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The potential contribution of the peripheral auditory efferent system to our understanding of speech

in a background of competing noise was studied using a computer model of the auditory periphery

and assessed using an automatic speech recognition system. A previous study had shown that a

fixed efferent attenuation applied to all channels of a multi-channel model could improve the recog-

nition of connected digit triplets in noise [G. J. Brown, R. T. Ferry, and R. Meddis, J. Acoust. Soc.

Am. 127, 943–954 (2010)]. In the current study an anatomically justified feedback loop was used to

automatically regulate separate attenuation values for each auditory channel. This arrangement

resulted in a further enhancement of speech recognition over fixed-attenuation conditions. Compar-

isons between multi-talker babble and pink noise interference conditions suggest that the benefit

originates from the model’s ability to modify the amount of suppression in each channel separately

according to the spectral shape of the interfering sounds. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4742745]

PACS number(s): 43.64.Bt, 43.71.Rt [BLM] Pages: 1535–1541

I. INTRODUCTION

Human speech recognition is remarkably robust to the

effects of background noise and the physiological mecha-

nisms underlying this ability are only partially understood.

Physiological studies (Delgutte and Kiang, 1984; Geisler

and Gamble, 1989) and computer models of peripheral audi-

tory processing (Holmberg et al., 2007) have been used to

investigate the effects of noise on the representation of

speech in the auditory nerve, but typically, such studies have

only considered afferent processing. There is increasing in-

terest in the role of efferent auditory pathways that regulate

the afferent processing of signals within the periphery. In

particular, the efferent fibers of the medial olivocochlear

complex (MOC) synapse on outer hair cells (OHCs) within

the cochlear partition, inhibiting basilar membrane displace-

ment when activated (Russell and Murugasu, 1997). It has

been hypothesized that efferent suppression originating from

the MOC may be beneficial when listening in noisy environ-

ments (see, for review, Guinan, 2010).

The effects of efferent suppression on the representation

of sounds in the auditory nerve have been modeled using the

dual-resonance non-linear (DRNL) model of cochlear func-

tion as a basis (Ferry and Meddis, 2007). In the DRNL

model, the displacement of a point along the cochlear parti-

tion is modeled by parallel linear and nonlinear signal proc-

essing pathways. A bank of such DRNL filters can be used

to model basilar membrane (BM) displacement over a fre-

quency region of interest. The linear pathway of the DRNL

simulates the passive mechanical properties of the BM,

whereas the non-linear pathway models the active properties

of the membrane associated with the action of the OHCs.

Ferry and Meddis (2007) were able to model the effects of

efferent suppression by attenuating the input to the nonlinear

pathway of each DRNL filter, thus simulating a reflexive

MOC-induced reduction in OHC motility. In their model,

efferent suppression was applied in a frequency-independent

manner (i.e., the same attenuation was applied to all DRNL

filters regardless of their best frequency).

By using the model described previously as the front-

end processor for an automatic speech recognition (ASR)

system, Brown et al. (2010) predicted the potential effects of

MOC efferent activity on speech intelligibility. They system-

atically adjusted the amount of efferent attenuation applied

in the DRNL model, and found that the recognition of

speech in noise was improved when efferent attenuation was

applied. Relatively poor recognition performance was

obtained when efferent activity was disabled. Additionally,

they found that optimum recognition performance was

obtained when the amount of attenuation was proportional to

the background noise level. They explained their results in

terms of the limited dynamic range of the auditory periphery.

Background noise reduces the dynamic range available to

represent a signal (such as speech) in the auditory nerve,

both because it introduces a noise floor above the
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spontaneous rate, and because it causes adaptation that

reduces the maximum firing rate. By introducing an efferent

attenuation proportional to the noise level, the operating

point of the cochlear was moved so that much of the back-

ground noise fell below threshold. This reduced the noise

floor and provided a release from adaptation (Brown et al.,
2010), increasing the availability of dynamic range to repre-

sent the amplitude fluctuations of the speech. At positive sig-

nal-to-noise ratios (SNRs) the resulting spectro-temporal

representation of speech was partially de-noised, leading to

improved ASR performance.

