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Abstract

We study how information about an asset affects optimal portfolios and

equilibrium asset prices when investors are not sure about the model that pre-

dicts future asset values and thus treat the information as ambiguous. We show

that this ambiguity leads to optimal portfolios that are insensitive to news even

though there are no information processing costs or other market frictions. In

equilibrium, we show that stock prices may not react to public information

that is worse than expected and this mispricing of bad news leads to profitable

trading strategies based on public information.
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There is a vast amount of empirical research which studies the predictability

of cash flows and discount rates for many asset classes around the world.1 The

economic and statistical significance of the predictability results vary from study to

study and the strength of these results as well as the theoretical underpinnings and

interpretations are widely debated. In this paper, we study how information about

an asset affects optimal portfolios and equilibrium asset prices when investors are not

sure about the model that predicts future asset values and thus treat the information

as ambiguous. We show that this ambiguity (Knightian uncertainty) leads to optimal

portfolios that do not react to news and prices do not reflect all available information

about an asset in equilibrium. We refer to this phenomenon as information inertia.

Suppose investors receive information about the future payoff of an asset. In-

vestors are averse to ambiguity and thus prefer situations in which they know the

model that predicts future asset payoffs over situations where they do not. Specifi-

cally, they consider a set of models when processing information about an asset and

evaluate the outcome of investment decisions under the model that yields the lowest

expected utility. This “max-min” formulation of preferences is axiomatized in Gilboa

and Schmeidler (1989) and is a commonly used representation of decision-making

under ambiguity in asset markets, as discussed in Epstein and Schneider (2010).2

Ambiguity about the predictability of future asset returns has interesting impli-

cations for optimal portfolios. Specifically, we show that investors do not always act

on information that is worse than expected and hence they do not trade as much

as traditional models would predict in response to news. This is consistent with the

household portfolio choice literature which documents that investors rarely rebalance

their portfolios in retirement accounts.3 Our explanation does not rely on information

processing costs or other market frictions and it is different from the explanation in

1For a review of this literature see Cochrane (2005) or Koijen and Nieuwerburgh (2011) and the
references therein.

2These multiple prior preferences imply behavior that is consistent with experimental evidence
(Ellsberg (1961)) and more recent portfolio choice experiments (Ahn, Choi, Gale, and Kariv (2011)
and Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010)).

3See Bodie, Detemple, and Rindisbacher (2009), Campbell (2006), and the references therein for
a review of this literature.
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Epstein and Schneider (2010) and Illeditsch (2011) who show that aversion to am-

biguity leads to risky portfolios that do not react to changes in the stock price—a

phenomenon which they refer to as portfolio inertia.

We also study the effects of ambiguous public information about the future cash

flows of an asset on its equilibrium price. We show that stock prices fail to incorporate

all publicly available information in equilibrium. This informational inefficiency has

an interesting asymmetry. While good news is always reflected in the stock price,

some bad news is not. Moreover, this mispricing of news depends on the unconditional

risk premium of the stock. Risky stocks are more likely to underreact to signals that

convey bad news whereas stocks that are not very risky tend to overreact to this news.

However, the most striking result is that stocks with intermediate risk show almost

no reaction to signals that convey bad news even though there are no information

processing costs or other market frictions.

This paper may also shed some light on the documented profitability of momen-

tum strategies in the United States and other developed countries.4 Specifically, as-

sets that have performed well in the past tend do continue to perform well. Similarly

stocks with high earnings momentum tend to outperform stocks with low earnings

momentum. Most of the papers in the literature rely on behavioral explanations for

this phenomenon (e.g. Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and

Subrahmanyam (1998), and Hong and Stein (1999)). We provide an explanation for

the profitability of momentum strategies that is based on investors who are averse

to ambiguity. Moreover, the economic significance of these strategies varies with the

unconditional risk premium of the stock which may help distinguish our explanation

from others in the literature.

We also study the effects of investor heterogeneity on optimal portfolios and asset

prices in equilibrium. Specifically, we assume that all investors receive the same public

signal about future cash flows but they may differ with respect to their aversion to risk

4For a review of the literature on momentum strategies see Jegadeesh and Titman (2011),
Moskowitz, Ooi, and Pedersen (2012), and the reference therein.
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and ambiguity. We show that when investors have common ambiguity, then the stock

price is informational inefficient and investors hold risky portfolios in equilibrium that

do not react to news.

There is a growing literature in macroeconomics that imposes an exogenous con-

straint or cost on the ability of investors to process information in order to explain

why macroeconomic variables exhibit inertia.5 These ideas have also been used in fi-

nance to explain information inertia of portfolios (Abel, Eberly, and Panageas (2007)),

excess correlation (Peng and Xiong (2006)), financial contagion (Mondria (2010)

and (Mondria and Quintana-Domeque 2012)), and portfolio under-diversification

(Nieuwerburgh and Veldkamp 2010), among others.6 We derive inertia from a ra-

tional choice model with multiple prior utility. Moreover, information inertia affects

investors’ utility and thus leads to a welfare loss that depends on risk aversion and

the magnitude of the news surprise.

This paper complements recent work on optimal portfolios and equilibrium asset

prices when investors process public signals. Epstein and Schneider (2008) show that

investors react more to bad signals than to good signals when there is ambiguity

about the precision of these signals. Illeditsch (2011) shows that this ambiguity leads

to risky portfolios that are insensitive to changes in the stock price. However, these

portfolios are sensitive to changes in the signal and thus prices always reflect all

available information in equilibrium.

This paper is also related to a large literature that studies the informational

efficiency of prices when there is asymmetric information. For instance, prices do not

fully reveal private information in equilibrium, (i) if it is costly to acquire information

(Grossman (1976) and Grossman and Stiglitz (1976)), (ii) if there are noise traders

(Grossman and Stiglitz (1980)), (iii) if informed investors anticipate how their trades

will impact prices (Kyle (1985) and Back, Cao, and Willard (2000)), (iv) if there

is ambiguity (Caskey (2009), Condie and Ganguli (2011), and Condie and Ganguli

5See Sims (2003), Sims (2010), and the references therein.
6See Veldkamp (2011) and the reference therein for an overview of this literature.
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(2012)).7 What is striking in this paper is that a costless informative public signal is

not always incorporated in the price when an investor is averse to ambiguity.

This paper is also related to a large literature on optimal portfolio choice when

there is Bayesian model uncertainty about the predictability of future returns (e.g.

Keim and Stambaugh (1986), Barberis (2000), and Xia (2001) among others).8 In

all these papers investors hedge against model uncertainty but their portfolios re-

act smoothly to new information. Balduzzi and Lynch (1999), Balduzzi and Lynch

(2000), Lynch and Tan (2010), and Lynch and Tan (2011) study the effects of trans-

action cost on optimal portfolios when there is return predictability. While in these

papers transaction costs lead to state dependent portfolio adjustment we derive state

dependent adjustment of portfolios from a rational choice model.

This paper contributes to the literature on optimal portfolio choice with ambigu-

ity. We know from Dow and Werlang (1992), Cao, Wang, and Zhang (2005), Epstein

and Schneider (2007), Easley and O’Hara (2009), and Campanale (2011) that ambi-

guity leads to portfolio inertia of the risk-free portfolio. Epstein and Wang (1994),

Epstein and Schneider (2010), and Illeditsch (2011) show that portfolio inertia can

also arise for risky portfolios. Garlappi, Uppal, and Wang (2007) characterize opti-

mal portfolios with multiple ambiguous assets. Uppal and Wang (2003), Benigno and

Nistico (2012), and Boyle, Garlappi, Uppal, and Wang (2012) show that ambiguity

leads to under-diversified portfolios. We show that if there is ambiguity about the

predictability of future asset returns, then investors use the unconditional asset dis-

tribution when contemplating a long (short) position with moderate risk instead of

relying on an ambiguous signal that conveys bad (good) news.

