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Abstract

We present a computer simulation study of binary mixtures of prolate Gay-

Berne particles and Lennard-Jones spheres. Results are presented for three

such rod-sphere systems which differ from each other only in the interaction

between unlike particles. Both the mixing-demixing behavior and the transi-

tions between the isotropic and any liquid crystalline phases are studied for

each system, as a function of temperature and concentration ratio. For sys-

tems which show macroscopic demixing, the rod-sphere interaction is shown

to give direct control over interfacial anchoring properties, giving rise to the

possibility of micellar phase formation in the case of homeotropic anchoring.

Additionally, it is shown that on incorporating high concentrations of spheres

into a system of rods with weak demixing properties, microphase-separated

structures can be induced, including bicontinuous and lamellar arrangements.
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I INTRODUCTION

Virtually all practical applications of liquid crystals (LCs) employ multi-component

materials. Whilst many of the components incorporated into these mixtures are liq-

uid crystalline, others are included at low concentrations to yield specific mechanical

behavior (e.g. chiral dopants in a twisted nematic display) or optical properties (e.g.

dye molecules) whilst making no intrinsic mesogenic contribution.

At higher concentrations, non-mesogenic additives can both affect the struc-

tural and dynamic properties of the LC host and introduce extensive biphasic re-

gions; their introduction also raises the possibility of novel phase formation. An

early study of a molecular mesogen mixed with 10% by weight of non-mesogen

found behavior characteristic of macrophase separation but suffered from persistent

metastable states [1]. Subsequently, Loudet and co-workers developed oil in LC

mixtures which, on quenching into the biphasic region, repeatably formed networks

of highly monodisperse oil droplets in the LC solvent [2]. Through judicious in-

troduction of surfactant species to tune the interfacial properties of these droplets,

it has now proved possible to control the anchoring properties of, and, hence, the

structures formed by, these LC colloid systems [3].

On a larger lengthscale, Vliegenthart and co-workers have found that low con-

centrations of colloidal needles act as very efficient depletion agents when added to

spherical colloidal systems [4]. A more extensive experimental investigation of col-

loidal rod-sphere mixtures, which covered a broad range of relative concentrations,

subsequently observed both macrophase separation and lamellar structures [5]. The

latter, in which layers of spheres reside between layers of rods, are an example

of a microphase separated arrangement. Prior to their observation in these col-

loidal systems, their existence had been predicted by Koda et al on purely entropic

grounds [6] for mixtures of hard spheres and hard parallel spherocylinders. The

characteristics underlying the stability of this lamellar arrangement were later in-

vestigated through a more wide-ranging study of such mixtures which employed a

combination of second-virial theory and Monte Carlo simulation [7].

As well as this microphase-separated arrangement, entropy-driven macroscopic
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demixing and macrophase separation have also been seen for model rod-sphere sys-

tems. Both mean-field theory and Monte Carlo simulation have been used to de-

termine the phase behaviour of lattice-based models of binary LC-isotropic fluid

mixtures [8]. Additionally, theoretical studies of hard rod-sphere mixtures in the

orientationally isotropic phase have predicted circumstances (such as a significant

difference between the sphere radius and the radius of the rod about its symme-

try axis) in which demixing into coexisting rod-rich and sphere-rich phases is ex-

pected [9]. This was borne out by our previous study of mixtures of hard Gaussian

overlap particles and hard spheres, for which these two radii were kept equal, since

these remained well mixed in both isotropic and nematic phases for most volume

fractions [10]. While this system did macrophase separate at high volume fractions,

it showed no tendency to form lamellar or any other microphase separated arrange-

ments; this is consistent with the predictions of Koda et al’s theory for this particular

combination of particle shapes [11].

In this paper, we investigate the effects that attractive interactions can in-

duce in rod-sphere mixture systems. For this, we employ a generic model system

comprising Lennard-Jones spheres and prolate Gay-Berne particles for which the

single-component phase behavior is well characterized. This system can be consid-

ered as a model mixture of a molecular LC and a non-mesogenic molecular substance.

Using our previous study of the equivalent hard-particle model [10] as a guide to the

limiting behavior of these systems, we concentrate particularly on the influence of

the rod-sphere interaction potential on the phases formed. Specifically, we show that

a rich diversity of behavior can be obtained through modification of the strength

and symmetry of this single interaction.

The structure of the remainder of this paper is as follows. In Sec. II we

describe the model potentials used in our simulations. The simulation results are

then presented in Sec. III with discussion and conclusions being given in Sec. IV.
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II MODEL SYSTEMS

In this study, we assess the effect of the rod-sphere interaction on the phase behavior

of rod-sphere mixtures. To do this, we employ models which are well characterized

in the single component limit; for the sphere-sphere and rod-rod interactions, we use

the Lennard-Jones and Gay-Berne potentials, respectively. The former is given by

ULJ(rij) = 4ε0

((
σ0

rij

)12

−
(

σ0

rij

)6
)

, (1)

where σ0 and ε0 are constants that set the length and energy scales and rij is the

separation of particles i and j. The Gay-Berne interaction between a pair of rod-like

molecules is given by [12]

UGB(rij, ûi, ûj) = 4ε(r̂ij, ûi, ûj)

[(
σGB

rij − σ(r̂ij, ûi, ûj) + σGB

)12

−
(

σGB

rij − σ(r̂ij, ûi, ûj) + σGB

)6
]