Messing et al. (2008, 2009) presented an alternative

model simulating MOC suppression based on Goldstein’s

(1990) multi-band-pass non-linear (MBPNL) model of coch-

lear mechanics, in which, the gain and bandwidth of the fil-

ters change with changes in input intensity. To simulate the

effect of efferent suppression, Messing et al. made the tip

gain of the MBPNL filters dependent on the level of back-

ground noise in each frequency band. This was realized by

adaptively adjusting the tip gain of the cochlear filters in

response to noise alone, until a predetermined amount of

noise energy was measurable at the output of the auditory

model. The gains were applied in a frequency dependent

manner. After finding the gains for the specific noise level

under test, the gains were fixed. The speech material was

then added to the noise and processed by the model before

subsequent evaluation. Messing et al. (2009) evaluated their

auditory model by attempting to replicate human consonant

confusions in noise. Their model including MOC suppres-

sion was able to produce a better match to the human data

than the version of the model without MOC processing.

Subsequently, Lee et al. (2011) modified the auditory

model of Messing et al. (2008, 2009) to extract features suit-

able for ASR. This enabled the model to be evaluated on a

digit recognition task, similar to that used by Brown et al.
(2010). Different noise backgrounds were added to the digits

at a range of SNRs to assess the performance of their model.

The spectral characteristics of the noises resulted in different

tip gain profiles, which were fixed for each noise separately

(Lee, 2010). Their feature extraction method based on MOC

suppression gave good recognition accuracy across all types

of noise tested, when compared to other front ends that did

not include MOC-type processing.

The aim of the current study is to address some of the

limitations of these previous models, in order to more

closely simulate the physiology and better understand the

effects of efferent suppression on speech perception in noisy

environments. A limitation of the study by Brown et al.
(2010) is that their model was “open loop,” i.e., the amount

of efferent attenuation was determined by the experimenter

rather than estimated from the noisy signal. In reality, the

efferent system is a continuously operating, closed-loop sys-

tem involving afferent fibers from the cochlea and MOC

efferents (Guinan, 2006).

In the model used by Brown et al. (2010), efferent sup-

pression was fixed by the experimenter and applied uni-

formly across frequency. Hence, their model cannot

effectively regulate the cochlear operating point in each fre-

quency channel when the noise background is non-

stationary. Conversely, the model of Messing et al. (2008)

based on the MBPNL implements efferent suppression in a

frequency selective manner. However, their model does not

represent a fully closed-loop system, in which efferent sup-

pression is mediated through a continuous feedback process.

As a result, neither model would function optimally if the

noise-spectrum, or overall noise-level were to change (i.e., if

the simulated listener were to step from a noisy room into a

quiet one).

In the current study, we present a new model in which

efferent suppression is regulated by a continuous feedback

process, based on the physiological data measured by Liber-

man (1988). The model is evaluated using an ASR procedure

broadly similar to that used by Brown et al. (2010). It will be

shown that the ASR performance of the new (closed-loop)

model is similar to that obtained by the open-loop model of

Brown et al. when the noise background is stationary (pink

noise). We emphasize that ASR is used here as a means of

approximating the effects of putative efferent processing

mechanisms on human speech recognition. Our aim is not to

build a noise-robust ASR system per se, but to better under-

stand the role of reflexive MOC suppression by closely mod-

eling the underlying physiology.

II. METHOD

A computer model of the auditory periphery was modi-

fied to simulate efferent suppression of the BM response.

The amount of suppression was calculated on the basis of

the rate of firing of model auditory nerve fibers in the corre-

sponding best-frequency channel. The new model was eval-

uated by using it as a front-end to a standard automatic

speech recognition system. The recognizer was trained in

silence and tested in noise of different intensities. The aim

was to evaluate the potential benefit of a closed-loop, effer-

ent system operating on a within-channel basis for recogniz-

ing speech against a background of competing sounds.

To understand how this benefit comes about, we com-

pared the model performance using two types of interfering

backgrounds; multi-talker babble, and pink noise. It was

expected that the babble would show greater benefit because

its excitation pattern contains distinctive spectral peaks and

valleys that are largely absent from pink noise.