Our paper is also related to recent literature on portfolio choice and asset pricing

when there is ambiguity about the predictability of future asset returns/cash flows.

Hansen and Sargent (2010a) study the price of risk when investors who seek robust

7Mele and Sangiorgi (2011), Ozsoylev and Werner (2011), and Tallon (1998) study the effects of
ambiguity aversion on asset prices in the presence of private information and noise traders.

8For a comprehensive survey of static and dynamic portfolio choice models when returns are
predictable see Wachter (2012).
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decision rules find it difficult to differentiate between i.i.d. consumption growth and

one with a persistent component (long run risk of Bansal and Yaron (2004)).9 Chen,

Ju, and Miao (2011) solve a dynamic consumption and portfolio choice problem when

there is ambiguity about whether stock returns are IID or predictable. Ju and Miao

(2012) and Collard, Mukerji, Sheppard, and Tallon (2011) explain many asset pricing

puzzles by introducing ambiguity into a dynamic representative agent model in which

consumption and dividends follow a hidden state regime-switching process and a

hidden state model with a persistent latent state variable, respectively. The first

paper considers the robust control approach and the other three papers consider

the recursive smooth ambiguity model to describe preferences.10 Our focus in this

paper is on non-smooth preferences which are a good description of ambiguity averse

behavior as shown by Ahn, Choi, Gale, and Kariv (2011) and Bossaerts, Ghirardato,

Guarnaschelli, and Zame (2010).11

The rest of the paper is organized as follows. In Section I, we introduce the

model. In Section II, we solve for optimal portfolios and discuss the information

inertia results. In Section, III we solve for the equilibrium stock price and discuss the

mispricing results, in Section IV we show that our results are robust to aggregation,

and in Section V we discuss momentum strategies. We conclude in Section VI.

I Ambiguous Information

Suppose there are two dates 0 and 1. Investors can invest in a risk-free asset and a

risky asset. Let p denote the price of the risky asset, d̃ the future value or dividend

of the risky asset, and θ the number of shares invested in the risky asset. There is no

consumption at date zero. The risk-free asset is used as numeraire, so the risk-free

9For a survey of learning models when investors seek robust decision rules see Hansen and Sargent
(2007).

10Strzalecki (2011) and Maccheroni, Marinacci, and Rustichini (2006) provide axiomatic foun-
dations for the robust control model and Klibanoff, Marinacci, and Mukerji (2005), Nau (2006),
Klibanoff, Marinacci, and Mukerji (2009), and Hayashi and Miao (2011) provide axiomatic founda-
tions for the smooth ambiguity model and its dynamic extension.

11For a discussion of different preferences specifications that describe aversion to ambiguity see
Backus, Routledge, and Zin (2004), Epstein and Schneider (2010), and Hansen and Sargent (2010b).

6



rate is zero. Hence, future wealth w̃ is given by

w̃ = w0 +
(
d̃− p

)
θ, (1)

in which w0 denotes initial wealth.

Suppose investors receive a signal s̃ about the future value d̃ of the asset. The

joint distribution of d̃ and s̃ is normal:

⎛
⎝ d̃

s̃

⎞
⎠ ∼ N

⎛
⎝
⎛
⎝ d̄

0

⎞
⎠ ,

⎛
⎝ σ2

d β

β 1

⎞
⎠
⎞
⎠ . (2)

Investors are ambiguous about the covariance between d̃ and s̃ and consider a family

of joint distributions described by β ∈ [βa, βb] with βa > 0 and βb < σd.
12

We follow Gilboa and Schmeidler (1993) and assume that investors update their

beliefs model by model using Bayes rule.13 Hence, standard normal-normal updating

for each β ∈ [βa, βb] leads to

d̃ | s̃ = s ∼ Nρ

(
d̄+ βs, σ2

d − β2
)
. (3)

We focus in this paper on ambiguity averse investors in the sense of Gilboa and

Schmeidler (1989). Hence, the utility of an investor who holds θ shares of the risky

asset is

min
β∈[βa,βb]

Eβ

[
u
(
w0 +

(
d̃− p

)
θ
)
| s̃ = s

]
, (4)

where u(·) denotes the Bernoulli utility function of the investor. Investors are more

averse to ambiguity if the interval [βa, βb] is large and therefore the degree of aversion

to ambiguous information can be measured by βb − βa.

Suppose investors have CARA utility over future wealth w̃ (i.e., u(w̃) = −e−γw̃

with γ > 0) and let CE(θ) denote the certainty equivalent of an ambiguity averse

12There is no ambiguity about the marginal distribution of the signal and hence there is no loss
in generality by normalizing the mean and the variance of the signal to zero and one, respectively.

13See Epstein and Schneider (2003) for updating preferences in dynamic models.
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investor. Then the investor’s utility given in equation (4) is equal to u (CE(θ)) with

CE(θ) = min
β∈[βa,βb]

(
Eβ [w̃ | s̃ = s]− 1

2
γVarβ [w̃ | s̃ = s]

)
. (5)

The assumption of CARA utility and normal beliefs lead to mean-variance preferences

over future wealth in which the posterior mean is a linear function of β and the residual

variance is a quadratic function of β. Ambiguity averse investors are worried about

the effects of β on the mean and variance of future wealth and thus consider for

each portfolio θ and signal realization s the minimum expected value of future utility.

Hence, their worst case scenario belief will depend on the portfolio θ and signal s as

the next proposition shows.

Proposition 1 (Preferences). Let θ̂a ≡ −s/(γβa) and θ̂b ≡ −s/(γβb). The certainty

equivalent of an investor with risk aversion γ and aversion to ambiguity described by

[βa, βb] is

CE(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eβa [w̃ | s̃ = s]− 1
2
γVarβa [w̃ | s̃ = s] if θ ≤ min

(
θ̂a, 0

)
E [w̃]− 1

2
γVar [w̃]− s2

2γ
if min

(
θ̂a, 0

)
< θ ≤ min

(
θ̂b, 0

)
Eβb

[w̃ | s̃ = s]− 1
2
γVarβb

[w̃ | s̃ = s] if min
(
θ̂b, 0

)
< θ ≤ max

(
θ̂b, 0

)
E [w̃]− 1

2
γVar [w̃]− s2

2γ
if max

(
θ̂b, 0

)
< θ ≤ max

(
θ̂a, 0

)
Eβa [w̃ | s̃ = s]− 1

2
γVarβa [w̃ | s̃ = s] if θ > max

(
θ̂a, 0

)
.

(6)

The certainty equivalent CE(θ) is a continuous and concave function of the stock

demand θ. Moreover, it is continuously differentiable except for the portfolio θ = 0 if

s �= 0.

Investors who are contemplating a long position in the asset are worried about

bad signals with a high β and good signals with a low β because informative bad

signals significantly lower the posterior asset mean whereas good signals that are not

very informative only moderately increase the posterior asset mean. On the other

hand, investors always fear risk and thus are worried about signals with a low β.

Investors are more worried about the posterior mean for small risks and are more

worried about the residual variance for big risks. Hence, investors treat bad signals

8



as informative for moderate long positions in the asset (0 < θ ≤ θ̂b) and as not

very informative for very large long positions (θ > θ̂a). There is a range of portfolio

positions (θ̂b < θ ≤ θ̂a) for which investors’ beliefs balance the counteracting mean

and variance effects and thus

β∗(θ) ≡ argmin
β∈[βa,βb]

CES(θ, β) = − s

γθ
, (7)

where CES(θ, β) denotes the certainty equivalent of a standard expected utility max-

imizer in the sense of Savage (1954) with belief β. Hence, investor revise their worst

case scenario belief about β downwards in response to an increase in risk and vice

versa for an increase in the news surprise. We will show in the next section that this

change in the worst case scenario belief will lead to risky portfolios that are insensitive

to news.

