
Grid enabling legacy applications for scalability –
Experiences of a production application on the UK NGS

Anjan Pakhira, Ronald Fowler, Lakshmi Sastry and Toby Perring

Rutherford Appleton Laboratory, Chilton, Didcot, UK.

Abstract

ISIS is the world’s brightest pulsed neutron facility which supports research into condensed matter,
bio-molecular sciences and advanced materials. New instruments are coming on line which will be
able to record tens of Gigabytes of data within hours and scientists wish to be able to process and
analyse this rapidly to guide follow on experiments. Existing software needs to be adapted to scale
up to these new data levels and to provide near real-time response to the user. This paper describes
the reimplementation of one important ISIS data analysis application to run on grids such as the UK
NGS and the experiences of the developers and end users.

1. Introduction
The ISIS facility at the Rutherford Appleton
Laboratory is the world’s most powerful pulsed
spallation neutron source. It provides beams of
neutrons and muons that enable scientists to
probe the structure and dynamics of condensed
matter on scales ranging from the sub-atomic to
the macromolecular. The scientific domain
covers soft condensed matter, biomolecular
sciences and advanced materials science.

Current work at ISIS involves the
installation of seven new instruments in the
second target station which is under
construction. A key feature of many new
machines is faster data gathering at higher
resolution, which means that there is more data
to analyse.

Figure 1 shows the new Merlin instrument
which will produce of the order of 20 GBytes of
data for each experimental run. Analysis of the
data as it is obtained would allow the scientist to
decide what, if any, further measurements
should be made in the experimental run.

One of the remits of the CCLRC e-Science
department is to help grid enable computational
and data intensive applications such as these.
Hence a close collaboration was established
between ISIS instrument scientists and
members of e-Science to develop a tool that
would provide easy access to grid resources as
well as giving a greatly enhanced user interface
for the software.

Initial results of this work were presented
previously [1]. In this paper we give a more
detailed review of the final version of the
software, along with experiences of both

developers and end users of the grid enabled
application.

Figure 1: Diagram of the Merlin detector

2. The Application

The data analysis used for a class of ISIS
instruments such as MAPS and Merlin [2] is
based on the three packages, shown in Figure 2.
Homer does initial data reduction, Mslice[6] is
used for visualisation and selection of 1D and
2D subsets of the data. TobyFit [3] is the most
compute intensive part of the data analysis
software and is a specialised non-linear least
squares fitting package including Monte Carlo
simulation of instrument effects. It is a Fortran
command line application of about 32,000 lines,
with more than 100 subroutines.

The scientist provides a parameterised form
of the expected scattering and background
functions and, by selecting some or all of the

data sets available, tries to find the best fit.
Currently only a fraction of the total data is
actually used in the fit due to the time taken on
a single PC, which could run into many hours or
even days. As the data rate increases
substantially with new instruments this becomes
a major problem.

RAW Data from Detectors Homer

MSlice

Tobyfit

Output 3-D corrected data: SPE files

Output 1-D corrected data: CUT files
2-D corrected data: SPE files

Data Analysis Cycle for MAPS

RAW Data from Detectors Homer

MSlice

Tobyfit

Output 3-D corrected data: SPE files

Output 1-D corrected data: CUT files
2-D corrected data: SPE files

Data Analysis Cycle for MAPS

Figure 2: MAPS data analysis process. Homer
and MSlice are used to pre-process and select
data to fit or simulate with TobyFit.

2.1 MATLAB and MSlice

Many scientists within ISIS make use of
MATLAB or IDL as a convenient problem
solving environment for their data analysis
needs. Mslice is a tool that has been developed
in MATLAB, which is used interactively to
explore the data and select which parts of it to
fit. A simple GUI allows easy data selection and
plotting and enables experienced users to
employ their own MATLAB functions on the
data. Hence there is a desire that any grid
enabled interface to the TobyFit application
should be made more user friendly with a
MATLAB GUI to it. This of course is not a
requirement of “grid enabling” software, and
does require a significant amout of effort, but is
seen as an important aspect of making the grid
based version more accessable to the end user.
Without the benefit of the GUI, the new version
would be much less attractive to new users.

2.2 Data storage

At present most data is simply stored on the
user’s local machine. ISIS is moving towards
use of the Storage Resource Broker (SRB) for
their data, along with a metadata model to fully

describe all data. In future it will be the case
that the primary repository for experimental
data will be on an SRB system with high speed
links to computational resources such as the UK
NGS. The CCLRC Data Portal and its meta-data
model will be used to track results.