, (2)

where r̂ij = rij/rij is a unit vector along the intermolecular vector rij = ri − rj

and the unit vectors ûi and ûj denote the rods’ orientations. The shape anisotropy

parameter, σ(r̂ij, ûi, ûj), and the well-depth anisotropy function, ε(r̂ij, ûi, ûj), are

given by

σ(r̂ij, ûi, ûj) = σGB

[
1− χ

2

{
(r̂ij · ûi + r̂ij · ûj)

2

1 + χ(ûi · ûj)
+

(r̂ij · ûi − r̂ij · ûj)
2

1− χ(ûi · ûj)

}]−1/2

(3)

and

ε(r̂ij, ûi, ûj) = εGB [ε1(ûi, ûj)]
ν [ε2(r̂ij, ûi, ûj)]

µ. (4)

Here, µ and ν are adjustable parameters and ε1(ûi, ûj) and ε2(r̂ij, ûi, ûj) are given

by

ε1(ûi, ûj) =
[
1− χ2 (ûi · ûj)

2]−1/2
, (5)

and

ε2(r̂ij, ûi, ûj) = 1− χ′

2

{
(r̂ij · ûi + r̂ij · ûj)

2

1 + χ′(ûi · ûj)
+

(r̂ij · ûi − r̂ij · ûj)
2

1− χ′(ûi · ûj)

}
. (6)

The parameters χ and χ′ in Eqs.(3), (5) and (6) are associated with the shape and

energy anisotropy of the Gay-Berne particles. χ is a function of the rod length to
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breadth ratio l/d and is given by

χ =
(l/d)2 − 1

(l/d)2 + 1
. (7)

The parameter χ′, meanwhile, is determined from the ratio of end-end to side-side

well depths via

χ′ =
1− (εee/εss)

(1/µ)

1 + (εee/εss)(1/µ)
. (8)

While the constants σ0 and σGB in Eqs. (1) and (2) are, in principle, independent,

we equate them in the work presented here. This means that the diameters of the

spheres are equal to the breadths of the rods. Similarly, we set the well depths ε0 and

εGB equal to one another. Finally, the Gay-Berne model contains four adjustable

parameters: the elongation l/d, the energy anisotropy εee/εss and the exponents µ

and ν. Here, we adopt the frequently used parameterization l/d = 3, εss/εee = 5,

µ = 2 and ν = 1 for which the bulk phase behavior is well established [13].

For the rod-sphere potential, we adopt the appropriate limit of Eq.(3) originally

noted by Berne and Pechukas [14]. Thus, for the case where particle j is a rod and

particle i is a sphere with diameter equal to the rod’s breadth, the shape parameter

is expressed as

σ(r̂ij, ûj) = σ0

[
1− χ(r̂ij · ûj)

2
]−1/2

. (9)

The energy parameter we adopt for the rod-sphere interaction is [15]

ε(r̂ij, ûj) = εRS

[
1−

(
1−

(
εE

εS

)1/µ
)

(r̂ij · ûj)
2

]µ

, (10)

where εRS is a constant and the ratio εS/εE controls the configurational side-to-end

well-depth anisotropy of the interaction. In this paper, we examine the effect of the

rod-sphere interaction on phase behavior by varying the two parameters εRS and

εS/εE in Eq. (10), while keeping the rod-sphere shape parameter (9) and all aspects

of the rod-rod and sphere-sphere interactions unchanged.

In the first parameterization to be considered here (system (i)), we set εS/εE =

εss/εee = 5 such that the spheres favor the sides of the rods rather than the ends. By

changing the ratio εS/εE, however, it is possible to create systems in which spheres

favor the ends of the rods rather than the sides (εS/εE = 0.2 - system (ii)) or in
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which the spheres make no distinction between different parts of the rods (εS/εE = 1

- system (iii)). Equipotential lines of rod-sphere potentials representing these three

cases are shown in Fig. 1. The parameter εRS can also be varied independently of

the ratio of the rod-rod and rod-sphere well depths. This both defines the mixing

rules and offers a useful normalization with which to balance the average rod-sphere

interaction strength against those of the rod-rod and sphere-sphere interactions. We

have made use of this in system (ii); setting εRS/ε0 to 0.2 for this system ensures that

its rod-sphere interaction strengths are broadly similar to those in system (i). For

the sake of clarity, the rod-sphere parameterizations for the three systems considered

in this paper are given in Tab. I, along with εS and εE, the well-depths experienced

when the vectors r̂ij and ûj are, respectively, perpendicular and parallel to each

other.

III Simulation results

A Simulation details

The phase behaviors of systems (i)-(iii) were studied over a range of sphere con-

centrations using constant NV T molecular dynamics (MD) and constant NPT

Monte Carlo (MC) techniques. Simulations of 50/50 mixtures were performed using

N = 1024 particles in total, whereas twice as many particles were used at lower

sphere concentrations, the numbers of rods and spheres being adjusted to provide

each desired concentration.