II Information Inertia of Optimal Portfolios

In this section, we determine the optimal portfolio of investors who are ambiguous

about the predictability of the future value of an asset. We show that these portfolios

do not always react to news and the severity of this insensitivity to news depends on

the unconditional risk premium of the asset.14

We are interested in the sensitivity of optimal portfolios to changes in the signal

and hence for the remainder of this section we fix the stock price p and determine the

optimal demand for the risky asset as a function of the signal.15

It is well known that the optimal stock allocation for a Savage investor with belief

β is

θβ(s) =
Eβ

[
d̃ | s̃ = s

]
− p

γVarβ

[
d̃ | s̃ = s

] . (8)

14We conduct our analysis in the tractable CARA-normal framework which allows us to solve for
optimal portfolios and equilibrium stock prices in closed form. All result in this section go through
if we assume mean-variance preferences over excess returns.

15We endogenize the stock price in section IV.
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An increase in the signal will always lead to an increase in an investor’s stock position

and hence optimal portfolio allocations always react to news. This is no longer true

when investors are averse to ambiguity as the next theorem shows.16

Theorem 1 (Optimal Portfolios). Let λ = d̄ − p denote the unconditional risk pre-

mium of the asset. The optimal stock allocation for an investor with risk aversion γ

and aversion to ambiguity described by [βa, βb] is

θ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θβa(s) s ≥ s1 ≡ −βa

σ2
d
max(λ, 0)− 1

βa
min(λ, 0)

max (θ0(s), 0) s1 > s ≥ s2 ≡ − βb

σ2
d
max(λ, 0)− 1

βb
min(λ, 0)

θβb
(s) s2 > s ≥ s3 ≡ − 1

βb
max(λ, 0)− βb

σ2
d
min(λ, 0)

min (θ0(s), 0) s3 > s ≥ s4 ≡ − 1
βa

max(λ, 0)− βa

σ2
d
min(λ, 0)

θβa(s) s < s4.

(9)

The left graph of Figure 1 shows optimal stock allocations as a function of the

signal when the unconditional risk premium is positive (λ > 0) and the right graph of

Figure 1 shows it when the unconditional risk premium is negative (λ < 0). Suppose

the unconditional risk premium is positive. If the signal conveys good news (s > 0),

then ambiguity averse investors (black solid line) buy the asset and the worst case

scenario for both the mean and the variance is always an unreliable signal. Hence,

their demand coincides with a Savage investor with belief βa (blue dashed line). This

is no longer true when the signal conveys bad news (s < 0). Specifically, investors are

still long in the asset for a moderate bad news surprise. Hence, they behave like a

Savage investor with belief βb (red chain-dotted line) if they are more worried about

a low posterior mean and they behave like a Savage investor with belief βa if they are

more worried about risk. On the other hand, if news is very bad then investors take

on a short position in the asset and thus always behave like a Savage investor with

belief βa because the worst case scenario for the posterior mean and variance is an

unreliable signal.

There are two ranges of signal values for which optimal portfolios do not react to

news and thus exhibit information inertia. The first range corresponds to the risk-free

portfolio (θ = 0) and the second range corresponds to risky stock allocations (θ �= 0).

16Optimal demand as a function of the stock price is given in Theorem 3 of the appendix.
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Figure 1: Optimal Stock Allocation

The left graph shows optimal stock allocations when the unconditional risk premium
is positive and the right graph shows it when the unconditional risk premium is
negative. The optimal stock allocations is plotted as a function of the signal for a
Savage investor with belief βb (red chain dotted line), a Savage investor with belief βa

(blue dashed line), a Savage investor with belief β = 0 (green solid line), and for an
ambiguity averse investor with range of beliefs [βa, βb] (black solid line). The risk-free
and the risky portfolio do not always react to news when there is ambiguity. The
parameters are d̄ = 100, σ2

d = 20, and γ = 1.

The risk-free portfolio does not react to news because a small increase (decrease) in

the signal does not sufficiently raise (lower) the posterior asset mean to convince an

investor to give up a portfolio that perfectly hedges against risk and ambiguity.17

For portfolios with intermediate risk investors are not sure whether they should be

more worried about the posterior mean or the residual variance. There is no portfolio

(that is independent of β) that perfectly hedges against ambiguity (by making utility

independent of β) and thus investor chose not to rely on the signal when determining

optimal demand.18 Hence, investors demand coincides with the demand of a Savage

17This form of inertia also appears in Condie and Ganguli (2011) and Illeditsch (2011).
18Illeditsch (2011) shows that there is a risky portfolio that perfectly hedges against ambiguity

and thus causes portfolio inertia away from certainty. However, this portfolio is sensitive to changes
in the signal.
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investor who thinks the covariance between the asset and the signal is zero.19 This

is the case even though a higher signal is always good news for the asset (βa > 0).

However, investors are still worried about the ambiguous signal because it affects

their utility. This utility cost is increasing in the news surprise and decreasing in risk

aversion (see Proposition 1).

The size of both signal inaction regions is given in the next proposition.

Proposition 2. The size of the signal region for which the two risky portfolios do

not react to news is
βb − βa

σ2
d

| λ | . (11)

The size of the signal region for which the risk-free portfolio does not react to news is

βb − βa

βaβb

| λ | . (12)

Figure 2 shows optimal stock allocations as a function of the signal for different

values of the unconditional risk premium λ. There is no information inertia when

the unconditional risk premium is zero (black solid line) because in this case the

ambiguity averse investor behaves like a Savage investor with belief βa. Intuitively,

investors will long the asset when news is good and they will short the asset when

news is bad. But there is no confusion about the interpretation of the signal when

news is good (bad) and investors are long (short) the asset because the worst case

scenario for the posterior mean and the posterior variance is a signal that is not very

informative. Information inertia is more severe when price deviates a lot from its

expected future value. However, in this case risky portfolios only exhibit information

inertia for very extreme news surprises. Hence, we determine the probability of the

risk-free and risky portfolio exhibiting information inertia in the next proposition.20

19It follows from the Envelope Theorem that

∂CE(θ)

∂θ
=

∂CES(θ, β∗(θ))
∂θ

+
∂CES(θ, β∗(θ))

∂β

∂β∗(θ)
∂θ

=
∂CES(θ, β∗(θ))

∂θ
= E

[
d̃
]
− p− θγVar

[
d̃
]
,

(10)

for all θ ∈ [min(θ̂a, θ̂b),max(θ̂a, θ̂b)]. Hence, marginal utility is not affected by changes in the signal.
20The probability of information inertia conditional on a specific news surprise is determined in
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Figure 2: Information Inertia of Optimal Portfolios

The left graph shows optimal demand as a function of the signal and the right graph
shows the probability of optimal portfolios exhibiting information inertia as a function
of the unconditional risk premium. Risky and risk-free portfolios do not always react
to news and the probability of information inertia is non-monotonic in the risk of the
stock. The parameters are d̄ = 100, σ2

d = 20, βa = 2, βb = 4, and γ = 1.

Proposition 3. The unconditional probability of investors exhibiting information in-

ertia for either a long (λ > 0) or a short (λ < 0) position in the asset is

∣∣∣∣Φ
(
βb

λ

σ2
d

)
− Φ

(
βa

λ

σ2
d

)∣∣∣∣ , (13)

where Φ(·) denotes the cumulative distribution function of a standard normal dis-

tributed variable.