Previous studies have used “optimal” amounts of sup-

pression based on the results of many trials. This artificial

arrangement demonstrates the general principle of benefit as

a consequence of efferent suppression. The closed-loop,

multi-channel arrangement to be tested below is an attempt

to show how this optimum suppression might be achieved in

a biological system. The size of the additional benefit from

the new model was, therefore, assessed by comparing it with

an additional condition using an optimal fixed-level applied

to all channels. A separate optimal level of suppression was

found for each SNR condition using exhaustive search. The

aim of this comparison was to allow the study to identify

whether a self-regulating system could find a solution at least

as good as a “hand-tuned” version.

A final comparison condition used a fixed 10 dB attenu-

ation applied equally across all channels. This provides a
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comparison with an earlier study and offered an overall indi-

cation of improved speech recognition in noise as a result of

the increased sophistication of the biological simulation.

III. COMPUTER MODEL

The computer model of the auditory periphery used in

this study consists of a cascade of modules representing the

resonances of the outer/middle ear (OME), the response of

the BM, coupling by inner hair cell (IHC) stereocilia, the

IHC receptor potential, calcium dynamics, and transmitter

release and adaptation at the IHC auditory-nerve synapse.

Detailed discussions regarding the implementation and eval-

uation of each of these stages can be found in Meddis et al.
(2001); Lopez-Poveda and Meddis (2001); Sumner et al.
(2002); Sumner et al. (2003a, 2003b); Meddis (2006). The

OME stage of the model was configured using data from

Huber et al. (2001). A MATLAB implementation of the model

is available upon request. The final stage of the model pro-

duces a time by channel representation of firing rates in the

auditory nerve (AN).

The response of the BM is simulated using the DRNL

model (Sumner et al., 2003b). It receives stapes displace-

ment as an input from a model of the OME, and produces

BM displacement as its output. This, in turn, is used to drive

a simulation of IHC function. The nonlinear path contains an

attenuation stage, proposed by Ferry and Meddis (2007) to

model the effect of efferent suppression from the MOC, fol-

lowed by a broken-stick instantaneous compression opera-

tion associated with outer hair cell function. The model by

Ferry and Meddis (2007) of the periphery including the mod-

ification to the DRNL was able to produce data that are in

good agreement with physiological measurements of the

BM, AN, and compound action potential responses when the

amount of attenuation in decibels was chosen to be propor-

tional to the amount of MOC activity. The model used in the

current study extends the one proposed by Ferry and Meddis

(2007) by implementing a feedback signal that dynamically

controls the amount of attenuation according to the recent

history of AN activity, i.e., a fully closed loop. A schematic

of the new processing scheme is shown in Fig. 1.

Physiological studies (Brown, 1989; Liberman and

Brown, 1986) have shown that MOC fibers have tuning

curves that are only slightly wider than cochlear afferent

fibers. In humans, MOC tuning curves measured using otoa-

coustic emission techniques (Lilaonitkul and Guinan, 2009)

have shown similarly narrow frequency selectivity. To

reduce the number of free parameters in the current study,

we assumed equal bandwidth of MOC efferents and AN tun-

ing curves (i.e., all efferent processing was performed on a

within-channel basis). This stimulus-dependent, frequency-

selective attenuation has parallels with the model proposed

by Messing et al. (2008). However, in our model the efferent

attenuation due to the MOC is updated continuously in non-

overlapping frames of samples, rather than being determined

in a post hoc analysis.

Liberman (1988) measured rate-level functions in effer-

ent neurons in response to tone bursts presented at their char-

acteristic frequency (CF). Their data are reproduced in

Fig. 2. The efferent units did not exhibit any spontaneous ac-

tivity. However, once the tone intensity had risen above the

threshold of the unit, the discharge rate increased approxi-

mately linearly with logarithmic increases in tone intensity

until an upper saturation point was reached. Liberman’s data

show that the MOC reflex can be driven by low intensity

stimuli with typical thresholds in the region of 20–40 dB

sound pressure level (SPL) for CF < 6 kHz. To achieve a

FIG. 1. (Color online) Schematic diagram of the DRNL filterbank and sub-

sequent neural transduction, including the novel feedback mechanism intro-

duced in the current study. The suppressive role of the MOC is modeled by

inserting an attenuator at the input to the nonlinear path of the DRNL model,

and the amount of attenuation is modulated by a control signal (represented

by the dashed line) derived from the recent history of the AN response. The

stacked panels highlight the fact that this process occurs independently

within each frequency channel.

