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Abstract

An inverse probability weighted estimator is proposed for the joint distribution function

of bivariate random vectors under right censoring. The new estimator is based on the idea

of transformation of bivariate survival functions and bivariate random vectors to univariate

survival functions and univariate random variables. The estimator converges weakly to a

zero-mean Gaussian process with an easily estimated covariance function. Numerical studies

show that the new estimator is more efficient than some existing inverse probability weighted

estimators.

Keywords: Bivariate survival function; bivariate censored observations; consistency; correlated

failure times; inverse probability weighted estimator; matched pairs.

1 Introduction

In some experiments each unit consists of a pair of components and life times for each component

are recorded. We use (T (1), T (2)) to denote the pair of life times. Both times are subject to

random right censoring at the observed censoring time (C(1), C(2)). Examples include twin

studies, eye studies and matched pair studies, where censoring is due to units are removed from

the study before failure has been observed. In such studies, the joint distribution of bivariate

times need to be estimated.

Nonparametric estimators of bivariate distributions under right censoring have been proposed by

Campbell (1981); Tsai et.al. (1986); Burke (1988); Dabrowska (1988); Prentice and Cai (1992);

Lin and Ying (1993); van der Laan (1996); Wang and Wells (1997); Akritas and Keilegom

(2003) and Prentice et al. (2004). The Non-parametric MLE (MPMLE) in Campbell (1981) is

not unique and is computationally intractable. The repaired NPMLE in van der Laan (1996)

deals with the nonuniqueness of NPMLE based on reduced data, but it is sensitive to the choice

of bandwidth. The repaired NPMLE can be viewed as a special case of a class of estimators in

Prentice et al. (2004). Moodie and Prentice (2005) improve the repaired NPMLE to make it

more robust to the choice of bandwidth.
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Burke (1988) introduces two inverse probability weighted (IPW) estimators which do not de-

pend on any smoothing parameter or bandwidth, required by the repaired NPMLE and kernel

estimates in Tsai et.al. (1986); Akritas and Keilegom (2003). IPW estimators induce nonneg-

ative probability mass and satisfy the monotonicity requirements of a distribution function.

Monotonicity of a bivariate distribution estimator is very important, since the non-monotone

estimators (Dabrowska, 1988; Prentice and Cai, 1992) may result in negative conditional prob-

abilities in application. Thus this paper focuses on IPW estimators and we propose a new IPW

estimator of the bivariate distribution function in the presence of right censoring. The novelty

of our method is the variable transformation, which enables us to transfer the bivariate estima-

tion problem to a univariate estimation problem and prove in a simple way that the estimator

converges weakly to a zero-mean Gaussian process with an easily estimated covariance function.

Numerical studies show that the new estimator performs more efficiently than the estimators in

Burke (1988) and the covariance function estimator also performs remarkably well.

2 Preliminaries

Let (T (1), T (2)) be a pair of nonnegative random variables defined on a probability space (Ω,F , P ).

The bivariate cumulative distribution function and bivariate survival function of this random

vector are F (t1, t2) = P (T (1) ≤ t1, T
(2) ≤ t2) and S(t1, t2) = P (T (1) > t1, T

(2) > t2) re-

spectively. The pair of censoring times is (C(1), C(2)) which has survival function G(t1, t2) =

P (C(1) > t1, C
(2) > t2). For simplicity, throughout this paper we assume that S and G are

continuous functions. When S and G are discrete our results also hold.

The observable random variables are given by (X(1), X(2)) and (δ(1), δ(2)) where X(k) = min(T (k), C(k))

and δ(k) = I[T (k) ≤ C(k)], k = 1, 2. Let

H(t1, t2) = P (X(1) > t1, X
(2) > t2) (1)

be the survival function of (X(1), X(2)).

Throughout this paper we assume that the following assumption holds.

(A): (T (1), T (2)) and (C(1), C(2)) are independent.

Under assumption (A) we have that H(t1, t2) = S(t1, t2)G(t1, t2).