The unconditional probability of investors exhibiting information inertia when

holding the risk-free portfolio is

∣∣∣∣Φ
(

λ

βa

)
− Φ

(
λ

βb

)∣∣∣∣ . (14)

The probability of having information inertia depends on the unconditional risk

premium and is plotted in the right graph of Figure 2. If the unconditional risk

premium is zero, then there is no information inertia because investors behave like

Savage investors with belief βa. If the stock price deviates a lot form its expected

future asset value, then investors take on very risky asset positions and hence are

the appendix.
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more worried about risk than a low posterior asset mean and thus behave like Savage

investors with belief βa. Hence, the probability of short sellers, asset buyers, and

investors who do not participate in the stock market to exhibit information inertia is

non monotonic in the unconditional risk premium of the asset.

We conclude this section with a summary of the information inertia results.

Model Predictions 1 (Information Inertia of Optimal Portfolios). If investors are

ambiguous about the predictability of future asset values, then

(i) there is a range of bad signals over which investors do not adjust their long stock

position when the unconditional risk premium is positive,

(ii) there is a range of good signals over which investors do not adjust their short

stock position when the unconditional risk premium is negative,

(iii) there is a range of good and bad signals over which investors do not hold stocks

when the unconditional risk premium is not zero, and

(iv) the probability of optimal portfolios exhibiting information inertia is non-monotonic

in the unconditional risk premium of the asset.

III Informational Inefficiency of Prices

In this section, we solve for the equilibrium stock price when a representative investor

is ambiguous about the predictability of future cash flows.21 We show that prices

do not always incorporate public information that is worse than expected and the

severity of this mispricing depends on the risk of the stock.

Suppose there is a representative investor (RI) with CARA utility who is averse

to ambiguity. In equilibrium, the RI holds the stock and consumes the liquidating

dividend d̃. Hence, the stock price at date 1 equals the liquidating dividend and

θ = 1. The price at date 0 depends on the signal and is determined below.

21We discuss properties of the equilibrium stock price when the economy is populated by het-
erogenous investor in the next section.
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The equilibrium stock price when the representative investor is a Savage investor

with belief β (standard expected utility maximizer in the sense of Savage (1954)) is

p(s) = Eβ

[
d̃ | s̃ = s

]
− γVarβ

[
d̃ | s̃ = s

]
. (15)

The stock price is strictly increasing in the signal and hence prices fully incorporate all

available public information. This is no longer true when the representative investor

is averse to ambiguity as the next theorem shows.

Theorem 2 (Equilibrium Stock Price). There is a unique equilibrium stock price.

Specifically,

p(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eβa

[
d̃ | s̃ = s

]
− γVarβa

[
d̃ | s̃ = s

]
if s > −γβa

E
[
d̃
]
− γVar

[
d̃
]

if −γβb ≤ s ≤ −γβa

Eβb

[
d̃ | s̃ = s

]
− γVarβb

[
d̃ | s̃ = s

]
if s < −γβb.

(16)

Figure 3 shows the equilibrium stock price as a function of the signal. The stock

price reacts moderately to good news because in this case the worst case scenario for

both the posterior mean and the residual variance is an unreliable signal. However, if

news is very bad, then the RI is more worried about a low posterior mean than a high

residual variance and thus the price strongly reacts to changes in the signal. There

is a range of bad signal values for which the RI is inattentive to news and hence the

stock price does not react to these signals.
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Figure 3: Equilibrium Price

This graph shows the equilibrium stock price as a function of the signal. The red
dashed line represents an economy in which the representative investor (RI) is a
Savage with belief βb, the purple dotted line represents an economy in which the RI is
a Savage with belief (βa + βb)/2, the blue chain-dotted line represents an economy in
which the RI is a Savage with belief βa, the green solid line represents and economy
in which the RI is a Savage with belief β = 0, and the black solid line represents an
economy in which the RI is ambiguity averse ([βa, βb]). There is a range of signals
that are not priced and thus prices fail to incorporate all available public information.
The parameters are d̄ = 100, σd = 5, and γ = 1.

To gain some more intuition consider a two standard deviation bad news surprise;

i.e. s = −2. In this case the equilibrium stock price is p = 75 when there is ambiguity

and when there is no ambiguity βm = 2 (see Figure 3). If the signal decreases slightly,

then the Savage RI requires a lower stock price as compensation for the lower posterior

mean in order to hold the market portfolio. However, the ambiguity averse RI is also

worried about not having the right β and hence she revises the worst case scenario

belief about β upwards if the signal drops. The stock price does not need to change

because the lower posterior mean that would require a drop in the equilibrium price

is exactly offset by the lower residual variance that would require an increase in the

stock price.
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We determine the size of the inaction region and the probability of being in that

region in the next proposition.

Proposition 4. The size of the signal region for which the stock price does not react

to news is γ(βb − βa). The conditional probability of this informational inefficency is

Prob (−γβb ≤ s̃ ≤ −γβa | s̃ ≤ x) =

⎧⎪⎨
⎪⎩

0 if x < −γβb
Φ(x)−Φ(−γβb)

Φ(x)
if −γβb ≤ x ≤ −γβa

Φ(−γβa)−Φ(−γβb)
Φ(x)

if x > −γβa,

(17)

where Φ(·) denotes the cumulative distribution function of a standard normal dis-

tributed variable.

The left graph of Figure 4 shows equilibrium stock prices as function of the signal

for different unconditional risk premia. The blue chain-dotted line represents an

economy in which the unconditional risk premium of the stock is 0, the red dashed

line represents an economy in which the unconditional risk premium of the stock is

12.5, and the black solid line represents an economy in which the unconditional risk

premium of the stock is 25. The figure shows that the inaction region increases with

the risk of the stock. It also shows that increasingly worse signals will not be reflected

in the price if the stock is more risky.

The right graph of Figure 4 shows that the probability of this mispricing of public

information is not monotonic in the risk of the stock. Moreover, it also shows that

conditional on increasingly bad news surprises this probability is very large for some

stocks.
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Figure 4: Mispricing of Public Information

The left graph shows the equilibrium stock price as a function of the signal for different
unconditional risk premia. It shows that information inertia in prices is more severe
for risky stocks. The right graph shows that the probability of having information
inertia in prices is also less likely for risk stocks. The black solid line shows the
unconditional probability, the red chain-dotted line shows the probability conditional
on bad news, and the blue dashed line shows the probability conditional on having
an at least one standard deviation bad news surprise. The parameters are d̄ = 100,
σd = 5, βa = 1, and βb = 3.

Finally, we study the price reaction to news as a function of the unconditional

risk premium of the stock. The graphs in Figure 5 show the probability of having a

moderate price reaction (red area), a strong price reaction (blue area), and no price

reaction (black area). The graphs in the last row show that stocks with moderate risk

are more likely to react strongly to very bad news than expected than stocks with

high risk. However, it is striking that stocks with intermediate risk show almost no

reaction to bad ambiguous news.

We now summarize the predictions for the equilibrium stock price.

Model Predictions 2 (Informational Inefficiency of Prices). If investors are am-

biguous about the predictability of future cash flows, then

(i) prices do not always incorporate public signals that convey bad news and

(ii) this mispricing of news is more severe for stocks with intermediate risk and

when news are worse than expected.
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Figure 5: Price Reaction to News

All four graphs show the probability of having a moderate price reaction (red area), a
strong price reaction (blue area), and no price reaction (black area) as a function of the
unconditional risk premium of the stock. The first graphs shows the unconditional
probability, the second graphs shows the probability conditional on bad news, the
third graphs shows the probability conditional on having an at least one standard
deviation bad news surprise, and the last graph shows the probability conditional on
having an at least two standard deviation bad news surprise. The parameters are
d̄ = 100, σd = 5, βa = 1 and βb = 3.
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IV Heterogenous Investors

In this section, we assume ambiguity about the predictability of future cash flows and

study equilibrium prices and demands when the economy is populated by investors

who may differ with respect to aversion to risk and ambiguity. We show that in

equilibrium there are some investors who are inattentive to news and hence optimal

portfolios exhibit information inertia. Moreover, the result that prices may not reflect

all available public information in equilibrium is robust to this heterogeneity.