The use of a central data store has
advantages of been easier to back up and to
share with other users. With rapidly increasing
amounts of data to store the limitations of
transfer time to the local machine may become a
bottleneck.

3. The Solution
The approach taken to solving this problem is
designed to allow the scientist to replace the
existing command line interface with a powerful
Graphical User Interface (GUI) built inside of
the preferred MATLAB environment. The GUI
allows setting and manipulation of the
numerous run time parameters required in the
fitting process. When these are as required, a
job can be submitted to an appropriate grid
resource. As the computational task will be a
significant one, it is vital to provide a parallel
implementation of the fitting process that can be
run on any available grid resource. Since large
amounts of data are likely to be utilized in many
fitting runs, the Storage Resource Broker will be
used to manage the data where possible.

A diagram of the architecture used is given
in Figure 3. The various components are
discussed below.

3.1 MATLAB GUI

The MATLAB environment allows easy
manipulation of vector and array objects
through a high level language. There is also
support for GUI development using Guide or
Java Swing classes. The Java option was used
as it is better suited to the complex interface that
was needed by the application.

Typical views of the GUI are shown in
Figures 4 and 5. As can be seen there are
several separate tabs to control the various
aspects of the data fitting process. One or more
data sets from a given experiment can be
selected, and each of these may be cuts (1D),
slices (2D) or an entire 3D data set. In addition
one can select to fit to the data from several
separate runs. This means there can be very
many parameters to fit as it possible to have
different background models for each run, in
addition to the many values that can be used to
describe the foreground scattering.

3.3 SRB and data management The data structures to store and process the
options defined in the GUI have been converted
from Fortran into standard MATLAB
commands. This enables all the existing options
to be accessed through the GUI.

Since very large data files often need to be
fitted, it makes sense to exploit the SRB [3]
service that is part of the NGS to store these.
The user has the option to up load these from
the client to the SRB, if needed. Subsequent
sessions then make use of these for any fitting
jobs and return results to the to the SRB, which
the client can access for visualisation.

The other requirements of the interface
were:

• To provide visualisation of the input
data, fitted results and errors. This was
done using the MSlice[6] package and
direct MATLAB functions (Figure 4). 3.4 Parallel implementation of fitting

• To allow job and data submission to any
grid resource.

• The ability to monitor and return output
from these jobs.

These last two points are discussed in the
following sections.

Tobyfit-Client

Matlab

Geodise

SRB-Scommands

Java COG

Internet

SRB Server

Globus

Batch: PBS

Tobyfit-server

Client Side on Windows NGS Grid Resource

Tobyfit-Client

Matlab

Geodise

SRB-Scommands

Java COG

Internet

SRB Server

Globus

Batch: PBS

Tobyfit-server

Client Side on Windows NGS Grid Resource

LaunchLaunch

The non-linear least squares fitting process had
to be implemented in parallel to exploit the full
power of the distributed memory clusters. To
retain compatibility with the existing software,
and avoid re-implementing vast amounts of
code, MPI calls were added to time critical
loops so that the objective function is evaluated
in parallel, with much of the remaining logic
still being serial. As much as possible of the
existing Fortran was retained, so the scientist
could still work with known code, while
achieving reasonable scaling for tens of
processors. Moving to 64 bit architectures, such
as Scarf, should deal with increasing memory
requirements.

Figure 3: Diagram of the interaction of the
MATLAB client with NGS compute nodes and
the SRB.

3.2 Job Submission and Monitoring

The MATLAB GUI needs to be able to submit
jobs to current grid resources which are built on
Globus Toolkit 2, from both Linux and
Windows hosts. The Java Cog toolkit provides
such functionality, but a more convenient
interface to it was found to be the Geodise
Computational Toolbox [2] which can be called
easily from MATLAB. This allows submission
of jobs to any of the NGS clusters [4] or the
CCLRC dedicated system Scarf. These are
batch systems so the GUI provides a query
option to monitor the jobs’ progress in the
queue and return the results when complete.

Figure 4: One of the main panels of the
MATLAB GUI, with the advanced panel. Many
different parameters can be selected for fitting.

 The user has the option to either specify the

resource to use and the number of processors
required, or to let this be automatically selected.
At the moment the automatic option is fairly
crude, but in future it will make use of a
common queue for all NGS machines, when this
becomes available.

Figure 5: Display on the client showing the job
control window with a list of submitted jobs. 2D
cuts from the data and the fitted simulation are
compared.

4. Experiences from Implementation
The grid enabled version of Tobyfit had three
main development stages:

• Implementation of a parallel version of
the fitting code suitable for use on
clusters such as the NGS.

