of

requirements. Only assignments satisfying constraints (1)–

(3) are considered.

Maximization of objective function (6) is the main

purpose of conducting crossover and mutation operations.

This function composed of (4) and (5) is computed at each

optimization step of the genetic algorithm. The algorithm

terminates when there is no further improvement in the

solution. This is calculated as no improvement in the best

fitness score achieved within 0.5% deviation over 600

simulations.

EVOLVE is an evolutionary approach. At iteration k; a

final decision is made about the next immediate increment

Inck and a solution is proposed for all subsequent increments

Inckþ1; Inckþ2;… The reason for the iterative part in

EVOLVE is to allow all kinds of late changes in

requirements, prioritization of requirements by stake-

holders, effort estimation for all requirements, effort

constraints, precedence and coupling constraints as well as

changes in the weights assigned to stakeholders. This most

recent information is used as an input to iteration k þ 1 to

determine the next increment Inckþ1 as ‘firm’ and all

subsequent ones Inckþ2; Inckþ3;… as tentatively again. This

is shown in Fig. 3. For all iterations, there is the next ‘firm’

increment, the one that will certainly be implemented in that

iteration (solid border in Fig. 3). There may also be other

‘tentative’ increments (dashed border), representing plans

for future iterations. For iterations following the first one,

implemented increments are shown greyed.

The aforementioned process can be considered as

infinite, i.e. the number of iterations (and the number of

increments) has not to be defined upfront. This is considered

to be the default situation for the formulation of the model.

However, it is also possible that a fixed number of iterations

are taken into account from the very beginning. The

EVOLVE approach remains completely the same, with

the only difference that there are some minor modifications

Fig. 3. EVOLVE approach to assignment of requirements to increments.

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253 247

in the computation of (6). If the number of releases is

limited, then it might be possible that some requirements are

excluded by a given solution. In other words, the increment

number assigned to a requirement will be greater than the

maximum number of increments. In such cases the

stakeholder priority penalty is multiplied by a user-specified

factor larger than one. This is to reflect the negative impact

on the stakeholder concerned if that requirement is omitted

from the project.

Solutions generated by EVOLVE are optimal or near-

optimal. Genetic algorithms, in general, cannot guarantee

optimality. There is a great variance in the solutions

generated by different runs of the solution algorithm. This

variation concerns both changes in mutation and crossover

rate. But even for fixed mutation and crossover rates,

different solutions are obtained if the algorithms are applied

several times. However, as known from empirical evalu-

ations, there is a great likelihood to have the optimal

solution among the ones generated, especially if a larger

number of computations with varying parameters are

conducted.

3.3. Algorithms and tool support

In this research, we have made use of Palisade’s

RiskOptimizer tool [19]. The RiskOptimizer tool provides

different algorithms for adjusting the variables. Since we are

concerned with ranking requirements, the most suitable one

provided is the ‘order’ method. This method generates

different permutations of a starting solution and is designed

for optimizing rankings of objects. The order genetic

algorithm is described in Ref. [6].

To ensure feasibility (1) in terms of available effort, a

greedy-like procedure was applied. Original precedence (2)

and coupling constraints (3) are implemented by specific

rules used to check each generated solution. This is achieved

via a table of pairs of requirements. In both cases, if any

given solution is generated that violates either category of

constraint, the solution is rejected and a backtracking

operation is used to generate a new solution.

Weightings are used to discriminate between stake-

holders. To allow greater flexibility and objectivity, we

assume that these weightings are calculated using the pair-

wise comparison method from AHP [22].

A further feature made us of in this research is the

enforcement of constraints on the organisms generated.

Organisms generated outside the solution space undergo a

backtracking process, where the tool reverts to one of the

parents and retries the crossover and mutation operations

until a valid child is obtained. A summary description of the

evolutionary algorithm is provided in Appendix A.

4. Case study

4.1. Description of sample project

To demonstrate practicability of the approach, we study a

sample software project with 20 requirements, e.g. R1 ¼

{r1;…; r20}: The technical precedence constraints in our

typical project are represented by partial order C (compare

Section 2.5) as shown later. This states that r4 must come

before r8 and r17; r8 before r17; and so on.