Suppose there are H investors who all receive the same signal but may differ

with respect to their initial wealth, and their aversion to risk and ambiguity. Let w0h

denote investor h’s initial wealth, γh > 0 her risk aversion coefficient, and [βah, βbh]

her set of beliefs with 0 < βah ≤ βbh < σd ∀ h ∈ {1, . . . , H}.

An equilibrium in this economy is defined as follows:

Definition 1 (Equilibrium). The signal-to-price map p(s) is an equilibrium ∀s ∈ R
if and only if (i) each investor chooses a portfolio θh to maximize

min
βh∈[βah,βbh]

Eβh

[
uh

(
w0h +

(
d̃− p(s)

)
θh

)
| s̃ = s

]
, ∀s ∈ R (18)

and (ii) markets clear; i.e.
∑H

h=1 θh = 1 and investors consume the liquidating divi-

dend d̃ at date 1.

If all investors have the same ambiguity, then we know from Wakai (2007) and

Illeditsch (2011) that there exists a representative investor with risk tolerance equal

to the sum of the risk tolerances of all H investors. Hence, the stock price is given

in Theorem 2 and there is no trade in equilibrium. We show in the next proposition

that equilibrium prices still fail to incorporate all available public information when

investors are heterogeneous in their aversion to ambiguity and their ranges of beliefs

overlap.22

Proposition 5 (Aggregation). Let 1/γ ≡ ∑H
h=1 1/γh denote aggregate risk tolerance

22We do not report the equilibrium price outside of the inaction region but provide numerical
examples in Figure 6 and 7.
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and let [βa, βb] ≡
⋂H

h=1[βah, βbh] �= ∅. Then the equilibrium stock price is

p(s) = E
[
d̃
]
− γVar

[
d̃
]

∀ s ∈ [−γβb,−γβa] . (19)

The size of the price inaction region is determined by the investors with common

ambiguity and it is increasing with aggregate risk aversion γ. Hence, the size of the

inaction region and the probability of the mispricing of public information is as given

in Proposition 4 of the previous section.

To gain some more intuition consider an economy in which both investors (Knights)

are averse to ambiguity. The first Knight has the range of beliefs [βa1, ρb1] = [0.5, 2]

and the second Knight has the range of beliefs [βa2, βb2] = [1, 3]. The black solid line

in the left graph of Figure 6 shows the equilibrium stock price as a function of the

signal. For comparison, we also show the equilibrium stock price for five economies

that are populated by two Savages with different beliefs. For instance, the red dotted

line shows the price in an economy where the first Savage has the belief β1 = 2 and

the second Savage has the belief β2 = 3. The right graph of Figure 6 shows the

equilibrium demand as a function of the signal when the economy is populated by

the two Knights described above. There is a range of signals that are worse than

expected for which both investors use their priors when computing demands and thus

the equilibrium stock price does not react to changes in these signals.
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Figure 6: Investors with Different Ambiguity

The left graph shows the equilibrium stock price as a function of the signal for six
different economies. The black solid line represents an economy that consists of two
Knights with range of beliefs ([βa1, βb1] = [0.5, 2], [βa2, βb2] = [1, 3]). The colored
dotted lines represent economies that consist of two Savages with different beliefs.
The left graph shows that if there is ambiguity, then there is a range of bad signals
for which the price does not react much. The right graph shows equilibrium demand
in an economy that consists of two Knights. The red dashed line shows demand
of a Knight with range of beliefs [βa1, βb1] = [0.5, 2] and the black solid line shows
demand of a Knight with range of beliefs [βa2, βb2] = [1, 3]. If the signal lies in the
interval [−3.15,−2], then at least one of the investors ignores the signal and uses
her prior information when determining demand. When both investors hedge against
ambiguity ([ŝb, ŝa] = [−2,−1]), then demand is insensitive to changes in these signals
and thus equilibrium prices fail to incorporate these signals. All investors have the
same risk aversion γ = 1 and the remaining parameters are d̄ = 100, and σd = 5.

To discuss the properties of equilibrium demand and price given in Figure 6

we consider the five different signal regions (i) (−∞,−3.15], (ii) [−3.15,−2], (iii)

[−2,−1], (iv) [−1,−0.5], and (v) [−0.5,∞). Both Knights behave like Savages with

beliefs β1 = 2 and β2 = 3 respectively for the first range of signals because if news

is very bad ambiguity averse investors are more worried about a low posterior mean

than a high residual variance and thus consider a high β. Hence, the equilibrium

stock price reacts a lot to these signals. Equilibrium demand of the second Knight

(red dashed line) is increasing in the signal because her worst case scenario belief

(β = 3) is larger than the worst case scenario belief of the second Knight (black solid

line) and thus she puts more weight on the signal. The analysis is similar for the fifth
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range because with good news the worst case scenario for both investors is a low β.

For the other three ranges of signals there is at least one investor who avoids the

signal and uses her prior when forming optimal demand. In other words, there is at

least one investor who behaves as if there is no correlation between the signal and the

dividend even though a high signal is always good news about the asset. Consider

the second signal range. The first Knight sill behaves like a Savage investor with

belief β = 2 but the second Knight does not rely on the signal. Hence her demand

which is increasing for the first range of signals is now decreasing because neither

mean nor variance depends on the signal and the equilibrium price increases with it.

The equilibrium price still reacts to signals in the second region because of the first

investor but not as much as for the first range of signals. Both investors do not rely

on the signals in the third region and hence the equilibrium does not reflect these

signals. The intuition for the fourth signal range is similar to the second. In this

case the first investor does not rely on the signal when forming demand and hence in

equilibrium her demand decreases with the signal.

We conclude this section with a comparison of equilibrium demand for different

economies. Specifically, the left graph of Figure 7 shows equilibrium demand as a

function of the signal and the right graph shows it as a function of the equilibrium

stock price. In both graphs the black solid line represents an economy consisting of

two Knights, the red dashed line represents an economy consisting of two Savages

with different beliefs, and the blue chain-dotted line represents an economy with one

Knight and one Savage. The graphs show that if there is ambiguity, then equilibrium

demand is neither monotone in the signal nor in the equilibrium stock price. Moreover,

the left graph shows that this non monotone and seemingly erratic demand behavior

only occurs for signals that are worse than expected. This is in stark contrast to an

economy without ambiguity for which equilibrium demand is a smooth and monotone

function of the signal.23

23If everybody has the same belief (or ambiguity) then equilibrium demand is constant.
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Figure 7: Equilibrium Demand

The left graph shows equilibrium demand as a function of the signal and the right
graph shows it as a function of the equilibrium stock price. In both graphs the
black solid line represents an economy consisting of two Knights with range of beliefs
[βa1, βb1] = [0.5, 2] and [βa2, βb2] = [1, 3]). The red dashed line represents an economy
consisting of two Savages with beliefs β1 = 1 and β2 = 2 and the blue chain-dotted
line represents an economy with one Knight with range of beliefs [βa1, βb1] = [0.5, 3]
and one Savage with belief ρ2 = 1.5. Both graphs show that equilibrium demand is
non-monotone if there is ambiguity. All investors have the same risk aversion γ = 1
and the remaining parameters are d̄ = 100, and σd = 5.

V Momentum Strategies

We show in this section that the failure of prices to incorporate all available public

information leads to profitable trading strategies for investors who know the correct

joint distribution of the signal and the dividend.