Let F ∗(t1, t2) = P (X(1) ≤ t1, δ
(1) = 1, X(2) ≤ t2, δ

(2) = 1). Then it can be derived that

F ∗(t1, t2) =
∫ t1
0

∫ t2
0 G(v1−, v2−)F (dv1, dv2). It follows immediately that

F (t1, t2) =
∫ t1

0

∫ t2

0

1
G(v1−, v2−)

F ∗(dv1, dv2). (2)
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Suppose that {(T (1)
i , T

(2)
i , C

(1)
i , C

(2)
i ), i = 1, · · · , n} are i.i.d. samples of the random vector

(T (1), T (2), C(1), C(2)). The observed data are {(X(1)
i , X

(2)
i , δ

(1)
i , δ

(2)
i ), i = 1, · · · , n} where X

(k)
i =

min{T (k)
i , C

(k)
i } and δ

(k)
i = I[T (k)

i ≤ C
(k)
i ], k = 0, 1. Suppose that Ĝ(t1, t2) is an estimator of

G(t1, t2) based on the observed data. Then an IPW estimator for F (t1, t2) is given by

F̂ (t1, t2) =
∫ t1

0

∫ t2

0

F ∗
n(dv1, dv2)

Ĝ(v1−, v2−)
(3)

where F ∗
n(t1, t2) =

∑n
i=1 I[X(1)

i ≤ t1, δ
(1)
i = 1, X

(2)
i ≤ t1, δ

(2)
i = 1]/n. Note that (3) provides

a class of estimators by choosing different estimators Ĝ(t1, t2) and the estimated distribution

function F̂ (t1, t2) is obviously monotone and induces non-negative probability mass. Based on

different Ĝ(t1, t2) given in Campbell and Földes (1982), using (3), Burke (1988) constructs two

IPW estimators. However, Burke (1988) does not derive their asymptotic distributions.

3 Variable transformation and methodology

3.1 Transformation of S(t1, t2) and G(t1, t2) to univariate functions

Define transformation from (t1, t2) to (α, z) as α = t2/t1 and z =
√

t21 + t22. Given θ ∈ [0, π/2],

such that cos θ = 1/
√

1 + α2 or sin θ = 1/
√

1 + α−2, we have t1 = z cos θ and t2 = z sin θ.

Obviously (z, θ) is the polar coordinates of (t1, t2). If (t1, t2) is given, then α is fixed and S(t1, t2)

can be transformed to a univariate function, S(z|α), according to the following formula,

S(t1, t2) = P (T (1) > t1, T
(2) > t2) = P

(
min

{
T (1)

t1
,
T (2)

t2

}
> 1

)

= P


min



T (1)

√
1 +

(
t2
t1

)2

, T (2)

√
1 +

(
t2
t1

)−2


 >

√
t21 + t22




= P (Z(α) > z) := S(z|α), (4)

where Z(α) = min{T (1)
√

1 + α2, T (2)
√

1 + α−2}.

The above transformation can be explained by Figure 1. Points p1 : (T (1), T (1)α) and p2 :

(T (2)α−1, T (2)) correspond to vertical and horizontal projection of (T (1), T (2)) onto the line c:

v2 = αv1. The value of Z(α) is the minimum of the distances of these two points from the

origin. Therefore S(z|α) = P (Z(α) > z) means the survival function of Z(α) on line c. Note

that if t1 = 0, t2 > 0 then Z(α) = T (2) and if t1 > 0, t2 = 0 then Z(α) = T (1). Therefore the

above transformation exists for all (t1, t2) ∈ [0,∞)× [0,∞).

3



2v

1v

),( 21 tt

),(: )2(1)2(
2 TT −Ρ α

),( )2()1( TT

),(: )1()1(
1 αTTΡ

1

2

t

t=α

12 vv α=

Figure 1: (T (2)α−1, T (2)) is obtained by horizontal projection; (T (1), T (1)α) is obtained by ver-
tical projection.

Similarly we have

G(t1, t2) = P (C(1) > t1, C
(2) > t2) = P (Z ′(α) > z) := G(z|α), (5)

where Z ′(α) = min{C(1)
√

1 + α2, C(2)
√

1 + α−2}.

Note that S(z|α) and G(z|α) are not conditional survival functions. They are univariate survival

functions if α is fixed and they are bivariate functions if α is not fixed.

