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ABSTRACT

Multiple equilibria models are one of the main categories of theoretical models for stock market

crashes. To the best of my knowledge, existing multiple equilibria models have been developed

within a discrete time framework and only explain the intuition behind a single crash on the

market.

The main objective of this thesis is to model multiple equilibria and demonstrate how market prices

move from one regime into another in a continuous time framework. As a consequence of this, a

multiple jump structure is obtained with both possible booms and crashes, which are defined as

points of discontinuity of the stock price process.

I consider five different models for stock market booms and crashes, and look at their pros and

cons. For all of these models, I prove that the stock price is a càdlàg semimartingale process and

find conditional distributions for the time of the next jump, the type of the next jump and the size

of the next jump, given the public information available to market participants. Finally, I discuss

the problem of model parameter estimation and conduct a number of numerical studies.
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1. INTRODUCTION

In literature, there are four major categories of models for stock market crashes: liquidity shortage

models, multiple equilibria and sunspot models, bursting bubble models, and lumpy information

aggregation models (see, e.g., Brunnermeier [9]). In liquidity shortage models, market price might

plummet due to a temporary reduction in liquidity (see, e.g., Grossman [22]). According to mul-

tiple equilibria and sunspot models, several price levels exist and a market crash might occur for

no fundamental reason (see, e.g., Gennotte and Leland [21], Krugman [31], Drazen [18], Barlevy

and Veronesi [5,7], Yuan [48], Angeletos and Werning [4], Barlevy and Veronesi [6], Ozdenoren and

Yuan [35], and Ganguli and Yang [20]). In bursting bubble models, all market participants realise

an asset price is greater than its fundumental value, but they keep buying that asset since they

believe others do not know that it is overpriced, and at some point the bubble bursts and market

crashes (see, e.g., Abreu and Brunnermeier [2], Scheinkman and Xiong [42], Cox and Hobson [15],

Jarrow et al. [28], O’Hara [34], Allen and Gale [3], Brunnermeier [10], Friedman and Abraham

[19], Jarrow et al. [26,27,29], Kindleberger and Aliber [30], and Brunnermeier and Oehmke [11]).

According to the lumpy information aggregation approach, the overpricing issue is not a common

knowledge among the market participants, but at some point an additional relevant information is

revealed and, combining that with the past price dynamics, less informed traders suddenly realise

that this overpricing exists and the price sharply declines (see, e.g., Romer [40], Caplin and Leahy

[14] and Hong and Stein [24]).

The main objective of this thesis is to develop a quantitative approach to the modelling of multiple

equilibria which describes how market prices jump from one regime to another. As a starting point

for the research, I take the one-period model in the paper of Gennotte and Leland [21] and study

its extension into continuous time.

Gennotte and Leland [21] attempts to explain the market crash of 1987 by the presence of dy-

namic hedgers. In this model, two assets are traded: a single risky stock and risk-free bond. The



future price of the risky security is assumed to be normally distributed and the current price is

determined according to supply and demand. Net supply consists of a fixed amount, some normally

distributed liquidity shocks and some dynamic hedgers component. Demand consists of uninformed

and informed investors, who all maximise expected exponential utility of their wealth over a single

period. According to this model, when hedging activity is unobserved the excess-demand curve can

be backward-bending, and this creates multiple equilibria. It means that a small shift in informa-

tion can lead to a market crash.

In Chapter 2, I develop three multiple equilibria models in a continuous time. It is assumed that two

assets, a single risky stock and risk-free bond, are traded and three groups of agents are considered:

rational investors, dynamic hedgers and noise traders. The first group of agents corresponds to the

total demand, while the second and the third groups correspond to the total supply in Genotte

and Leland [20]. For the sake of simplicity, it is supposed that there is no information asymmetry.

In making their decisions, agents approximate the future stock price dynamics with an auxiliary

Brownian motion with a drift process, and this makes it normally distributed. The first two models

assume that the total number of dynamic hedgers stays constant over all of the time period. The

difference between the two models is in alternative mechanisms for determining how the market

price moves from one regime to another. The third model corresponds to the scenario of the number

of dynamic hedgers being a jump stochastic process. For all three models, I prove that the stock

price is a càdlàg semimartingale process and find conditional distributions for the time of the next

jump, the type of the next jump and the size of the next jump, given the information available to

market participants.

Although all three models work in accordance with the main objective of this thesis, they have some

drawbacks. First, they do not eliminate the possibility of negative prices. Second, actual price dy-

namics are different from the auxiliary Brownian motion with a drift approximation. Third, they

do not have a solution in a closed form and, therefore, can be solved only numerically. Finally, the

jump structure in the first two models is quite restrictive and does not allow for some frameworks; in

particular more than two consecutive market booms or more than two consecutive market crashes.

This provides the motivation to develop two alternative models that will be presented in Chapter

3. For both models, I prove that the stock price is a càdlàg semimartingale process and find condi-

tional distributions for the time of the next jump, the type of the next jump and the size of the next

9



jump, given the information available to market participants. These models yield positive prices

and closed-form solutions, but the pricing equation is given exogenously and a simple jump struc-

ture model does not allow two consecutive booms or crashes: any boom precedes a crash which in

turn precedes a boom etc. The simple jump structure model is designed just to resemble the shape

of the market microstructure models. The Markov chain jump structure model is an extension of

the simple jump structure model and relaxes the construction that a crash can be followed only by

a boom and a boom can be followed only by a crash.

The sequence of this thesis is organised as follows. In Chapter 2, three market microstructure

models are introduced. In Chapter 3, two alternative models are considered. In Chapter 4, the

problem of model parameter estimation is discussed. Chapter 5 contains numerical studies and

Chapter 6 concludes.
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2. MARKET MICROSTRUCTURE MODELS

2.1 Market microstructure framework

I will work on a filtered stochastic base (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. It is

assumed that time horizon is [0, T ] and trading takes place continuously. In the models developed

in this chapter, there are two underlying assets in the economy: risky stock and risk-free bond.

Risk-free bonds are in perfectly elastic supply and grow at net return r > 0: one unit invested at

time t returns er∆t units at time t + ∆t, 0 ≤ t < t + ∆t ≤ T . Stock is assumed to be in zero net

supply.

In making their decisions, agents use their wealth (Ws, 0 ≤ s ≤ t < T ), the stock price process

(Ps, 0 ≤ s ≤ t < T ) and an auxiliary process (pu, t ≤ u ≤ T ) such that

pu = Pt + α1 × βu−t + α2 × (u− t), (2.1)

where β is a standard Brownian motion that starts at 0, α1 > 0 and α2 ∈ R. This process

(pu, t ≤ u ≤ T ) approximates the future dynamics of the stock price (Pu, t ≤ u ≤ T ).

Let T0 ∈ (0, T ). It is assumed that agents estimate parameters in (2.1) based on the values

Pti − Pti−1 , 1 ≤ i ≤ k, where 0 = t0 < t1 < ... < tk < T0 and Pti stand for the end-of-day prices

up to time T0. Since Brownian motion has independent increments, they can use the following

maximum likelihood estimates:

α̂2 =

∑k
i=1(Pti − Pti−1)∑k
i=1(ti − ti−1)

=
Ptk − P0

tk

and

α̂1 =

√√√√1

k

k∑
i=1

(Pti − Pti−1 − α̂2(ti − ti−1))2

ti − ti−1
.

In the subsequent sections, I will analyse the stock price dynamics (Pt, T0 ≤ t < T ).



2.1.1 Rational investors’ demand for stock

First, I start in the discrete framework and then take limits at the end. Following the methodology

of Gennotte and Leland [21], each rational investor maximises the expected utility of time t+ ∆t

wealth Wt+∆t with respect to the amount of shares of risky stock, given the information this investor

has at time t, and assuming there is no trading between t and t+ ∆t and that he or she invests in

two underlying assets:

E
[
U
(
Wt+∆t

)
|
(

(Ws, Ps), 0 ≤ s ≤ t
)]
→ max

x
, (2.2)

where

Wt+∆t = xpt+∆t + er∆t(Wt − xPt) (2.3)

and utility function is assumed to exhibit constant absolute risk aversion with coefficient a > 0:

U
(
Wt+∆t

)
= −e−

Wt+∆t
a .

In view of (2.2) and (2.3), rational investors solve the following maximisation problem:

−e
(er∆t−1)xPt−α2x∆t

a E
(
e−

α1xβ∆t
a

)
→ max

x
.

The formula for the moment-generating function of a normal random variable yields the individual

rational investor’s demand for stock in the discrete framework is equal to

a(α2∆t− (er∆t − 1)Pt)

α2
1∆t

.

As ∆t ↓ 0, it can be concluded that the cumulative demand for rational investors in the continuous

framework is equal to

wR × a(α2 − rPt)
α2

1

,

where wR is the total number of rational investors, which is supposed to be constant.

2.1.2 Dynamic hedgers’ demand for stock

It is assumed that the total number of dynamic hedgers follows some stochastic process wDt with

the sole objective to replicate contingent claims of the following type:

F (PT ) = max(PT −K, 0).
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Since at-the-money forward options attract the greatest amount of volume, which decreases dramat-

ically as the option becomes deeper in-the-money forward or out-of-the-money forward, I normalise

the total number of contingent claims for each hedger to 1 but assume that the number of contin-

gent claims with strike ∈ dK is equal to 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK for some small value of σκ > 0, where

κ = Pske
r(T−sk) and Ptk is the most recent end-of-day price observation: 0 = t0 < t1 < ... < tk < T0.

In (2.18), an upper bound for σκ will be specified.

It is supposed that the dynamic hedgers believe that the stock price follows (2.1), thus, they value

the claim at

P (t, x) = EP
[
e−r(T−t)F

(
er(T−t)(x+ α1

∫ T−t

0
e−rsdβs)

)]
, for t ∈ [T0, T ).

Therefore,

P (t, x) =

∫ ∞
Ke−r(T−t)

(y −Ke−r(T−t)) 1√
2πΣ2(t)

e
− (y−x)2

2Σ2(t) dy

= Σ(t)× 1√
2π
e
− (x−Ke−r(T−t))2

2Σ2(t) + (x−Ke−r(T−t))Φ
(x−Ke−r(T−t)

Σ(t)

)
,

where

Σ(t) = α1

√
1− e−2r(T−t)

2r

and

Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du

is the cumulative distribution function of a standard normal distribution.

Hence, the dynamic hedgers component of demand at time t ∈ [T0, T ) is equal to

π(t, x) = wDt

∫ ∞
−∞

∂P (t, x)

∂x

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

= wDt

∫ ∞
−∞

Φ
(x−Ke−r(T−t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK.

2.1.3 Noise traders’ demand for stock

It is assumed that the noise traders component of demand is given by wN × (µN + σNBt), σN > 0,

where (Bt, t ≥ 0) is a standard Brownian motion starting at 0 and wN is the total number of

13



noise traders, which is supposed to be constant. Noise traders trade according to the rule that is

independent of the stock price fundamental value and is exogenous to the model. The noise traders

component of demand makes the dynamics of the stock price stochastic. Note that since Brownian

motion is a continuous process, the noise traders component of demand is also continuous.

2.1.4 Pricing equation

The market clearing condition states that the total demand should be equal to 0:

wR × a(α2 − rPt)
α2

1

+ wDt ×
∫ ∞
−∞

Φ
(Pt −Ke−r(T−t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK + wN × (µN + σNBt) = 0.

Denote by

γ1 = wR × ar

α2
1

, γ2 = wR × aα2

α2
1

+ wN × µN , γ3 = wN × σN , (2.4)

and define function H : [T0, T )× R+ × R→ R by

H(t, z, x) =
γ1x− z

∫∞
−∞Φ

(
x−Ke−r(T−t)

Σ(t)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK − γ2

γ3
. (2.5)

Thus, the pricing equation is given by

H(t, wDt , Pt) = Bt. (2.6)

In the remaining part of this section, the properties of this equation will be discussed.

Remark 2.1. Since 0 ≤ z
∫∞
−∞Φ

(
x−Ke−r(T−t)

Σ(t)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK ≤ z, it can be concluded that

lim
x→−∞

H(t, z, x) = −∞ and lim
x→∞

H(t, z, x) =∞.

Remark 2.2. Note that H(t, z, x) is C1,0,2
(

[T0, T )× R+ × R
)

.

Differentiating H(t, z, x) with respect to x, it can be shown that

Hx(t, z, x) =
1

γ3

(
γ1 −

z√
2πσ2

κΣ2(t)

∫ ∞
−∞

1√
2π
e
− (x−Ke−r(T−t))2

2Σ2(t) e
− (K−κ)2

2σ2
κ dK

)
(2.7)

=
1

γ3

(
γ1 −

z√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

)e− (x−κe−r(T−t))2

2(σ2
κe
−r(T−t)+Σ2(t))

)
.
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If the total number of dynamic hedgers satisfies

wDt ≤ γ1

√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

)
, (2.8)

then Hx(t, wDt , x) ≥ 0 for all x, that is, H(t, wDt , x) is an increasing function of x. In virtue of

Remark 2.1 and Remark 2.2, the pricing equation has a single solution which is denoted by

p̄(t, wDt , Bt). (2.9)

If the total number of dynamic hedgers is a continuous process, then, in obedience to the implicit

function theorem, the stock price process is also continuous. Therefore, if wDt satisfies (2.8), the

price jumps only through a jump in the number of dynamic hedgers wDt .

On the other hand, if wDt satisfies

wDt > γ1

√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

)
, (2.10)

then Hx(t, wDt , x) as a function of x changes its sign in p̄1(t, wDt ) and p̄2(t, wDt ):

Hx(t, wDt , Pt)


> 0 if Pt < p̄1(t, wDt ) or Pt > p̄2(t, wDt )

= 0 if Pt = p̄1(t, wDt ) or Pt = p̄2(t, wDt )

< 0 if p̄1(t, wDt ) < Pt < p̄2(t, wDt ),

(2.11)

where

p̄1(t, wDt ) = κe−r(T−t) −

√
−2(σ2

κe
−r(T−t) + Σ2(t)) ln

( γ1

wDt

√
2π(σ2

κe
−2r(T−t) + Σ2(t))

)
(2.12)

and

p̄2(t, wDt ) = κe−r(T−t) +

√
−2(σ2

κe
−r(T−t) + Σ2(t)) ln

( γ1

wDt

√
2π(σ2

κe
−2r(T−t) + Σ2(t))

)
. (2.13)

Denote the local maximum and local minimum values by

H1(t, wDt ) = H(t, wDt , p̄1(t, wDt )) and H2(t, wDt ) = H(t, wDt , p̄2(t, wDt )). (2.14)

In the market microstructure models developed in this chapter, the dynamic hedgers component of

demand π(t, Pt) is an increasing function of Pt, while the rational investors component of demand

wR × a(α2−rPt)
α2

1
is a decreasing function of Pt. If the total number of dynamic hedgers wDt is large

15



The number of dynamic hedgers is small

x

H
(t

,z
,x

)

The number of dynamic hedgers is large

x

H
(t

,z
,x

)

Fig. 2.1: Plot of H(t, z, x) if the number of dynamic hedgers wDt = z at time t is small and large

enough such that it satisfies (2.10), then the roots of the pricing equation (2.6) have the following

structure:

p̄l(t, wDt , Bt) if Bt < H2(t, wDt )

p̄l(t, wDt , H2(t, wDt )) and p̄2(t, wDt ) if Bt = H2(t, wDt )

p̄l(t, wDt , Bt), p̄
m(t, wDt , Bt) and p̄u(t, wDt , Bt) if H2(t, wDt ) < Bt < H1(t, wDt )

p̄1(t, wDt ) and p̄u(t, wDt , H1(t, wDt )) if Bt = H1(t, wDt )

p̄u(t, wDt , Bt) if Bt > H1(t, wDt ),

(2.15)

where p̄l(t, wDt , Bt), p̄
m(t, wDt , Bt) and p̄u(t, wDt , Bt) are defined implicitly as the roots of (2.6)

satisfying
p̄l(t, wDt , Bt) ≤ p̄1(t, wDt ) and defined if Bt ≤ H1(t, wDt )

p̄1(t, wDt ) ≤ p̄m(t, wDt , Bt) ≤ p̄2(t, wDt ) and defined if H2(t, wDt ) ≤ Bt ≤ H1(t, wDt )

p̄u(t, wDt , Bt) ≥ p̄2(t, wDt ) and defined if Bt ≥ H2(t, wDt ).

(2.16)

Therefore, the system exhibits multiple equilibria if H2(t, wDt ) ≤ Bt ≤ H1(t, wDt ). Market booms

and crashes occur when the price moves from one regime into another, either through a jump into

an alternative root according to (2.15) or through a jump in the total number of dynamic hedgers

wDt .
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2.2 Constant number of dynamic hedgers models

In this section, it is assumed that the total number of dynamic hedgers wD is a constant satisfying

condition

wD > max
t∈[T0,T )

(
γ1

√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

))
. (2.17)

Recall that the value of σκ should be quite small, hence, it can be specified that

0 < σ2
κ ≤

α2
1

2r
. (2.18)

In view of (2.18), condition (2.17) is equivalent to

wD > γ1

√
2π
(
σ2
κe
−2r(T−T0) + Σ2(T0)

)
. (2.19)

In virtue of (2.10), the system admits multiple equilibria which give rise to jumps during the whole

interval [T0, T ). To simplify the notation introduced in (2.5), (2.12)− (2.14) and (2.16), let

h(t, x) = H(t, wD, x), (2.20)

p1(t) = p̄1(t, wD), p2(t) = p̄2(t, wD), (2.21)

h1(t) = H1(t, wD), h2(t) = H2(t, wD), (2.22)

and

pl(t, y) = p̄l(t, wDt , y), pm(t, y) = p̄m(t, wDt , y), pu(t, y) = p̄u(t, wDt , y). (2.23)

Remark 2.3. According to (2.20) and Remark 2.1, it can be concluded that

lim
x→−∞

h(t, x) = −∞ and lim
x→∞

h(t, x) =∞. (2.24)

Remark 2.4. According to (2.20) and Remark 2.2, it can be shown that h(t, x) is C1,2
(

[T0, T )×R
)

.

In view of (2.11), (2.20) and (2.21), it can be concluded that

hx(t, Pt)


> 0 if Pt < p1(t) or Pt > p2(t)

= 0 if Pt = p1(t) or Pt = p2(t)

< 0 if p1(t) < Pt < p2(t).

(2.25)
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The pricing equation (2.6) can be rewritten as

h(t, Pt) = Bt. (2.26)

Roots of (2.26) have the following structure:

pl(t, Bt) if Bt < h2(t)

pl(t, h2(t)) and p2(t) if Bt = h2(t)

pl(t, Bt), p
m(t, Bt) and pu(t, Bt) if h2(t) < Bt < h1(t)

p1(t) < pu(t, h1(t)) if Bt = h1(t)

pu(t, Bt) if Bt > h1(t),

(2.27)

where pl(t, Bt), p
m(t, Bt) and pu(t, Bt) satisfy
pl(t, Bt) ≤ p1(t) and defined if Bt ≤ h1(t)

p1(t) ≤ pm(t, Bt) ≤ p2(t) and defined if h2(t) ≤ Bt ≤ h1(t)

pu(t, Bt) ≥ p2(t) and defined if Bt ≥ h2(t).