C1 ¼ {ðr4; r8Þ; ðr4; r17Þ; ðr8; r17Þ; ðr9; r3Þ; ðr9; r6Þ;

ðr9; r12Þ; ðr9; r19Þ; ðr11; r19Þ}

Further, some requirements were specified to be

implemented in the same increment as represented by

binary relation j; as defined in Section 2.5. This states that r3

Table 1

Sample stakeholder assigned priorities

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

S1 5 3 2 1 4 5 1 3 5 3 1 2 5 3 5 3 3 2 4 1

S2 5 3 2 3 5 5 1 5 5 4 2 4 1 4 5 1 2 1 3 1

S3 4 2 2 2 3 5 1 3 5 5 3 3 2 4 5 2 3 2 2 1

S4 3 4 2 2 4 5 1 5 3 4 4 2 2 3 5 2 4 3 3 1

S5 4 3 1 3 4 5 1 5 4 3 5 4 2 5 5 2 2 1 4 1

Table 2

Sample stakeholder assigned values

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

S1 4 2 1 2 5 5 2 4 4 4 2 3 4 2 4 4 4 1 3 2

S2 4 4 2 2 4 5 1 4 4 5 2 3 2 4 4 2 3 2 3 1

S3 5 3 3 3 4 5 2 4 4 4 2 4 1 5 4 1 2 3 3 2

S4 4 5 2 3 3 4 2 4 2 3 5 2 3 2 4 3 5 4 3 2

S5 5 4 2 4 5 4 2 4 5 2 4 5 3 4 4 1 1 2 4 1

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253248

and r12 must be in the same release, as must r11 and r13:

j1 ¼ {ðr3; r12Þ; ðr11; r13Þ}

Each requirement has an associated effort estimate in

terms of a score between 1 and 10. The effort constraint was

added that for each increment the effort should be less than

25, i.e. Sizek ¼ 25 for all releases k: In general, effort sizes

may be different for different increments.

Five stakeholders were used to score the 20 requirements

with priority scores from 1 to 5. These scores are shown in

Table 1. As we can see, different stakeholders in some cases

assign more or less the same priority to requirements (as for

r3 and r7Þ: However, the judgement is more conflicting in

other cases (as for r13 and r12Þ:

In a similar way, each stakeholder assigns a value to each

requirement based on the contribution to the business value

of the product by that requirement. Table 2 demonstrates

this. Again, in some cases there is general agreement (as for

r8 and r19Þ; and others more conflict (as for r17 and r18Þ:

The stakeholders S1 –S5 were weighted using AHP by

pair-wise comparison from a global project management

perspective with results as shown in Table 3. The

stakeholder weightings l ¼ (0.211, 0.211, 0.421, 0.050,

0.105) are computed from the eigenvalues of the matrix

shown in Table 3. The technique of averaging over

normalized columns [22] can be used to approximate the

eigenvalues.

4.2. Implementation

We used the default population size of 50 for the genetic

algorithm. Having assigned the increments, the precedence

and coupling constraints are checked, and the current

solution is only accepted if these are met. Precedence and

coupling constraints being met, the penalty score is

calculated using the stakeholder assigned priorities as

shown in Table 1. This is executed by (automatically)

pair-wise comparing the priorities of each requirement ri for

stakeholder Si; with reference to their increment assignment

vðriÞ: The benefit calculation for a given stakeholder and a

given requirement is calculated using (5).

As the crossover and mutation operations are performed

the best solutions are kept and eventually, when no further

improvement is detected, a solution such as that shown in

the lower half of Fig. 4 is produced. The method can be

conducted using a chosen crossover rate and mutation rate,

or with a range of crossover rates and mutation rate

combinations. We also suggest that solutions are produced

for various values of a: This parameter has relevance in

determining the bias given towards the benefit function

(high value of aÞ or toward the penalty function (low value

of aÞ: Moreover, a set of solutions is composed out of that

such that the decision-maker can finally decide according to

some additional (subjective) criteria.