3.2 The IPW estimator based on transformation for censored data

In practice, due to the censorship of (T (1), T (2)) and (C(1), C(2)), the values of Z(α) and Z ′(α)

may not be obtained. We can only obtain

X̃(1) = X(1)
√

1 + α2, X̃(2) = X(2)
√

1 + α−2. (6)

Let

Z̃(α) = min{X̃(1), X̃(2)},
δ′(α) = (1− δ(1))I[X̃(1) < X̃(2)] + (1− δ(2))I[X̃(1) > X̃(2)]

+(1−min(δ(1), δ(2)))I[X̃(1) = X̃(2)]. (7)
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Let

H(z|α) = P (Z̃(α) > z). (8)

Then from (6), (7) and (1) we have

H(z|α) = P (X(1) > t1, X
(2) > t2) = H(t1, t2). (9)

We also have Z̃(α) and δ′(α) are the censored value and censoring indicator for Z ′(α), since if

δ′(α) = 1 then Z ′(α) = Z̃(α) is observed and if δ′(α) = 0 then Z̃(α) = Z(α) < Z ′(α) which

means that Z ′(α) is censored. Thus based on observations {Z̃i(α), δ′i(α), i = 1, · · · , n} obtained

from transformation in (7), if we define

N̄ ′(s|α) =
n∑

i=1

I[Z̃i(α) ≤ s, δ′i(α) = 1]/n,

Hn(s|α) =
n∑

i=1

I[Z̃i(α) > s]/n, (10)

then the KM estimator for G(z|α) = P (Z ′(α) > z) is ĜKM (z|α) =
∏

s≤z

[
1− ∆N̄ ′(s|α)

Hn(s−|α)

]
, where

∆N̄ ′(s|α) = N̄ ′(s|α) − N̄ ′(s − |α). When α is fixed, ĜKM (z|α) is a univariate KM estimator.

Since G(t1, t2) = G(z|α), ĜKM (z|α) must also be a consistent estimator of G(t1, t2).

According to (3) and ĜKM (z|α), we can construct a monotone IPW estimator of F (t1, t2),

F̂ (t1, t2) =
∫ t1

0

∫ t2

0

F ∗
n(dv1, dv2)

Ĝ(v1−, v2−)
:=

∫ t1

0

∫ t2

0

F ∗
n(dv1, dv2)

ĜKM (s− |αv)

where s =
√

v2
1 + v2

2, αv = v2/v1.

Note that the proposed IPW estimator can be written as

F̂ (t1, t2) =
1
n

n∑

i=1

I[X(1)
i ≤ t1, X

(2)
i ≤ t2]δ

(1)
i δ

(2)
i

ĜKM

(√(
X

(1)
i

)2
+

(
X

(2)
i

)2
− |αi

)

=
1
n

n∑

i=1

I[X(1)
i ≤ t1, X

(2)
i ≤ t2]δ

(1)
i δ

(2)
i

ĜKM (Z̃i(αi)− |αi)
,

where αi = X
(2)
i /X

(1)
i and the second equality sign is due to

√(
X

(1)
i

)2
+

(
X

(2)
i

)2
= Z̃i(αi).

We can see that the IPW estimator F̂ (t1, t2) can be calculated by summing up all probability

mass on points (X(1)
i , X

(2)
i ) satisfying X

(1)
i ≤ t1, X

(2)
i ≤ t2 and δ

(1)
i = 1, δ

(2)
i = 1. In other words,
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the estimator has positive probability mass only on doubly-observed points (X(1)
i , X

(2)
i , δ

(1)
i =

1, δ
(2)
i = 1). The probability mass on each doubly-observed point is 1/

[
nĜKM (Z̃i(αi)− |αi)

]
,

which can be estimated by the following steps.

(1) Calculate αi = X
(2)
i /X

(1)
i .

(2) Project all {X(1)
j , X

(2)
j , j = 1, · · · , n} vertically or horizontally on the line v2 = αiv1 and

calculate the corresponding values {Z̃j(αi), δ′j(αi), j = 1, · · · , n}.
(3) Calculate the univariate KM estimator ĜKM (z−|αi) based on {Z̃j(αi), δ′j(αi), j = 1, · · · , n}
and 1/

[
nĜKM (Z̃i(αi)− |αi)

]
.

3.3 The large sample properties

Based on the following Lemma (representing ĜKM (z|α) and 1/ĜKM (z|α) as sum of i.i.d. random

variables) we can show the large sample properties for F̂ (t1, t2).