(2.28)

Recall that the main goal of this thesis is to model how market prices move from one root to

another within this multiple equilibria framework. To do that, define a state process St taking

values in a state space S consisting of three different states: lower level equilibrium s1, medium

level equilibrium s2 and upper level equilibrium s3. If St is known, the stock price value can be

assigned by

Pt =


pl(t, Bt) if St = s1

pm(t, Bt) if St = s2

pu(t, Bt) if St = s3.

(2.29)

According to (2.28), St = s1 for Bt < h2(t) and St = s3 for Bt > h1(t) whereas St can take any

value in S for h2(t) ≤ Bt ≤ h1(t), that is, when the system exhibits multiple equilibria.

Remark 2.5 I would like to have a model that satisfies three basic conditions. First, it should not

have infinite price oscillation. Second, the jump times should be random. Finally, the jump sizes

and the price values at the time of the jump should depend not only on those jump times but also

from some other source of randomness. Otherwise, it would be known at time t by how much or

at what price level the stock price process could jump at time u > t, and this is not the case if
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discussing actual stock price dynamics.

Remark 2.6 The most intuitive and simple model would be the one that excludes state s2 from

consideration and defines St such that it switches from s1 to s3 (respectively from s3 to s1) when

Bt crosses h1(t) (respectively h2(t)). In virtue of Theorem 2.1, it can be concluded that an infinite

price oscillation is not possible; but the problem is that, although the jump times are random, the

size of positive (respectively negative) jump at time t is equal to pu(t, h1(t)) − p1(t) (respectively

pl(t, h1(t))− p2(t)), that is, there is no other source of randomness aside from the jump time. For

this reason, consideration is given to the models with state processes taking all three values in S. In

Section 2.2.1 and Section 2.2.2, two models are developed that satisfy all three conditions described

in Remark 2.5.

Theorem 2.1 There exists some ∆ > 0 such that

h1(t)− h2(t) ≥ ∆, ∀t ∈ [T0, T ).

Proof The proof is provided in the Appendix. �

2.2.1 Endogenous switching model

Suppose the system is in the lower level equilibrium s1. If a simple rule is set St = s2 or St = s3 for

h2(t) ≤ Bt ≤ h1(t), the result would be an infinite price oscillation when Brownian motion Bt hits

the boundary h2(t) since Bt would come back to h2(t) infinitely fast. To avoid this oscillation, it is

necessary for St to stay in the state s1 for a while if Bt hits h2(t). According to Remark 2.5, the

rule to wait until Bt hits the boundary h1(t) does not work very well. In the endogenous switching

model, it is assumed that there is some exogenous exponentially distributed random waiting period

until Bt hits the boundary h1(t). After that random period expires, if the system is still in the state

s1, then instead of the boundary h1(t), a new boundary is necessary which is a convex combination

of h1(t) and h2(t). When Bt hits that boundary, h2(t) < Bt < h1(t), and the system switches from

the lower level equilibrium to the upper or medium level equilibrium pursuant to the value of an

independent Bernoulli random variable. If the system is in the upper level equilibrium s3, then
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the switching procedure is similar. If the system is in the medium level equilibrium s2, then it is

necessary to wait until Bt hits one of the two boundaries h1(t) or h2(t) and then St switches to the

corresponding regime.

Model setup

For any fixed u ∈ [T0,∞) and c ∈ R+, define functions hl : [T0, T )→ R and hu : [T0, T )→ R by:

hl(t;u) =

 h1(t) if t ≤ u

e−c(t−u)h1(t) +
(

1− e−c(t−u)
)
h2(t) if t > u

(2.30)

and

hu(t;u) =

 h2(t) if t ≤ u(
1− e−c(t−u)

)
h1(t) + e−c(t−u)h2(t) if t > u.

(2.31)

Function hl (respectively hu) corresponds to a boundary the process Bt should hit to switch from

the lower level equilibrium (respectively upper level equilibrium) to another equilibrium. In the

models developed in the thesis, the distributions for the time of, the size of and the type of the

next jump are calculated, and, for the market microstructure models, it can be seen that these

probabilities can be expressed in terms of some functions of Brownian motion hitting time densities

and probabilities of one-sided or two-sided curved boundaries. By construction, functions hl(t;u)

and hu(t;u) are in the class of C2
(

[T0, T )
)

, and this technical condition admits application of

various numerical techniques that I discuss in Chapter 5.

Let the sequences of independent random variables (T li , i = 0, 1, ...), (T ui , i = 0, 1, ...),

(ζ lui , i = 0, 1, ...) and (ζuli , i = 0, 1, ...), where

T li ∼ Exp(λl), λl > 0, T ui ∼ Exp(λu), λu > 0,

ζ lui =

 1 with probability plu

0 with probability plm = 1− plu
and ζuli =

 1 with probability pul

0 with probability pum = 1− pul,

(2.32)

be F-measurable and such that they are all independent of (Bt, t ≥ 0) and of each other.
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Sequences (T li , i = 0, 1, ...) and (T ui , i = 0, 1, ...) correspond to waiting times in state s1 and s3

until the Brownian motion hits the convex combination of h1 and h2 instead of just h1 and h2, and

if this happens, then sequences of independent Bernoulli random variables ζ lui and ζuli determine

the new values of the state process St.

Definition 2.1 Define processes (St, T0 ≤ t < T ) and (Pt, T0 ≤ t < T ) according to the fol-

lowing construction mechanism.

Step 1 Set i = 0, τ0 = T0 and the starting value of the state process

Sτ0 =


s1 if Bτ0 ≤ h2(τ0)

s3 if Bτ0 ≥ h1(τ0)

s if h2(τ0) < Bτ0 < h1(τ0),

where s ∈ S is some known constant. If h2(τ0) < Bτ0 < h1(τ0), then all three states are possible and

Sτ0 = s just for definiteness. Although the system exhibits multiple equilibria when Bτ0 = h2(τ0)

(respectively Bτ0 = h1(τ0)), assign value Sτ0 = s1 (respectively Sτ0 = s3) in order to avoid an

infinite price oscillation. For this reason, it is assigned St = s1 (respectively St = s3) if Bt ≤ h2(t)

(respectively Bt ≥ h1(t)) for all t ∈ [T0, T ).

Step 2 Set

τi+1 =


inf
(
t > τi : Bt ≥ hl(t; τi + T li )

)
∧ T if Sτi = s1

inf
(
t > τi : Bt ≥ h1(t) or Bt ≤ h2(t)

)
∧ T if Sτi = s2

inf
(
t > τi : Bt ≤ hu(t; τi + T ui )

)
∧ T if Sτi = s3,

where inf ∅ =∞ by convention.

If the system is in the lower (respectively upper) level state s1, then it is necessary to wait until

Bt hits the boundary hl (respectively hu). If the system is in the medium level state s2, then it is

necessary to wait until Bt hits either h1 or h2.

Step 3 Set St = Sτi ,∀t ∈ [τi, τi+1).

Step 4 If τi+1 = T , then algorithm stops.
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Step 5 Set

Sτi+1 =



s1 if Bτi+1 ≤ h2(τi+1)

s3 if Bτi+1 ≥ h1(τi+1)

s3 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s1 and ζ lui = 1

s2 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s1 and ζ lui = 0

s1 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s3 and ζuli = 1

s2 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s3 and ζuli = 0.

If, e.g., Sτi = s1 and τi+1 > τi + T li , then, at time τi+1, Bt hits a convex combination of h1 and h2,

which means that h2(τi+1) < Bτi+1 < h1(τi+1). In this case, the system switches from the lower

level to the upper or medium level according to the value of an independent Bernoulli random

variable. If Bτi+1 ≤ h2(τi+1) (respectively Bτi+1 ≥ h1(τi+1)), then assign Sτi+1 = s1 (respectively

Sτi+1 = s3) in concordance with the argument described in Step 1.

Step 6 Set i = i+ 1 and go to Step 2.

Finally, define the stock price (Pt, T0 ≤ t < T ) pursuant to (2.29). �

Intensities λl and λu and parameter c control the frequency of the stock price jumps, while prob-

abilities plu and pul control the proportion of small versus big market jumps corresponding to the

scenarios where Bt hits a convex combination of h1 and h2.
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Fig. 2.2: Simulated stock price dynamics in the endogenous switching model computed for some set of

parameters: T0 = 10, T = 100, α1 = 0.3, c = 0.025, σκ = 0.03, κ = 100, wD = 30, γ1 = 2, γ2 = 1,

γ3 = 2, ζlu1 = 0; initial value of St is assumed to be equal to s2; convex combination starts at t = 39

and t = 72; stock price jumps at t = 19, t = 43, t = 48, t = 57.

2.2.2 Exogenous shocks model

In the exogenous shocks model, like in the endogenous switching model, if Bt ≤ h2(t) (respectively

Bt ≥ h1(t)), then St = s1 (respectively St = s3), for all t ∈ [T0, T ). If h2(t) < Bt < h1(t), the

system stays in its current state until there is a new arrival in an exogenous sunspot shock process

which is assumed to be a Poisson process independent of Bt. The shock switches the state of

the system to one of the other two states for no fundamental reason, and the new level value is

determined in obedience to the value of an independent Bernoulli random variable with probability

of success depending on the current state of the state process.
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Model setup

It is assumed that (Zt, t ≥ 0) is a F-measurable homogeneous Poisson process having some intensity

λZ and this process is independent of (Bt, t ≥ 0). Let the sequences of independent Bernoulli

random variables (ζ lui , i = 0, 1, ...) and (ζuli , i = 0, 1, ...) be defined according to (2.32) and the

sequence of independent Bernoulli random variables (ζmui , i = 0, 1, ...) be given by

ζmui :=

 1 with probability pmu

0 with probability pml = 1− pmu.

Suppose that all three sequences are in F and that they are all independent of (Bt, t ≥ 0), (Zt, t ≥ 0)

and of each other. These sequences determine new states of the state process St in case of shock

arrivals when h2(t) < Bt < h1(t).

Definition 2.2 Define processes (St, T0 ≤ t < T ) and (Pt, T0 ≤ t < T ) according to the fol-

lowing construction mechanism.

Step 1 Set i = 0, τ0 = T0 and the starting value of the state process

Sτ0 =


s1 if Bτ0 ≤ h2(τ0)

s3 if Bτ0 ≥ h1(τ0)

s if h2(τ0) < Bτ0 < h1(τ0),

where s ∈ S is some known constant. All the intuition is the same as in Step 1 of Definition 2.1.

Step 2 Set

τi+1 =


inf
(
t > τi : Bt ≥ h1(t)

)
∧ τ̂i ∧ T if Sτi = s1

inf
(
t > τi : Bt ≥ h1(t) or Bt ≤ h2(t)

)
∧ τ̂i ∧ T if Sτi = s2

inf
(
t > τi : Bt ≤ h2(t)

)
∧ τ̂i ∧ T if Sτi = s3,

where τ̂i is the first arrival after τi in Poisson process Zt such that h2(τ̂i) < Bτ̂i < h1(τ̂i). If there

are no such arrivals, then define τ̂i =∞. Recall that inf ∅ =∞ by convention.

It is necessary to wait until Bt hits the corresponding one-sided or two-sided curved boundary, or

until τ̂i, or until time expires, whatever is earlier. Intensity λZ controls the frequency of jumps.

Step 3 Set St = Sτi ,∀t ∈ [τi, τi+1).

Step 4 If τi+1 = T , then algorithm stops.
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Step 5 Set

Sτi+1 =



s1 if Bτi+1 ≤ h2(τi+1)

s3 if Bτi+1 ≥ h1(τi+1)

s3 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s1 and ζ lui = 1

s2 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s1 and ζ lui = 0

s1 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s3 and ζuli = 1

s2 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s3 and ζuli = 0

s3 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s2 and ζmui = 1

s1 if h2(τi+1) < Bτi+1 < h1(τi+1) and Sτi = s2 and ζmui = 0.

Recall that if Bτi+1 ≤ h2(τi+1) (respectively Bτi+1 ≥ h1(τi+1)), then assign Sτi+1 = s1 (respectively

Sτi+1 = s3) in view of the argument described in Step 1 of Definition 2.1.

If h2(τi+1) < Bτi+1 < h1(τi+1) and, e.g., the system is in the lower level state s1, then it switches

to the upper or the medium level state according to the value of an independent Bernoulli random

variable ζ lui .

Step 6 Set i = i+ 1 and go to Step 2.

Finally, define the stock price (Pt, t ∈ [T0, T )) pursuant to (2.29). �

2.2.3 Main properties of constant number of dynamic hedgers models

In Theorem 2.2, it will be shown that construction mechanisms in Definition 2.1 and Definition 2.2

determine the stock market price (Pt, T0 ≤ t < T ), that is, for all t ∈ [T0, T ), there is some finite i

such that t ∈ [τi, τi+1)(P-a.s.).

Theorem 2.2 In Definition 2.1 and Definition 2.2,

(i) for all i ≥ 0, if τi < T , then τi < τi+1 (P-a.s.)

(ii) construction mechanisms stop after a finite number of iterations (P-a.s.).

Proof The first part of this theorem holds true due to Theorem 2.1, construction of τi and the

facts that Bt is continuous and that exponential random variable is positive (P-a.s.). The second

part will be proved by contradiction. Suppose there is an infinite number of τi on [T0, T ) with a

positive probability. Then one or both of the following scenarios must occur. According to the first
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Fig. 2.3: Simulated stock price dynamics in the exogenous shocks model computed for some set of parameters:

T0 = 10, T = 100, α1 = 0.3, σκ = 0.03, κ = 100, wD = 30, γ1 = 2, γ2 = 1, γ3 = 2; initial value of

St is assumed to be equal to s2; shocks occur at times t = 31, t = 39, t = 73, t = 78 and t = 95;

stock price jumps at t = 19, t = 31, t = 39, t = 48 and t = 57; state process jumps to s3 and s2 at

times t = 31 and t = 39 according to the values of corresponding Bernoulli random variables.

scenario, there are infinitely many independent identically distributed exponential random variables

such that their sum is less than T − T0. According to the second scenario, for any 0 < δ < T − T0,

there exists an interval of length δ in [T0, T ), and, in that interval, there are infinitely many points

s such that Bs ≥ h1(s) and infinitely many points s such that Bs ≤ h2(s). If (Xi, i = 1, 2, ...) is a

sequence of independent exponential random variables with a rate parameter λ, then, for all n ≥ 0,∑n
i=1Xi is distributed according to Erlang distribution Erlang(n, λ) (see, e.g., Cox [16]). Because

of this,

P (
∞∑
i=1

Xi < T − T0) ≤ P (
n∑
i=1

Xi < T − T0) = 1−
n−1∑
i=0

(λ(T − T0))i

i!
e−λ(T−T0) → 0, n→∞.

Therefore, the first scenario is impossible (P-a.s.). The second scenario is impossible as well due to

Theorem 2.1 and continuity of Bt (P-a.s.). �
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Remark 2.7 Note that, according to the construction of the stock price process, for all t ∈ [T0, T ),

Pt can not be equal to p1(t) or p2(t) defined in accordance with (2.12), (2.13) and (2.21). Indeed,

if it is assumed that Pt is equal to p1(t), then Bt = h1(t) and either St = s1 or St = s2, but it is

known that, if Bt ≥ h1(t), then St = s3, which is the contradiction. The same argument applies to

p2(t).

Remark 2.8 There is one-to-one correspondence between Pt and (Bt, St).

Indeed, in virtue of (2.26), Definition 2.1, Definition 2.2 and Remark 2.7, given Pt,

Bt = h(t, Pt) and St =


s1 if Pt < p1(t)

s2 if p1(t) < Pt < p2(t)

s3 if Pt > p2(t).

Conversely, if Bt and St are known, Pt can be determined according to (2.29).

Definition 2.3 Define a market crash as a point of discontinuity of (Pt, 0 < t < T ) such that

Pt < Pt− and a market boom as a point of discontinuity of (Pt, 0 < t < T ) such that Pt > Pt−,

where Pt− = lims↑t Ps.

In virtue of Theorem 2.2 and Remark 2.4 applied to Definition 2.1 and Definition 2.2, there is

no infinite price oscillation and (τi < T, i = 1, 2, ...) are the only jump points on [T0, T ). I denote

the value of the i-th jump by Ji = ∆Pτi = Pτi − Pτi−.

Definition 2.4 Define a big market crash (respectively a big market boom) as a transition of

St from state s3 (respectively s1) to state s1 (respectively s3). A small market crash (respectively

a small market boom) is a transition of St from state s3 (respectively s1) to state s2 or from state

s2 to state s1 (respectively s3).
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Note that Definition 2.1, Definition 2.2 and Remark 2.7 imply that

Ji =



Ju(τi) = pu(τi, h1(τi))− p1(τi) if Bτi = h1(τi)

J l(τi) = pl(τi, h2(τi))− p2(τi) if Bτi = h2(τi)

J lu(τi, Bτi) = pu(τi, Bτi)− pl(τi, Bτi) if h2(τi) < Bτi < h1(τi), Sτi = s1 and Sτi+1 = s3

J lm(τi, Bτi) = pm(τi, Bτi)− pl(τi, Bτi) if h2(τi) < Bτi < h1(τi), Sτi = s1 and Sτi+1 = s2

Jmu(τi, Bτi) = pu(τi, Bτi)− pm(τi, Bτi) if h2(τi) < Bτi < h1(τi), Sτi = s2 and Sτi+1 = s3

Jml(τi, Bτi) = pl(τi, Bτi)− pm(τi, Bτi) if h2(τi) < Bτi < h1(τi), Sτi = s2 and Sτi+1 = s1

Jul(τi, Bτi) = pl(τi, Bτi)− pu(τi, Bτi) if h2(τi) < Bτi < h1(τi), Sτi = s3 and Sτi+1 = s1

Jum(τi, Bτi) = pm(τi, Bτi)− pu(τi, Bτi) if h2(τi) < Bτi < h1(τi), Sτi = s3 and Sτi+1 = s2.

(2.33)

In view of (2.7) and (2.20), an increase in the number of dynamic hedgers wD leads to an increase

in the magnitude of booms and crashes. In Theorem 2.3, the uniform boundedness of jump sizes

will be shown. This property will be applied in the proof of Theorem 2.6 that shows that the stock

price process is a special semimartingale.

Theorem 2.3 Jump sizes | ∆Pτi | of the stock price process are uniformly bounded by the ratio

of the total number of dynamic hedgers wD and γ1:

| ∆Pτi |≤
wD

γ1
.

Proof The pricing equation (2.26) and the continuity of Brownian motion yield that

h(τi, Pτi) = h(τi, Pτi−),

which means that

γ1∆Pτi + wD
∫ ∞
−∞

[
Φ
(Ke−r(T−τi) − Pτi

Σ(τi)

)
− Φ

(Ke−r(T−τi) − Pτi−
Σ(τi)

)] 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK = 0.