• Implementation of the client GUI
within Matlab.

• Implementation of a data management
and job submission scheme, between
client and server.

Each of these presented challenges and
required collaboration with end users to develop
a useful system.

4.1 Experiences from development of
Parallel Tobyfit

4.1.1 Language and parallel methodology

Fortran 95 was selected as the development
language for the use in the parallel code. This is
reasonable as all the existing software can be
used without change and NGS provides the
PGC and Intel compilers.

As already mentioned, a parallel
implementation based on MPI was made. This
is a widely supported standard library which
will be available on virtually all parallel
architectures. While OpenMP may have offered
a simpler parallelisation, it is only applicable to
shared memory nodes and requires extra
compiler support.

The downside is that significant code
changes are required with MPI compared to
OpenMP and it is important to get the software
maintainer – such as the ISIS instrument

scientist - to accept these as an important part of
the software. Otherwise the parallel code will
not be kept up to date.

4.1.2 Analysis and profiling of code

The first challenge in analysis of the serial
version of the code was to identify the
behaviour for a set of benchmark cases and to
understand the control flow of the program.
This required getting a set of test problems that
accurately represent both current uses of the
code and future requirements in terms of size.

While is easy to get small and medium sized
demonstration data sets, it takes more work and
time to obtain test cases that represent future
requirements. This is because such cases are
simply too expensive to run with the current
software on one processor. The application
scientist had to take time to generate new files
for this.

4.1.3 Level of parallel implementation

There are a number of different levels at which
parallelism can be exploited in the fitting
process. This choice obviously influences both
efficiency and scalability of the code. Since
many of the test examples showed cases where
a one dimensional cut was fitted, which maps
to a single spectra internally, we chose to
parallelise the code at the level of individual
spectra.

 With hindsight this is not always the best
choice. The reason for this is that fitting to three
dimensional data, there are a very large number
of individual spectra (order of 30000), but each
has relatively few points in it. This presents
limitations to the performance (see 4.1.4).

With this chosen level of parallelism it was
possible to limit changes to a few tens of
routines, so that the bulk of the code is identical
to the serial case. Hence future updates to the
serial version should easily carry across.

4.1.4 Parallel performance

Figure 6 shows the observed speed up for the
parallel code on one of the NGS clusters. These
results are for up to 16 processors, which is the
level of resource which should be readily
available on such clusters. Larger requests often
have to wait in the batch queue, which defeats
the intended interactive nature of this tool.

 While the scaling is not as close to linear as
one might hope, the performance is a major

improvement over the performance seen
running the serial code on a local PC.

• understanding the data structures
• following the interaction between least

squares code and the data simulation. The scaling should improve when the
amount of data in a slice is increased, since this
will improve the load balance and ratio of
computation to communication. Similar results
are obtained when fitting to 1D cuts where the
number of data points in each spectra is also
high.

One requirements set for parallel version
was maintenance of existing structures and
format of input output data. Adopting existing
structures and file formats made development
quicker. However this meant a significant loss
in flexibility of memory management.

When the accuracy of the Monte-Carlo
integration is increased, the ratio of computation
to communication will also increase. This will
give improved scaling when more accurate
results are needed.

The compute intensive fitting component
was developed into a non interactive program,
which could accept multiple inputs as command
line arguments. One feature of the old version
and the new parallel version is the use of
environment variables to define input file paths.
This feature was easily ported to the serial
version. However MPI does not have a standard
way to handle user environment variables.
MPIRUN and MPIEXEC interfaces to launch a
parallel job do not have a standard interface to
pass user defined environment variables. This
indicates that depending on non-standard
features of a language, such as environment
variables, is never a good idea. When launching
jobs via the GT2, the necessary environment
variables can be set from the RSL.

The scaling of the parallel code is not so
good when looking at fitting 3D data sets for
full SPE files. The reason for this is that the
number of data points in each spectra is still
rather limited, even for large data sets. The
scaling in this case would be much better if it
was made parallel at a higher level. This will be
investigated in the future.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

Sp
ee

d
up

Number of processors

Slice/fitting
Linear

Performance was the major reason behind
development of the parallel version.
Performance improvement in speed of
computation was one factor, while the other
factor was memory management to enable
exploration of larger datasets.

The ability to explore larger datasets than
hitherto possible has been partially achieved.
The maintenance of old data structures meant
static memory allocation, which eventually hit
the i386 limit of 2GB per node. With this
amount of space software handles 5 times as
much data as the original serial version, which
is sufficient for the present. However, future
detectors amy require more than this. This
should be possible by changing the current
implementation to be based on spectra for 3D
cases, and only map the required specrtra to
each worker node.