FIG. 2. (Color online) Efferent activity plotted against stimulus level for

two efferent fibers with different best frequencies (Liberman, 1988) (open

symbols). Model output (filled symbols) is superimposed upon experimental

data. The model output is in units of decibel attenuation, plotted as a func-

tion of pure tone stimulus level. The numbers on the left-hand axes show the

modeled attenuation values. In contrast, the experimental data show the fir-

ing rate measured in descending MOC fibers (right-hand axes). The model

data were generated using a value of F¼ 7.
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corresponding level of sensitivity in the computer model, it

was assumed that the firing rate of the MOC unit could map

directly to the attenuation (in decibels) applied to the nonlin-

ear path of the DRNL.

The control signal in the feedback loop was based on

high spontaneous rate AN fibers (spontaneous rate 56 spikes/

s). To replicate the shape of the measured rate-level func-

tions, the control signal was derived from the logarithm of

the ratio of the temporally smoothed firing rate (x), to a firing

rate threshold (T) as given by

ATTðtÞ¼ F�20 log10

xðt� sÞ
T

� �
; xðt� sÞ> T

0; xðt� sÞ�T :

8<
: (1)

T was set to 85 spikes/s throughout in order to provide the fit

to the Liberman data. The instantaneous AN firing rate was

smoothed using a first-order lowpass filter with a time con-

stant of 2 s (see discussion). The lag (s) of 10 ms was intro-

duced to account for MOC-OHC synaptic minimum

latencies estimated by Liberman (1988) to be between 5 and

40 ms. The dB attenuation applied (ATT) at a point in time

(t) was calculated by multiplying the resulting control signal

calculated s ms previously with a scalar rate-to-attenuation

factor (F). The value of F was derived from the assumption

that the maximum attenuation was 40 dB. Negative values of

ATT (occurring when the firing rate was below threshold)

were set to zero.

This function was able to produce a good qualitative fit

to Liberman’s data (Fig. 2). The differences between the

model functions at CFs of 520 and 3980 Hz are emergent

properties of the model, that are accounted for by a combina-

tion of outer-middle ear processing and the dependence of

BM displacement on frequency. It is important to note that

the attenuation applied to the input of the nonlinear path is

not the same as the resulting attenuation of the output. When

compression is at work, the reduction in output is consider-

ably less (up to 5 times less for a compression of 5:1).

IV. EVALUATION

A. Corpus

The task chosen for evaluation of the new model was

identification of connected-digit triplets in the presence of

background noise, similar to that employed by Brown et al.
(2010). This allowed us to compare the model results with

human performance on the same task (Robertson et al.,
2010). Speech material for the following experiments was

drawn from the TIDIGITS corpus (Leonard, 1984), which con-

sists of sequences of between one and seven digits spoken

by male and female talkers. Three sets of utterances were

used. The recognizer was trained on the “clean” training set,

which consists of 8440 utterances. For testing the recognizer,

we used 358 utterances, each containing three connected dig-

its from the set “oh,” “one,” “two,” “three,” “four,” “five,”

“six,” “eight,” and “nine.” The training and testing sets were

completely independent, and each contained an approxi-

mately equal number of recordings from male and female

talkers.

All utterances were scaled to a rms level of 60 dB SPL.

Noisy speech was generated by adding either 20-talker bab-

ble or pink noise to the test utterances at a range of SNRs

between 20 and �10 dB, in steps of 5 dB. The noise wave-

forms were band-limited to frequencies between 100 Hz and

4 kHz in order to ensure that the SNR was not influenced by

noise energy at frequencies outside the speech range. Each

test stimulus consisted of 6 s of background followed by

speech plus noise through to the end of the speech; this

allowed the auditory model to adapt to the background

before the onset of the speech. The response to the initial pe-

riod of noise alone was removed from the AN representation

before it was passed to the recognizer.