In the MD simulations, the Velocity Verlet algorithm [16] was employed with a

time step δt = 0.0015
√

mσ2
0/ε0. At each state point, the system was equilibrated for

at least 5×105 time steps followed by a production run of 2×105 time steps. Observ-

ables were calculated every 200 time steps and then averaged. Periodic boundary

conditions, minimum image convention, and Verlet neighbor list were applied. The

intermolecular potentials were truncated and shifted at a distance rc = 4σ0. The

masses of the rods and spheres were set to unity as were the moments of inertia

about the short axes of the rods. In the MC simulations, standard random particle

6



displacement moves were applied and random rotations for the rods were imple-

mented using the Barker-Watts method [17]. N such random MC moves made up

one MC cycle, so that, on average, each particle experienced one trial move per

cycle. The three simulation box side lengths were allowed to change independently

to provide constant pressure conditions in the system. The corresponding particle

coordinates were rescaled proportionally to the side length changes, 5 such moves

being attempted in each MC cycle.

In the following, all quantities are expressed in reduced units. This means that

distance is measured in units of σ0, energy in units of ε0, and temperature in units

of ε0/kB, where kB is Boltzmann’s constant. As a consequence,
√

mσ2
0/ε0 is the

unit of time, ε0/σ
3
0 is the unit of pressure, and the number density, ρ, is measured

in units of σ−3
0 .

The orientational order parameter, S, and pressure, P , were monitored through-

out the simulations. The orientational order parameter was calculated as the en-

semble average of the largest eigenvalue of the Q tensor:

Qαβ =
1

N

N∑
i=1

1

2
(3uiαuiβ − δαβ), (11)

where uiα is the α component (α = x, y, z) of the vector ûi, and δαβ is the Kronecker

delta. The pressure was calculated using the virial expression,

P = ρkBT − 1

3V

N∑
i=1

N∑
j<i

rij · Fij. (12)

Rod-rod, rod-sphere and sphere-sphere radial distribution functions were also cal-

culated to assess structural properties.

In this study, we have restricted our simulations to ensembles in which the

particle concentrations are fixed. This constraint raises the prospect that simula-

tions performed in biphasic state points may have adopted metastable arrangements

rather than undergoing macroscopic phase separation. In lattice model simulations

of such systems, the semi-grand canonical ensemble has been shown to offer an effec-

tive route to avoiding such difficulties [8]. Here, however, our primary aim has not

simply been to locate phase coexistence boundaries; we have also investigated the

anchoring properties of the various LC-isotropic interfaces available to this class of
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system. This has necessitated the use of ensembles in which direct phase coexistence

is supported, but has relied on careful assessment of hysteresis and metastability ef-

fects, largely through reproducibility of results, for the setting of phase coexistence

boundaries.

Before going on to describe the results obtained in this study, it is informative,

at this point, to summarize previous findings for both the pure Gay-Berne parameter-

ization employed here [13] and hard particle rod-sphere mixtures [10]. The pure Gay-

Berne fluid is known to exhibit isotropic, nematic, and smectic phases [13, 18], the

triple point temperature of isotropic-nematic-smectic coexistence being T0 = 0.85.

Hard particle rod-sphere mixtures based on the same shape parameters as those

used in the current study undergo an isotropic-nematic transition on compression

for sphere concentrations in the range 0% ≤ c < 50% [10]. The volume-fraction

of this transition increases approximately linearly with sphere concentration un-

til, for c & 50%, compression of the homogeneous isotropic phase leads directly to

macrophase separation into rod-rich nematic and sphere-rich isotropic phases.

B System (i)

The first system (i) mixture to be investigated contained 512 spheres and 512

rods, originally equilibrated into a homogeneous isotropic phase at temperature

T = 2T0 = 1.70 and number density ρ = 0.40. Initially, this configuration was

subjected to a cooling sequence of MD runs down to T = 0.70. Subsequently, two

equilibrated configurations from this sequence, corresponding to high, T = 1.50, and

low, T = 0.70, temperatures, were used as the starting points of isothermal com-

pression sequences of MD runs covering the density range 0.40 ≤ ρ ≤ 0.50. Finally,

several further runs were undertaken at various concentrations and temperatures in

order to clarify certain features of the approximate phase diagram shown in Fig. 2.

These simulations, performed at the points marked with diamonds on Fig. 2, were

run on from configurations previously equilibrated at neighboring state points. The

resulting phase diagram shows isotropic mixed and isotropic demixed regions, as

well as extensive areas of nematic-isotropic and smectic-isotropic phase-coexistence.

The dashed line on Fig. 2, which represents the boundary between mixed and
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demixed regions, was determined from changes in the sphere-sphere radial distribu-

tion function, gss(r). For example, Fig. 3, which shows gss(r) calculated at number

density ρ = 0.40 and temperatures 1.2 ≤ T ≤ 1.4, indicates formation of sphere-rich

domains in this temperature range. Configuration snapshots taken from the T = 1.2

run confirm this, showing a single sphere-rich droplet coexisting with an isotropic

rod-rich phase. This demixing line was found to shift to slightly higher tempera-

tures with increase in density and, for the temperature range considered here, always

remained distinct from the order-disorder transition of the rod-rich phase. This is

consistent with the fact that the analogous mixture of hard particles forms a homo-

geneous isotropic phase at these densities but phase separates into rod-rich nematic

and sphere-rich isotropic phases at ρ ≈ 0.51 [10].