Table 3

Matrix of pair-wise comparison of stakeholders on a nine-point scale of

AHP

Stakeholder Stakeholder

S1 S2 S3 S4 S5

S1 1 1 1/2 4 2

S2 t 1 1/2 4 2

S3 2 2 1 8 4

S4 1/4 1/4 1/8 1 1/2

S5 1/2 1/2 1/4 2 1

Fig. 4. Solution generated from EVOLVE.

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253 249

Table 4

Top three solutions obtained for Cð0:2Þ; Cð0:5Þ; and Cð0:8Þ

a ¼ 0:2 a ¼ 0:5 a ¼ 0:8

Solutions

Rank 1 2 3 1 2 3 1 2 3

Penalty ðAÞ 121.7 129.3 132.3 121.7 132.3 142.9 132.3 150.5 141.9

Benefit ðBÞ 167.9 166.8 173.0 168.0 171.6 165.5 171.7 176.1 172.7

Objective function value ðCÞ 263.8 270.1 271.3 23.1 19.7 11.3 110.9 110.8 109.8

C Adjusted to a ¼ 0:5 23.1 18.7 20.3 23.1 19.7 11.3 19.7 12.8 15.4

Requirements

Increment 1 (next) r4 r4 r4 r4 r4 r4 r4 r4 r4

r7 r7 r7 r7 r7 r11 r7 r11 r7

r16 r16 r16 r16 r16 r13 r16 r13 r16

r18 r18 r18 r18 r18 r16 r18 r16 r18

r20 r20 r20 r20 r20 r18 r20 r18 r20

r20 r20

Increment 2 (proposed) r2 r2 r1 r2 r1 r7 r1 r1 r3

r3 r9 r2 r3 r2 r8 r2 r2 r8

r9 r11 r3 r9 r3 r10 r3 r3 r9

r10 r13 r9 r10 r9 r17 r9 r7 r10

r11 r14 r11 r11 r11 r11 r9 r11

r12 r19 r12 r12 r12 r12 r12 r12

r13 r13 r13 r13 r13 r14 r13

r14 r14 r14 r14

Increment 3 (proposed) r1 r1 r5 r1 r5 r1 r5 r5 r1

r5 r3 r8 r5 r8 r2 r8 r8 r2

r8 r5 r15 r8 r15 r3 r15 r15 r15

r17 r8 r17 r17 r17 r5 r17 r17 r17

r19 r12 r19 r19 r19 r9 r19 r19 r19

r15 r12

r17 r19

Increment 4 (proposed) r6 r6 r6 r6 r6 r6 r6 r6 r5

r14 r10 r10 r14 r10 r14 r10 r10 r6

r15 r15 r15

Fig. 5. Results from sample project release planning—iterations 1, 2 and 3.

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253250

Because there is little guidance in the literature

regarding the most appropriate crossover rate or mutation

rate for this type of problem, preliminary experiments

were carried out using a range of crossover rates between

0.1 and 1 in steps of 0.1. Similarly, a range of mutation

rates were tried: 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 as well

as the built in ‘auto’ mutation rate. Auto-mutation

automatically increases the mutation rate gradually in

an attempt to improve the solution and in practice this

was shown to be adequate and so the tool was

programmed to carry out the optimization process using

all of the above crossover rates with auto-mutation. In

keeping with the recommendations in the literature and

in the tool documentation, we maintained a population of

50 organisms.

4.3. Sample project results

The initial solution for assigning the 20 requirements of

the set R1 and the result of a sequence of optimization steps

is shown in Fig. 4. Choosing the value a in (6) as a ¼ 0:5

results in an improvement of the objective function (7) from

241.8 to þ23.0. a ¼ 0:5 corresponds to an equal balance

between reduction of penalties and achieving maximum

benefit.

The optimization results for a single iteration are shown

in Table 4. This shows the best three values of the objective

function for Cð0:2Þ; Cð0:5Þ; and Cð0:8Þ; respectively.