As a consequence,

|∆Pτi | ≤
wD

γ1

∫ ∞
−∞

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK =

wD

γ1

since the cumulative distribution function satisfies 0 ≤ Φ(x) ≤ 1, ∀x ∈ R. �

In Theorem 2.4, the càdlàg property of the stock price process will be proved.
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Theorem 2.4 The stock price process Pt is càdlàg (P-a.s.).

Proof By Theorem 2.2 and Step 3 in Definition 2.1 and Definition 2.2, process St is càdlàg (P-a.s.).

Recall that, in view of (2.29),

Pt =


pl(t, Bt) if St = s1

pm(t, Bt) if St = s2

pu(t, Bt) if St = s3,

which means that Pt is càdlàg (P-a.s.) as well due to Remark 2.4 and the implicit function theorem.

�

Let FPt be the natural filtration generated by the stock price process:

FPt = σ{Ps, T0 ≤ s ≤ t}. (2.34)

I call this filtration the market filtration since this is the public information available to all market

agents. In Theorem 2.5 and Theorem 2.6, it will be shown that the stock price jump times are

FPt -stopping times and the stock price dynamics on [T0, T ) will be analysed.

Theorem 2.5 The sequence (τi < T, i = 1, 2, ...) is a sequence of FPt -stopping times.

Proof By Theorem 2.4, the stock price process Pt is càdlàg (P-a.s.). This process is adapted to

its natural filtration, and the result follows from Proposition 1.32 in Jacod and Shiryaev [25], p.8. �

Theorem 2.6 Stock price process is a special semimartingale such that

Pt = PT0 +

∫ t

T0

θ1(s, Ps)ds+

∫ t

T0

θ2(s, Ps)dBs +

Nt∑
i=1

∆Pτi , for t ∈ [T0, T ), (2.35)

where Nt =
∑

i≥1 I(τi ≤ t) is the total number of jumps on [T0, t],

θ1(s, Ps) = −
hs(s, Ps) + 1

2hxx(s, Ps)(
1

hx(s,Ps)
)2

hx(s, Ps)
(2.36)

and

θ2(s, Ps) =
1

hx(s, Ps)
. (2.37)
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Proof Consider the decomposition

Pt − PT0 = Pt − PτNt +

Nt∑
i=1

(Pτi− − Pτi−1) +

Nt∑
i=1

∆Pτi . (2.38)

According to Remark 2.4, the implicit function theorem and Theorem 32 (p.78) in Protter [38],

Pt − PτNt =

∫ t

τNt

θ
(Nt)
1 (s, Ps)ds+

∫ t

τNt

θ
(Nt)
2 (s, Ps)dBs,

for some functions θ
(Nt)
1 and θ

(Nt)
2 . Applying Ito’s lemma to the pricing equation (2.26), it can be

shown that

ht(t, Pt)dt+ hx(t, Pt)θ
(Nt)
1 (t, Pt)dt+ hx(t, Pt)θ

(Nt)
2 (t, Pt)dBt +

1

2
hxx(t, Pt)(θ

(Nt)
2 (t, Pt))

2dt = dBt.

As a consequence,

θ
(Nt)
2 (s, Ps) =

1

hx(s, Ps)
, θ

(Nt)
1 (s, Ps) = −

hs(s, Ps) + 1
2hxx(s, Ps)(

1
hx(s,Ps)

)2

hx(s, Ps)
,

and

Pt − PτNt = −
∫ t

τNt

hs(s, Ps) + 1
2hxx(s, Ps)(

1
hx(s,Ps)

)2

hx(s, Ps)
ds+

∫ t

τNt

1

hx(s, Ps)
dBs. (2.39)

Similarly

Pτi− − Pτi−1 = −
∫ τi−

τi−1

hs(s, Ps) + 1
2hxx(s, Ps)(

1
hx(s,Ps)

)2

hx(s, Ps)
ds+

∫ τi−

τi−1

1

hx(s, Ps)
dBs, i = 1, 2, ..., Nt.

(2.40)

In view of formulas (2.38)− (2.40), it can be concluded that formulas (2.35)− (2.37) hold.

Define processes (P
(k)
t , k = 1, 2, ...) by

P
(k)
t = PT0 +

∫ t∧τk

T0

θ1(s, Ps)ds+

∫ t∧τk

T0

θ2(s, Ps)dBs +

Nt∧k∑
i=1

∆Pτi .

By Remark 2.4, Theorem 32 (p.78) in Protter [38] and induction,

PT0 +

∫ t∧τk

T0

θ1(s, Ps)ds+

∫ t∧τk

T0

θ2(s, Ps)dBs

is a semimartingale. By Theorem 2.3, jumps of the stock price process are bounded, hence, processes

P
(k)
t are semimartingales as well. By Proposition 1.4.25c in Jacod and Shiryaev [25], p.44, and

Theorem 2.2, the stock price process is a semimartingale. Proposition 1.4.24 in Jacod and Shiryaev

[25], p.44, and Theorem 2.3 imply it is a special semimartingale, and the result follows. �

In Theorem 2.9 and Corollary 2.7, the canonical decomposition of the special semimartingale process

(Pt, T0 ≤ t < T ) will be obtained.
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2.2.4 Conditional distributions in the endogenous switching model

In this section, conditional distributions for the time of the next jump, the type of the next jump

and the size of the next jump in the endogenous switching model will be found, given that the

stock price dynamics on [T0, t], t ∈ [T0, T ), is observed. In Theorem 2.7, their joint conditional

distribution, given FPt , is computed. Based on this theorem, marginal conditional distributions

can be found.

Theorem 2.7

Assume that T0 ≤ t < u ≤ T , C1 is any combination of elements in S and C2 ∈ B(R). In the

endogenous switching model, the joint conditional distribution for the time of the next jump, the

type of the next jump and the size of the next jump, given the information FPt , is equal to

P(τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2 | FPt ) =


F1(t, τNt , R

l
t, Bt, u, C1, C2) if St = s1

F2(t, Bt, u, C1, C2) if St = s2

F3(t, τNt , R
u
t , Bt, u, C1, C2) if St = s3,

(2.41)

where expressions for F1, F2 and F3 are given in the proof of this theorem in the Appendix.

Proof The proof is provided in the Appendix. �

Distribution of the time of the next jump

Taking C1 = S and C2 = R in the formulas in Theorem 2.7, the conditional cumulative distribution

function of the time of the next jump, given the market filtration FPt , can be obtained.

Corollary 2.1

Suppose that T0 ≤ t < u ≤ T . Then the conditional cumulative distribution function of the time
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of the next jump, given the market filtration FPt , is equal to

P(τNt+1 < u | FPt ) =


1−

∫∞
Rlt
Dl(u, τNt + x, t, Bt)λle

−λl(x−Rlt)dx if St = s1

1−Dm(u, t, Bt) if St = s2

1−
∫∞
Rut
Du(u, τNt + x, t, Bt)λue

−λu(x−Rut )dx if St = s3

=


1−

∫∞
0 Dl(u, τNt +Rlt + x, t, Bt)λle

−λlxdx if St = s1

1−Dm(u, t, Bt) if St = s2

1−
∫∞

0 Du(u, τNt +Rut + x, t, Bt)λue
−λuxdx if St = s3,

where Dl, Du, Rlt and Rut are defined in the proof of Theorem 2.7 in the Appendix and Dm is

defined in (2.46).

Distribution of the next state of the state process

Let t ∈ [T0, T ). Taking u = T and C2 = R in the formulas in Theorem 2.7, the conditional

cumulative distribution function of the next state of the state process, given FPt , can be computed.

On the set [Pt < p1(t)] the conditional probability that there will be at least one more jump and

the first jump will be a small boom given FPt is equal to

F4(t, τNt , R
l
t, Bt) = plm

[∫ t−τNt

Rlt

(
1−Dl(T, τNt + x, t, Bt)

)
λle
−λl(x−Rlt)dx

+

∫ T−τNt

t−τNt

(
D1(τNt + x, t, Bt)−Dl(T, τNt + x, t, Bt)

)
λle
−λl(x−Rlt)dx

]
,

while the conditional probability that there will be at least one more jump and the first jump will

be a big boom given FPt is equal to

F5(t, τNt , R
l
t, Bt) = plu

[∫ t−τNt

Rlt

(
1−Dl(T, τNt + x, t, Bt)

)
λle
−λl(x−Rlt)dx

+

∫ T−τNt

t−τNt

(
D1(τNt + x, t, Bt)−Dl(T, τNt + x, t, Bt)

)
λle
−λl(x−Rlt)dx

]
+

∫ T−τNt

t−τNt

[
1−D1(τNt + x, t, Bt)

]
λle
−λl(x−Rlt)dx+ e−λl(T−τNt−R

l
t)(1−D1(T, t, Bt)),

where Dl, D1 and Rlt are defined in the proof of Theorem 2.7 in the Appendix.

On the set [p1(t) < Pt < p2(t)] the conditional probability that there will be at least one more jump

and the first jump will be a market boom given FPt is equal to Dm,1(T, t, Bt), while the probability
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that there will be at least one more jump and the first jump will be a market crash is equal to

Dm,2(T, t, Bt), where Dm,1(T, t, Bt) and Dm,2(T, t, Bt) are defined in the proof of Theorem 2.7 in

the Appendix.

On the set [Pt > p2(t)] the conditional probability that there will be at least one more jump and

the first jump will be a small crash given FPt is equal to

F6(t, τNt , R
u
t , Bt) = pum

[∫ t−τNt

Rut

(
1−Du(T, τNt + x, t, Bt)

)
λue
−λu(x−Rut )dx

+

∫ T−τNt

t−τNt

(
D2(τNt + x, t, Bt)−Du(T, τNt + x, t, Bt)

)
λue
−λu(x−Rut )dx

]
,

while the conditional probability that there will be at least one more jump and the first jump will

be a big crash is equal to

F7(t, τNt , R
u
t , Bt)

= pul

[∫ t−τNt

Rut

(
1−Du(T, τNt + x, t, Bt)

)
λue
−λu(x−Rut )dx

+

∫ T−τNt

t−τNt

(
D2(τNt + x, t, Bt)−Du(T, τNt + x, t, Bt)

)
λue
−λu(x−Rut )dx

]
+

∫ T−τNt

t−τNt

[
1−D2(τNt + x, t, Bt)

]
λue
−λu(x−Rut )dx+ e−λu(T−τNt−R

u
t )(1−D1(T, t, Bt)),

where Du, D2 and Rut are defined in the proof of Theorem 2.7 in the Appendix.

Combining these formulas all together, Corollary 2.2 can be obtained.

Corollary 2.2 Suppose that T0 ≤ t < T . Then the conditional cumulative distribution func-

tion of the next state of the state process, given the market filtration FPt , is equal to

P(τNt+1 < T, SτNt+1 = s2 | FPt ) = F4(t, τNt , R
l
t, Bt) if St = s1

P(τNt+1 < T, SτNt+1 = s3 | FPt ) = F5(t, τNt , R
l
t, Bt) if St = s1

P(τNt+1 < T, SτNt+1 = s3 | FPt ) = Dm,1(T, t, Bt) if St = s2

P(τNt+1 < T, SτNt+1 = s1 | FPt ) = Dm,2(T, t, Bt) if St = s2

P(τNt+1 < T, SτNt+1 = s2 | FPt ) = F6(t, τNt , R
u
t , Bt) if St = s3

P(τNt+1 < T, SτNt+1 = s1 | FPt ) = F7(t, τNt , R
u
t , Bt) if St = s3.
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Distribution of the size of the next jump

Let t ∈ [T0, T ) and C ∈ B(R). Taking u = T and C1 = S in the formulas in Theorem 2.7, the

conditional cumulative distribution function of the size of the next jump, given the market filtration

FPt , can be computed.

On the set [Pt < p1(t)] the conditional probability that there will be at least one more jump and

the first jump value will be in C given FPt is equal to

F8(t, τNt , R
l
t, Bt, C)

= e−λl(T−τNt−R
l
t)

∫ T

t
I(Ju(y) ∈ C)φ1(y, t, Bt)dy

+

∫ T−τNt

t−τNt

(∫ τNt+x

t
I(Ju(y) ∈ C)φ1(y, t, Bt)dy +

∫ T

τNt+x
(pluI(J lu(y, hl(y; τNt + x)) ∈ C)

+ plmI(J lm(y, hl(y; τNt + x)) ∈ C))φl(y, τNt + x, t, Bt)dy
)
λle
−λl(x−Rlt)dx

+

∫ t−τNt

Rlt

(∫ T

t

(
pluI(J lu(y, hl(y; τNt + x)) ∈ C)

+ plmI(J lm(y, hl(y; τNt + x)) ∈ C)
)
φl(y, τNt + x, t, Bt)dy

)
λle
−λl(x−Rlt))dx,

where φ1, φl and Rlt are defined in the proof of Theorem 2.7 in the Appendix and Ju, J lu and J lm

are defined in (2.33).

On the set [p2(t) < Pt < p1(t)] the conditional probability that there will be at least one more jump

and the first jump value will be in C given FPt is equal to

F9(t, Bt, C) =

∫ T

t

[
I(Ju(y) ∈ C)φm,1(y, t, Bt)dy + I(J l(y) ∈ C)φm,2(y, t, Bt)

]
dy,

where φm,1 and φm,2 are defined in the proof of Theorem 2.7 in the Appendix and Ju and J l are

defined in (2.33).

On the set [Pt > p2(t)] the conditional probability that there will be at least one more jump and
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the first jump value will be in C given FPt is equal to

F10(t, τNt , R
u
t , Bt, C)

= e−λu(T−τNt−R
u
t )

∫ T

t
I(J l(y) ∈ C)φ2(y, t, Bt)dy

+

∫ T−τNt

t−τNt

(∫ τNt+x

t
I(J l(y) ∈ C)φ2(y, t, Bt)dy +

∫ T

τNt+x
(pulI(Jul(y, hu(y; τNt + x)) ∈ C)

+ pumI(Jum(y, hu(y; τNt + x)) ∈ C))φu(y, τNt + x, t, Bt)dy
)
λue
−λu(x−Rut )dx

+

∫ t−τNt

Rut

(∫ T

t

(
pulI(Jul(y, hu(y; τNt + x)) ∈ C)

+ pumI(Jum(y, hu(y; τNt + x)) ∈ C)
)
φu(y, τNt + x, t, Bt)dy

)
λue
−λu(x−Rut ))dx,

where φ2, φu and Rut are defined in the proof of Theorem 2.7 in the Appendix and J l, Jul and Jum

are defined in (2.33).

Combining these formulas all together, Corollary 2.3 can be obtained.

Corollary 2.3 Suppose that T0 ≤ t < T and C ∈ B(R). Then the conditional cumulative

distribution function of the size of the next jump, given the market filtration FPt , is equal to

P(τNt+1 < T, JτNt+1 ∈ C | F
P
t ) =


F8(t, τNt , R

l
t, Bt, C) if St = s1

F9(t, Bt, C) if St = s2

F10(t, τNt , R
u
t , Bt, C) if St = s3.

2.2.5 Conditional distributions in the exogenous shocks model

In this section, conditional distributions for the time of the next jump, the type of the next jump

and the size of the next jump in the exogenous shocks model will be obtained, given the informa-

tion about the stock price dynamics on [T0, t], t ∈ [T0, T ). In Theorem 2.8, their joint conditional

distribution, given FPt , is computed. Based on this theorem, marginal conditional distributions

can be derived.

Theorem 2.8

Assume that T0 ≤ t < u ≤ T , C1 is any combination of elements in S and C2 ∈ B(R). In the
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exogenous shocks model, the joint conditional distribution for the time of the next jump, the type

of the next jump and the size of the next jump given the information FPt is equal to

P(τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2 | FPt ) =


F11(t, Bt, u, C1, C2) if St = s1

F12(t, Bt, u, C1, C2) if St = s2

F13(t, Bt, u, C1, C2) if St = s3,

where expressions for F11, F12 and F13 are given in the proof of this theorem in the Appendix.

Proof The proof is provided in the Appendix. �

Distribution of the time of the next jump

Taking C1 = {s1, s2, s3} and C2 = R in the formulas in Theorem 2.8, conditional distribution for

the time of the next jump, given the market filtration FPt , can be computed.

Corollary 2.4 Suppose that T0 ≤ t ≤ u ≤ T . Then conditional distribution for the time of

the next jump, given the market filtration FPt , is equal to

P(τNt+1 < u | FPt ) =


F14(t, Bt, u) if St = s1

F15(t, Bt, u) if St = s2

F16(t, Bt, u) if St = s3,

where F14, F15 and F16 satisfy

F14(t, Bt, u) = e−λZ(u−t) (1−D1(u, t, Bt)) +

∫ u−t

0
λZe

−λZr
[
(1−D1(t+ r, t, Bt))

+

∫ h2(t+r)

−∞
q1(x; r, t, Bt)F14(t+ r, x, u)dx+ Φ1(t+ r, t, Bt)

]
dr,

F15(t, Bt, u) = 1− e−λZ(u−t)Dm(u, t, Bt),

F16(t, Bt, u) = e−λZ(u−t) (1−D2(u, t, Bt)) +

∫ u−t

0
λZe

−λZr
[
(1−D2(t+ r, t, Bt))

+

∫ ∞
h1(t+r)

q2(x; r, t, Bt)F16(t+ r, x, u)dx+ Φ2(t+ r, t, Bt)
]
dr,

and D1 and D2 are defined in the proof of Theorem 2.7 in the Appendix, Dm is defined in (2.46),

q1 and q2 are defined in the proof of Theorem 2.8 and Φ1 and Φ2 are defined in (2.47) and (2.48).
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Distribution of the next state of the state process

Let t ∈ [T0, T ). Taking u = T and C2 = R in the formulas in Theorem 2.8, the conditional

cumulative distribution function of the next state of the state process in the exogenous shocks

model, given the market filtration FPt , can be computed.

On the set [Pt < p1(t)] the conditional probability that there will be at least one more jump and

the first jump will be a small boom given FPt satisfies

F17(t, Bt) =

∫ T−t

0
λZe

−λZr
[∫ h2(t+r)

−∞
q1(x; r, t, Bt)F17(t+ r, x)dx+ plmΦ1(t+ r, t, Bt)

]
dr,

while the conditional probability that there will be at least one more jump and the first jump will

be a big boom given FPt satisfies

F18(t, Bt) = e−λZ(T−t)
(

1−D1(T, t, Bt)
)

+

∫ T−t

0
λZe

−λZr
[(

1−D1(t+ r, t, Bt)
)

+

∫ h2(t+r)

−∞
q1(x; r, t, Bt)F18(t+ r, x)dx+ pluΦ1(t+ r, t, Bt)

]
dr,

where D1 is defined in the proof of Theorem 2.7 in the Appendix, q1 is defined in the proof of

Theorem 2.8 in the Appendix and Φ1 is defined in (2.47).