Lemma 3.1. Let

H0(s|α) = P (Z̃(α) ≤ s, δ′(α) = 1),

H0n(s|α) =
n∑

j=1

I[Z̃j(α) ≤ s, δ′j(α) = 1]/n, (11)

and ξi(z|α) = δ′i(α)I[Z̃i(α)≤z]

H(Z̃i(α)|α)
−∫ z

0
I[s≤Z̃i(α)]
H2(s|α)

dH0(s|α). Put ςn = n−3/4(log n)3/4. Let τ be such that

(τ/
√

1 + α2, τ/
√

1 + α−2) > 0 and S(τ/
√

1 + α2, τ/
√

1 + α−2) > 0 for any α ∈ [0,∞]. Then we

have

(1) ĜKM (z|α) =
G(z|α)

n

n∑

i=1

[1− ξi(z|α)] + Rn(z, α)

(2)
1

ĜKM (z|α)
=

1
nG(z|α)

n∑

i=1

[1 + ξi(z|α)] + Rn(z, α),

and supz∈[0,τ ],α∈[0,∞] |Rn(z, α)| = O(ςn), a.s.. ¤

Proof. See appendix A.

The following theorem provides the asymptotic distribution of F̂ (t1, t2).

Theorem 3.1. Let

ηi =
I[X(1)

i ≤ t1, X
(2)
i ≤ t2]δ

(1)
i δ

(2)
i

G(Z̃i(αi)|αi)
, µi =

∫ t1

0

∫ t2

0
[ξi (s− |αv)]

F ∗(dv1, dv2)
G(v1, v2)

. (12)

For any (t1, t2) such that
√

t21 + t22 < τ , where τ is given in Lemma 3.1, we have
√

n(F̂ (t1, t2)−
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F (t1, t2)) ⇒ N(0, σ2(t1, t2)), where σ2(t1, t2) = V ar(η1) + V ar(µ1) + 2Cov(η1, µ1). ¤

Proof. See Appendix B.

Then it follows immediately that F̂ (t1, t2) converges to F (t1, t2) in probability.

Let η̂i = I[(X
(1)
i ,X

(2)
i )≤(t1,t2)]δ

(1)
i δ

(2)
i

ĜKM (Z̃i(αi)|αi)
, ξ̂i(z|α) = δ′i(α)I[Z̃i(α)≤z]

Hn(Z̃i(α)|α)
− ∫ z

0
I[s≤Z̃i(α)]
H2

n(s|α)
dH0n(s|α), and µ̂i =

∫ (t1,t2)
(0,0)

[
ξ̂i (s− |αv)

]
F ∗n(dv1,dv2)

ĜKM (s−|αv)
. We then obtain that Ĉov(η1, µ1) :=

∑
i η̂iµ̂i/n and V̂ ar(µ1) :=

∑
i µ̂

2
i /n are consistent estimators for Cov(η1, µ1) and V ar(µ1). In addition, according to

V ar(η1) =
∫ t1

0

∫ t2

0

F ∗(dv1, dv2)
G2(v1, v2)

− F (t1, t2)2,

a consistent estimator for V ar(η1) is

V̂ ar(η1) =
∫ t1

0

∫ t2

0

F ∗
n(dv1, dv2)

[ĜKM (s− |αv)]2
−

(∫ t1

0

∫ t2

0

F ∗
n(dv1, dv2)

ĜKM (s− |αv)

)2

.

Thus a consistent estimator for σ2(t1, t2) is σ̂2(t1, t2) = V̂ ar(η1) + V̂ ar(µ1) + 2Ĉov(η1, µ1).

4 Simulation studies

In this section we study the properties of the proposed estimator via sets of 200 simulations

under two different scenarios.

Scenario 1: We choose the well-known bivariate parametric model in Clayton (1978). The joint

distribution of (T (1), T (2)) is F (t1, t2) = (F1(t1)−φ +F2(t2)−φ−1)−φ−1
with φ = 4. The marginal

distributions Fi(ti), i = 1, 2 are specified as unit exponential and C(1), C(2) are independent

and identically distributed as exp(β). Simulation studies are carried out on different censoring

percentages.

We compare the mean squared errors (MSE),
∑200

k=1(F̂k − F )2/200, of Burke’s estimators and

our proposed estimator. For simplicity the mean estimates and empirical variances of Burke’s

estimators are not provided. Comparing the MSEs of the estimators in Table 1, we can see that

the proposed estimator is more efficient (has smaller MSE) than Burke’s estimators, at the tail

of distribution functions and under high censoring. The simulation also show that the variance

estimators perform very well.