Suppose an econometrician observes a time series of dividends, signals, and stock

prices and regresses future price changes on a constant and (i) the current signal s or

(ii) the current stock price p(s). Let β̂ denote the covariance between d̃ and s̃ that

generates the data and assume that β̂ = (βa + βb)/2.
24

The left and right graph of Figure 8 shows the slope of the first and second regres-

sion as a function of the unconditional risk premium of the stock for four different

24This is a common assumption in the literature (e.g. Hansen and Sargent (2001))
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representative agent economies. The purple dotted line represents an economy in

which the belief of the Savage investor coincides with the data generating belief β̂;

i.e. the belief of the RI satisfies “rational expectations”. In this case the equilibrium

price incorporates all public information correctly and hence neither current news nor

the current stock price predicts future price changes; i.e. the slope is zero in both

regressions.

The blue dashed line represents an economy in which the Savage RI has a higher β

than the econometrician and the red chain-dotted line represent an economy in which

the Savage RI has a lower beta than the econometrician. In both economies the

stock price fully but incorrectly incorporates all available public information. Hence,

the price overreacts in the first economy and underreacts in the second economy and

hence public information predicts future price changes.

The black solid line represents an economy in which the representative investor

is averse to ambiguity. In this case, both current signals and prices predict future

changes in the stock price. However, the economic significance depends on the un-

conditional risk premium of the stock. Specifically, there is no predictability if the

unconditional risk premium is zero because prices fully incorporate all available public

information and the underreaction of prices to good news is offset by the overreaction

to bad news. If the unconditional risk premium of the stock is large, then the slope in

both predictive regressions is positive because the probability of having a moderate

price reaction to news is close to one for very risky stocks (see the first graph of Figure

5). For stocks with intermediate risk, the economic significance of both predictability

regression can be very large because in this case many bad signals are not reflected

in the stock price.25

25The results do not change qualitatively if we allow the trader with correct beliefs to affect the
price in equilibrium.
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Figure 8: Predictive Regressions

The left graph shows the slope of an regression of price changes on the signal and
the right graph shows the slope of an regression of price changes on the current stock
price. Both graphs shows that aversion to ambiguity leads to profitable trading strate-
gies based on public information. The economic significance of these predictability
regressions depends on the unconditional risk premium of the stock. The parameters
are d̄ = 100, and σd = 5.

Model Predictions 3 (Momentum). Ambiguity about the predictability of future

cash flows leads to

(i) profitable trading strategies based on public information and

(ii) the economic significance of these momentum strategies depends on the uncon-

ditional risk premium of the stock.

VI Conclusion

We study how information about an asset affects optimal portfolios and equilibrium

asset prices when investors are not sure about the model that predicts future asset

values and thus treat the information as ambiguous. We show that this ambiguity

leads to optimal portfolios that are insensitive to news even though there are no

information processing costs or other market frictions. In equilibrium, we show that

stock prices may not react to public information that is worse than expected and

this mispricing of bad news leads to profitable trading strategies based on public
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information.
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A Appendix

A Proofs

In this section, the following notation will be useful. For β ∈ [0, σd], let CES(θ, β)

denote the certainty equivalent for a standard Savage (1954) expected utility investor

who considers covariance β between s̃ and d̃, i.e.

CES(θ, β) = Eβ [w̃ |s̃ = s ]− 1

2
γVarβ [w̃ |s̃ = s ] . (20)

Proof of Proposition 1. The certainty equivalent CE(θ) of the ambiguity averse

investor satisfies

CE(θ) = min
β∈[βa,βb]

CES(θ, β). (21)

Note that
∂CES(θ, β)

∂β
= θs+ γθ2β. (22)

Consider three cases, (i) s = 0, (ii) s > 0, and (iii) s < 0.

(i) s = 0 ⇔ θ̂a = θ̂b = 0.

Then ∂CES(θ,β)
∂β

> 0 for all β ∈ [βa, βb]. Thus the minimum of CES(θ, β) is

attained at β = βa and hence,

CE(θ) = min
β∈[βa,βb]

CES(θ, β) = CES(θ, βa) for all θ ∈ R. (23)
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CES(θ, βa) is continuously differentiable and concave in θ for all θ ∈ R and thus

so is CE(θ).

(ii) s > 0 ⇔ θ̂a < θ̂b < 0.

Suppose θ ≤ θ̂a < 0 or θ ≥ 0. Then ∂CES(θ,β)
∂β

> 0 for all β ∈ [βa, βb]. Thus, the

minimum of CES(θ, β) is attained at β = βa.

Suppose θ̂b < θ < 0. Then ∂CES(θ,β)
∂β

< 0 for all β ∈ [βa, βb]. Thus, the minimum

of CES(θ, β) is attained at β = βb.

Suppose θ̂a < θ ≤ θ̂b. Then, since ∂2CES(θ,β)
∂β2 > 0, the minimum is attained at

∂CES(θ,β)
∂β

= 0, i.e. β∗(θ) ≡ argmin
β∈[βa,βb]

CES(θ, β) = −s
γθ
. Note that β∗ ∈ [βa, βb]

when θ̂a < θ < θ̂b < 0 and that

CES(θ, β∗) = E[w̃]− 1

2
γVar[w̃]− s2

2γ
= CES(θ, 0)− s2

2γ
. (24)

Using the above, we get

CE(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CES(θ, βa) if θ ≤ θ̂a

CES(θ, 0)− s2

2γ
if θ̂a < θ ≤ θ̂b

CES(θ, βb) if θ̂b < θ ≤ 0

CES(θ, βa) if 0 < θ.

(25)

as desired.

CE(θ) is continuous for all θ ∈ R and β ∈ [βa, βb] and CES(0, βa) = CES(0, βb).

CES(θ, β) is continuously differentiable for all θ ∈ R and β ∈ [βa, βb] and the
∂2CES(θ,β)

∂θ2
≤ 0 for all θ ∈ R and β ∈ [βa, βb]. Thus, for any θ �= 0 there is

an open neighborhood for such CE(θ) is continuously differentiable and ∂2CE(θ)
∂θ2

exists and is non-positive.

To verify non-differentiability at θ = 0 and concavity of CE(θ), we calculate the

left derivative CE′−(θ) and the right derivative CE′+(θ) at θ = 0.

CE′−(0) ≡ lim
θ↑0

∂CE(θ)

∂θ
= d̄+ βbs− p (26)

CE′+(0) ≡ lim
θ↓0

∂CE(θ)

∂θ
= d̄+ βas− p (27)

Thus, CE′−(0) > CE′+(0), so CE(θ) is not differentiable at θ = 0, but is concave
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for all θ ∈ R and continuously differentiable at all θ �= 0.

(iii) s < 0 ⇔ θ̂ > θ̂b > 0.

Using reasoning similar to that for the above case, we get

CE(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CES(θ, βa) if θ ≤ 0

CES(θ, βb) if 0 < θ ≤ θ̂b

CES(θ, 0)− s2

2γ
if θ̂b < θ ≤ θ̂a

CES(θ, βa) if θ̂a < θ

(28)

and that CE(θ) is continuous and concave in θ ∈ R. Moreover, CE(θ) is con-

tinuously differentiable at all θ �= 0.

Finally, combining the above cases provides the desired expression and properties

for CE(θ).

The following result provides the expression for optimal portfolio as a function of

price and is of independent interest in addition to being useful for the proofs of other

results.