On the set [p1(t) < Pt < p2(t)] the conditional probability that there will be at least one more jump

and the first jump will be a market boom given FPt is equal to

F19(t, Bt) = e−λZ(T−t)Dm,1(T, t, Bt) +

∫ T−t

0
λZe

−λZr
[
Dm,1(t+ r, t, Bt) + pmuDm(t+ r, t, Bt)

]
dr,

while the probability that there will be at least one more jump and the first jump will be a market

crash is equal to

F20(t, Bt) = e−λZ(T−t)Dm,2(T, t, Bt) +

∫ T−t

0
λZe

−λZr
[
Dm,2(t+ r, t, Bt) + pmlDm(t+ r, t, Bt)

]
dr,

where Dm,1 and Dm,2 are defined in the proof of Theorem 2.7 in the Appendix and Dm is defined

in (2.46).

On the set [Pt > p2(t)] the conditional probability that there will be at least one more jump and

the first jump will be a small crash given FPt satisfies

F21(t, Bt) =

∫ T−t

0
λZe

−λZr
[∫ ∞

h1(t+r)
q2(x; r, t, Bt)F21(t+ r, x)dx+ pumΦ2(t+ r, t, Bt)

]
dr,
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while the conditional probability that there will be at least one more jump and the first jump will

be a big crash given FPt satisfies

F22(t, Bt) = e−λZ(T−t)
(

1−D2(T, t, Bt)
)

+

∫ T−t

0
λZe

−λZr
[(

1−D2(t+ r, t, Bt)
)

+

∫ ∞
h1(t+r)

q2(x; r, t, Bt)F22(t+ r, x)dx+ pulΦ2(t+ r, t, Bt)
]
dr,

where D2 is defined in the proof of Theorem 2.7 in the Appendix, q2 is defined in the proof of

Theorem 2.8 in the Appendix and Φ2 is defined in (2.48).

Combining these formulas all together, Corollary 2.5 can be obtained.

Corollary 2.5 Suppose that T0 ≤ t < T . Then the conditional cumulative distribution func-

tion of the next state of the state process, given the market filtration FPt , is equal to

P(τNt+1 < T, SτNt+1 = s2 | FPt ) = F17(t, Bt) if St = s1

P(τNt+1 < T, SτNt+1 = s3 | FPt ) = F18(t, Bt) if St = s1

P(τNt+1 < T, SτNt+1 = s3 | FPt ) = F19(t, Bt) if St = s2

P(τNt+1 < T, SτNt+1 = s1 | FPt ) = F20(t, Bt) if St = s2

P(τNt+1 < T, SτNt+1 = s2 | FPt ) = F21(t, Bt) if St = s3

P(τNt+1 < T, SτNt+1 = s1 | FPt ) = F22(t, Bt) if St = s3.

Distribution of the size of the next jump

Let t ∈ [T0, T ) and C ∈ B(R). Taking u = T and C1 = S in the formulas in Theorem 2.8, the

conditional cumulative distribution function of the size of the next jump, given the market filtration

FPt , can be computed.

On the set [Pt < p1(t)] the conditional probability that there will be at least one more jump and
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the first jump value will be in C given FPt satisfies

F23(t, Bt, C)

= e−λZ(T−t)
∫ T

t
I(Ju(y) ∈ C)φ1(y, t, Bt)dy

+

∫ T−t

0
λZe

−λZr
[∫ t+r

t
I(Ju(y) ∈ C)φ1(y, t, Bt)dy +

∫ h2(t+r)

−∞
q1(x; r, t, Bt)F23(t+ r, x, C)dx

+

∫ h1(t+r)

h2(t+r)
q1(x; r, t, Bt)

(
pluI(J lu(t+ r, x) ∈ C) + plmI(J lm(t+ r, x) ∈ C)

)
dx
]
dr,

where Ju, J lu and J lm are defined in (2.33), φ1 is defined in the proof of Theorem 2.7 in the

Appendix, and q1 is defined in the proof of Theorem 2.8 in the Appendix.

On the set [p2(t) < Pt < p1(t)] the conditional probability that there will be at least one more jump

and the first jump value will be in C given FPt is equal to

F24(t, Bt, C)

= e−λZ(T−t)
∫ T

t

[
I(Ju(y) ∈ C)φm,1(y, t, Bt) + I(J l(y) ∈ C)φm,2(y, t, Bt)

]
dy

+

∫ T−t

0
λZe

−λZr
[∫ t+r

t

[
I(Ju(y) ∈ C)φm,1(y, t, Bt) + I(J l(y) ∈ C)φm,2(y, t, Bt)

]
dy

+

∫ h1(t+r)

h2(t+r)
qm(x; r, t, Bt)

(
pmuI(Jmu(t+ r, x) ∈ C) + pmlI(Jml(t+ r, x) ∈ C)

)
dx
]
dr,

where Ju, J l, Jmu and Jml are defined in (2.33), φm,1 and φm,2 are defined in the proof of Theorem

2.7, and qm is defined in the proof of Theorem 2.8 in the Appendix.

On the set [Pt > p2(t)] the conditional probability that there will be at least one more jump and

the first jump value will be in C given FPt satisfies

F25(t, Bt, C)

= e−λZ(T−t)
∫ T

t
I(J l(y) ∈ C)φ2(y, t, Bt)dy

+

∫ T−t

0
λZe

−λZr
[∫ t+r

t
I(J l(y) ∈ C)φ2(y, t, Bt)dy +

∫ ∞
h1(t+r)

q2(x; r, t, Bt)F25(t+ r, x, C)dx

+

∫ h1(t+r)

h2(t+r)
q2(x; r, t, Bt)

(
pluI(Jul(t+ r, x) ∈ C) + plmI(Jum(t+ r, x) ∈ C)

)
dx
]
dr,

where J l, Jul and Jum are defined in (2.33), φ2 is defined in the proof of Theorem 2.7 in the

Appendix, and q2 is defined in the proof of Theorem 2.8 in the Appendix.
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Combining these formulas all together, Corollary 2.6 can be obtained.

Corollary 2.6 Suppose that T0 ≤ t < T and C ∈ B(R). Then the conditional cumulative

distribution function of the size of the next jump, given the market filtration FPt , is equal to

P(τNt+1 < T, JτNt+1 ∈ C | F
P
t ) =


F23(t, Bt, C) if St = s1

F24(t, Bt, C) if St = s2

F25(t, Bt, C) if St = s3.

2.2.6 Canonical decomposition of the stock price process

In Theorem 2.6, it has been shown that, for both models, the stock price process is a special

semimartingale. In this section, its canonical decomposition, that is, a decomposition to a local

martingale and a predictable finite variation process starting at zero, will be computed.

Canonical decomposition in the endogenous switching model

Theorem 2.9 describes the canonical decomposition of the stock price process in the endogenous

switching model. Lemma 2.1 and Lemma 2.2 will be used in the proof of Theorem 2.9.

Let

J0 = 0 and ZPi = (Pτi , Ji), i = 0, 1, ..., (2.42)

then in view of Theorem 2.2 a double sequence (τi, Z
P
i ) is a marked point process.

Denote by

FZPτi = σ{(τj , ZPj ), 0 ≤ j ≤ i} (2.43)

and

g(i+1)(u,C) =
∂P(τi+1 ≤ u, ZPi+1 ∈ C | FZ

P

τi )

∂u
, u ∈ [τi, T ), (2.44)

where C = (C1, C2), C1 ∈ B(R) and C2 ∈ B(R).

Lemma 2.1 In the endogenous switching model, suppose that u ∈ [τi, T ) for some i ≥ 0,
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C = (C1, C2), C1 ∈ B(R) and C2 ∈ B(R). Then conditional distribution for the marked point

process (τi, Z
P
i ) given FZPτi is equal to

P(τi+1 ≤ u, ZPi+1 ∈ C | FZ
P

τi ) =


F26(τi, Bτi , u, C) if Sτi = s1

F27(τi, Bτi , u, C) if Sτi = s2

F28(τi, Bτi , u, C) if Sτi = s3,

where F26, F27 and F28 are defined in the proof of this lemma in the Appendix.

Proof The proof is provided in the Appendix. �

Lemma 2.2

In the endogenous switching model, assume that u ∈ [τi, T ) for some i ≥ 0, C = (C1, C2), C1 ∈ B(R)

and C2 ∈ B(R). Then the function g(i+1)(u,C) satisfies

g(i+1)(u,C) =


F29(τi, Bτi , u, C) if Sτi = s1

F30(τi, Bτi , u, C) if Sτi = s2

F31(τi, Bτi , u, C) if Sτi = s3,

where F29, F30 and F31 are defined in the proof of this lemma in the Appendix. In particular, for

E = R2,

g(i+1)(u,E) =


e−λl(u−τi)φ1(u, τi, Bτi) +

∫ u−τi
0 φl(u, τi + x, τi, Bτi)λle

−λlxdx if Sτi = s1

φm(u, τi, Bτi) if Sτi = s2

e−λu(u−τi)φ2(u, τi, Bτi) +
∫ u−τi

0 φu(u, τi + x, τi, Bτi)λue
−λuxdx if Sτi = s3,

where

φm(u, t, y) = −∂Dm(u, t, y)

∂u
(2.45)

and

Dm(u, t, y) = P
(
h2(t+ s)− y < Bs < h1(t+ s)− y,∀s ∈ [0, u− t]

)
(2.46)

are Brownian motion hitting density and probability of a two-sided curved boundary.

Proof The proof is provided in the Appendix. �
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Theorem 2.9 Let t ∈ [T0, T ). The canonical decomposition of (Pt, T0 ≤ t < T ) in the endogenous

switching model is given by

Pt = PT0 +Mt +At, MT0 = 0, AT0 = 0,

where

Mt =

∫ t

T0

θ2(s, Ps)dBs +

Nt∑
i=1

∆Pτi −
∫ t

T0

θ3(s, τNs , BτNs )ds

is a local martingale,

At =

∫ t

T0

θ1(s, Ps)ds+

∫ t

T0

θ3(s, τNs , BτNs )ds

is a predictable process with finite variation, θ1(s, Ps) and θ2(s, Ps) are defined in (2.36) and (2.37),

θ3(s, τNs , BτNs ) =


F32(s, τNs , BτNs ) if SτNs = s1

F33(s, τNs , BτNs ) if SτNs = s2

F34(s, τNs , BτNs ) if SτNs = s3,

with

F32(s, τNs , BτNs ) =
1∫∞

0 Dl(s, τNs + x, τNs , BτNs )λle
−λlxdx

[
Ju(s)e−λl(s−τNs )φ1(s, τNs , BτNs )

+

∫ s−τNs

0

(
pluJ

lu(s, hl(s; τNs + x)) + plmJ
lm(s, hl(s; τNs + x))

)
×

× φl(s, τNs + x, τNs , BτNs )λle
−λlxdx

]
,

F33(s, τNs , BτNs ) =
1

Dm(s, τNs , BτNs )

[
Ju(s)φm,1(s, τNs , BτNs ) + J l(s)φm,2(s, τNs , BτNs )

]
,

F34(s, τNs , BτNs ) =
1∫∞

0 Du(s, x, τNs , BτNs )λue
−λuxdx

[
J l(s)e−λu(s−τNs )φ2(s, τNs , BτNs )

+

∫ s−τNs

0

(
pulJ

ul(s, hu(s; τNs + x)) + pumJ
um(s, hu(s; τNs + x))

)
×

× φu(s, τNs + x, τNs , BτNs )λue
−λuxdx

]
,

Ju, J lu, J lm, J l, Jul and Jum are defined in (2.33), Dl, φ1, φl, φm,1, φm,2, Du, φ2 and φu are

defined in the proof of Theorem 2.7 in the Appendix, and Dm is defined in (2.46).

Proof Applying Theorem T7 from Bremaud [8], p.238, to the counting process NZ
t (C) defined by

NZ
t (C) =

∑
i≥1

I(ZPi ∈ C)I(τi ≤ t),
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it can be concluded that the process
∫ t
T0
ls(C)ds such that

ls(C) =
g(i+1)(s, C)

1−
∫ s−τi

0 g(i+1)(τi + y,E)dy
for s ∈ [τi, τi+1), i = 0, 1, ...,

is the compensator of NZ
t (C).

In view of Lemma 2.2,

ls(C) =



F29(τi,Bτi ,s,C)

1−
∫ s−τi
0 F29(τi,Bτi ,τi+y,E)dy

if Sτi = s1

F30(τi,Bτi ,s,C)

1−
∫ s−τi
0 F30(τi,Bτi ,τi+y,E)dy

if Sτi = s2

F31(τi,Bτi ,s,C)

1−
∫ s−τi
0 F31(τi,Bτi ,τi+y,E)dy

if Sτi = s3.

In virtue of the results of Theorem 2.6 and Chapter 8 in Bremaud [8], it can be shown that

Mt =

∫ t

T0

θ2(s, Ps)dBs +

Nt∑
i=1

∆Pτi −
∫ t

T0

∫
E
z2ls(dz)ds

and

At =

∫ t

T0

θ1(s, Ps)ds+

∫ t

T0

∫
E
z2ls(dz)ds,

where E = R2 and z = (z1, z2), and the result follows since∫
E
z2ls(dz) = θ3(s, τNs , BτNs ).

�

Canonical decomposition in the exogenous shocks model

Define J0, (ZPi , i = 0, 1, ...), (FZPτi , i = 0, 1, ...) and ((g(i+1)(u,C), u ∈ [τi, T )), i = 0, 1, ...), where

C = (C1, C2) and C1 ∈ B(R) and C2 ∈ B(R), according to formulas (2.42) − (2.44). To find the

canonical decomposition in the exogenous shocks model, the same methodology as the one applied

in the endogenous switching model will be used.

Lemma 2.3 In the exogenous shocks model, assume that u ∈ [τi, T ), i = 0, 1, ..., C = (C1, C2),

C1 ∈ B(R) and C2 ∈ B(R). Then conditional distribution for the marked point process (τi, Z
P
i )
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given FZPτi is equal to

P(τi+1 ≤ u, ZPi+1 ∈ C | FZ
P

τi ) =


F35(u, τi, Bτi , C) if Sτi = s1

F36(u, τi, Bτi , C) if Sτi = s2

F37(u, τi, Bτi , C) if Sτi = s3,

where F35, F36 and F37 are defined in the proof of this lemma in the Appendix.

Proof The proof is provided in the Appendix. �

Lemma 2.4 In the exogenous shocks model, assume that u ∈ [τi, T ), i = 0, 1, ..., C = (C1, C2),

C1 ∈ B(R) and C2 ∈ B(R). Then the function g(i+1)(u,C) is equal to

g(i+1)(u,C) =


F38(u, τi, Bτi , C) if Sτi = s1

F39(u, τi, Bτi , C) if Sτi = s2

F40(u, τi, Bτi , C) if Sτi = s3,

where F38, F39 and F40 are defined in the proof of this lemma in the Appendix. In particular, for

E = R2, F38(u, t, Bt, E) satisfies

F38(u, t, Bt, E) = e−λZ(u−t)φ1(u, t, Bt) + λZe
−λZ(u−t)Φ1(u, t, Bt)

+

∫ u−t

0
λZe

−λZr
[∫ h2(t+r)

−∞
q1(x; r, t, Bt)F38(u, t+ r, x, E)dx

]
dr,

where

Φ1(u, t, y) = P
(
Bs < h1(t+ s)− y, 0 ≤ s ≤ u− t;Bu−t > h2(u)− y

)
, (2.47)

F39(u, t, Bt, E) is equal to

F39(u, t, Bt, E) = e−λZ(u−t)φm(u, t, Bt) + λZe
−λZ(u−t)

and F40(u, t, Bt, E) satisfies

F40(u, t, Bt, E) = e−λZ(u−t)φ2(u, t, Bt) + λZe
−λZ(u−t)Φ2(u, t, Bt)

+

∫ u−t

0
λZe

−λZr
[∫ ∞

h1(t+r)
q2(x; t, Bt, r)F40(u, t+ r, x,E)dx

]
dr,

where

Φ2(u, t, y) = P
(
Bs > h2(t+ s)− y, 0 ≤ s ≤ u− t;Bu−t < h1(u)− y

)
. (2.48)
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Proof The proof is provided in the Appendix. �

Applying the same argument as in the proof of Theorem 2.9, Corollary 2.7, which describes the

canonical decomposition of the stock price process in the exogenous shocks model, can be obtained.

Corollary 2.7 The canonical decomposition of (Pt, t ∈ [T0, T )) in the exogenous shocks model

is given by

Pt = PT0 +Mt +At, MT0 = 0, AT0 = 0,

where

Mt =

∫ t

T0

θ2(s, Ps)dBs +

Nt∑
i=1

∆Pτi −
∫ t

T0

θ4(s, τNs , BτNs )ds

is a local martingale,

At =

∫ t

T0

θ1(s, Ps)ds+

∫ t

T0

θ4(s, τNs , BτNs )ds

is a predictable process with finite variation, θ1(s, Ps) and θ2(s, Ps) are defined in (2.36) and (2.37),

θ4(s, τNs , BτNs ) =



F41(s,τNs ,BτNs
)

1−
∫ s−τNs
0 F38(τNs+y,τNs ,BτNs

,E)dy
if SτNs = s1

F42(s,τNs ,BτNs
)

1−
∫ s−τNs
0 F39(τNs+y,τNs ,BτNs

,E)dy
if SτNs = s2

F43(s,τNs ,BτNs
)

1−
∫ s−τNs
0 F40(τNs+y,τNs ,BτNs

,E)dy
if SτNs = s3,

F41(u, t, Bt) satisfies

F41(u, t, Bt) = e−λZ(u−t)Ju(u)φ1(u, t, Bt) + λZe
−λZ(u−t)

[∫ h1(u)

h2(u)
q1(x;u− t, t, Bt)

(
pluJ

lu(u, x)

+ plmJ
lm(u, x)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ h2(t+r)

−∞
q1(x; r, t, Bt)F41(u, t+ r, x)dx

]
dr,

F42(u, t, Bt) = e−λZ(u−t)
[
Ju(u)φm,1(u, t, Bt) + J l(u)φm,2(u, t, Bt)

]
+ λZe

−λZ(u−t)
[∫ h1(u)

h2(u)
qm(x;u− t, t, Bt)

(
pmuJ

mu(u, x) + pmlJ
ml(u, x)

)
dx
]
,

F43(u, t, Bt) satisfies

F43(u, t, Bt) = e−λZ(u−t)J l(u)φ2(u, t, Bt) + λZe
−λZ(u−t)

[∫ h1(u)

h2(u)
q2(x;u− t, t, Bt)

(
pulJ

ul(u, x)

+ pumJ
um(u, x)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ ∞

h1(t+r)
q2(x; r, t, Bt)F43(u, t+ r, x)dx

]
dr,
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Ju, J l, Jul, Jum, J lu, J lm, Jmu, Jml are defined in (2.33), φ1, φm,1, φm,2 and φ2 are defined in the

proof of Theorem 2.7 in the Appendix, q1, qm and q2 are defined in the proof of Theorem 2.8 in

the Appendix and E = R2.

2.3 Stochastic number of dynamic hedgers model

In this section, a model is developed with the number of dynamic hedgers as a piecewise constant

positive stochastic process that jumps at random times by random amounts. Hence, if a model is

constructed with no infinite price oscillation, then such a model would satisfy all the conditions

mentioned in Remark 2.5. Since the model should be as simple as possible, it will be developed

based on the most intuitive framework discussed in Remark 2.6.