Scenario 2: Data are generated from, T (1) = 0.9τ1 +0.1τ2 and T (2) = 0.2τ1 +0.8τ2, where τ1 ∼
Gamma(3, 0.3) and τ2 ∼ Gamma(2, 0.3). The distributions of independent censoring variables

C(1) and C(2) are both chosen to be exp(β). Such models arise in many reliability problems,
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Table 1: Simulation studies: (a): theoretical survival probabilities, (b): empirical means of
F̂ (x, y), (c): empirical variances of F̂ (x, y), (d): empirical means of variance estimates for
F̂ (x, y), (M): MSEs of our proposed estimator, (M1) and (M2): MSEs of Burke’s two estimators
(i) β = 4.0 corresponds to 12% censoring for T (1) and T (2) respectively, (ii) β = 3.0 corresponds
to 25% censoring, (iii) β = 1.0 corresponds to 50% censoring.

n = 80
(x, y) (0.5, 0.5) (1.0, 0.5) (1.5, 0.5)
(a) 0.3060 0.3834 0.3926

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)
(b) 0.2952 0.2964 0.2928 0.3724 0.3745 0.3697 0.3824 0.3845 0.3828
(c) 0.0029 0.0031 0.0047 0.0034 0.0038 0.0064 0.0034 0.0038 0.0077
(d) 0.0029 0.0031 0.0044 0.0035 0.0037 0.0061 0.0035 0.0038 0.0071

(M) 0.0030 0.0032 0.0049 0.0035 0.0039 0.0066 0.0035 0.0039 0.0078
(M1) 0.0046 0.0046 0.0075 0.0052 0.0053 0.0100 0.0051 0.0052 0.0121
(M2) 0.0047 0.0046 0.0077 0.0053 0.0054 0.0104 0.0051 0.0052 0.0159

(x, y) (1.0, 1.0) (1.5, 1.0) (1.5, 1.5)
(a) 0.5743 0.6253 0.7414
(b) 0.5644 0.5675 0.5623 0.6200 0.6212 0.6160 0.7363 0.7367 0.7243
(c) 0.0046 0.0053 0.0128 0.0041 0.0047 0.0150 0.0042 0.0054 0.0193
(d) 0.0042 0.0046 0.0117 0.0043 0.0049 0.0148 0.0043 0.0051 0.0251

(M) 0.0047 0.0053 0.0129 0.0041 0.0047 0.0151 0.0042 0.0054 0.0196
(M1) 0.0064 0.0067 0.0184 0.0061 0.0063 0.0261 0.0062 0.0071 0.0309
(M2) 0.0064 0.0068 0.0234 0.0062 0.0064 0.0428 0.0064 0.0075 0.0586

for example in many systems which are composed of components, the system failure time can

be expressed as a sum or a linear combination of component life times. Under this scenario

the proposed estimator also performs much better than Burke’s estimators. For simplicity the

simulation results are not shown here.

5 Discussion

This paper proposed a new IPW estimator for bivariate distribution function under right cen-

soring. Its large sample properties are proved and it is more efficient than some existing IPW

estimators. Comparing the proposed IPW estimator with other estimators, such as NPMLE

and repaired NPMLE, is left as a future research work.

The Kaplan-Meier estimate for univariate data is known to be uniformly consistent over the

entire support of the censored data distribution. This guarantees the univariate Kaplan-Meier

estimate is reliable over the entire support of the censored data distribution. Another future

research work is to study the global consistency for the bivariate estimator.
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Figure 2: For all points (t1, t2) (with polar coordinates (zi,α, θ)) in Ci, the function H(t1, t2) =
H(zi,α|α = tan θ) = ui.

A Proof of Lemma 3.1

The idea of proving Lemma 3.1 follows from Lo and Singh (1985). We first need the following

lemma.

Lemma A.1. Following the definitions of Hn(z|α) in (10), H0n(z|α) in (11) and ςn = n−3/4(log n)3/4,

we have

sup
α∈[0,∞]

sup
z∈[0,τ ]

∣∣∣∣
∫ z

0

[
H−1

n (s|α)−H−1(s|α)
]
d

[
H−1

0n (s|α)−H−1
0 (s|α)

]∣∣∣∣ = O(ςn) a.s.