B. Automatic speech recognizer

The closed-loop MOC model was evaluated using a

continuous-density hidden Markov model (HMM) system,

implemented using the hidden Markov model TOOLKIT HTK

(Young et al., 2009). The HMM requires the input signal to

be encoded as a temporal sequence of features. The ultimate

goal of the recognizer is to find the most probable sequence

of digits that correspond to the observed sequence of

features.

Features were generated using a similar approach to var-

ious other studies that have employed auditory models as

acoustic front-end processors for ASR systems (e.g., Jan-

kowski et al., 1995; Holmberg et al., 2007; Brown et al.,
2010). Each feature is a vector of coefficients representing

the spectrum of the stimulus within a fixed time window. To

generate a sequence of feature vectors with a temporal reso-

lution that is typical for ASR systems, the auditory-nerve fir-

ing probability emanating from each channel of the model

was integrated over a 25 ms Hann window at intervals of

10 ms (60% overlap). The output of adjacent frequency

channels from the auditory model are highly correlated due

to the spectral overlap of the DRNL filters, so a discrete co-

sine transform was applied to each frame to yield a vector

containing approximately independent components. Retain-

ing only the first 14 coefficients reduced the amount of data.

First- and second-order regression coefficients, referred to as

“deltas” and “accelerations,” respectively, were appended to

each vector in order to improve recognition performance.

The recognizer represents digits using trained HMMs,

where each digit is modeled as a sequence of stationary

states. Each state is characterized by a multivariate Gaussian

mixture distribution with seven components and diagonal co-

variance. During training, the Baum–Welch algorithm is

used to learn the parameters of the HMMs from a large cor-

pus of annotated files containing digits. During testing, the

Viterbi algorithm is applied to find the most likely sequence

of HMM states given an observed sequence of feature vec-

tors, thus, returning the most likely sequence of digits.

HMMs with 16 emitting states were trained for each word in

the corpus. The models for zero and seven were discarded in

the testing phase, preventing the recognizer from identifying

digits absent from the testing corpus. Three-state models

were also trained for non-speech acoustic stimulation. To

reduce the number of insertion errors, a simple grammar was
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used to constrain all hypotheses so that they started and

ended with the non-speech model. The ASR system was

always trained on clean speech (i.e., without added noise)

and no efferent attenuation was applied during training.

A simplified scoring metric was applied that did not

involve use of the HRESULTS tool bundled with HTK. The tran-

script produced by the recognizer was compared with labels

generated from the file names, which identify the digit sequen-

ces contained within each file. A correct response was regis-

tered only when the recognizer identified the correct digit in

the correct position in the triplet, allowing results to be directly

compared with a recent psychophysical study (Robertson et al.
2010). Results are reported as % correct for each individual

digit (i.e., scores are awarded for partially correct triplets).

V. RESULTS

The results in the form of % digits correct for all condi-

tions and for both types of interfering noise are given in Fig.

3. The performance of the original model (with no efferent

simulation of any type) is shown as open squares. For both

multi-talker babble and pink noise, performance is almost

perfect for speech tested in silence. However, in background

noise performance is poor with 50% digits correct obtained

at relatively low noise levels. This compares adversely with

human performance for the same test stimuli, shown as the

open circles at the extreme left of the upper panel Robertson

et al. (2010). The difference at the 50% point of the function

is approximately 25 dB SNR.

A fixed 10 dB efferent attenuation (closed squares)

results in an improvement of �10 dB SNR at 50% correct

for pink noise. This is a replication of the same effect dem-

onstrated by Brown et al. (2010). The effect is greater for

pink noise than for babble. Pink noise produces a relatively

flat excitation pattern when compared with multi-talker bab-

ble, which has distinct peaks and valleys at different fre-

quencies. A fixed efferent attenuation across all channels

will, therefore, offer a better match to pink noise.

The open inverted triangles show further improvements

when the fixed across-channel attenuation is optimized by

exhaustive search to find the best attenuation for each SNR

value. Brown et al. (2010) had shown that the optimum

attenuation was sensitive to overall speech and noise levels.