Theorem 3 (Optimal Demand). Optimal demand at price p for an investor with risk

aversion γ and aversion to ambiguity described by [βa, βb] is

θ(p, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θβa(p) p ≤ p1(s) ≡ μβa(s)− γvβa max
(
θ̂a, 0

)
max (θ0(p), 0) p1(s) < p ≤ p2(s) ≡ μβb

(s)− γvβb
max

(
θ̂b, 0

)
θβb

(p) p2(s) < p ≤ p3(s) ≡ μβb
(s)− γvβb

min
(
θ̂b, 0

)
min (θ0(p), 0) p3(s) < p ≤ p4(s) ≡ μβa(s)− γvβa min

(
θ̂a, 0

)
θβa(p) p > p4(s),

(29)

where μβ(s) = d̄+ βs and vβ ≡ σ2
d − β2.

Proof of Theorem 3. Consider three cases: (i) s = 0, (ii) s > 0, and s < 0. For

expositional simplicity, we suppress the dependence on s.

(i) When s = 0 ⇔ θ̂a = θ̂b = 0, then it follows from the proof of Proposition 1

that CE(θ) = CES(θ, βa) for all θ ∈ R. Thus, it follows that θ(p) = θa(p) for

all p ∈ R.
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(ii) When s > 0 ⇔ θ̂a < θ̂b < 0, then it follows from the proof of Proposition 1 that

CE(θ) is given by (25).

Consider five sub-cases: (a) p ≤ p1 = μβa(s), (b) p1 < p ≤ p2 = μβb
(s), (c)

p2 < p ≤ p3 = μβb
(s)− γvβb

θ̂b, (d) p3 < p ≤ p4 = μβa − γvβa θ̂a, and (e) p4 < p.

(ii)(a) Suppose p ≤ p1. We show that θ(p) = θa(p). First, note that

θa(p) =
μβa(s)− p

γvβa

≥ μβa(s)− p1
γvβa

= 0. (30)

Moreover, for any θ > 0, CE(θ) = CES(θ, βa) from (25). Thus, since CE(θ)

is concave, θa(p) is the local and hence global maximizer of CE(θ) for all

p ≤ p1.

(ii)(b) Suppose p1 < p ≤ p2. We show that θ(p) = 0. First, note that since

βa > 0,

θ0(p) =
d̄− p

γσ2
d

<
d̄− p1
γσ2

d

≤ μβa(s)− p1
γσ2

d

= 0. (31)

Since CE(θ) is concave, it suffices to show that θ = 0 is a local maximizer.

Given (25), there exists ε > 0 such that

CE(θ) =

⎧⎨
⎩
CES(θ, βb) if − ε < θ ≤ 0

CES(θ, βa) if 0 ≤ θ < ε.
(32)

For −ε < θ ≤ 0,

CE(0)− CES(θ, βb) = θ
(
p− d̄− βbs

)
+

1

2
γ(σ2

d − β2
b ) ≥ 0 (33)

when p ≤ p2.

For 0 ≤ θ < ε,

CE(0)− CES(θ, βa) = θ
(
p− d̄− βas

)
+

1

2
γ(σ2

d − β2
a) ≥ 0 (34)

when p1 ≤ p. Combining the above, shows that θ = 0 is a local and hence

global maximizer of CE(θ) for p1 < p ≤ p2.

(ii)(c) Suppose p2 < p ≤ p3. We show that θ(p) = θb(p). First, note that

θb(p) =
μβb

(s)− p

γvβb

<
μβb

(s)− p2
γvβb

= 0 (35)
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when p2 < p and that

θb(p) =
μβb

(s)− p

γvβb

≥ μβb
(s)− p3
γvβb

= θ̂b (36)

when p ≤ p3.

From (25), CE(θ) = CES(θ, βb) when θ̂b < θ ≤ 0. Thus, given concavity

of CE(θ), θb(p) is a local and hence global maximizer of CE(θ) when p2 <

p ≤ p3.

(ii)(d) Suppose p3 < p ≤ p4. We show that θ(p) = θ0(p). First, note that since

βa > 0,

θ0(p) =
d̄− p

γσ2
d

<
d̄− p3
γσ2

d

<
d̄− p2
γσ2

d

≤ 0. (37)

Also, p3 = μβb
− γvβb

θ̂b = d̄ − γσ2
dθ̂b and p4 = μβa − γvβa θ̂a = d̄ − γσ2

d θ̂a.

Hence,

θ̂a ≤ θ0(p) < θ̂b (38)

when p3 < p ≤ p4.

From (25), CE(θ) = CES(θ, 0) − s2

2γ
when θ̂a < θ ≤ θ̂b < 0. Thus, since

CE(θ) is concave, θ0(p) is a local and hence global maximizer of CE(θ) for

p3 < p ≤ p4.

(ii)(e) Suppose p4 < p. We show that θ(p) = θa(p). First, note that

θa(p) =
μβa(s)− p

γvβa

<
μβa(s)− p4

γvβa

≤ θ̂a = 0. (39)

Moreover, for any θ < θ̂a, CE(θ) = CES(θ, βa) from (25). Thus, since

CE(θ) is concave, θa(p) is the local and hence global maximizer of CE(θ)

for all p > p4.

Using the above, we get

θ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θa(p) if p ≤ p1

0 if p1 < p ≤ p2

θb(p) if p2 < p ≤ p3

θ0(p) if p3 < p ≤ p4

θa(p) if p4 < p.

(40)

as desired.
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(iii) When s < 0 ⇔ θ̂a > θ̂b > 0, then it follows from the proof of Proposition 1 that

CE(θ) is given by (28). Moreover, p1 = μβa(s) − γvβa θ̂a, p2 = μβb
(s) − γvβb

θ̂b,

p3 = μβb
(s), and (d) p4 = μβa(s). Thus, using similar reasoning as above, we

get

θ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θa(p) if p ≤ p1

θ0(p) if p1 < p ≤ p2

θb(p) if p2 < p ≤ p3

0 if p3 < p ≤ p4

θa(p) if p4 < p.

(41)

as desired.

Combining the three cases above provides the desired expression for θ(p).

Proof of Theorem 1. Consider three cases: (i) λ = 0, (ii) λ > 0, and (iii) λ < 0.

(i) Suppose λ = 0. Then s1 = s2 = s3 = s4 = 0 and from theorem 3, θ(p) = θβa(p)

if p ≤ p1 ⇔ s ≥ 0 and if p > p4 ⇔ s < 0.

(ii) λ > 0. Then s1 = −βa

σ2
d
λ > s2 = − βb

σ2
d
λ > s3 = − 1

βb
λ > s4 = − 1

βa
λ.

Then from theorem 3 the following holds.

θ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θβa(p) if p ≤ p1 ⇔ s ≥ s1

θ0 if p1 < p ≤ p2 ⇔ s1 > s ≥ s2

θβb
(p) if p2 < p ≤ p3 ⇔ s2 > s ≥ s3

0 if p3 < p ≤ p4 ⇔ s4 ≤ s < s3

θβa(p) if p > p4 ⇔ s < s4.

(42)

(iii) λ < 0. Then s1 = − 1
βa
λ > s2 = − 1

βb
λ > s3 = − βb

σ2
d
λ > s4 = −βa

σ2
d
λ.

Then from theorem 3 the following holds.

θ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θβa(p) if p ≤ p1 ⇔ s ≥ s1

0 if p1 < p ≤ p2 ⇔ s1 > s ≥ s2

θβb
(p) if p2 < p ≤ p3 ⇔ s2 > s ≥ s3

θ0 if p3 < p ≤ p4 ⇔ s4 ≤ s < s3

θβa(p) if p > p4 ⇔ s < s4.

(43)
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Combining the above cases provides the desired expression.