The compression sequence performed at T = 1.5 did not reveal any transitions

in the system, but a weak tendency to demix was seen at the higher densities. Table

II shows how the energy, order parameter and pressure changed along the T = 0.7

isotherm. Here, the increase of the nematic order parameter indicates a phase transi-

tion at a density of about ρ = 0.45. At densities above this, the rod-rod distribution

function measured parallel to the director, g‖(r‖), showed periodic density waves,

characteristic of the smectic B phase formed by the pure Gay-Berne fluid at this

temperature [18]. The rod-rod and sphere-sphere radial distribution functions cal-

culated for this system at ρ = 0.42 and ρ = 0.47 are shown in Fig. 4. These indicate

that the structure of the sphere-rich phase remained almost unchanged in this den-

sity range, implying that the density changes were accommodated by rearrangement

of the rod-like particles. The gss(r) curves also indicate demixed configurations at

both of these state points.

According to configurational snapshots (see, e.g., Fig. 5), the spherical particles

formed a droplet at all densities for T = 0.70. At all but the lowest densities, this

droplet was found to be cylindrical, looping around on itself as an artifact of the

periodic boundary conditions. The presence of this cylinder of spheres provided

this system with an axis of symmetry which was found to have some influence the

orientational distribution functions of the rods. Test runs showed, however, that

while the topology of the droplet had the expected strong system-size dependence,
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the phase behavior shown in Fig.2 was robust to such changes. In the absence of

this symmetry-breaking artifact, we would expect the director to lie randomly in

the plane of a flat LC-isotropic interface; for this system, the general tendency of

rods to align in the plane of a featureless substrate [19] is accentuated by the strong

rod-sphere side interaction.

On increasing the temperature of the higher density smectic configurations,

the periodic density waves dispersed to leave a rod-rich nematic phase. Location of

the boundaries of the nematic region of the phase diagram was made difficult by the

interfacial ordering induced by the cylinder of spheres. That said, this system proved

relatively free of the pre-transitional order parameter fluctuations that characterize

the nematic-isotropic transitions of single component Gay-Berne systems.

Further simulations of system (i) at sphere concentrations of 20% and 10%

showed that, at similar packing fractions, the demixing temperature was shifted to

lower values than those found for the 50/50 mixture. At a sphere concentration

of 20%, for example, the system remained homogeneous at temperatures as low as

T ≈ 0.9 at low densities (see Fig. 6). A qualitative difference between the 50/50 and

80/20 phase diagrams was that in the latter the isotropic-isotropic demixing was su-

perseded by isotropic-nematic phase coexistence when cooling at high densities. This

crossover is explained by the fact that the equivalent hard particle system exhibits

a homogeneous isotropic-nematic transition at ρ ≈ 0.37. This trend was followed by

the 90/10 rod-sphere mixture of system (i), for which no demixed isotropic phases

were found for 1.20 ≥ T ≥ 0.50 [20]. Here, only phase separation was observed, that

is a droplet of spheres suspended in either a nematic or a smectic rod-rich phase.

C System (ii)

A 50/50 system (ii) mixture was found to demonstrate strong isotropic-isotropic

demixing for a similar range of temperatures to that found with system (i). Here,

the simulations were initiated at high temperature (T = 1.5) and the mixture was

compressed from ρ = 0.40 up to ρ = 0.50. The nematic order parameter measured

during this compression sequence indicated that the rod orientational distribution

function remained isotropic over the whole range of densities. The sphere-sphere
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radial distribution functions suggested, however, that this compression had been

performed close to the demixing line, crossing it at ρ ≈ 0.49. A subsequent cooling

sequence, performed with a cubic simulation box at ρ = 0.42, revealed that, on

demixing, the sphere-rich phase of this system also formed a boundary-condition-

stabilized cylindrical droplet. Here, though, the cylinder of spheres was surrounded

by rods aligned perpendicular to the its surface (i.e. radially). Due to the orien-

tational defects required by a 2-dimensional periodic array of such structures, this

caused significant distortion of the director field, making this series of simulations

unsuitable for a detailed analysis of the phase behavior of the rod-rich phase.

To allow study of the phase coexistence in this system in the absence of this

topological effect, a second cooling sequence was performed using an elongated sim-

ulation box of dimensions 9.261 × 9.261 × 25.403. The intention here was to use

the effects of surface tension to promote a pair of planar interfaces parallel to the

xy-plane. The initial configuration for this sequence was obtained by applying a non-

symmetric constant volume MC move to an initially cubic box at density ρ = 0.47

and high temperature (T = 1.70). Other than at very low temperatures (see below)

subsequent simulations employed constant NV T ensemble MD methods at a fixed

box geometry and a range of temperatures: constant pressure and constant volume

MC methods both failed when applied to this system because the shortest simula-

tion box side half length became too close to the radius of the Verlet neighbor list,

RL = 4.5σ0. At least 106 MD time steps were used for equilibration at each temper-

ature. During production runs, any possible demixing was assessed by calculating

the density profiles for rods and spheres along the longest simulation box side and

averaging over 5× 105 time steps at each temperature. In compiling these profiles,

the z-coordinate of the center of mass of the sphere distribution function was always

aligned with the central bin of the analysis histogram.

The resulting concentration distributions, shown in Figs. 7, indicate small non-

uniformities at T = 1.70 and coexisting sphere-rich and rod-rich regions at lower tem-

peratures. With decreasing temperature, these concentration differences increased

in both the rod-rich and sphere-rich regions, even when the former was still in the

isotropic phase (Fig. 7(b)). An increase was seen in the nematic order parameter
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at a temperature of about T = 1.20, indicating an orientational phase transition.