Table 4 shows that changing values of a also changes the

related best solutions. As a is increased the bias towards the

benefit part of the objective function is increased. Hence

with many of the solutions for a ¼ 0:8; we find more of the

higher valued requirements early in the increment plan,

despite the fact that they are ‘out of sequence’ in some

stakeholder’s views. In practice, the decision-maker can

choose between these solutions based solely on the data

presented, or with additional domain knowledge. The

solutions shown in Table 4 contain seven unique permu-

tations. These can be presented to the project manager. The

benefit function can be recalculated to the desired a for

comparison purposes. In this case we have standardised all

of the solutions using a ¼ 0:5:

At this stage, it is possible that the requirements for the

overall project have changed. To simulate this, requirements

r21; r22 and r23 were added and r14; r10 and r15 deleted. In a

third iteration r24 and r25 were added. It is also possible to

adjust the effort estimates between stages. The process of

moving from the first iteration to the second and third

iterations for the sample project is shown in Fig. 5.

We studied algorithm performance and the choice of

genetic algorithm parameters. We did not set out to

investigate this aspect but our observations show that

good results can be obtained from a wide range of crossover

and mutation rates combinations. To test the consistency of

the method some experimentation was carried out over 10

optimizations using all combinations of crossover rates

between 0.1 and 1 in steps of 0.1 and mutation rates from

0.05 to 0.3 in steps of 0.05. Overall, the results from this

illustrated that, since there is no identifiable relationship

between crossover rate and/or mutation rate and the result

obtained, it should be possible to obtain a good result with a

narrower range of parameters, say crossover rates from 0.6

to 0.9 and mutation rates from 0.15 to 0.25. This would

dramatically cut the execution time for EVOLVE, if that

was an issue.

Finally, we studied the frequency of the backtracking

operation when an illegal chromosome (violating one of the

constraints (1)–(3)) is detected. The dependency of the

relative frequency of backtracking operations in dependence

of the number of iterations is shown in Fig. 6.

5. Conclusions

The idea of offering decision support always arises when

decisions have to be made in complex, uncertain and/or

dynamic environments. Most of the related problems are

very complex including different stakeholder perspectives

and constraints. Currently, there is an increasing effort to not

only measure or model certain aspects of the development

processes, but to go further and integrate all available data,

information, knowledge and experience with a sound

methodology to provide the backbone for making good

decisions [21]. This mainly includes searching for all the

objectives and constraints that influence a decision as well

as elaborating the so defined solution space for possible

courses of action.

Generation of feasible assignments of requirements to

increments in a changing environment taking into account

different stakeholder perspectives and even resource

constraints is a very important but complex task. Our

solution approach EVOLVE generates a typically small set

of most promising candidate solutions from which the

actual decision-maker can choose from. The emphasis of

decision support is on support, not on actually making the

decision. In the real world, additional and most recent

influencing factors or constraints are taken into account in

Fig. 6. Relative frequency of backtracking operations in dependence of

number of optimizations.

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253 251

making the decision. This is achieved best through having

a set of K best solutions [12].

The main contribution of the paper is a new and powerful

solution method for software release planning called

EVOLVE. Given a set of requirements with their effort

estimations and a their categorisation into priorities by

representative stakeholders, the method uses a genetic

algorithm to derive potential release plans within pre-

defined technical constraints. The new approach has several

advantages over existing methods.

1. EVOLVE takes into account stakeholder priorities as

well as effort constraints for all releases.

2. EVOLVE assumes that software requirements are

delivered in increments. This is becoming more and

more important as the realisation that software delivery

in this fashion offers a substantial risk reduction. Making

this assumption changes the prioritization problem to one

of ranking and subset selection, rather than just ranking.

3. EVOLVE considers inherent precedence and coupling

constraints. Existing approaches do not cater for

dependencies between requirements. The facts that

EVOLVE uses a genetic algorithm means that the final

release plan arises from a population of solutions. This

allows those solutions that break constraints to be

disallowed without deterioration of the method.

4. EVOLVE offers greater flexibility by allowing changes

in requirements, constraints and priorities. This better

matches the reality of most software projects.