Proof. Let Hn(t1, t2) =
∑n

i=1 I[X(1)
i > t1, X

(2)
i > t1]/n. Obviously we have Hn(t1, t2) =

Hn(z|α), where z =
√

t21 + t22, α = t2/t1.

We divide [0, 1] into subintervals [ui+1, ui], i = 0, · · · , kn, where kn = O(
√

n/ log n) and the

sequence 1 = u0 > u1 > · · · > ukn = 0 are such that |ui − ui−1| ≤ O(
√

log n/n), i = 1, · · · , kn.

Let Ci = {(v1, v2) : such that H(v1, v2) = ui}. Since H(v1, v2) is continuous, Ci is a continuous

curve. Given α, the line v2 = αv1 can be partitioned by points with polar coordinates (zi,α, θ =

arctanα), i = 1, · · · , kn, where zi,α is such that H(zi,α|α) = ui. Note that (zi,α, θ) is the polar

coordinates of the intersection point of line v2 = αv1 and Ci. See Figure 2 for details.
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Following from the proof of Lemma 2 in Lo and Singh (1985), we have that for any α ∈ [0,∞],

∣∣∣∣
∫ z

0

[
H−1

n (s|α)−H−1(s|α)
]
d

[
H−1

0n (s|α)−H−1
0 (s|α)

]∣∣∣∣
≤ kn sup

0≤z≤τ
|H−1

n (s|α)−H−1(s|α)| max
0≤i≤kn−1

|H0n(zi+1,α|α)−H0n(zi,α|α)−H0(zi+1,α|α) + H0(zi,α|α)|

+2 max
0≤i≤kn−1

sup
s∈[zi,α,zi+1,α]

|H−1
n (s|α)−H−1

n (zi,α|α)−H−1(s|α) + H−1(zi,α|α)|

:= A(α) + B(α). (13)

Now we prove supα B(α) = O(ςn). We further partition [ui+1, ui] into subintervals [ui(j+1), uij ], j =

0, · · · , an−1, such that |ui(j+1)−uij | = O(n−3/4(log n)3/4) uniformly in i, j and an = O(n1/4(log n)−1/4).

Define Cij = {(v1, v2) : such that H(v1, v2) = uij} and zij,α is such that H(zij,α|α) = uij . Note

that (zij,α, θ) is the polar coordinates of the intersection point of line v2 = αv1 and Cij .

Since sups,α |Hn(s|α)−H(s|α)|2 = supv1,v2
|Hn(v1, v2)−H(v1, v2)|2 = O((log n)/n), similarly as

the results in Lo and Singh (1985), we have that for a given value of α,

sup
s∈[zi,α,zi+1,α]

|H−1
n (s|α)−H−1

n (zi,α|α)−H−1(s|α) + H−1(zi,α|α)|

≤ ρ sup
s∈[zi,α,zi+1,α]

|Hn(s|α)−Hn(zi,α|α)−H(s|α) + H(zi,α|α)|+ O

(
log n

n

)
, a.s.,

where ρ is a constant and does not depend on α.

We partition [0, π/2] into subintervals 0 = θ0 < θ1 < · · · < θbn = π/2 and let αl = tan θl.

Let point pl,ij with coordinates (t1,l,ij , t2,l,ij) be the intersection point of line v2 = αlv1 and

curve Cij . A rectangle Rl,ij is given by points pl,ij , pl+1,ij and points p∗l,ij := (t1,l,ij , t2,l+1,ij),

p∗l+1,ij := (t1,l+1,ij , t2,l,ij). See Figure 3 for details. If bn is large enough, we can choose the

sequence θl, l = 0, · · · , bn such that

ui(j−1) > H(t1,l+1,ij , t2,l,ij) > uij

uij > H(t1,l,ij , t2,l+1,ij) > ui(j+1), ∀i, j, l, (14)

which means that points p∗l,ij and p∗l+1,ij are between Ci(j+1) and Ci(j−1). Thus any two points

(t1, t2) and (t∗1, t
∗
2) within the rectangle Rl,ij are such that |H(t1, t2) − H(t∗1, t

∗
2)| ≤ |ui(j+1) −

ui(j−1)| = O(ςn), uniformly in i, j, l.
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Figure 3: Partition. The lower three curves are Ci−1(an−1), Ci, Ci1 and the upper three curves are
Ci(j−1), Cij , Ci(j+1). Lines v2 = αl+1v1 and v2 = αlv1 intersect with Ci at points pl+1,i and pl,i,
which gives a rectangle Rl,i. The two lines intersect with Cij at points pl+1,ij and pl,ij , which
gives a rectangle Rl,ij .