Figure 6: Measured speed up for the parallel
code for fitting to a 2D slice, using up to 16
nodes on the NGS.

 4.3 Development experience of MATLAB
client

4.2 Development experience of the parallel
implementation The MATLAB GUI for Tobyfit is complex

because it reflects the command line
functionalities of it sequential version. The
serial version has a large number of parameters
and options which the user may want to alter.
Often the extra options are only used
occasionally by the advanced user, but must be
included in some way for a complete interface.

The challenges in optimising and implementing
a parallel version of the compute intensive
fitting code included:

• identification of compute intensive
subroutines

• mapping the data files needed

The Java Swing GUI of the scale developed
for Tobyfit is unusually complex and pushes the
software quite hard. Although Matlab makes
available some functionality to use Java classes,
it does not support all the features of Swing,
such as event handling. Matlab’s single thread
of execution structure also prevented use of
sophisticated event handling mechanisms.

4.3.1 Geodise Compute Toolbox

The Geodise toolkit gives a Matlab interface
to Globus. Geodise also exploits feature of
Matlab – Java interface. It implements a subset
of features for job submission, query and result
retrieval. The experience of using Geodise has
been largely positive. The implementation of
job polling, and result retrieval needs a
multithreaded implementation, which will
enhance user experience.

4.3.2 Job submission

 The job submission, and result retrieval has
complex bookkeeping to manage multiple
simultaneous job submission to multiple NGS
resources. The use of gridFTP to transfer data
had long timeouts which are thought to be due
to firewall issues. These made it very difficult to
use this protocol for jobs requiring interactive
response. Hence SRB was investigated as a
more reliable data transfer mechanism.

It was found that dynamic resource query
and discovery did not function robustly. The
application therefore depends on the user
choosing a resource from a list.

4.3.3 SRB

Data management for both input and results
was implemented using SRB. The SRB features
of remote synchronisation improved file transfer
performance substantially. Backward
compatibility of SRB is an issue. SRB has a
Java interface, which was initially to be used
within Matlab, however we found it difficult to
use. As a result a subset of SRB functionalities
required by the application was developed by
wrapping S-commands within Matlab. The use
of SRB solved bulk transfer related issues, but
some sessions display arbitrary behaviour
leading to partial file transfers, or long delays.

4.3.4 Grid requirements for interactive jobs

Applications of the nature of Tobyfit require
short bursts of compute power, and have quick
return times. The queue management of grid

resources have been a major performance issue.
All jobs sharing the same queue depending on
the number of processors requested is not
optimal. Quasi interactive grid applications of
the class of Tobyfit require implementation of
intelligent queuing solutions.

Long queue related delays, was a motivating
factor behind a history logging scheme
developed with in Matlab. This effectively gave
the user the ability to launch a number of grid
jobs and close a session. The results for the grid
jobs could then be retrieved during a fresh client
session.

Any grid application of this nature
ultimately dependents on the fabric layer for
performance from the usability point of view.
Network configurations and firewall policies of
different NGS sites have been variable. We
found site specific policies often were a point of
failure.

4.3.4 MATLAB client performance issues

Having described specific features of the client
development, it is necessary to evaluate how the
client side software performed as a unit with in
Matlab. The client side code consists of over
20,000 lines of Matlab scripts, excluding the
toolkits. Our experience with Matlab and
recently with IDL show that large scale
development with in a scripting environment
leads to memory management issues. We found
Matlab required large amounts of memory to
function, and quite often software response
became sluggish. The garbage collection
mechanisms did not always work as expected,
and some memory was not de-allocated even
after end of session. This was experienced more
often when external java classed were used.

The data management features implemented
using SRB, improved reliability of bulk data
transfer, but backward compatibility, and server
failures were difficult to tackle.

The user is always focal point in any
development of this nature. The software
development apart from complexities of the
technologies, had to iteratively allow for user
requirement variations on the client side, and
base software changes on the server side. This
introduced delays. There is a need for users to
specify requirements with a sufficiently long
term view and be flexible to basic structural
changes in the grid enabled version so that
application performance requirements can be
met.

5. Limitations of the middleware
The current version of the application makes
use of various grid middleware components as
discussed above. These have been made to work
together to give a usable production tool for
data analysis on ISIS. There are of course some
areas in which these tools could be improved.