Denote by

gD(t) = γ1

√
2π
(α2

1

2r
+ (σ2

κ −
α2

1

2r
)e−2r(T−t)

)
, for t ∈ [T0, T ],

and assume that the value of σκ satisfies (2.18). Then conditions (2.8) and (2.10) imply that the

system admits multiple equilibria if and only if wDt > gD(t). In view of (2.18), if the system

admits multiple equilibria at t ∈ [T0, T ), it should admit multiple equilibria all the time before

the next jump in the number of dynamic hedgers process since function gD(t) is decreasing on its

domain. Similar to the model discussed in Remark 2.6, the medium level equilibrium is excluded

from consideration. If the state process is in the lower (respectively upper) level equilibrium, it is

necessary to wait either until Bt crosses H1(t, wDt ) (respectively H2(t, wDt )) or until the number of

dynamic hedgers changes, or until T , whatever happens first.

If the number of dynamic hedgers does not satisfy condition (2.10), then there are two possible

scenarios. According to the first scenario,

wDt > gD(T ) = γ1

√
2πσ2

κ,

hence,

wDt ≤ gD(u), for u ∈ [t, TD(wDt )],

and

wDt > gD(u), for u ∈ (TD(wDt ), T ),
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where

TD(wDt ) = T −

ln
( α2

1
2r
−σ2

κ

α2
1

2r
−(

wDt
γ1
√

2π
)2

)
2r

. (2.49)

In this case, it is necessary to wait either until time TD(wDt ) or until the number of dynamic

hedgers changes, whatever happens first. During this waiting period the pricing equation (2.6) has

a single solution. If the number of dynamic hedgers stays constant on [t, TD(wDt )], it means that

the system will admit multiple equilibria all the time after TD(wDt ) until the number of dynamic

hedgers changes, and the value of the state process is set to the lower level equilibrium if

BTD(wDt ) < H2(TD(wDt ), wDt ) = H1(TD(wDt ), wDt ) = H(TD(wDt ), wDt , κe
−r(T−TD(wDt )))

or upper level equilibrium if

BTD(wDt ) > H2(TD(wDt ), wDt ) = H1(TD(wDt ), wDt ) = H(TD(wDt ), wDt , κe
−r(T−TD(wDt ))).

Then the system evolves in concordance with the mechanism that corresponds to the case when wDt

satisfies condition (2.10). According to the second scenario, wDt ≤ gD(T ), and the pricing equation

(2.6) has a single solution all the time until the number of dynamic hedgers changes.

For the sake of definiteness, it is postulated that if the number of dynamic hedgers changes in

such a way that the system admits multiple equilibria and H2(t, wDt ) < Bt < H1(t, wDt ), then if

the system admitted multiple equilibria right before the jump, it will stay at the same equilibrium

level. Otherwise, it switches to the upper or lower level equilibrium according to the value of an

independent Bernoulli random variable.

2.3.1 Model setup

It is assumed that (Zt, t ≥ 0) is a F-measurable homogeneous Poisson process having some intensity

λZ . It is supposed that the noise traders component of demand and the number of dynamic hedgers

are independent, which means independence of stochastic processes (Bt, t ≥ 0) and (Zt, t ≥ 0). It is

assumed that a sequence of independent F-measurable random variables (ξi, i = 1, 2, ...) exists, such

that they are also independent of both (Bt, t ≥ 0) and (Zt, t ≥ 0). Each time Zt changes its value,

the number of dynamic hedgers is multiplied by a corresponding random variable ξi distributed
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according to a uniform law with density function fξ(x) = 1
ξu−ξl , x ∈ [ξl, ξu], where 0 ≤ ξl < 1 < ξu,

which means that both decreases and increases in the number of dynamic hedgers are possible. For

the sake of determination, it is also supposed that the initial number of dynamic hedgers wDT0
is

given.

Denote by S a state space consisting of three different states: the lower level equilibrium s1,

the single equilibrium s2 and the upper level equilibrium s3. In Definition 2.5, a state process

(St, T0 ≤ t < T ) taking values in S is defined. Based on that process, the value of the stock price

(Pt, T0 ≤ t < T ) is determined.

It is also assumed that there exists a sequence of independent F-measurable Bernoulli random

variables (ζi, i = 1, 2, ...) with

ζi :=

 1 with probability pl

0 with probability pu = 1− pl

such that this sequence is independent of (Bt, t ≥ 0), (Zt, t ≥ 0) and the sequence of (ξi, i = 1, 2, ...).

If the system admits multiple equilibria, H2(t, wDt ) < Bt < H1(t, wDt ) after a change in the number

of dynamic hedgers and the system does not admit multiple equilibria right before the change, then

St switches to the lower level equilibrium s1 or the upper level equilibrium s3 according to the value

of the corresponding random variable ζi.

In Definition 2.5, an auxiliary process (Ŝt, T0 ≤ t < T ) taking values equal to 0 or 1, which means

that the system is either in a normal or an abnormal state, will be defined. If the system gets to

an abnormal state, it stays there forever, that is, this state is absorbing. In Section 2.3.2, it will

be shown that, P-a.s., the system will never get to an abnormal state and that if it is in a normal

state over the whole interval [T0, T ), then there is no infinite price oscillation. In Section 2.3.3,

conditional distributions for the time of the next jump, the type of the next jump and the size of

the next jump on the set [Ŝt = 0] will be found, given the market information available.

Definition 2.5 Define processes (St, T0 ≤ t < T ) and (Pt, T0 ≤ t < T ) according to the fol-

lowing construction mechanism.

Step 1. Initially set the system to the normal state:

Ŝt = 0, ∀t ∈ [T0, T ),
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and let i = 0 and τi = T0.

If wDτ0 > gD(τ0), that is, the system admits multiple equilibria, then set

Sτ0 =


s1 if Bτ0 ≤ H2(τ0, w

D
τ0)

s3 if Bτ0 ≥ H1(τ0, w
D
τ0)

s0 if H2(τ0, w
D
τ0) < Bτ0 < H1(τ0, w

D
τ0),

where s0 ∈ {s1, s3} is some known constant. All the intuition in assigning the value for Sτ0 is the

same as in Step 1 of Definition 2.1.

If wDτ0 ≤ g
D(τ0), that is, the pricing equation has a single solution, then set Sτ0 = s2.

Step 2. Denote by τ̂i the first time after τi when the number of dynamic hedgers changes, and if

this number never changes after τi at all, define τ̂i =∞.

Then 
go to Step 3 if wDτi > gD(τi)

go to Step 4 if wDτi ≤ g
D(τi) and wDτi ≤ g

D(T )

go to Step 5 if wDτi ≤ g
D(τi) and wDτi > gD(T ).

Step 3. Set

τi+1 =

 inf
(
t > τi : Bt ≥ H1(t, wDτi )

)
∧ τ̂i ∧ T if Sτi = s1

inf
(
t > τi : Bt ≤ H2(t, wDτi )

)
∧ τ̂i ∧ T if Sτi = s3.

Recall that inf ∅ =∞ by convention. Then assign St = Sτi ,∀t ∈ [τi, τi+1), and go to Step 6.

The system gets to Step 3 if it admits multiple equilibria. The system stays in the current regime

either until Bt hits the corresponding boundary, or until the number of dynamic hedgers changes,

or until time elapses, whatever happens first. The state process value stays unchanged until that.

Step 4. Set τi+1 = τ̂i ∧ T and assign St = Sτi ,∀t ∈ [τi, τi+1).

If τi+1 < T , set

Sτi+1 =



s1 if wDτi+1
> gD(τi+1) and Bτi+1 ≤ H2(τi+1, w

D
τi+1

)

s1 if wDτi+1
> gD(τi+1), H2(τi+1, w

D
τi+1

) < Bτi+1 < H1(τi+1, w
D
τi+1

) and ζi = 1

s2 if wDτi+1
≤ gD(τi+1)

s3 if wDτi+1
> gD(τi+1), H2(τi+1, w

D
τi+1

) < Bτi+1 < H1(τi+1, w
D
τi+1

) and ζi = 0

s3 if wDτi+1
> gD(τi+1) and Bτi+1 ≥ H1(τi+1, w

D
τi+1

),

(2.50)
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assign i = i+ 1 and go to Step 2. Otherwise, stop.

The system gets to Step 4 if the number of dynamic hedgers is so small that, with the current

number of dynamic hedgers, the pricing equation has a single solution up to maturity T , therefore,

it is necessary to wait either until the number of dynamic hedgers changes or time elapses, whatever

happens first. The state process value stays unchanged until that. If the number of dynamic hedgers

changes before the maturity, the system admits multiple equilibria and Bτi+1 ≤ H2(τi+1, w
D
τi+1

)

(respectively Bτi+1 ≥ H1(τi+1, w
D
τi+1

)), then assign Sτi+1 = s1 (respectively Sτi+1 = s3). If the

number of dynamic hedgers changes before the maturity, the system admits multiple equilibria and

H2(τi+1, w
D
τi+1

) < Bτi+1 < H1(τi+1, w
D
τi+1

), assign the value for Sτi+1 according to the value of the

corresponding Bernoulli random variable ζi. If the number of dynamic hedgers changes before the

maturity and the pricing equation still has a single solution, assign Sτi+1 = s2. If the number of

dynamic hedgers stays unchanged up to T , stop.

Step 5. If τ̂i ≤ TD(wDτi ), then set

τi+1 = τ̂i, St = Sτi , ∀t ∈ [τi, τi+1),

assign Sτi+1 according to (2.50), set i = i+ 1 and go to Step 2.

If τ̂i > TD(wDτi ) and BTD(wDτi )
= H(TD(wDτi ), w

D
τi , κe

−r(T−TD(wDτi ))), then set

St = Sτi , ∀t ∈ [τi, T
D(wDτi )), Ŝt = 1,∀t ∈ [TD(wDτi ), T ),

and stop.

Otherwise, set St = Sτi , ∀t ∈ [τi, T
D(wDτi )), assign τi+1 and St to be equal to inf

(
t > TD(wDτi ) : Bt ≥ H1(t, wDτi )

)
∧ τ̂i ∧ T if BTD(wDτi )

< H(TD(wDτi ), w
D
τi , κe

−r(T−TD(wDτi )))

inf
(
t > TD(wDτi ) : Bt ≤ H2(t, wDτi )

)
∧ τ̂i ∧ T if BTD(wDτi )

> H(TD(wDτi ), w
D
τi , κe

−r(T−TD(wDτi ))),

and  s1 ∀t ∈ [TD(wDτi ), τi+1) if BTD(wDτi )
< H(TD(wDτi ), w

D
τi , κe

−r(T−TD(wDτi )))

s3 ∀t ∈ [TD(wDτi ), τi+1) if BTD(wDτi )
> H(TD(wDτi ), w

D
τi , κe

−r(T−TD(wDτi ))),

and go to Step 6. Recall that inf ∅ =∞ by convention.

The system gets to Step 5 if the number of dynamic hedgers is such that, with the current number of

dynamic hedgers, the pricing equation has a single solution up to TD(wDτi ) defined in (2.49). If the

number of dynamic hedgers changes earlier than TD(wDτi ), then the value of the state process stays
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unchanged until that and assign the value Sτi+1 according to (2.50). If the number of dynamic

hedgers stays unchanged until TD(wDτi ), the system will start admitting multiple equilibria. If

BTD(wDτi )
is greater or less than H(TD(wDτi ), w

D
τi , κe

−r(T−TD(wDτi ))), then the system switches to the

corresponding upper or lower level equilibrium and evolves according to the mechanism described

in Step 3. Otherwise, go to the abnormal state.

Step 6. If τi+1 < T and wDτi+1
> gD(τi+1), that is, the system admits multiple equilibria, then set

Sτi+1 =


s1 if Bτi+1 ≤ H2(τi+1, w

D
τi+1

)

s3 if Bτi+1 ≥ H1(τi+1, w
D
τi+1

)

Sτi+1− if H2(τi+1, w
D
τi+1

) < Bτi+1 < H1(τi+1, w
D
τi+1

),

set i = i + 1 and go to Step 2. Recall that, for the sake of definiteness, it is postulated that if

H2(τi+1, w
D
τi+1

) < Bτi+1 < H1(τi+1, w
D
τi+1

), then the state process stays at its current level.

If τi+1 < T and wDτi+1
≤ gD(τi+1), that is, the pricing equation has a single solution, then assign

Sτi+1 = s2, set i = i+ 1 and go to Step 2.

Otherwise, that is, if τi+1 = T , stop.

The system gets to Step 6 if it admits multiple equilibria and then either Brownian motion Bt

hits the corresponding boundary H1(t, wDt ) (and the state process jumps from the lower level equi-

librium s1 to the upper level equilibrium s3) or H2(t, wDt ) (and the state process jumps from the

upper level equilibrium s3 to the lower level equilibrium s1), or the number of dynamic hedgers

changes, or time elapses, whatever happens first.

Finally, define the stock price (Pt, T0 ≤ t < T ) pursuant to (2.9) and (2.16):

If Ŝt = 0, then set

Pt =


p̄l(t, wDt , Bt) if St = s1

p̄(t, wDt , Bt) if St = s2

p̄u(t, wDt , Bt) if St = s3.

If Ŝt = 1, then define Pt as any (e.g., the smallest or the largest if there are more than one) solution

of the pricing equation. �
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Fig. 2.4: Simulated stock price dynamics in the stochastic number of dynamic hedgers model computed for

some set of parameters: T0 = 10, T = 100, α1 = 0.3, c = 0.025, σκ = 0.03, κ = 100, wD0 = 30,

γ1 = 2, γ2 = 1, γ3 = 2; initial value of St is assumed to be equal to s3; the number of dynamic

hedgers declines at t = 36 and t = 45; at time t = 45 it is equal to 10, which corresponds to

TD(10) = 53.72, and after time t = TD(10) the system admits multiple equilibria; stock price

jumps at t = 19, t = 36, t = 45 and t = 66.

2.3.2 Main properties

In Theorem 2.10, it will be shown that the construction mechanism in Definition 2.5 determines

the stock market price (Pt, T0 ≤ t < T ), that is, for all t ∈ [T0, T ), either Ŝt = 0 and there is some

finite i such that t ∈ [τi, τi+1) or Ŝt = 1 (P-a.s.). Moreover, it will be proved that the system does

not get to the abnormal state (P-a.s.).

Theorem 2.10 In Definition 2.5,

(i) for all i ≥ 0, if τi < T , then τi < τi+1 (P-a.s.)

(ii) construction mechanism stops after a finite number of iterations (P-a.s.)

(iii) P(Ŝt = 0, ∀t ∈ [T0, T )) = 1.
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Proof The proof of the first statement follows from the construction since hitting times of con-

tinuous processes and exponential random variables that correspond to the inter-arrival times for

homogeneous Poisson process are both positive (P-a.s.).

Assume the second statement in this theorem does not hold. Since Zt is a Poisson process, there is

a finite number of times on [T0, T ) when the number of dynamic hedgers changes (P-a.s.). Hence,

there should exist a time interval such that wDt is constant on that interval and such that there is

an infinite number of iterations on that interval, and this leads to a contradiction due to Theorem

2.2 and Remark 2.4.

Second statement combined with the fact that Bt has a continuous distribution implies that the

third statement also holds true. �

Remark 2.9 If wDt satisfies (2.10), then Pt < p̄1(t, wDt ) or Pt > p̄2(t, wDt ), t ∈ [T0, T ). This

result follows from Definition 2.5, Remark 2.7 and the fact that, by construction, medium level

equilibrium is excluded from consideration. If wDt satisfies (2.8), then H(t, wDt , x) is also an in-

creasing function of x.

Definition 2.6 Define a market crash as a point of discontinuity of (Pt, 0 < t < T ) such that

Pt < Pt− and a market boom as a point of discontinuity of (Pt, 0 < t < T ) such that Pt > Pt−.

This definition is the same as Definition 2.3 considered in the analysis of the constant number of dy-

namic hedgers models. In view of Theorem 2.10, Remark 2.4 and Definition 2.5, (τi < T, i = 1, 2, ...),

are the only jump points on [T0, T ) and there is no infinite price oscillation if the system stays in

the normal state on [T0, T ) (P-a.s.), and probability that it stays in the normal state on [T0, T ) is

equal to 1. Denote the value of the i-th jump by Ji = ∆Pτi = Pτi − Pτi−. Similar to the constant

number of dynamic hedgers models, it can be shown that the càdlàg property of the stock price

process holds. Defining the market filtration FPt in accordance with (2.34), it can be concluded

that the stock price jump times (τi < T, i = 1, 2, ...), are FPt -stopping times. The proofs of these

two properties are patterned after Theorem 2.4 and Theorem 2.5. Finally, Theorem 2.11 describes

the stock price dynamics for t ∈ [T0, T ).
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Theorem 2.11 The stock price process is a semimartingale that follows

Pt = PT0 +

∫ t

T0

θ1(s, Ps, w
D
s )ds+

∫ t

T0

θ2(s, Ps, w
D
s )dBs +

Nt∑
i=1

∆Pτi , for t ∈ [T0, T ),

where Nt =
∑

i≥1 I(τi ≤ t) is the total number of jumps on [T0, t],

θ1(s, Ps, w
D
s ) = −

Hs(s, Ps, w
D
s ) + 1

2Hxx(s, Ps, w
D
s )( 1

Hx(s,Ps,wDs )
)2

Hx(s, Ps, wDs )

and

θ2(s, Ps, w
D
s ) =

1

Hx(s, Ps, wDs )
.

Proof The proof is patterned after Theorem 2.6. �

2.3.3 Conditional distributions

Recall that [Ŝt = 0] means that the system is in the normal state at time t ∈ [T0, T ). In this

section, it is supposed that [Ŝt = 0] and find conditional distributions for the time of the next

jump, the type of the next jump and the size of the next jump, given that the stock price dy-

namics on [T0, t] is observed. In Theorem 2.12, their joint conditional distribution is found, given

the market filtration FPt . Based on this theorem, marginal conditional distributions can be derived.

Theorem 2.12 Assume that T0 ≤ t < u ≤ T , [Ŝt = 0], C1 is any combination of elements in

S and C2 ∈ B(R). In the stochastic number of dynamic hedgers model, the joint conditional distri-

bution for the time of the next jump, the type of the next jump and the size of the next jump on

the set [Ŝt = 0], given the market filtration FPt , is equal to

P(τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2 | FPt ) =


F44(t, wDt , Bt, u, C1, C2) if St = s1

F45(t, wDt , T
D(wDt ), Bt, u, C1, C2) if St = s2

F46(t, wDt , Bt, u, C1, C2) if St = s3,

where F44, F45 and F46 are defined in the proof of Theorem 2.12 in the Appendix.

Proof The proof is provided in the Appendix. �
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Distribution of the time of the next jump

Taking C1 = {s1, s2, s3} and C2 = R in the formulas in Theorem 2.12, the conditional cumulative

distribution function of the time of the next jump, given the market filtration FPt , can be computed.