This was classified as an isotropic-nematic transition since no layering was seen in

the rod-rod distribution function resolved parallel to the director. The sphere-rich

phase became totally free of rods at this point, whereas some spheres continued to

reside in the rod-rich phase (Fig. 7(c)) at a level of about 9% of that expected for

a homogeneous mixture. The nematic director adopted an orientation parallel to

the z-axis of the simulation box because the rods close to the two isotropic-nematic

interfaces were aligned homeotropically. In order to maintain the isotropy of the

pressure tensor on approaching the smectic region [21], a constant pressure MC run

was performed at T = 0.70 and P = 2.0. Under these conditions, the equilibrated

simulation box dimensions became 9.36(±.05) × 9.16(±.04) × 24.90(±.12), corre-

sponding to a density of ρ ≈ 0.48. As shown by Fig. 7(d), this gave an arrangement

comprising well-resolved smectic layers lying parallel to the interfaces. It is interest-

ing to note the difference between the periodic density waves of this smectic phase,

and the short-range interfacial features exhibited by the nematic phase in Fig. 7(c).

The properties of system (ii) were also studied at a rod-sphere concentration

ratio of 80/20. For this, a system of 1638 rods and 410 spheres was equilibrated

at ρ = 0.30 and T = 1.0 for 1.4 × 106 time steps. Here the sphere-sphere radial

distribution function gave high values at short range but approached unity at large

separations, suggesting local clustering of the spheres but a random distribution of

such clusters. At this state point, 153±17 clusters were found of spheres separated by

distances greater than 1.5σ0. Of these, 7 clusters were relatively large (i.e. contained

20 spheres or more), the largest containing 38±13 spheres. By comparison, the 80/20

mixture of system (i) under the same conditions had 182 ± 11 clusters, the largest

of which contained 20 ± 4 spheres, and the equivalent mixture of hard particles at

the same density contained 248 ± 12 randomly formed clusters, the largest cluster

containing only 10± 3 spheres.

This enhanced cluster formation in system (ii) was found to have little effect

when the system was cooled or compressed gradually: when treated in this way,

the clusters of spheres merged to form a single large droplet suspended in a rod-

rich solvent. When, however, the equilibrated ρ = 0.30, T = 1.0 configuration was
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quenched down to T = 0.70, complete coalescence of the clusters was no longer

achieved. Instead the majority of the spheres went on to form 4 distinct clusters

containing an average of 85 spheres each (Fig. 8). Having developed, this arrange-

ment remained relatively unchanged even after an extended run of 3.0 × 106 time

steps. The longevity of this metastable multi-droplet configuration can be explained

by the well-defined layer of rods which formed around each cluster during the early

stages of the quench. Once formed, these layers prevented the droplet surfaces from

coming within touching distance of each other, so making coalescence impossible.

This effective emulsification of the sphere-rich droplets is noteworthy since it intro-

duces the prospect of observing microphase separated arrangements in rod-sphere

systems.

D System (iii)

Before presenting the results for this system, we recall that the strength of the

rod-sphere interaction in system (iii) has no orientational dependence and is charac-

terized by a constant well depth ε0. Since this is equal to the strongest well-depths

available to the rod-sphere interactions considered in systems (i) and (ii), the aver-

age rod-sphere interaction strength for any liquid-like configuration of system (iii)

will necessarily be greater than those of the systems considered in the preceding

Sections. For this reason, system (iii) can be expected to show a reduced tendency

to exhibit demixing and phase separation.

Initially, two compression sequences of MD runs were performed on 1024-

particle 50/50 rod-sphere mixtures of system (iii) at relatively high (T = 1.20) and

relatively low (T = 0.70) temperatures over the range of densities 0.40 ≤ ρ ≤ 0.50.

At both temperatures, these systems remained orientationally isotropic and com-

positionally homogeneous over the entire density range and no discontinuities were

seen in the structural and thermodynamic observables. Superficially, this could be

taken to be a reflection of the behavior of the equivalent hard particle system [10],

which also behaves in this way prior to phase separating at ρ ≈ 0.51.

On comparing the rod-rod radial distribution functions, however, the system

(iii) configurations were found to contain a significantly higher proportion of rod
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side-by-side arrangements than the equivalent hard particle system. Subsequently,

two short cooling series were performed, at low, ρ = 0.42, and high, ρ = 0.48, den-

sities. Starting from configurations previously equilibrated at T = 0.70, the system

was cooled to T = 0.60 and then further to T = 0.50. Even at these low tem-

peratures, the nematic order parameter remained low at both densities. However,

configuration snapshots indicated the development of local structure: fragments of

smectic-like monolayers and sphere-rich sheets were observed. The sphere-sphere ra-

dial distribution functions calculated during these cooling sequences (Fig. 9) showed

an increase in structural regularities of this type, while cluster analysis indicated

development of a bicontinuous interconnected network, i.e. there were no separate

clusters of spheres. Since some of the growing features seen in the distribution

functions, e.g. that at 5-6σ0 in Fig. 9, were at distances approaching the simula-

tion box side half-length, a series of much larger simulations was employed to study

this system more fully. In particular, it was felt necessary to investigate whether

the structure observed in these 1024-particle simulations was a non-equilibrium ar-

rangement, frustrated by the relatively high cooling rate and/or the need to be

commensurate with the periodic boundary conditions, but metastable with respect

to a lamellar phase (i.e. planar layers of rods separated by layers of spheres).