With such partitions and following the results in Lo and Singh (1985), we have

sup
α
|B(α)| (15)

≤ ρ max
0≤l≤bn−1

sup
α∈[αl,αl+1]

max
i

sup
s∈[zi,α,zi+1,α]

|Hn(s|α)−Hn(zi,α|α)−H(s|α) + H(zi,α|α)|+ O

(
log n

n

)

= ρ max
l

sup
α∈[αl,αl+1]

max
i,j

|Hn(zij,α|α)−Hn(zi,α|α)−H(zij,α|α) + H(zi,α|α)|+ O(ςn), a.s..

For points p := (t1, t2), we denote Hn(t1, t2) and H(t1, t2) as Hn(p) and H(p) for simplicity.

According to the monotonicity of Hn(t1, t2) and H(t1, t2) we have Hn(p∗l,ij) ≤ Hn(zij,α|α) ≤
Hn(p∗l+1,ij) and H(p∗l,ij) ≤ H(zij,α|α) ≤ H(p∗l+1,ij), for all α ∈ [αl, αl+1]. Then we have

sup
α∈[αl,αl+1]

|Hn(zij,α|α)−Hn(zi,α|α)−H(zij,α|α) + H(zi,α|α)|

≤ min
{|Hn(p∗l+1,ij)−Hn(p∗l,i)−H(p∗l,ij) + H(p∗l+1,i)|,

|Hn(p∗l,ij)−Hn(p∗l+1,i)−H(p∗l+1,ij) + H(p∗l,i)|
}

≤ min
{|Hn(p∗l+1,ij)−Hn(p∗l,i)−H(p∗l+1,ij) + H(p∗l,i)|,

|Hn(p∗l,ij)−Hn(p∗l+1,i)−H(p∗l,ij) + H(p∗l+1,i)|
}

+ O(ςn), a.s.. (16)

Using similar methods as that in Lo and Singh (1985), we can also prove

min
{|Hn(p∗l+1,ij)−Hn(p∗l,i)−H(p∗l+1,ij) + H(p∗l,i)|,

|Hn(p∗l,ij)−Hn(p∗l+1,i)−H(p∗l,ij) + H(p∗l+1,i)|
}

= O(ςn), a.s.. (17)

11



From (15), (16) and (17), we have supα |B(α)| = O(ςn). Similarly we can prove supα A(α) =

O(ςn). The lemma then follows from (13).

Proof of Lemma 3.1. We have

log ĜKM (z|α)− log G(z|α)

=
(

log ĜKM (z|α)−
∫ z

0
H−1

n (s|α)dH0n(s|α)
)

+
(∫ z

0
H−1

n (s|α)dH0n(s|α)− log G(z|α)
)

:= I(z, α) + II(z, α). (18)

Following from the proof of Theorem 1 in Lo and Singh (1985) and Lemma A.1, we have

II(z, α)

= −
∑

j ξj(z|α)
n

+
∫ z

0

[
H−1

n (s|α)−H−1(s|α)
]
d

[
H−1

0n (s|α)−H−1
0 (s|α)

]
+ O

(
log n

n

)

= −
∑

j ξj(z|α)
n

+ O (ςn) a.s.. (19)

Now we show that

sup
z∈[0,τ ],α∈[0,∞]

|I(z, α)| = sup
z∈[0,τ ],α∈[0,∞]

∣∣∣∣log ĜKM (z|α)−
∫ z

0
H−1

n (s|α)dH0n(s|α)
∣∣∣∣ = O(n−1) a.s..(20)

To see this note that for any value of α,

sup
z∈[0,τ ],α∈[0,∞]

∣∣∣∣log ĜKM (z|α)−
∫ z

0
H−1

n (s|α)dH0n(s|α)
∣∣∣∣

≤ sup
α

∑ ∗
∣∣∣∣∣log

(
n− i

n− i + 1

)
+

1
n

1
H̄(Z̃(i)(α)|α)

∣∣∣∣∣

≤ sup
α

∑ ∗
∣∣∣∣log

(
1− 1

n− i + 1

)
+

1
n

n

n− i

∣∣∣∣ ,

where
∑∗ extends over all i such that Z̃(i)(α) ≤ z and δ′(i) = 1.