Corollary 2.8 Suppose that T0 ≤ t < u ≤ T and [Ŝt = 0]. Then the conditional cumulative

distribution function of the time of the next jump, given the market filtration FPt , is equal to

P(τNt+1 < u | FPt ) =


1− e−λZ(u−t)D̄1(u, t, Bt, w

D
t ) if St = s1

F47(t, wDt , T
D(wDt ), Bt, u) if St = s2

1− e−λZ(u−t)D̄2(u, t, Bt, w
D
t ) if St = s3,

where

F47(t, wDt , T
D(wDt ), Bt, u) =

(
1− e−λZ(u−t)

)
+ I
(
TD(wDt ) < u

)
e−λZ(u−t)×

×
[∫ H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

−∞

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t) (1− D̄1(u, TD(wDt ), x, wDt ))dx

+

∫ ∞
H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t) (1− D̄2(u, TD(wDt ), x, wDt ))dx
]

and D̄1 and D̄2 are defined in the proof of Theorem 2.12 in the Appendix.

Distribution of the next state of the state process

Let t ∈ [T0, T ) and suppose [Ŝt = 0]. Taking u = T and C2 = R in the formulas in Theorem 2.12,

the conditional cumulative distribution function of the next state of the state process, given the

market filtration FPt , can be computed. On the set [Pt < p̄1(t, wDt )] the conditional probability

that there will be at least one more jump and the first jump will be a small boom given FPt is equal

to F44(t, wDt , Bt, T, s2,R), while the conditional probability that there will be at least one more

jump and the first jump will be a big boom given FPt is equal to F44(t, wDt , Bt, T, s3,R). On the set

[p̄1(t, wDt ) < Pt < p̄2(t, wDt )] the conditional probability that there will be at least one more jump

and the first jump will be a market boom given FPt is equal to F45(t, wDt , T
D(wDt ), Bt, T, s3,R),

while the probability that there will be at least one more jump and the first jump will be a market

crash is equal to F45(t, wDt , T
D(wDt ), Bt, T, s1,R). Finally, on the set [Pt > p̄2(t, wDt )] the condi-

tional probability that there will be at least one more jump and the first jump will be a small crash
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given FPt is equal to F46(t, wDt , Bt, T, s2,R), while the conditional probability that there will be

at least one more jump and the first jump will be a big crash is equal to F46(t, wDt , Bt, T, s1,R).

Combining these formulas all together, Corollary 2.9 can be obtained.

Corollary 2.9 Suppose that T0 ≤ t < T and [Ŝt = 0]. Then the conditional cumulative dis-

tribution function of the next state of the state process, given the market filtration FPt , is equal

to 

P(τNt+1 < T, SτNt+1 = s2 | FPt ) = F44(t, wDt , Bt, T, s2,R) if St = s1

P(τNt+1 < T, SτNt+1 = s3 | FPt ) = F44(t, wDt , Bt, T, s3,R) if St = s1

P(τNt+1 < T, SτNt+1 = s3 | FPt ) = F45(t, wDt , T
D(wDt ), Bt, T, s3,R) if St = s2

P(τNt+1 < T, SτNt+1 = s1 | FPt ) = F45(t, wDt , T
D(wDt ), Bt, T, s1,R) if St = s2

P(τNt+1 < T, SτNt+1 = s2 | FPt ) = F46(t, wDt , Bt, T, s2,R) if St = s3

P(τNt+1 < T, SτNt+1 = s1 | FPt ) = F46(t, wDt , Bt, T, s1,R) if St = s3,

where F44, F45 and F46 are defined in Theorem 2.12 in the Appendix.

Distribution of the size of the next jump

Let C ∈ B(R) and suppose that t ∈ [T0, T ) and [Ŝt = 0]. Taking u = T and C1 = S in

the formulas in Theorem 2.12, the conditional cumulative distribution function of the size of

the next jump, given the market filtration FPt , can be obtained. On the set [Pt < p̄1(t, wDt )]

(respectively [p̄1(t, wDt ) < Pt < p̄2(t, wDt )], respectively [Pt > p̄2(t, wDt )]) the conditional prob-

ability that there will be at least one more jump and the first jump value will be in C given

FPt is equal to F44(t, wDt , Bt, T,S, C) (respectively F45(t, wDt , T
D(wDt ), Bt, T,S, C), respectively

F46(t, wDt , Bt, T,S, C)). Combining these formulas all together, Corollary 2.10, can be obtained.

Corollary 2.10 Suppose that T0 ≤ t < T , [Ŝt = 0] and C ∈ B(R). Then the conditional cu-

mulative distribution function of the size of the next jump, given the market filtration FPt , is equal

to

P(τNt+1 < T, JτNt+1 ∈ C | F
P
t ) =


F44(t, wDt , Bt, T,S, C) if St = s1

F45(t, wDt , Bt, T,S, C) if St = s2

F46(t, wDt , Bt, T,S, C) if St = s3,
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where F44, F45 and F46 are defined in the proof of Theorem 2.12 in the Appendix.
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3. ALTERNATIVE MODELS

3.1 Motivation

In the previous chapter, three multiple equilibria and stock market booms and crashes models were

developed based on the market microstructure framework: the model with a constant number of

dynamic hedgers and endogenous switching, the model with a constant number of dynamic hedgers

and exogenous switching and the model with a stochastic number of dynamic hedgers. For all of

these models, the stock price process dynamics and conditional distribution formulas for time to,

the type of and the size of the next jump were computed. Note that these models might yield

negative prices and assume agents make their decisions based on a Brownian motion with a drift

approximation of the stock price process, but its actual dynamics have a different form. According

to the jump structure in the constant number of dynamic hedgers models, the stock price can not

have more than two consecutive upward or downward jumps, and this is quite restrictive. If, for

example, the stock price is in the lower level equilibrium, then the next jump type should be an

upward jump. Similarly, if the price is in the upper level equilibrium, then the next jump type

should be a downward jump. Moreover, distribution formulas in these models are given in terms

of the functions of Brownian motion hitting probabilities and densities for one-sided and two-sided

curved boundaries, and these probabilities and densities can be evaluated only numerically. To

overcome these drawbacks, two alternative models are developed.

In the simple jump structure model, it is considered that the pricing equation pattern that resembles

the shape of the one obtained within the market microstructure framework. This new pattern

excludes negative prices and has a closed-form solution, but it assumes the stock price process is

given exogenously. Similar to the stochastic number of dynamic hedgers model, for the sake of

simplicity, it is assumed that the state process that corresponds to the price equilibrium levels can

take only two values: the lower level equilibrium s1 and the upper level equilibrium s2.



In this model, any upward jump always precedes a downward jump, which, in turn, always precedes

an upward jump. Even if the medium level equilibrium is incorporated, similar to the constant

number of dynamic hedgers models, still it would not be possible to have, for example, three

consecutive upward or downward jumps.

This observation is the motivating factor for the development of an alternative approach that could

have any jump structure dynamics. The simple jump structure model, thus, can be considered

as a transition model from the market microstructure models to the Markov chain jump structure

model, in which the next jump type, market boom or market crash, is determined by a Markov chain

with a 2 × 2 transition probabilities matrix. This model exhibits all the pros of the simple jump

structure model: it excludes negative prices and has a closed-form solution. As in the simple jump

structure model, the price in the Markov chain jump structure model is determined exogenously

rather than by the law of supply and demand.

3.2 Alternative models framework

I will work on a filtered stochastic base (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. Assume

that on this probability space there exists a standard Brownian motion (Bt, t ≥ 0) starting at 0.

In this chapter, framework will be developed which satisfies some properties. First, all the condi-

tions mentioned in Remark 2.5 should hold. Second, it should avoid negative stock prices. Third,

it is required to have conditional probabilities of the time of the next jump, the type of the next

jump and the size of the next jump that can be found in a closed form. Fourth, the pricing equation

should look like the one in the market microstructure models considered in Chapter 2. Finally, the

model should be as simple as possible.

For the sake of simplicity, the preferred model will have the pricing equation that resembles the

form of (2.26), which is the special case of the pricing equation (2.6) like in the constant number

of dynamic hedgers models and excludes medium level equilibria from consideration like in the

stochastic number of dynamic hedgers model. Recall that, according to Remark 2.3 and Remark

2.4, both lower and upper level branches of function h(t, x) are in the class C1,2 inside their do-

mains and property (2.24) holds true. To exclude the possibility of negative stock prices arising

from (2.24), the following modification of the market microstructure framework is considered.
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Definition 3.1 Define the stock price process (Pt, t ≥ 0) taking values in R+ as the solution

of equation

h(t, Pt − ηt) = Bt,

where an auxiliary stochastic piecewise-constant process (ηt, t ≥ 0) taking values in R+ is model-

specific and will be defined in Definition 3.3 for the simple jump structure model and in Definition

3.4 for the Markov chain jump structure model and function h(t, x) ∈ C1,2 (R+,R+) is known and

satisfies the following properties:

(i) hx(t, x) > 0 on its domain, that is, it is an increasing function of x

(ii) limx↓0 h(t, x) = −∞ and limx→+∞ h(t, x) = +∞.

Remark 3.1 By the implicit function theorem, for each t ≥ 0 fixed, the inverse function h−1(y, t)

exists and is twice continuously differentiable. Based on Definition 3.1, the stock price Pt satisfies

Pt = h−1(Bt, t) + ηt. (3.1)

Remark 3.2 If h(t, x) = a1t+ a2 ln(x) with some constants a1 ∈ R and a2 > 0, then a Geometric

Brownian motion for the stock price can be obtained:

Pt = e
−a1
a2
t+ 1

a2
Bt + ηt.

In the models developed in this chapter, the same definitions of market filtration and market crashes

and booms are used as applied in the market microstructure models. Similar to (2.34), the market

filtration FPt is defined by

FPt = σ{Ps, 0 ≤ s ≤ t}.

Definition 3.2 determines market jumps based on Definition 2.3 (or, equivalently, Definition 2.6).

Definition 3.2 Define a market crash as a point of discontinuity of (Pt, t > 0) such that Pt < Pt−

and a market boom as a point of discontinuity of (Pt, t > 0) such that Pt > Pt−.

It is also assumed that on the probability space exist (ζ li , i = 0, 1, ...) and (ζui , i = 0, 1, ...), the

sequences of independent random variables distributed according to some laws with density func-

tions (f l(x), x ∈ [0, 1]) and (fu(x), x ≥ 1), such that both sequences are independent of Bt and

each other.
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In the simple jump structure model, define an auxiliary state process (St, t ≥ 0) that takes values

in the state space S consisting of two values: lower level state s1 and upper level state s2. If St

is in the state s1, then both St and ηt stay unchanged until the Brownian motion Bt hits some

boundary and then St switches to the other state s2 and the stock price jumps upwards by some

random amount: at the time of the jump the value of ηt is multiplied by some corresponding

random variable ζui , and, according to Remark 3.1, the jump size is equal to ηt(ζ
u
i − 1). Then both

St and ηt stay unchanged until the Brownian motion Bt hits some other boundary and then St

switches back to the state s1 and price jumps downwards by some random amount: at the time of

the jump the value of ηt is multiplied by some corresponding random variable ζ li , and, according to

Remark 3.1, the jump size is equal to ηt(ζ
l
i − 1). Then this mechanism iterates. Figure 3.1 shows

the analogy between the market microstructure framework discussed in Chapter 2 and the simple

jump structure model. In the simple jump structure model, each upward jump is followed by a

downward jump which in turn is followed by an upward jump.

Market microstructure framework

x

h(
t,x

)

Transition step

x

h(
t,x

)

x

h(
t,x

)

Simple jump structure model

Fig. 3.1: Analogy between the market microstructure framework and the simple jump structure model

To make the jump structure not so restrictive, the Markov chain jump structure model is developed.

It is assumed that the state of the asset space S consists of two states: lower level equilibrium state

s1 and upper level equilibrium state s2, and the jump type state space SJ consists of two states:

market crash state sJ1 and market boom state sJ2 . Two auxiliary processes are defined: the state of

the asset process (St, t ≥ 0) taking values in S and the jump type state process (SJt , t ≥ 0) taking

values in SJ. If St is in the state s1, then St, S
J
t and ηt stay unchanged until the Brownian motion
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Bt hits some boundary and then St switches to the other state s2. Similarly, if St is in the state

s2, then St, S
J
t and ηt stay unchanged until the Brownian motion Bt hits another boundary and

then St switches to the other state s1. Therefore, the state of the asset process has the same type

of dynamics as the state process in the simple jump structure model. The difference between two

models is in the structure of the jumps. In the Markov chain jump structure model the type of

the next jump, market crash or market boom, which is described by the value of the jump type

state process, is determined according to the Markov chain mechanism with a 2 × 2 transition

probabilities matrix  pc 1− pc

1− pb pb

 , (3.2)

where 0 < pc < 1 and 0 < pb < 1, and such that it is assumed to be independent of (Bt, t ≥ 0)

and sequences (ζui , i = 0, 1, ...) and (ζ li , i = 0, 1, ...). In this matrix, pc denotes the probability that

the next jump of the stock price process will be a market crash given the current jump is a market

crash, 1− pc denotes the probability that the next jump will be a market boom given the current

jump is a market crash, 1 − pb denotes the probability that the next jump will be a market crash

given the current jump is a market boom, and finally pb denotes the probability that the next jump

will be a market boom given the current jump is a market boom. If the next jump is a market

crash, then at the time of the jump the value of ηt is multiplied by some corresponding random

variable ζ li , and like in the simple jump structure model, the jump size is equal to ηt(ζ
l
i − 1). If the

next jump is a market boom, then at the time of the jump the value of ηt is multiplied by some

corresponding random variable ζui , and like in the simple jump structure model, the jump size is

equal to ηt(ζ
u
i − 1). Then the process is iterated. Note that if this transition probabilities matrix

has identical rows, a special case of the jump structure is obtained where the probability of the

next jump type, a market boom or a market crash, does not depend on the current state of the

jump type state process.

The next question is how the boundary processes that move the stock prices from one regime to

another should be modelled. Recall that an explicit form is required for the conditional probability

of the time of the next jump, given the market information FPt . To do that the appropriate

boundary processes are required which Brownian motion should hit in order for the stock price to

switch the regimes. A possible solution would be to use one of deterministic functions for which an
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explicit form exists (see examples of those boundaries in Salminen [41], Daniels [17] and Novikov

[32]). A problem with this kind of modelling is that, in virtue of (3.1) and the fact that ηt stays

unchanged between the stock price jumps, it can be known at time t at what value the stock price

could jump at time u > t, and this is not the case if discussing actual stock price dynamics. For

this reason, an example of stochastic boundaries will be considered that admit this conditional

probability in a closed form.

Let a deterministic function (α(t), t ≥ 0) and constants a ∈ R and A ∈ R such that a < A be given.

Assume that processes (Lt, t ≥ 0) and (Ut, t ≥ 0) satisfy

dLt = α(t)(Bt − Lt)dt, L0 = a, (3.3)

and

dUt = α(t)(Bt − Ut)dt, U0 = A, (3.4)

that is,

Lt = ae−
∫ t
0 α(s)ds +

∫ t

0
e−

∫ t
s α(r)drα(s)Bsds < Ae−

∫ t
0 α(s)ds +

∫ t

0
e−

∫ t
s α(r)drα(s)Bs = Ut. (3.5)

In Section 3.6, it will be shown that, for both models, if the boundary processes are given by Lt

and Ut, then there is no infinite price oscillation and the conditional probability of the time of the

next jump, the type of the next jump and the size of the next jump, given the market information

FPt , can be found in a closed form.

Remark 3.2 Consider the simple jump structure model. Suppose the current state of the state

process is equal to s1, which means that the next jump will be upwards. Denote the time of the

next jump, which is the Brownian motion hitting time of the boundary Ut, by T . In Theorem 3.5

in Section 3.6, it will be shown that T is finite (P-a.s.). Since process Ut − Bt is continuous, T ,

which is its first hitting time of 0, is a predictable stopping time (see Protter [38], p.104). There-

fore, there is a sequence of stopping times Tn increasing to T . Consider the sequence of trading

strategies, I
(
Tn < t ≤ T

)
, which consist in buying the stock right after Tn and selling at T . The

profit associated with this strategy is PT − PTn . In Theorem 3.2 in Section 3.6, it will be shown

that the stock price process Pt is càdlàg, hence, PTn converges to PT−, so the profits converge to

PT − PT−, which is strictly positive, and there would be an arbitrage in the limit. Similarly, if the

63



current state of the state process is equal to s2, there would also be an arbitrage in the limit. To

avoid that arbitrage opportunity in the simple jump structure model, it is assumed that there is

a sequence of independent exponential random variables (µi, i = 0, 1, ...) with a rate parameter λµ

defined on the probability space such that this sequence is also independent of Bt and sequences

(ζ li , i = 0, 1, ...) and (ζui , i = 0, 1, ...). In Definition 3.3, boundary processes Lt and Ut are replaced

by corresponding modified boundary processes L
(i)
t and U

(i)
t that depend on µi in accordance with

formula (3.8). Agents do not know the corresponding value of µi before the jump happens, and this

excludes the arbitrage opportunity. At the same time L
(i)
t and U

(i)
t satisfy all the pros of bound-

aries Lt and Ut defined in (3.3) and (3.4): there is no infinite price oscillation and corresponding

conditional probabilities can be found in a closed form.

Remark 3.3 In contrast to the simple jump structure model, in the Markov chain jump struc-

ture model, it is never known whether the next jump will be upwards or downwards. Indeed, by

assumption, 0 < pc < 1 and 0 < pb < 1, which means that both crash and boom are possible,

regardless of the current state of the jump type state process, and the boundaries Lt and Ut are

used since they do a good job. Note that all three market microstructure models have a finite time

horizon, which means that with a positive probability there might be no next jump at all and such

an arbitrage opportunity as the one described in Remark 3.2 does not exist.

In the subsequent sections, the simple jump structure and the Markov chain jump structure model

setups will be discussed, including their main properties and conditional distributions for the time

of, the type of and the size of the next jump, given the market filtration FPt .

3.3 Simple jump structure model

Model setup

In Definition 3.3, the state process (St, t ≥ 0) and the process (ηt, t ≥ 0) taking values in S and R+

are determined.

Definition 3.3 Define state process (St, t ≥ 0) and the process (ηt, t ≥ 0) according to the following
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construction.

Step 1 Set i = 0 and τ0 = 0.

Step 2 Define boundary processes (U
(i)
t , t ≥ τi) and (L

(i)
t , t ≥ τi) by

dL
(i)
t = α(t)(Bt − L(i)

t )dt, L(i)
τi = Lτi − µi, (3.6)

and

dU
(i)
t = α(t)(Bt − U (i)

t )dt, U (i)
τi = Uτi + µi, (3.7)

that is,

L
(i)
t = Lt − µie

−
∫ t
τi
α(r)dr ≤ Lt < Ut ≤ Ut + µie

−
∫ t
τi
α(r)dr

= U
(i)
t . (3.8)

Step 3 If i = 0, then set initial values of ηt and St

ητ0 = c and Sτ0 =


s1 if Bτ0 ≤ L

(0)
τ0

s2 if Bτ0 ≥ U
(0)
τ0

s0 if L
(0)
τ0 < Bτ0 < U

(0)
τ0 ,

where c ∈ R+ and s0 ∈ S are some known constants. Assign value s0 for the sake of definiteness

since for L
(0)
τ0 < Bτ0 < U

(0)
τ0 both states s1 and s2 are possible. Note that, according to Step 2 and

formulas (3.3) and (3.4), L
(0)
τ0 = a− µ0 and U

(0)
τ0 = A+ µ0.