These data give a further indication of this effect. Once

again, performance is best in pink noise and this presumably

reflects the fact that interfering-noise with a flat excitation

pattern is most effectively dealt with by a fixed, across-

channel attenuation.

Finally, the closed circles show the performance of the

closed-loop, efferent-feedback model with separate levels of

attenuation in each channel. Little further improvement is evi-

dent for the pink noise interference condition when compared

with the optimal, fixed level condition. However, further

improvement can be seen for the multi-talker babble condi-

tion. This result is consistent with the suggestion that there is

some advantage to be gained from a system that dynamically

modifies its pattern of attenuation across channels to match

the spectral profile of interfering background sound.

The full benefit of the within-channel variable attenuation

algorithm (closed circles) can be seen by comparing with the

“no-efferent” condition (open squares). This amounts to a

benefit of 10 dB reduction in SNR at the 50% correct point.

VI. DISCUSSION

This paper has described and evaluated a new model of

auditory efferent processing. The new model represents an

advance over the previous model of Ferry and Meddis

(2007), in that efferent attenuation is controlled dynamically

by a feedback loop. This allows context-dependent control

of efferent attenuation, such that the amount of efferent sup-

pression depends on the preceding acoustic stimulation. Fur-

ther, efferent attenuation is applied independently within

each frequency channel of the model.

Evaluation of the model on an ASR task (recognition of

digit triplets in pink noise and babble) led to two main find-

ings. First, the feedback mechanism in the model allows it to

autonomously determine a near-optimal value of efferent

attenuation (i.e., a value that maximizes ASR performance).

Previously, Brown et al. (2010) showed that the amount of

efferent attenuation required to maximize speech recognition

FIG. 3. (Color online) Data showing ASR performance (% correct) as a

function of SNR, where the parameter is the type of efferent suppression

used in the auditory front end. The noise used for the data shown in the top

panel was babble, whereas the noise used for the data shown in the bottom

panel was pink. Human data from Robertson et al. (2010) for the same task

(monaural presentation of spoken digits in a background of 16-talker babble)

are shown as open circles to highlight the current human–machine perform-

ance gap.
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performance at each SNR tested was proportional to the

level of the noise. The amount of attenuation applied by the

new model is proportional to the level of the noise by virtue

of its feedback design, thus satisfying the criterion for good

performance. Second, the new model provides an advantage

when the background noise is non-stationary. The ASR per-

formance of the closed-loop model was similar to that

obtained by Brown et al. (2010) in a pink noise background,

but the closed-loop model gave a notable increase in per-

formance when the background was speech babble. The bab-

ble noise used in the current study has a more varied spectral

profile than pink noise. A single broadband attenuation

value, as used by Brown et al. (2010), represents a compro-

mise regarding over- or under-attenuating certain channels

in order to yield a satisfactory overall performance. The fre-

quency specificity of the new model avoids this compromise,

since an optimal efferent attenuation is derived independ-

ently in each frequency channel.

When evaluating the model, it was necessary to choose

one of many scenarios concerning the level of noise for

training and testing. During development of the model we

considered training the ASR system in multiple noise condi-

tions (so-called multi-condition training), or training and

testing in matched noise conditions. Neither was found to be

satisfactory. Multi-condition training led to better perform-

ance in noise, but poorer recognition of clean speech, which

should be the easiest condition for a human listener. Training

and testing in exactly the same noise conditions led to an

overall improvement in ASR performance, but was held to

be a poor model of human speech recognition (as ultimately,

a different set of acoustic models would be required for each

possible SNR and noise type). We therefore trained the rec-

ognizer with clean speech. It is doubtful whether this choice

affected our final conclusions because all the models consid-

ered in this study were evaluated in the same way.

Our approach is functional, but where possible the details

of the new model have been based on physiological data. The

function relating the amount of efferent attenuation to AN fir-

ing rate was derived from the physiological study of Liberman

(1988), and the model shows a close match to his data

recorded from efferent fibers. As a result, the current study

supports the idea that the MOC reflex contributes towards our

understanding of speech in adverse listening conditions.