5. EVOLVE recognizes that stakeholders have priorities for

requirements that may be conflicting. Other methods can

also cope with this, but EVOLVE recognizes that there is

a negative impact penalty of delivering requirements in a

sequence contrary to a stakeholder’s priority and a

positive benefit of delivering high priority requirement

earlier. EVOLVE optimizes the solution to balance the

stakeholder desires to deliver high priority solutions

earliest and to have certain requirements delivered before

others. Further, as in real-world situation, not all

stakeholders are treated equally, so that the effect of

their input can be weighted.

6. EVOLVE approaches software release planning from a

decision support perspective. This means, a set of most

promising candidate solutions is generated. The

decision-maker has finally to choose one by considering

most recent and also implicit constraints and context

factors in addition to the original problem formulation.

Overall, the novelty of the approach is found in these

advantages and also the fact that a genetic algorithm has

been used to solve the problem. Our findings indicate that

genetic algorithms are easy to apply and effective for this

type of problem. Further work will involve applying the

method in a more complex industrial setting and obtaining

feedback on its operational aspects and effectiveness. It is

also planned to introduce the possibility of uncertainty and

risk into the model, particularly in terms of the effort

estimations and constraints. Further, a future web-based

version of the method is envisioned, aimed at release and

version planning in a maintenance situation.

Acknowledgements

The authors would like to thank the Alberta Informatics

Circle of Research Excellence (iCORE) for their financial

support of this research. Des Greer is a visiting researcher

from Queens University, Belfast and their support is

acknowledged. Many thanks are due also to Wei Shen for

conducting numerical analysis using RiskOptimizer and

Dietmar Pfahl for supporting discussions.

Appendix A

This appendix presents a summary of the genetic

algorithm used in EVOLVE:

Input:

Sseed ¼ Initial seed solution

m ¼ population size

cr ¼ crossover rate

mr ¼ mutation rate

Output:

The solution with the highest fitness score from the final

population

Variables:

Sn ¼ A Solution

P ¼ current Population as a set of (Solution, fitness

score) pairs ¼ {ðS1; v1Þ;ðS2; v2Þ…ðSm; vmÞ}

Sparent1 ¼ first parent selected for crossover

Sparent2 ¼ second parent selected for crossover

SOffspring ¼ result from crossover/mutation operation

Functions:

NewPopulation(Sseed;mÞ: Sseed ! P; Returns a new

population of size m:

EvaluateðSÞ provides a fitness score for a given

solution, S:

SelectðPÞ chooses from population P; based on fitness

score, a parent for the crossover operation.

CrossoverðSi;Sj; crÞ performs crossover of solutions Si

and Sj at crossover rate cr.

MutationðSi;mrÞ performs mutation on solution Si at

mutation rate mr.

IsValidðSiÞ checks validity of solution Si against the user-

defined constrraints

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253252

BackTrackðSoffspringÞ ¼ proprietary backtracking oper-

ation on a given solution. This backtracks towards the

first parent until a valid solution is created or a user-

defined number of backtrack operations is reached.

CullðPÞ removes the ðm þ 1Þth ranked solution from the

population, P:

CheckTermination() is a Boolean function which checks

if the user’s terminating conditions have been met. This

may be when a number of optimizations have been

completed, when there has been no change in the best

fitness score over a given number of optimizations, a

given time has elapsed or the user has interrupted the

optimization.

MaxðPÞ returns the solution in population P that has the

highest fitness score.

Algorithm

BEGIN

P U NewPopulation(seed);

TerminateFlag U FALSE;

WHILE NOT (TerminateFlag)

BEGIN

Sparent1 U SelectðPÞ;

Sparent2 U SelectðP=Sparent1Þ;

SOffspring U CrossoverðSparent1;Sparent2; cr);

SOffspring U MutationðSOffspring,mr);

If NOT IsValidðSOffspringÞ THEN Back-

TrackðSOffspringÞ;

IF IsValidðSOffspringÞ

BEGIN

P UP<{ðSOffspring; EvaluateðSoffspringÞ}};

CullðPÞ;

END;

TerminateFlag ¼ CheckTermination();

END;

RETURN(MaxðPÞÞ;

END.

References

[1] K. Beck, Extreme Programming Explained, Addison-Wesley, Read-

ing, MA, 2001.