Proof of Proposition 3. From the proofs of Proposition 1 and Theorem 3, it fol-

lows that investors are short in the stock, but demand does not react to changes in

the signal when

θ(p) = θ0(p) ≤ 0, (44)

i.e. when p3 = μβb
(s)− γvβb

θ̂b < p ≤ p4 = μβa(s)− γvβa θ̂a, which corresponds to

CE(θ0(p)) = CES(θ0(p), 0)− s2

2γ
, (45)

i.e. when θ̂a ≤ θ0(p) ≤ θ̂b < 0. Using the expressions for p3 and p4 (or those for θ̂a,

θ̂b, and θ0(p)) shows that the signal value s must satisfy

− (d̄− p)
βa

σ2
d

≤ s ≤ −(d̄ − p)
βb

σ2
d

. (46)

Thus, the size of the signal region is

βa − βb

σ2
d

(d̄− p) (47)

where d̄− p ≤ 0 since θ0(p) ≤ 0.

Similarly, the size of the signal region when investors are long in the stock, but

demand does not react to changes in the signal is

βb − βa

σ2
d

(d̄− p) (48)

where d̄− p ≥ 0 since θ0(p) ≥ 0.

Combining the results of the two cases yields the desired expression for the size

of the signal region.

Since s ∼ N(0, 1), using the bounds for the signal region identified above and

the properties of the standard normal distribution provides the desired expression for

the probability of investors exhibiting information inertia for either a long or a short

position in the risky asset.

From the proofs of Proposition 1 and Theorem 3, it follows that investors are
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neither long nor short in the stock and demand does not react to changes in the

signal when θ(p) = 0, i.e. when p1 = μβa(s) < p ≤ p2 = μβb
(s) (corresponding to

good news s > 0) or p3 = μβb
(s) < p ≤ p4 = μβa(s) (corresponding to bad news

s < 0). Using the expressions for p1 and p2 shows that the signal value s must satisfy

− (d̄− p)
1

βb
≤ s < −(d̄− p)

1

βa
. (49)

Thus, the size of the signal region when investors are neither long nor short in the

stock and demand does not react to changes in the signal is

(
1

βa
− 1

βb

)
(d̄− p). (50)

Similarly, using the expressions for p3 and p4 shows that signal region is

(
1

βa

− 1

βb

)
(p− d̄). (51)

Combining the results of the two cases provides the desired expression for the size of

the signal region.

Since s ∼ N(0, 1), using the bounds for the signal region identified above and the

properties of the standard normal distribution provides the desired expression for the

probability of the investors exhibiting information inertia when holding the risk-free

portfolio.

Proof of Theorem 2. Market clearing requires that θ(p) = 1 since there is one

unit of the risky asset in aggregate.

Consider three cases: (i) s > −γβa, (ii) −γβb ≤ s ≤ −γβa, and (iii) s < −γβb.

(i) Suppose s > −γβa. Then θ̂a < 1. We need to verify that markets clear when

p(s) = μβa(s)− γvβa. From Theorem 3, it follows that

θ(p(s)) = θa(p(s)) =
μβa(s)− p(s)

γvβa

= 1 (52)

if and only if

p(s) = μβa(s)− γvβa ≤ p1 = μβa(s)− γvβa max
{
θ̂a, 0

}
(53)
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or

p(s) = μβa(s)− γvβa > p4 = μβa(s)− γvβa min
{
θ̂a, 0

}
. (54)

Since θ̂a < 1, p(s) ≤ p1 and the result follows.

(ii) Suppose −γβb ≤ s ≤ −γβa. Then θ̂b ≤ 1 ≤ θ̂a. We need to verify that markets

clear when p(s) = d̄− γσ2
d. From Theorem 3, it follows that

θ(p(s)) = θ0(p(s)) =
d̄− p(s)

γσ2
d

= 1 (55)

if and only if

p(s) = d̄− γσ2
d > p1 = μβa(s)− γvβa max

{
θ̂a, 0

}
(56)

and

p(s) = d̄− γσ2
d ≤ p2 = μβb

(s)− γvβb
max

{
θ̂b, 0

}
. (57)

Since θ̂a ≥ 1 and μβa(s)− γvβa θ̂a = d̄− γσ2
dθ̂a, we have p(s) > p1.

If θ̂b ≤ 0, then s ≥ 0. So, p(s) = d̄ − γσ2
d ≤ d̄ + βbs = μβb

(s) = p2. If 0 < θ̂b,

then since θ̂b ≤ 1 we p(s) = d̄ − γσ2
d ≤ d̄ − γσ2

d θ̂b = μβb
(s) − γvβb

θ̂b = p2. So,

p1 < p(s) ≤ p2

(iii) Suppose s < −γβb. Then θ̂b > 1. We need to verify that markets clear when

p(s) = μβb
(s)− γvβb

. From Theorem 3, it follows that

θ(p(s)) = θb(p(s)) =
μβb

(s)− p(s)

γvβb

= 1 (58)

if and only if

p(s) = μβb
(s)− γvβb

> p2 = μβb
(s)− γvβb

max
{
θ̂b, 0

}
(59)

and

p(s) = μβb
(s)− γvβb

≤ p3 = μβb
(s)− γvβb

min
{
θ̂b, 0

}
. (60)

Since θ̂b > 1, p2 < p(s) ≤ p3 and the result follows.

Combining the above cases provides the desired result.

41



Proof of Proposition 5. We know from Theorem 3 that demand for investor h is

θh(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μah−p
γhvah

p ≤ p1h ≡ μah − γhvah max
(
θ̂ah, 0

)
max

(
d̄−p
γhσ

2
d
, 0
)

p1h < p ≤ p2h ≡ μbh − γhvbh max
(
θ̂bh, 0

)
μbh−p
γhvbh

p2h < p ≤ p3h ≡ μbh − γhvbh min
(
θ̂bh, 0

)
min

(
d̄−p
γhσ

2
d
, 0
)

p3h < p ≤ p4h ≡ μah − γhvah min
(
θ̂bh, 0

)
μah−p
γhvah

p > p4h,

(61)

where θ̂ah ≡ −s/(γhβah) and θ̂bh ≡ −s/(γhβbh).

We first show that there exists an equilibrium. Individual demand given in

equation (61) is continuous and non-increasing in p with lim
p→−∞

θh(p) = ∞ and

lim
p→∞

θh(p) = −∞ for all h ∈ {1, . . . , H}. Hence, aggregate demand θ(p) =
∑H

h=1 θh(p)

is continuous and non-increasing in p with lim
p→−∞

θ(p) = ∞ and lim
p→∞

θ(p) = −∞.

Hence, there exists an equilibrium because the market clearing condition θ(p)−1 = 0

has always a solution.

We next determine the equilibrium stock price p(s) for all s ∈ [ŝb, ŝa]. By as-

sumption we have that βa = max {βa1, . . . , βaH} and βb = min {βb1, . . . , βbH}. Hence,

p1 ≡ max
h∈{1,...,H}

p1h = max
h∈{1,...,H}

{
d̄+

σ2
d

βah
s

}
= d̄+

σ2
d

βa
s (62)

p2 ≡ min
h∈{1,...,H}

p2h = min
h∈{1,...,H}

{
d̄+

σ2
d

βbh
s

}
= d̄+

σ2
d

βb
s. (63)

We have that βb ≥ βa and thus (i) [ŝb, ŝa] �= ∅ and (ii) p2(s) ≥ p1(s) for all s ∈ [ŝb, ŝa].

It follows from equations (61)-(63) that

θh(p) =
d̄− p

γhσ2
d

∀ p1 ≤ p ≤ p2, and ∀h ∈ {1, . . . , H}. (64)

Summing over all investors leads to

θ(p) =
H∑

h=1

θh(p) =
d̄− p

σ2
d

H∑
h=1

1

γh
=

d̄− p

γσ2
d

∀ p1 ≤ p ≤ p2.

Imposing the market clearing condition θ(p)=1 leads to the price p = d̄− γσ2
d.
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