To this end, further simulations were performed on a significantly larger sys-

tem (iii) mixture subjected to a moderate cooling rate. Here, a system comprising

8192 rods and 8192 spheres was simulated on two 64 node parallel machines (SG

Origin 3000 and Cray T3E-1200E) at CSAR in Manchester. The software used to

perform these simulations was a version of the domain-decomposition parallel MD

code GBMOLDD [22] modified so as to include the specific rod-sphere interaction

described in Section II. The initial configuration for these simulations was obtained

by replicating eight images of a simulation box of 2048 hard particles, so giving

a system of 16384 particles in total. In order to prevent simulation of eight iden-

tical configurations in parallel, the initial translational velocities were randomized

according to the Maxwell-Boltzmann distribution [16].

A complete list of the large system runs, in the order in which they were per-

formed, is given in Tab. III. Initially, a ρ = 0.40 system was cooled from T = 0.6 to
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T = 0.55. Linear extrapolation indicated that further cooling at this density would

have caused the pressure to go negative, therefore, the system was then compressed

at T = 0.55 to ρ = 0.42. Following this, a second cooling and compression sequence

was performed down to the state point T = 0.51, ρ = 0.45. Throughout this series of

runs, the temperature and density dependence of the potential energy was approxi-

mately linear. Thus, no discontinuities were observed in the potential energy or its

first derivatives while the system transformed from the uniform isotropic configura-

tion to that shown in Fig. 10. Similarly, no discontinuous changes were observed in

any of the measured distribution functions or in the cluster analysis data.

For this system, cluster analysis (based on sphere-sphere separations of 1.5σ

or less) showed that, even in the relatively isotropic and uniform configuration at

T = 0.60 and ρ = 0.40, about 95% of the spheres were members of a single continuous

network. The extent of this network was found to grow with decreasing temperature

and increasing density, such that for T = 0.51 it contained virtually every sphere in

the system. When combined with the absence of macroscopic phase separation, this

indicates that the structure shown in Fig. 10 is a bicontinuous microphase separated

network. Figure 11 shows sphere-sphere radial distribution functions measured at

the densities considered at T = 0.51. In the separation range 0-6σ0, they indicate

similar behavior to that observed in the equivalent 1024-particle system (c.f. Fig. 9).

Furthermore, these functions approach unity at separations greater than 10σ0, indi-

cating the absence of long-range transitional correlations, and confirming that this

system does not develop lamellar order at this concentration ratio.

The temperatures at which microphase separation occurred in this system were

relatively low, raising the possibility that the system’s state was rather glassy. To

check the fluidity of the observed state, the particle mean square displacement was

calculated (Fig. 12). In the case of Brownian or random walk motion, the mean

square displacement is known to be a linear function of time:

< (r(t)− r(0))2 >= 6Dt, (13)

where D is the diffusion coefficient. However, this dependence is not linear in the

case of some complex systems such as polymers, for example, for which the mean
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square displacement is proportional to tν , where ν < 1 [23]. The double logarithmic

scale used in Fig. 12 reveals how the exponent ν changed in the time range 200

δt ≤ t ≤ 3 × 105δt. At times up to several thousands time steps, the diffusion of

both rods and spheres was not macroscopic due to short time correlations in particle

positions. Only after about 30,000 time steps, when each rod (sphere) had moved,

on average, 1.3σ0 (1.8σ0) from its initial position did both dependencies became

linear. The gradients of the tangents shown in Fig. 12 are almost equal for both

curves at ν = 0.91 ± 0.02. The average rod (sphere) displacement over the total

simulation run length at ρ = 0.45 and T = 0.51 (9× 105 time steps) was estimated

as 5.8σ0 (8.3σ0). These values support the notion that the system was in a fluid state

and that the particles were moving in an approximately Brownian manner when in

structures such as that shown in Fig. 10.

Finally, in this Section, we report briefly on the behavior of system (iii) mix-

tures with reduced sphere concentrations. The most interesting structures shown by

such systems were found from low temperature compression series of constant NV T

runs performed on 70/30 rod-sphere mixtures. For temperatures of T = 0.6 and

above, such sequences showed that this system underwent macroscopic phase sepa-

ration at the onset of smectic ordering. However, a compression sequence performed

at T = 0.5 lead to the formation of a different layered structure, in which the peak-

peak separations in g‖(r‖) were significantly larger than those of the usual smectic

phase. Cluster analysis performed on these T = 0.5 systems (based on sphere-sphere

separations of 1.5σ0 or less) also showed unusual behavior, 10 reasonably large clus-

ters being found for a range of densities. Configuration snapshots confirmed that

these observations corresponded to a partially-formed lamellar structure, i.e. layers

of rods, approximately half of which sandwiched planes of spheres.

In order to establish the thermodynamic stability of this lamellar arrangement,

auxiliary MC runs were performed in the constant NPT ensemble, including the

use of non-uniform volume change moves so as to reduce the effects of the periodic

boundary conditions. While these simulations proved very slow to stabilize (2× 106

MC sweeps were required at P = 1.5, more than half of which were equilibration),

the periodic, microphase separated lamellar structure shown in Fig. 13(a) was found
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to persist. The corresponding distribution functions, gss(r) and g‖(r‖), are shown in

Fig. 13(b). Here, the gss(r) curve shows a broad peak at r ≈ 4.5, corresponding to

spheres separated by layers of rods. Equivalently, the peaks in the g‖(r‖) curves are

less well defined than is usual for a Gay-Berne system, showing contributions from

both neighboring smectic layers and smectic layers separated by layers of spheres.