Step 4 Set

τi+1 =


inf
(
t > τi : Bt = U

(i)
t

)
if Sτi = s1

inf
(
t > τi : Bt = L

(i)
t

)
if Sτi = s2.

Recall that inf ∅ =∞ by convention.

Step 5 For t ∈ [τi, τi+1), set St = Sτi and ηt = ητi .

Step 6 Set the next state of the state process equal to the other state: Sτi+1 = S \ Sτi .

Step 7 Set

ητi+1 =


ζui ητi if Sτi = s1

ζ liητi if Sτi = s2.

Step 8 Set i = i+ 1 and go to Step 2.

Finally, define the stock price (Pt, t ≥ 0) pursuant to (3.1). �
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3.4 Markov chain jump structure model

Model setup

In Definition 3.4, the state of the asset process (St, t ≥ 0), the jump type state process (SJt , t ≥ 0)

and the process (ηt, t ≥ 0) taking values in S, SJ and R+ are determined.

Definition 3.4 Define the state of the asset process (St, t ≥ 0), the jump type state process

(SJt , t ≥ 0) and the process (ηt, t ≥ 0) according to the following construction.

Step 1 Set i = 0, τ0 = 0 and starting values

ητ0 = c, SJτ0 = sJ0 and Sτ0 =


s1 if Bτ0 ≤ a

s2 if Bτ0 ≥ A

s0 if a < Bτ0 < A,

where sJ0 ∈ SJ and s0 ∈ S are some known constants. Assign values sJ0 and s0 for the sake of

definiteness, that is, when more than one state is possible.

Step 2 Set

τi+1 =


inf
(
t > τi : Bt = Ut

)
if Sτi = s1

inf
(
t > τi : Bt = Lt

)
if Sτi = s2.

Recall that inf ∅ =∞ by convention.

Step 3 For t ∈ [τi, τi+1), set St = Sτi , S
J
t = SJτi and ηt = ητi .

Step 4 Set the next state of the state of the asset process: Sτi+1 = S \ Sτi .

Step 5 Set the next state of the jump type state process SJτi+1
according to the Markov chain

mechanism (3.2).

Step 6 Set i = i+ 1 and go to Step 2.

Finally, define the stock price (Pt, t ≥ 0) pursuant to (3.1). �

3.5 Main properties of alternative models

In Theorem 3.1, it will be shown that there is no infinite price oscillation (P-a.s.).

66



Theorem 3.1 In both simple jump structure and Markov chain jump structure models,

(i) for all i = 0, 1, ..., there is τi < τi+1 (P-a.s.),

(ii) for all T > 0, there is only a finite number of τi on [0, T ], hence, they are not accumulating

(P-a.s.).

Proof According to (3.5) and (3.8), for t ∈ [0, T ] and i = 0, 1, ...,

U (i)(t)− L(i)(t) ≥ Ut − Lt ≥ δ(T ),

where

δ(T ) = (A− a) e−
∫ T
0 |α(r)|dr > 0,

and the result follows from the continuity of Brownian motion and processes Lt and Ut. �

Theorem 3.2 shows the càdlàg property of the stock price process.

Theorem 3.2 The stock price process is càdlàg (P-a.s.).

Proof The result follows from Remark 3.1, Theorem 3.1 and the construction of (ηt, t ≥ 0) in

Definition 3.3 and Definition 3.4. �

By construction and (3.1), the set of (τi, i = 1, 2, ...) and the set of all the jumps in the stock price

process are the same and the value of the i-th jump is equal to Ji = ∆Pτi = Pτi−Pτi− = ητi−ητi−1 .

Theorem 3.3 shows that jump times (τi, i = 1, 2...) are FPt -stopping times and Theorem 3.4 shows

that the stock price is a semimartingale.

Theorem 3.3 Jump times (τi, i = 1, 2...) are FPt -stopping times.

Proof In virtue of Theorem 3.2 the proof patterns after Theorem 2.5. �

Theorem 3.4 The stock price process is a semimartingale that follows the dynamics

Pt = h−1(Bt, t) + ηt, t ≥ 0.

Proof Indeed, the result follows from Remark 3.1, Theorem 32 (p.78) in Protter [38], Theorem 3.1

and the construction of (ηt, t ≥ 0) in Definition 3.3 and Definition 3.4. �
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Denote by

Nt =

∞∑
i=1

I(τi ≤ t), t ≥ 0,

the total number of jumps on [0, t] and let

DS
t =


U

(Nt)
t −Bt if St = s1

Bt − L(Nt)
t if St = s2

(3.9)

and

DMC
t =


Ut −Bt if St = s1

Bt − Lt if St = s2

(3.10)

be the distances to the border processes corresponding to Step 4 in Definition 3.3 and Step 2 in

Definition 3.4:

τNt+1 =


inf
(
u > t : DS

u = 0
)

for the simple jump structure model

inf
(
u > t : DMC

u = 0
)

for the Markov chain jump structure model.

(3.11)

In virtue of the definition of DMC
t for the Markov chain jump structure model, a similar process

for the simple jump structure model can be defined:

dSt =


Ut −Bt if St = s1

Bt − Lt if St = s2.

(3.12)

In view of (3.8), it can be concluded that

DS
t = γ(dSt , τNt , t, µNt), (3.13)

where

γ(dSt , τNt , t, x) = dSt + xe
−

∫ t
τNt

α(r)dr
. (3.14)

If τNt+1 is finite, then values of SτNt+1 , SJτNt+1
and JτNt+1 can be determined according to Definition

3.3 and Definition 3.4. For the sake of completeness, assign S∞, SJ∞ and J∞ any value from S,

SJ and R. Theorem 3.5 shows that, for all t ≥ 0, the next jump time is finite (P-a.s.). In the
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subsequent sections, conditional distribution for the time of the next jump, the type of the next

jump and the size of the next jump will be calculated, given the market information FPt .

Theorem 3.5 For all t ≥ 0, the next jump time is finite (P-a.s.):

P
(
τNt+1 <∞ | FPt

)
= 1.

Proof In view of (3.3), (3.4), (3.6), (3.7), (3.9) and (3.10),
dDS

t = −α(t)DS
t dt− dBt if St = s1

dDS
t = −α(t)DS

t dt+ dBt if St = s2

and 
dDMC

t = −α(t)DMC
t dt− dBt if St = s1

dDMC
t = −α(t)DMC

t dt+ dBt if St = s2,

which means that, on [t, τNt+1), distance to the border processes DS and DMC have an Ornstein-

Uhlenbeck type dynamics and satisfy

DS
u =


e−

∫ u
t α(s)ds

(
DS
t −

∫ u
t e

∫ s
t α(r)drdBs

)
if St = s1

e−
∫ u
t α(s)ds

(
DS
t +

∫ u
t e

∫ s
t α(r)drdBs

)
if St = s2

(3.15)

and

DMC
u =


e−

∫ u
t α(s)ds

(
DMC
t −

∫ u
t e

∫ s
t α(r)drdBs

)
if St = s1

e−
∫ u
t α(s)ds

(
DMC
t +

∫ u
t e

∫ s
t α(r)drdBs

)
if St = s2.

(3.16)

According to Revuz-Yor [39], p.181, one can obtain a representation of
∫ u
t e

∫ s
t α(r)drdBs as a time

changed standard Brownian motion W = (Wt, t ≥ 0) starting from 0 and such that∫ u

t
e
∫ s
t α(r)drdBs = WT (t,u), (3.17)

where

T (t, u) =

∫ u

t
e2

∫ s
t α(r)drds. (3.18)

Therefore, τNt+1 is finite (P-a.s.) since hitting times of Brownian motion of a fixed level are finite.

�
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3.6 Conditional distributions in the simple jump structure model

In this section, conditional distributions for the time of the next jump, the type of the next jump

and the size of the next jump in the simple jump structure model will be found, given that the

stock price dynamics on [0, t], t ≥ 0, is observed.

Distribution of the time of the next jump

Theorem 3.6 Suppose that 0 ≤ t < u. Then conditional distribution for the time of the next

jump, given the market information FPt , is equal to

P
(
τNt+1 ≤ u | FPt

)
=

2√
2π

∫ ∞
Rt

[∫ ∞
γ(dSt ,τNt

,t,x)√
T (t,u)

e−
y2

2 dy
]
λµe

−λµ(x−Rt)dx,

where dSt , γ(dSt , τNt , t, x) and T (t, u) are defined in (3.12), (3.14) and (3.18), and

Rt = sup
s∈[τNt ,t]

(
−dSs e

∫ s
τNt

α(r)dr
)

= − inf
s∈[τNt ,t]

(
dSs e

∫ s
τNt

α(r)dr
)
.

Proof According to (3.5) and (3.12)− (3.14), dSt ∈ FPt and DS
t ∈ F

P,µ
t , where

FP,µt = σ
(

(Ps, 0 ≤ s ≤ t), µNt
)
.

Therefore,

P
(
τNt+1 ≤ u | FPt

)
= EP

[
EP
[
I
(
τNt+1 ≤ u

)
| FP,µt

]
| FPt

]
= EP

[ 2√
2π

∫ ∞
DSt√
T (t,u)

e−
y2

2 dy | FPt
]

= EP
[ 2√

2π

∫ ∞
γ(dSt ,τNt

,t,µNt
)√

T (t,u)

e−
y2

2 dy | FPt
]
.

The first equality follows from the law of iterated expectations. The second equality is due to

formulas (3.11) and (3.15), time-changed Brownian motion representation (3.17) and the cumulative

distribution function for the maximum of Brownian motion (see, e.g., Shreve [43], p.113). Finally,

the third equality holds true according to (3.13).

Then the result follows in view of the assumption that µNt is an exponential random variable with

parameter λµ and the fact that the condition[
γ(dSs , τNt , s, µNt) > 0, ∀s ∈ [τNt , t]

]
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is equivalent to the condition [
µNt > Rt

]
.

�

Distribution of the next state of the state process

Remark 3.4 Suppose that t ≥ 0 and s ∈ S. According to Theorem 3.5 and Step 6 in Definition

3.3, the next state of the state process is equal to the other state (P-a.s.), which means that

P
(
SτNt+1 = s | FPt

)
= 1− I(St = s).

Distribution of the size of the next jump

Remark 3.5 Suppose that t ≥ 0 and C ∈ B(R). In virtue of Theorem 3.5 and Step 5 and Step 7

in Definition 3.3, the distribution of the size of the next jump is given by

P
(
JNt+1 ∈ C | FPt

)
=


∫∞

1 I
(
ηt(x− 1) ∈ C

)
fu(x)dx if St = s1∫ 1

0 I
(
ηt(x− 1) ∈ C

)
f l(x)dx if St = s2.

Recall that (fu(x), x ≥ 1) and (f l(x), x ∈ [0, 1]) are the density functions of random variables ζuNt

and ζ lNt .

3.7 Conditional distributions in the Markov chain jump structure model

In this section, conditional distributions for the time of the next jump, the type of the next jump

and the size of the next jump in the Markov chain jump structure model will be found, given that

the stock price dynamics on [0, t], t ≥ 0, is observed.
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Distribution of the time of the next jump

Theorem 3.7 Suppose that 0 ≤ t < u. Then conditional distribution for the time of the next

jump, given the market information FPt , is equal to

P
(
τNt+1 ≤ u | FPt

)
=

2√
2π

∫ ∞
DMC
t√
T (t,u)

e−
y2

2 dy. (3.19)

Proof The proof is patterned after Theorem 3.6 by applying formulas (3.11) and (3.16), time-

changed Brownian motion representation (3.17) and the cumulative distribution function for the

maximum of Brownian motion. �

Distribution of the type of the next jump

Remark 3.6 Suppose that t ≥ 0. According to Theorem 3.5 and Step 5 in Definition 3.4

P
(
SJτNt+1

= sJ1 | FPt
)

=


pc if SJt = sJ1

1− pb if SJt = sJ2

and

P
(
SJτNt+1

= sJ2 | FPt
)

=


1− pc if SJt = sJ1

pb if SJt = sJ2 .

Distribution of the size of the next jump

Remark 3.7 Suppose that t ≥ 0 and C ∈ B(R). In virtue of Theorem 3.5 and Step 3 and Step 5

in Definition 3.4, the distribution of the size of the next jump is given by

P
(
JNt+1 ∈ C | FPt

)
=


pc
∫ 1

0 I (ηt(x− 1) ∈ C) f l(x)dx+ (1− pc)
∫∞

1 I (ηt(x− 1) ∈ C) fu(x)dx if SJt = sJ1

(1− pb)
∫ 1

0 I (ηt(x− 1) ∈ C) f l(x)dx+ pb
∫∞

1 I (ηt(x− 1) ∈ C) fu(x)dx if SJt = sJ2 .
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4. ESTIMATION OF PARAMETERS

All the parameters can be divided into two groups. The first group is model-specific probabilities,

rate parameters and intensities. In the subsequent sections, they will be estimated by assuming

some prior distributions and obtaining posterior distributions according to the Bayesian inference

approach. All other parameters and parameters of those prior distributions can be calibrated by

doing a number of stock price simulations and finding a set of parameter values that fits some

historical price dynamics.

4.1 Bayesian inference in the endogenous switching model

Estimation of λl

To estimate the rate parameter λl, assume it has some prior density fλl(λ) and let

N l,1
t =

Nt−1∑
i=0

I
(
Sτi = s1

)
I
(
Bτi+1 < h1(τi+1)

)
(

respectively N l,2
t =

Nt−1∑
i=0

I
(
Sτi = s1

)
I
(
Bτi+1 = h1(τi+1)

))
.

be the number of times up to time t when, at τi, the system starts from Sτi = s1 and then jumps

after (respectively before) τi + T li .

Set il,10 < 0 (respectively il,20 < 0) and, for j = 1, ..., N l,1
t (respectively j = 1, ..., N l,2

t ), let

il,1j = min
(
i > il,1j−1 : Sτi = s1 and Bτi+1 < h1(τi+1)

)
(

respectively il,2j = min
(
i > il,2j−1 : Sτi = s1 and Bτi+1 = h1(τi+1)

))



be the indices of the corresponding jumps.

Therefore, information that is available is the following:

hl(τ
il,1j +1

; τ
il,1j

+ T l
il,1j

) = Bτ
i
l,1
j

+1
,

that is, in view of (2.30),

T l
il,1j

=xl
il,1j

= τ
il,1j +1

− τ
il,1j

+
1

c
ln
( Bτ

i
l,1
j

+1
− h2(τ

il,1j +1
)

h1(τ
il,1j +1

)− h2(τ
il,1j +1

)

)
,

and

T l
il,2j
≥yl

il,2j
= τ

il,2j +1
− τ

il,2j
.

Then by Bayes formula the posterior density

fλl(λ | x
l
il,11

, ..., xl
il,1

N
l,1
t

, yl
il,21

, ..., yl
il,2

N
l,2
t

) ∝ fλl(λ)Π
N l,1
t

j=1

(
λ exp(−λxl

il,1j
)
)

Π
N l,2
t

j=1 exp(−λyl
il,2j

).

Assuming the conjugate prior Gamma(λ; al, bl), where

Gamma(λ; al, bl) =
bl
al

Γ(al)
λal−1e−λbl , λ ≥ 0,

and Γ(al) denotes the Gamma function, it can be shown that

fλl(λ | x
l
il,11

, ..., xl
il,1

N
l,1
t

, yl
il,21

, ..., yl
il,2

N
l,2
t

) = Gamma(λ; al +N l,1
t , bl +

N l,1
t∑

j=1

xl
il,1j

+

N l,2
t∑

j=1

yl
il,2j

).

It can be concluded that an increase in one of the values of xl
il,1j

or yl
il,2j

leads to a decrease in the

posterior mean of λl, while an increase in N l,1
t , given that the number of observations N l,1

t +N l,1
t

and all the values xl
il,1j

and yl
il,2j

stay unchanged, causes the opposite effect. Indeed, if it is known

that one of the values of T li in the sample is greater than z1 rather than greater than z2, or one

of the values of T li is equal to z1 rather than equal to z2, or one of the values of T li is equal to

z1 rather than greater than z1, where z1 < z2, then the posterior mean of the rate parameter λl

should increase.
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Estimation of λu

Similarly, to estimate the rate parameter λu, assume it has some prior density fλu(λ), λ ≥ 0, and

let

Nu,1
t =

Nt−1∑
i=0

I
(
Sτi = s3

)
I
(
Bτi+1 > h2(τi+1)

)
(

respectively Nu,2
t =

Nt−1∑
i=0

I
(
Sτi = s3

)
I
(
Bτi+1 = h2(τi+1)

))
.

Set iu,10 < 0 (respectively iu,20 < 0) and, for j = 1, ..., Nu,1
t (respectively j = 1, ..., Nu,2

t ), let

iu,1j = min
(
i > iu,1j−1 : Sτi = s3 and Bτi+1 > h2(τi+1)

)
(

respectively iu,2j = min
(
i > iu,2j−1 : Sτi = s3 and Bτi+1 = h2(τi+1)

)
.

In view of (2.31), information that is available is the following:

T u
iu,1j

=xu
iu,1j

= τ
iu,1j +1

− τ
iu,1j

+
1

c
ln
( h1(τ

iu,1j +1
)−Bτ

i
u,1
j

+1

h1(τ
iu,1j +1

)− h2(τ
iu,1j +1

)

)
,

T u
iu,2j

≥yu
iu,2j

= τ
iu,2j +1

− τ
iu,2j
.

Then by Bayes formula the posterior density

fλu(λ | xu
iu,11

, ..., xu
il,1
N
u,1
t

, yu
iu,21

, ..., yu
iu,2
N
u,2
t

) ∝ fλu(λ)Π
Nu,1
t

j=1

(
λ exp(−λxu

iu,1j

)
)

Π
Nu,2
t

j=1 exp(−λyu
iu,2j

).

Assuming the conjugate prior Gamma(λ; au, bu), it can be obtained that

fλu(λ | xu
iu,11

, ..., xu
il,1
N
u,1
t

, yu
iu,21

, ..., yu
iu,2
N
u,2
t

) = Gamma(λ; au +Nu,1
t , bu +

Nu,1
t∑
j=1

xu
iu,1j

+

Nu,2
t∑
j=1

yu
iu,2j

).

Similar to the analysis of the posterior distribution for λl, an increase in one of the values of xu
iu,1j

or

yu
iu,2j

leads to a decrease in the posterior mean of λu and an increase in Nu,1
t , given that the number

of observations Nu,1
t +Nu,1

t and all the values xu
iu,1j

and yu
iu,2j

stay unchanged, does the opposite.
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Estimation of plu

To estimate the sunspot probability plu, assume it has some prior density flu(p) and let

N l,3
t =

Nt−1∑
i=0

I
(
Sτi = s1

)
I
(
Bτi+1 < h1(τi+1)

)
I
(
Sτi+1 = s3

)
(

respectively N l,4
t =

Nt−1∑
i=0

I
(
Sτi = s1

)
I
(
Bτi+1 < h1(τi+1)

)
I
(
Sτi+1 = s2

))
be the number of times up to time t when, at τi, the system starts from Sτi = s1 and then jumps

after τi + T li to state s3 (respectively s2).