5.1 Geodise Computational Toolbox

The version of the toolkit we used (v0.7) had a
few features that could be improved in future
releases. For example, gd_createproxy clears
the Matlab space and requires the user to type
return into the command window. Also there
were some issues with file transfers with respect
to fire walls and transferring whole directories.
Overall the software was very useful and gave
easy access to Globus resources. It would be
useful if the toolbox could be extended to
support direct access to MDS information. The
inclusion of an SRB interface would also be
useful.

5.2 GT2.4

The clusters used in this work were all running
the VDT distribution of GT2.4. This provided a
stable interface for job submission which
supports MPI based parallel jobs. It also hides
the differences between job managers such as
PBS and LSF. There were some problems with
the environment that the user can expect for a
job. For example dynamic libraries were not
always found. Care also had to be taken to
ensure that jobs could run on systems with
different paths to the user’s file store.

While it is possible to query resources to see
how busy they are, it would be useful if there
was a single jobmanager for all NGS resources
which would run a job on any cluster that had
spare capacity. Such a queuing system may
become available in the future.

5.3 SRB

The version of SRB we used (v3.2) had a few
problems. These included occasional slow
response times, difficulty in finding a GSI based
version of the S-commands for Windows and
bugs in the Windows version of the Srsync
command. Hopefully these should be fixed in
later versions.

6. End user experience
The grid enabled version of the software has

been delivered to the instrument scientist who
has installed and used it to fit new and larger
data sets. The software will be released to more
users in the near future.

Obtaining a UK e-Science certificate and
installing it in the correct location for the client
is seen as more complex then it might be. Also
the need to set up SRB access using Encrypt1
password, rather than GSI authentication, was a
draw back.

Problems with some NGS resources
becoming overloaded with work was identified.
This should be addressed at least in part by a
single queue for all NGS resources, or use of a
resource broker.

The GUI was seen as a very important step
in making the fitting process easier to
understand and simplifying grid access. While
the built in visualization is sufficient, there is a
desire to include more advanced techniques.

7. Conclusions and future work
A substantial amount of effort has been put into
providing a grid enabled data analysis tool
which is being used by scientists in ISIS. This
includes development of a sophisticated
MATLAB GUI which, while not directly grid
related, was seen as necessary to hide some of
the complexity of grid operations from the end
user.

Feedback from initial users has been very
positive and the tool enables the user to fit
significantly larger data sets then before and
visualize the results locally. Future areas for
refinement of the software are in improvements
to scaling for performance and memory use for
3D problems. There is also a need to provide an
intelligent resource broker service that will
automatically select the best computational
resource to use.

Visualization of very large data sets using
grid resources is another area of research that
we are investigating. The framework for this
and the data analysis should be applicable to
other instruments at ISIS and related facilities.

8. References
[1] EVE – A grid enabled data analysis
environment for neutron scattering experiments,
T.G.Perring, R.F.Fowler, A.Pakhira, M.Sastry,
UK e-Science AHM2004, Nottingham.

[2] http://www.isis.rl.ac.uk/excitations/
maps/maps.htm, and
http://www.isis.rl.ac.uk/isis2002/developments/
developments.htm
[3] Tobyfit Version 2.0: Least squares fitting to
single crystal data on HET, MARI and MAPS,
T.G.Perring, 2000. Available at
http://www.isis.rl.ac.uk/excitations/documents/t
obyfit.pdf.
[4] UK National Grid Service:
http://www.ngs.ac.uk
[5] The Geodise Computational toolbox:
http://www.geodise.org/toolboxes/generic/toolki
t_matlabcond.htm
[6] Mslice: A Data analysis program for time of
flight neutron spectrometers. R.Coldea,
http://www.isis.rl.ac.uk/excitations/mslice/index
.htm

http://www.isis.rl.ac.uk/excitations/ maps/
http://www.isis.rl.ac.uk/excitations/ maps/
http://www.isis.rl.ac.uk/isis2002/developments/developments.htm
http://www.isis.rl.ac.uk/isis2002/developments/developments.htm
http://www.isis.rl.ac.uk/excitations/documents/tobyfit.pdf
http://www.isis.rl.ac.uk/excitations/documents/tobyfit.pdf
http://www.ngs.ac.uk/
http://www.geodise.org/toolboxes/generic/toolkit_matlabcond.htm
http://www.geodise.org/toolboxes/generic/toolkit_matlabcond.htm
http://www.isis.rl.ac.uk/excitations/mslice/index.htm
http://www.isis.rl.ac.uk/excitations/mslice/index.htm

	Abstract
	Introduction
	The Application
	The Solution
	Experiences from Implementation
	Limitations of the middleware
	End user experience
	Conclusions and future work
	References