The relative complexity of this structure explains its slow equilibration; composi-

tional microphase separation throughout the system and commensurability between

the layer spacings and the boundary conditions are both required.

On reducing the sphere concentration further, to 20% by number, the behavior

of system (iii) at moderate temperatures was found to be very similar to that of the

equivalent hard particle system. For instance, compression of such a mixture at T =

1.0 lead to formation of a compositionally homogeneous (i.e. well mixed) nematic

phase at ρ ≈ 0.38. At lower temperatures, e.g. T = 0.7, equivalent compression

sequences resulted in the development of a smectic phase containing small clusters

of spheres. Here, however, the sphere clusters appeared as random inclusions, rather

than being regularly spaced, and so no lamellar structures were observed.

IV DISCUSSION AND CONCLUSIONS

In this paper, we have focused on the influence of the rod-sphere interaction on

the phase behavior of binary mixtures of rod-shaped Gay-Berne particles and small

Lennard-Jones spheres. From this, we have found that such mixtures exhibit a rich

and fascinating phase behavior which is sensitive to the strength and symmetry of

the rod-sphere interaction, as well as the species concentration ratio.

System (i), in which the spheres were most attracted to the sides of the rods,

exhibited strong demixing: at sphere concentrations of 10%, 20%, and 50%, the

mixture components separated macroscopically before the onset of any orientational

order. The anisotropy of the rod-sphere potential was inverted in system (ii), such

that the end interaction was made 5 times as strong as the side interaction. This

system was found to show stronger demixing than system (i) at 50/50 rod-sphere

concentration ratio, and at low sphere concentrations it could be quenched into
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metastable multiple-droplet arrangements.

Additionally, the sphere-rich–rod-rich phase boundaries established in these

demixing and phase separating systems were found to have well-defined anchoring

properties. Tangential anchoring was found in system (i), whereas normal anchoring

was seen in system (ii). This raises the prospect of being able to control both the

strength and symmetry of anchoring behavior simply through appropriate modifica-

tion of the rod-sphere interaction anisotropy εS/εE. We also note that the structures

associated with these fluid-fluid phase boundaries were qualitatively similar to those

seen previously at the liquid crystal-vapor interface, rather than the highly stratified

arrangements seen for liquid crystals adsorbed at solid substrates [24]. This class of

system, therefore, appears a viable route towards the development of a simulation

system capable of genuinely accessing the weak anchoring regime.

Phase behavior equivalent to that observed in these systems has also been seen

experimentally in, for example, the phase separating oil plus LC mixtures used by

Loudet and co-workers in their studies of LC colloid systems [2]. Because of the

considerable time- and length-scale differences involved, the processes governing the

formation of the highly monodisperse, microscopic oil droplets observed in ref [2] are

not fully accessible to the models used here. However, our simulations do appear

well suited for the investigation of early stage phase-separation dynamics and the

metastability of very small droplets formed in deep quenches (as a function of the

molecularly controllable interfacial properties).

In system (iii), by contrast, the use of a stronger average rod-sphere interaction

weakened the tendency of the particle types to demix, resulting in the formation of

microphase separated structures. Thus, for a 50/50 rod-sphere concentration ratio,

the diluting effects of the spherical particles proved sufficient to prevent conventional

LC phases from forming. Instead, a bicontinuous network developed, containing

highly curved monolayers of rods with smectic-like in-layer order. Similarly, at

a sphere concentration of 30%, long-ranged orientational order was only achieved

through expulsion of the spheres to the interlayer spacings of a lamellar smectic

arrangement.

System (iii) provides an example of the microphase separation that can result
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when a mixture containing a significant concentration of mesogenic particles is frus-

trated from forming an LC phase due to the continued integration of a significant

non-mesogenic component. In the system considered here, macrophase separation

has been resisted because the rod-sphere interaction was relatively strong; this coun-

tered the net entropic drive for such a system to phase separate at high density due

to the inefficient packing of the rods and spheres [10]. However, it appears that the

system considered here is just one of many in which hybrid structures may arise due

to the compromise forced on one component with a strong desire to order by a second

which does all it can to resist: from such conflicts, originality often flows. In addition

to this compositionally resisted mesophase formation, the Brownian dynamics ex-

hibited by the particles in system (iii)’s microphase separated structures also raises

intriguing possibilities; to this end, both the rheology and the field-swithability of

these phases will be investigated in future studies.
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List of tables

TABLE I. Energy parameters for the rod-sphere potentials of the three systems studied.

εRS, εS, and εE are given in units of ε0.

System εRS εS/εE εS εE

(i) 1 5 1 0.2

(ii) 0.2 0.2 0.2 1

(iii) 1 1 1 1
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TABLE II. Potential energy per particle, Up, the nematic order parameter, S, and pressure

calculated on 0.40 ≤ ρ ≤ 0.50 at T = 0.7 for the 50/50 system (i) mixture.

The numbers in brackets represent the statistical uncertainty in the last two

digits.