The physiological realism of the model could be further

improved by incorporating efferent mechanisms with differ-

ent time scales. It is thought that efferent suppression oper-

ates over distinct fast (10–100 ms) and slow (10–100 s) time

scales, which may originate from separate mechanical proc-

esses (Cooper and Guinan, 2003), whereas more recent

human data (Backus and Guinan, 2006) suggest that there

might be three distinct time scales in the regions of 70 ms,

330 ms, and between 11 and 39 s. A more detailed model

could have included all three. However, our interest centered

on slowly changing background noise levels where a longer

time constant would be more appropriate. The chosen time

constant of 2 s was a compromise. A large value (i.e., 11 s)

would have required longer runs. Whenever longer time con-

stants were tried, they yielded no further improvement in

performance. Shorter time constants also, as expected,

yielded little benefit in the noise conditions. It is acknowl-

edged that many other improvements could be made to fit

the model details more closely to the available physiological

data but this must remain a project for the future. There are

also many physiological details that remain unknown where

the modeler must simply make a reasonable choice. For

example, the efferent activity is driven directly from the AN

high spontaneous rate response. In practice, brainstem neural

activity will intervene and low spontaneous rate fibers may

also make a contribution (Winslow et al., 1987; Sachs et al.,
2006). A more comprehensive model with spiking neurons

was investigated but the computational effort when process-

ing many thousands of speech tokens was so great as to

render this approach impractical for the current study. Simi-

larly, not all physiological recordings from efferent fibers

show the same rate/level functions and the modeler, again

has to choose one representative function. In the event, we

chose one of the simplest. The model also assumes that the

amount of efferent activity is linearly related in a time-

invariant way to the amount of suppression but this is not

necessarily so (Ballestero et al., 2011). Further, Lilaonitkul

and Guinan (2009) have recently demonstrated the tuning to

be offset (i.e., the largest MOC effects were from elicitors

half an octave below the probe frequency). Finally, the

model assumes that the maximum efferent attenuation is a

constant function of frequency, which is at odds with the

physiological data (Guinan and Gifford, 1988). All of these

and more would increase the verisimilitude of the model and

may reveal interesting details of how signal processing is

organized at the peripheral level. However, it is unlikely that

they would affect the final conclusion that is primarily con-

cerned with the functional benefit of within-channel,

dynamic suppression of the peripheral response when speech

is presented in continuous background noise.

The aim of the study was to build on the work of Mess-

ing et al. (2009) and Brown et al. (2010) to investigate a

general principal that could be at work in human speech rec-

ognition. Intriguingly, this principle suggests that the audi-

tory system employs a noise-reduction process that is similar

in many respects to spectral subtraction techniques used in

noise-robust ASR systems. In such approaches the long-term

spectrum of the noise is estimated, and then subtracted from

the speech/noise spectrum in order to obtain a cleaner esti-

mate of the target speech signal (Boll, 1979).

For speech recognition in babble noise, the new closed-

loop model gives an improvement in ASR performance com-

pared to the system of Brown et al. (2010). However, Fig.

3(a) indicates that the gap between human and machine per-

formance is still large. Improvements could be made to the

auditory model in order to further close this performance

gap. For example, improvements could be gained by encod-

ing the speech signal with spike timing information, instead

of (or in addition to) firing rate. A number of studies (e.g.,

Kim et al., 1999; Sheikhzadeh and Deng, 1998; Brown

et al., 2011) have shown that speech is coded more robustly

by timing information in noisy conditions than by average

firing rate, or other spectrally based features such as Mel

frequency cepstral coefficients. If these principles are inves-

tigated further it might be possible to move the speech in
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noise performance of the model closer to human levels and

to develop deeper insights into the underlying mechanisms.

VII. CONCLUSIONS

A novel, fully closed-loop model of MOC function was

presented that provides a step towards physiological realism.

The model presented outperforms the model used in Brown

et al. (2010) when evaluated using an automatic speech recog-

nition task in a background of babble noise. This was taken as

further evidence to support of the idea that the reflexive effer-

ent system plays an important role when listening in noisy

environments. Finally, we note that the proposed efferent

model is well-suited to real time implementation, since it does

not require hand tuning (c.f. Ferry and Meddis, 2007) or off-

line calibration (c.f. Messing et al., 2008, 2009).
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