[2] L.C. Briand, J. Feng, Y. Labiche, Experimenting with genetic

algorithms to devise optimal integration test orders, Technical Report,

Software Quality Engineering Laboratory, Department of Systems

and Computer Engineering, Carleton University, 2002.

[3] J.A. Bubenkbo Jr., Challenges in requirements engineering, Proceed-

ings of the Second IEEE Symposium on Requirements Engineering,

IEEE Computer Society, 1995, pp. 160–162.

[4] J. Carnahan, R. Simha, Natures’s algorithms, IEEE Potentials April/

May (2001) 21–24.

[5] A. Cockburn, Agile Software Development, Pearson Education, 2002.

[6] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold,

New York, 1991.

[7] K.A. De Jong, An Analysis of the Behaviour of a Class of Genetic

Adaptive Systems, PhD Thesis, University of Michigan, 1975.

[8] T. Gilb, Principles of Software Engineering Management, Addison-

Wesley, Reading, MA, 1988.

[9] D.E. Goldberg, Sizing populations for serial and parallel genetic

algorithms, in: J.D. Shafer (Ed.), Proceedings of the Third

International Conference on Genetic Algorithms, Morgan Kaufman,

Los Altos, CA, USA, 1989, pp. 70–79.

[10] D. Greer, D. Bustard, T. Sunazuka, Prioritisation of System Changes

using Cost-Benefit and Risk Assessments, Fourth IEEE International

Symposium on Requirements Engineering, June, 1999, pp. 180–187.

[11] D. Greer, D. Bustard, T. Sunazuka, Effecting and Measuring Risk

Reduction in Software Development, NEC Journal of Research and

Development 40 (3) (1999) 378–383.

[12] H.W. Hamacher, G. Ruhe, On Spanning Tree Problems with Multiple

Objectives, Annals of Operations Research 52 (1994) 209–230.

[13] J.H. Holland, Adaptation in Natural and Artificial Systems, University

of Michigan Press, Ann Arbor, 1975.

[14] R.L. Haupt, Optimum population size and mutation rate for a simple

real genetic algorithm that optimizes array factors, IEEE Antennas

and Propogation Society International Symposium. Part 2, Piscat-

away, NJ, USA vol. 2 (2000) 1034–1037.

[15] J. Karlsson, Software requirements prioritizing, Proceedings of the

Second International Conference on Requirements Engineering, 1996,

pp. 110–116.

[16] J. Karlsson, C. Wohlin, B. Regnell, An evaluation of methods for

prioritizing software requirements, Information and Software Tech-

nology 39 (1998) 939–947.

[17] Palisade Corporation, Guide to RISKOptimizer: Simulation Optim-

ization for Microsoft Excel Windows Version Release 1.0,

October, 2001.

[18] Palisade Corporation, 31 Decker Road, Newfield, NY 14867, www.

Palisade.com, September, 2002.

[19] C.R. Reeves, Modern Heuristic Techniques for Combinatorial

Problems, McGraw-Hill, Maidenhead, UK, 1995.

[20] G. Ruhe, Software engineering decision support: methodology and

applications, in: G. Tonfoni, L. Jain (Eds.), Innovations in Decision

Support Systems, International Series on Advanced Intelligence,

vol. 3, 2003, pp. 143–174.

[21] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New

York, 1980.

[22] Q. Wang, X. Lai, Proceedings on ‘Requirements Management for the

Incremental Development Model’, Second Asia-Pacific Conference

on Quality Software, 2001, pp. 295–301.

D. Greer, G. Ruhe / Information and Software Technology 46 (2004) 243–253 253

http://www.Palisade.com
http://www.Palisade.com

	Software release planning: an evolutionary and iterative approach
	Introduction
	Problem statement
	Incremental software delivery
	Stakeholder evaluation and effort estimates
	Evolution of increments
	Effort constraints
	Precedence and other dependency constraints
	Problem statement for software release planning

	Solution approach EVOLVE
	Genetic algorithms
	Proposed approach
	Algorithms and tool support

	Case study
	Description of sample project
	Implementation
	Sample project results

	Conclusions
	Acknowledgements
	References