ρ Up S P

0.40 −3.972(30) 0.074(27) 1.03(08)

0.41 −4.064(31) 0.084(37) 1.17(08)

0.42 −4.145(28) 0.101(44) 1.37(09)

0.43 −4.207(29) 0.142(61) 1.58(08)

0.44 −4.281(33) 0.181(88) 1.82(10)

0.45 −4.402(41) 0.485(49) 1.93(12)

0.46 −4.536(55) 0.658(63) 2.07(10)

0.47 −4.910(33) 0.856(16) 1.85(10)

0.48 −5.050(32) 0.891(11) 2.04(10)

0.49 −5.149(32) 0.912(08) 2.32(11)

0.50 −5.241(32) 0.926(06) 2.67(11)
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TABLE III. Simulation details of the CSAR-based runs performed on a 50/50 system (iii)

mixture using 16384 particles.

ρ T Time steps Up

0.40 0.60 350,000 −4.622(8)

0.40 0.58 300,000 −4.691(9)

0.40 0.57 150,000 −4.728(9)

0.40 0.56 300,000 −4.772(8)

0.40 0.55 300,000 −4.812(9)

0.41 0.55 250,000 −4.953(9)

0.42 0.55 580,000 −5.096(9)

0.42 0.54 580,000 −5.147(8)

0.42 0.53 580,000 −5.196(9)

0.42 0.52 500,000 −5.259(8)

0.42 0.51 250,000 −5.315(9)

0.43 0.51 480,000 −5.469(9)

0.44 0.51 440,000 −5.631(9)

0.45 0.51 900,000 −5.799(9)
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List of figure captions

FIG 1. Equipotential lines of rod-sphere potentials with different values of the ratio

εS/εE: (a) εS/εE = 5, (b) εS/εE = 1/5, and (c) εS/εE = 1.

FIG 2. Phase diagram of the 50/50 mixture of type (i). Diamonds indicate state

points at which simulations were conducted; dashed line is the demixing line.

FIG 3. Sphere-sphere radial distribution functions of a 1024-particle 50/50 mixture of

type (i) at ρ = 0.40 and different temperatures.

FIG 4. Sphere-sphere and rod-rod radial distribution functions of a 1024-particle 50/50

mixture of type (i) at T = 0.70 before (ρ = 0.42) and after (ρ = 0.47) the

isotropic-smectic transition.

FIG 5. Configuration snapshot of a 1024-particle 50/50 mixture of type (i) at ρ = 0.45

and T = 0.70.

FIG 6. Phase diagram of the 80/20 rod-sphere mixture of type (i). Diamonds indicate

state points at which simulations were conducted; dashed line is the demixing

line.

FIG 7. Number density profiles for rods (solid line) and spheres (dashed line) in a non-

cubic simulation box along its longest side for a 1024-particle 50/50 mixture

of type (ii) at (a) T = 1.70, (b) T = 1.40, (c) T = 1.10, (d) T = 0.70. Results

(a)-(c) were obtained from the constant NV T MD simulations at ρ = 0.47,

distribution (d) was calculated from a constant NPT MC run at P = 2.0. The

dotted lines correspond to the uniform particle distributions.

FIG 8. Configuration snapshot of a 2048-particle 80/20 rod-sphere mixture of type

(ii) after a quench at ρ = 0.30 from T = 1.0 to T = 0.70.

FIG 9. Sphere-sphere radial distribution functions, gss(r), for a 1024-particle 50/50

mixture of type (iii) at ρ = 0.42 and a range of temperatures.

FIG 10. Configuration snapshot of a 16384-particle 50/50 mixture of type (iii) at ρ =

0.45 and T = 0.51. The simulation box side is 33.144σ0.
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FIG 11. Sphere-sphere radial distribution functions, gss(r), calculated for a 16384-

particle 50/50 mixture of type (iii) at T = 0.51 and a range of densities.

FIG 12. Time dependence of the mean square displacement of rods (solid line) and

spheres (dashed line) calculated for a 16384-particle 50/50 mixture of type

(iii) at ρ = 0.45 and T = 0.51 plotted in the double logarithmic scale.

FIG 13. (a) Configuration snapshot of a 2048-particle 70/30 rod-sphere mixture of type

(iii) at P = 1.5 and T = 0.5 and (b) distribution functions gss(r) and g‖(r‖)

calculated at this data point.
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Figure 1. D. Antypov, ”Journal of Chemical Physics”.
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Figure 2. D. Antypov, ”Journal of Chemical Physics”.
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Figure 3. D. Antypov, ”Journal of Chemical Physics”.
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Figure 4. D. Antypov, ”Journal of Chemical Physics”.
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Figure 5. D. Antypov, ”Journal of Chemical Physics”.
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Figure 6. D. Antypov, ”Journal of Chemical Physics”.
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Figure 7. D. Antypov, ”Journal of Chemical Physics”.
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Figure 8. D. Antypov, ”Journal of Chemical Physics”.
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Figure 9. D. Antypov, ”Journal of Chemical Physics”.
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Figure 10. D. Antypov, ”Journal of Chemical Physics”.
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Figure 11. D. Antypov, ”Journal of Chemical Physics”.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 2 4 6 8 10 12 14 16

g_
ss

(r
)

r

0.43
0.44
0.45

37



Figure 12. D. Antypov, ”Journal of Chemical Physics”.
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Figure 13(a). D. Antypov, ”Journal of Chemical Physics”.
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Figure 13(b). D. Antypov, ”Journal of Chemical Physics”.
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