Since G(τ/
√

1 + α2, τ/
√

1 + α−2) > 0 and S(τ/
√

1 + α2, τ/
√

1 + α−2) > 0 for any value of

α ∈ [0,∞], we have that for z ≤ τ the integer i appearing in
∑ ∗ is ≤ (1 − ε)n, for a positive

ε, for all large n a.s.. Then (20) follows using two term Taylor’s expansion for log(1 + w) with

w = − 1
n−i+1 .

Following from (18), (19) and (20), the first result of the lemma is proved by using two term

Taylor’s expansion for log ĜKM − log G and the second result of the lemma is proved by using

two term Taylor’s expansion for log ŵ − log w with ŵ = 1/ĜKM , w = 1/G. ¤
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B Proof of Theorem 3.1

Proof. According to Lemma 3.1 we can write

F̂ (t1, t2) =
∫ t1

0

∫ t2

0

F ∗
n(dv1, dv2)

ĜKM (s− |αv)

=
∫ t1

0

∫ t2

0
F ∗

n(dv1, dv2)


 1

G(s− |αv)
+

1
G(s− |αv)

∑

j

ξj(s− |αv)




+
∫ t1

0

∫ t2

0
Rn(s, αv)F ∗

n(dv1, dv2)

=
∫ t1

0

∫ t2

0
F ∗

n(dv1, dv2)


 1

G(s− |αv)
+

1
G(s− |αv)

∑

j

ξj(s− |αv)


 + O(ςn), a.s.,

where s =
√

v2
1 + v2

2, αv = v2/v1.

Let αi = X
(2)
i /X

(1)
i . For simplicity we use Z̃i to denote Z̃i(αi). Then

F̂ (t1, t2) =
1
n

n∑

i=1

I[X(1)
i ≤ t1, X

(2)
i ≤ t2]δ

(1)
i δ

(2)
i

G(Z̃i|αi)

+
1
n2

n∑

i=1

n∑

j=1

I[X(1)
i ≤ t1, X

(2)
i ≤ t2]δ

(1)
i δ

(2)
i

G(Z̃i|αi)
ξj(Z̃i − |αi) + O(ςn)

From the definition of ηi in (12), we have

F̂ (t1, t2)− F (t1, t2) =
1
n

n∑

i=1

[ηi − F (t1, t2)] +
1
n2

n∑

i6=j

ηiξj(Z̃i − |αi) + O(ςn)

:=
1
n

n∑

i=1

[ηi − F (t1, t2)] + Un + O(ςn).

Note that Un is a U-statistic. From Serfling (1980) and EUn = 0, we have

Un =
∑n

k=1 E(Un|X(1)
k , X

(2)
k , δ

(1)
k , δ

(2)
k ) + o(n−1(log n)γ), for some γ > 0.

We also obtain that for i 6= j, E(ηiξj(Z̃i − |αi)|X(1)
i , X

(2)
i , δ

(1)
i , δ

(2)
i ) = 0 and

µj = E(ηiξj(Z̃i − |αi)|X(1)
j , X

(2)
j , δ

(1)
j , δ

(2)
j ) =

∫ t1

0

∫ t2

0
[ξj (s− |αv)]

F ∗(dv1, dv2)
G(v1, v2)

.

Thus E(Un|X(1)
k , X

(2)
k , δ

(1)
k , δ

(2)
k ) =

∑
i6=j E[ηiξj(Z̃i−|αi)|X(1)

k , X
(2)
k , δ

(1)
k , δ

(2)
k ]/n2 = (n−1)µk/n2.

Therefore we have F̂ (t1, t2)−F (t1, t2) = 1
n

∑n
i=1[ηi−F (t1, t2)]+ 1

n

∑n
k=1 µk+O(ςn). It follows that

√
n(F̂ (t1, t2)−F (t1, t2)) ⇒ N(0, σ2(t1, t2)) with σ2(t1, t2) = V ar(η1) + V ar(µ1) + 2Cov(η1, µ1).
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