Then by Bayes formula the posterior density

flu(p | N l,3
t , N l,4

t ) ∝ flu(p)pN
l,3
t (1− p)N

l,4
t .

Assuming the conjugate prior B(p;x1, y1), where

B(p;x1, y1) =
px1−1(1− p)y1−1

B(x1, y1)

and B(x1, y1) denotes the Beta function, it follows that

flu(p | N l,3
t , N l,4

t ) = B(p;x1 +N l,3
t , y1 +N l,4

t ).

It can be concluded that an increase in N l,3
t , given that the number of observations N l,3

t +N l,4
t stays

unchanged, leads to an increase in the posterior mean of plu. Indeed, the greater the proportion

of times when Bernoulli random variable is equal to 1, the greater the posterior mean of that

probability to be equal to 1.

Estimation of pul

Similarly, to estimate the sunspot probability pul, assume it has some prior density ful(p) and let

Nu,3
t =

Nt−1∑
i=0

I
(
Sτi = s3

)
I
(
Bτi+1 > h2(τi+1)

)
I
(
Sτi+1 = s1

)
(

respectively Nu,4
t =

Nt−1∑
i=0

I
(
Sτi = s3

)
I
(
Bτi+1 > h2(τi+1)

)
I
(
Sτi+1 = s2

))
.
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Then by Bayes formula the posterior density

ful(p | Nu,3
t , Nu,4

t ) ∝ ful(p)pN
u,3
t (1− p)N

u,4
t .

Assuming the conjugate prior B(p;x2, y2), it can be shown that the posterior density

ful(p | Nu,3
t , Nu,4

t ) = B(p;x2 +Nu,3
t , y2 +Nu,4

t ).

Similar to the analysis of plu, an increase in Nu,3
t , given that the number of observations Nu,3

t +Nu,4
t

stays unchanged, leads to an increase in the posterior mean of pul.

4.2 Bayesian inference in the exogenous shocks model

To estimate intensity λZ , assume it has some prior density fλZ (λ). According to Remark 2.8, at

time t ∈ [T0, T ), the Brownian motion past dynamics (Bs, T0 ≤ s ≤ t) is known, and the total

number of exogenous shocks when the system admitted multiple equilibria is equal to

NZ
t =

∑
i≥1

I
(
τi ≤ t

)
I
(
h2(τi) < Bτi < h1(τi)

)
.

The question is how the posterior distribution of λZ can be found, based on the information

contained in the sigma-algebra

FN
Z ,B

t = σ{(Bs, NZ
s ), T0 ≤ s ≤ t}.

Denote by

F̂N
Z ,B

t = FNZ

t ∨ FB∞,

where FB∞ = σ(Bs, s ≥ T0) and FNZ

t = σ(NZ
s , s ∈ [T0, t]), hence, FN

Z ,B
t ⊂ F̂N

Z ,B
t . In Theorem

4.1, it will be shown that the process AZt = λZ
∫ t
T0

I
(
h2(s) < Bs < h1(s)

)
ds is the compensator in

the Doob-Meyer decomposition for (NZ
t , F̂

NZ ,B
t ), t ∈ [T0, T ).

To compute the posterior distribution of λZ , the method of the reference probability described in

Chapter VI in Bremaud [8] is applied. According to this method, a reference probability Q can be

obtained by an absolutely continuous change of measure with the corresponding Radon-Nikodym

derivative given by

Lt =
dPt
dQt

= e
λZ

∫ t
T0

(1−I(h2(s)<Bs<h1(s)))ds
,
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where, for each t ∈ [T0, T ), Pt and Qt are the restrictions of P and Q respectively to (Ω,FN
Z ,B

t ). By

the results of Chapter VI in Bremaud [8], under the probability measure Q, process NZ
t is a Poisson

process with intensity λZ and it is independent of Brownian motion Bt. For any Borel-measurable

and bounded function f : R+ → R,

EP
(
f(λZ) | FN

Z ,B
t

)
= EQ

(
Ltf(λZ) | FN

Z ,B
t

)
= LtEQ

(
f(λZ) | NZ

t

)
,

hence, it is required to calculate the posterior distribution of λZ based on the values of NZ
t and∫ t

T0
I(h2(s) < Bs < h1(s))ds, and it can be implemented by applying Bayes formula.

Theorem 4.1 Process AZt = λZ
∫ t
T0

I
(
h2(s) < Bs < h1(s)

)
ds is the compensator in the Doob-

Meyer decomposition for (NZ
t , F̂

NZ ,B
t ), t ∈ [T0, T ).

Proof First, since the expected total number of exogenous shocks on [T0, t] is equal to λZ(t− T0)

and 0 ≤ I
(
h2(s) < Bs < h1(s)

)
≤ 1, for s ∈ [T0, t], it can be concluded that

EP | NZ
t −AZt |≤ EPNZ

t + EPAZt ≤ λZ(t− T0) + λZ(t− T0) <∞.

Suppose that s ∈ [T0, t]. Then

EP
(
NZ
t −AZt | F̂N

Z ,B
s

)
=NZ

s −AZs + EP
(∑
i≥1

I
(
s < τi ≤ t

)
I
(
h2(τi) < Bτi < h1(τi)

)
| F̂NZ ,B

s

)
− λZ

∫ t

s
I
(
h2(r) < Br < h1(r)

)
dr

Pursuant to the monotone convergence theorem and the law of iterated expectations,

EP
(∑
i≥1

I
(
s < τi ≤ t

)
I
(
h2(τi) < Bτi < h1(τi)

)
| F̂NZ ,B

s

)
=
∑
i≥1

EP
(
I
(
s < τi ≤ t

)
I
(
h2(τi) < Bτi < h1(τi)

)
| F̂NZ ,B

s

)
=
∑
i≥1

EP
(
EP
(
I
(
s < τi ≤ t

)
I
(
h2(τi) < Bτi < h1(τi)

)
| τi, F̂N

Z ,B
s

)
| F̂NZ ,B

s

)
=
∑
i≥1

∫ t−s

0
I
(
h2(s+ r) < Bs+r < h1(s+ r)

)λiZri−1e−λZr

(i− 1)!
dr

=

∫ t−s

0
I
(
h2(s+ r) < Bs+r < h1(s+ r)

)∑
i≥1

λiZr
i−1e−λZr

(i− 1)!
dr

= λZ

∫ t

s
I
(
h2(r) < Br < h1(r)

)
dr,
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and the martingale property holds true. �

Bayes formula and independence of NZ and B yield

P
(
λZ ∈ dΛ | NZ

t = n,

∫ t

T0

I(h2(s) < Bs < h1(s))ds = x
)

∝ P
(
NZ
t = n,

∫ t

T0

I(h2(s) < Bs < h1(s))ds ∈ dx | λZ ∈ dΛ
)
P
(
λZ ∈ dΛ

)
∝ EQ

(
LtI(

∫ t

T0

I(h2(s) < Bs < h1(s))ds ∈ dx)I(NZ
t = n) | λZ ∈ dΛ

)
P(λZ ∈ dΛ)

∝ eΛ(t−T0)−Λxe−Λ(t−T0)ΛnP(λZ ∈ dΛ)

∝ e−ΛxΛnP(λZ ∈ dΛ).

For the rate parameter λZ , it is assumed that the conjugate prior is given by Gamma(λ; a, b), hence,

the posterior density is equal to

fλZ

(
λ | NZ

t ,

∫ t

T0

I
(
h2(s) < Bs < h1(s)

)
ds
)

= Gamma
(
λ; a+NZ

t , b+

∫ t

T0

I
(
h2(s) < Bs < h1(s)

)
ds
)
.

An increase in NZ
t , given that

∫ t
T0

I
(
h2(s) < Bs < h1(s)

)
ds stays unchanged, leads to an increase

in the posterior mean of λZ , while an increase in
∫ t
T0

I
(
h2(s) < Bs < h1(s)

)
ds given NZ

t stays

unchanged does the opposite. It can be concluded that this posterior density coincides with the

one obtained for a standard Poisson process taking value NZ
t at time

∫ t
T0

I(h2(s) < Bs < h1(s))ds.

The value of this integral is equal to the total amount of time Brownian motion spends in the

interval where the system admits multiple equilibria since when the Brownian motion is outside

this interval, new shocks can not be detected.

4.3 Bayesian inference in the stochastic number of dynamic hedgers model

Estimation of λZ

To estimate λZ , assume that it has some prior density fλZ (λ) and count the total number of stock

price jumps caused by Poisson process Zt:

NZ
t =

Nt∑
i=1

[
I
(

∆Pτi > 0
)
I
(
H1(τi, w

D
τi−) 6= Bτi

)
+ I
(

∆Pτi < 0
)
I
(
H2(τi, w

D
τi−) 6= Bτi

)]
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Then by Bayes formula the posterior density

fλZ (λ | NZ
t ) ∝ fλZ (λ)e−λ(t−T0)λN

Z
t .

Assuming the conjugate prior Gamma(λ; a, b), it can be obtained that

fλZ (λ | NZ
t ) = Gamma(λ; a+NZ

t , b+ (t− T0)).

An increase in NZ
t , given that t − T0 stays unchanged, leads to an increase in the posterior mean

of λZ , while an increase in t− T0 given NZ
t stays unchanged does the opposite.

Estimation of pl

To estimate the probability pl, assume it has some prior density fpl(p) and let

N l
t =

Nt∑
i=1

I
(
Sτi−1 = s2

)
I
(
τi < τ̂i−1

)
I
(
H2(τi, w

D
τi ) < Bτi < H1(τi, w

D
τi )
)
I
(
Sτi = s3

)
(

respectively Nu
t =

Nt∑
i=1

I
(
Sτi−1 = s2

)
I
(
τi < τ̂i−1

)
I
(
H2(τi, w

D
τi ) < Bτi < H1(τi, w

D
τi )
)
I
(
Sτi = s1

))

denote the total number of observable values of (ξi, i = 1, 2, ...) such that ξi = s1 (respectively

ξi = s3). Values of ξi can be observed if and only if the number of dynamic hedgers changes when

the state process is in the state s2 and H2(τi, w
D
τi ) < Bτi < H1(τi, w

D
τi ).

Then by Bayes formula the posterior density

fpl(p | N
l
t , N

u
t ) ∝ fpl(p)p

N l
t (1− p)Nu

t .

Assuming the conjugate prior B(p; a, b), it can be concluded that

fpl(p | N
l
t , N

u
t ) = B(p; a+N l

t , b+Nu
t ).

An increase in N l
t , given that the number of observations N l

t + Nu
t stays unchanged, leads to an

increase in the posterior mean of pl, while an increase in Nu
t , given that the number of observations

N l
t +Nu

t stays unchanged, does the opposite.
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4.4 Bayesian inference in the simple jump structure model

To estimate the rate parameter λµ, assume it has some prior density fλµ(µ), µ ≥ 0. Based on the

information FPt , t ≥ 0,

µi = −dSτi+1
e
∫ τi+1
τi

α(r)dr
, i = 1, ..., Nt − 1,

can be calculated.

Then by Bayes formula the posterior density

fλµ

(
λ | µ1, ..., µNt−1

)
∝ λNt−1e−λ

∑Nt−1
j=1 µjfλµ(λ)

Assuming the conjugate prior Gamma(λ; a, b), it can be shown that

fλµ

(
λ | µ1, ..., µNt−1

)
= Gamma

(
λ; a+ (Nt − 1) , b+

Nt−1∑
j=1

µj

)
.

An increase in one of the values of µj causes an increase in the posterior mean of λµ.

4.5 Bayesian inference in the Markov chain jump structure model

To estimate probabilities pc and pb, assume they have some prior densities fpc(p) and fpb(p),

p ∈ [0, 1]. Based on the information FPt , t ≥ 0,

sc =

Nc
τNt−1∑
i=1

Xc
i and fc = N c

τNt−1
− sc,

can be calculated, where

l0 = 0, li = min(i > li−1 : Ji < 0), i = 1, 2, ..., N c
τNt−1

, Xc
i =


1, if Jli+1 < 0

0, if Jli+1 > 0,

and

sb =

Nb
τNt−1∑
i=1

Xb
i and fb = N b

τNt−1
− sb,

where

k0 = 0, ki = min(i > ki−1 : Ji > 0), i = 1, 2, ..., N b
τNt−1

, Xb
i =


1, if Jki+1 > 0

0, if Jki+1 < 0.
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Then sc is the number of successes and fc is the number of fails in the sample of a random variable

which is a Bernoulli trial with unknown probability of success pc and sb is the number of successes

and fb is the number of fails in the sample of a random variable which is a Bernoulli trial with

unknown probability of success pb.

By Bayes formula, the posterior densities

fpc(p | sc, fc) = psc(1− p)fcfpc(p) and fpb(p | sb, fb) = psb(1− p)fbfpb(p).

Assuming conjugate priors B(p; a1, b1) and B(p; a2, b2), it can be shown that

fpc(p | sc, fc) = B(p; a1 + sc, b1 + fc) and fpb(p | sb, fb) = B(p; a2 + sb, b2 + fb).

It can be concluded that an increase in sc given that the number of observations sc + fc stays

unchanged leads to an increase in the posterior mean of pc. Similarly, an increase in sb given that

the number of observations sb + fb stays unchanged causes an increase in the posterior mean of pb.
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5. NUMERICAL STUDIES

In this chapter, a number of numerical studies are conducted in C/C++ and MATLAB. Numerical

techniques to find conditional probabilities discussed in Chapter 2 and Chapter 3 will be demon-

strated by the example of the time of the next jump. Conditional probabilities of the type of the

next jump and the size of the next jump can be computed applying similar numerical algorithms.

5.1 Market microstructure models

5.1.1 A numerical algorithm for the endogenous switching model

Owing to the results of Corollary 2.1 and Sections 4.1.1 and 4.1.2, it can be concluded that the

conditional probability of the time of the next jump is equal to

1− F51(t, τNt +Rlt, Bt, u, al +N l,1
t , bl +

∑N l,1
t

j=1 x
l
il,1j

+
∑N l,2

t
j=1 y

l
il,2j

) if St = s1

1−Dm(u, t, Bt) if St = s2

1− F52(t, τNt +Rut , Bt, u, au +Nu,1
t , bu +

∑Nu,1
t

j=1 xl
iu,1j

+
∑Nu,2

t
j=1 yu

iu,2j

) if St = s3,

where

F51(t, z, y, u, a, b) =

∫ ∞
0

(∫ ∞
0

Dl(u, z + x, t, y)λe−λxdx

)
Gamma(λ; a, b)dλ

and

F52(t, z, y, u, a, b) =

∫ ∞
0

(∫ ∞
0

Du(u, z + x, t, y)λe−λxdx

)
Gamma(λ; a, b)dλ.

In Sections 5.1.4 and 5.1.5, numerical algorithms to compute corresponding probabilities Dl, Dm

and Du will be discussed. Conditional probabilities F51 and F52 can be numerically approximated

by applying Gauss-Laguerre formula (see, e.g., Abramowitz and Stegun [1]).



5.1.2 A numerical algorithm for the exogenous shocks model

Owing to the results of Corollary 2.4 and Section 4.2, it can be concluded that the conditional

probability of the time of the next jump is equal to
F53(t, Bt, u, a+NZ

t , b+
∫ t
T0

I
(
h2(s) < Bs < h1(s)

)
ds) if St = s1

F54(t, Bt, u, a+NZ
t , b+

∫ t
T0

I
(
h2(s) < Bs < h1(s)

)
ds) if St = s2

F55(t, Bt, u, a+NZ
t , b+

∫ t
T0

I
(
h2(s) < Bs < h1(s)

)
ds) if St = s3,

where F53(t, y, u, a, b) satisfies

F53(t, y, u, a, b) =
(

1−D1(u, t, y)
)∫ ∞

0
e−λ(u−t)Gamma(λ; a, b)dλ+

∫ u−t

0

[(
1−D1(t+ r, t, y)

)
+ Φ1(t+ r, t, y) +

∫ h2(t+r)

−∞
q1(x; r, t, y)F53(t+ r, x, u)dx

][∫ ∞
0

λe−λrGamma(λ; a, b)dλ
]
dr,

F54(t, y, u, a, b) = 1−Dm(u, t, y)

∫ ∞
0

e−λ(u−t)Gamma(λ; a, b)dλ (5.1)

and F55(t, y, u, a, b) satisfies

F55(t, y, u, a, b) =
(

1−D2(u, t, y)
)∫ ∞

0
e−λ(u−t)Gamma(λ; a, b)dλ+

∫ u−t

0

[(
1−D2(t+ r, t, y)

)
+ Φ2(t+ r, t, y) +

∫ ∞
h1(t+r)

q2(x; r, t, y)F55(t+ r, x, u)dx
][∫ ∞

0
λe−λrGamma(λ; a, b)dλ

]
dr,

The value of F53 can be approximated by finding F56, where

F56(ti, ym, tn1 , a, b) =
(

1−D1(tn1 , ti, ym)
)∫ ∞

0
e−λ(tn1−ti)Gamma(λ; a, b)dλ+

+ ∆1 ×
n1∑

j=i+1

(∫ ∞
0

λe−λ(tj−ti)Gamma(λ; a, b)dλ×
[(

1−D1(tj , ti, ym)
)

+ Φ1(tj , ti, ym)+

+

kj∑
k=1

P
(
yk−1 − ym < Btj−ti ≤ yk − ym | Bs < h1(ti + s), ∀s ∈ [0, tj − ti]

)
F56(tj , yk, tn1)dx

])
,

(5.2)

boundary condition is

F56(tn1 , ym, tn1 , a, b) = 0 for m = 0, 1, ..., kn1 ,

kj = max
(

0 ≤ k ≤ n2 : yk ≤ h2(tj)
)
, j = 1, 2, ..., n1,
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and a mesh with uniform spacing is given by

ti = t+ i∆1, i = 0, 1, ..., n1, and ym = C1 +m∆2,m = 0, 1, ..., n2,

with

∆1 =
u− t
n1

, n1 ≥ 1, and ∆2 =
C2 − C1

n2
, n2 ≥ 1.

Constants C1 and C2 are taken such that

P( min
s∈[0,u−t]

Bs ≤ C1) = P( max
s∈[0,u−t]

Bs ≥ −C1) = 2Φ
( C1√

u− t

)
= ε (5.3)

for some small ε > 0 and

C2 ≥ max
s∈[0,u−t]

h1(t+ s).

The value F56 can be computed applying backward induction to i = 1, ..., n1 and Gauss-Laguerre

formula for ∫ ∞
0

e−λ(tn1−ti)Gamma(λ; a, b)dλ

and ∫ ∞
0

λe−λ(tj−ti)Gamma(λ; a, b)dλ, j = i+ 1, ..., n1,

and F54 can be approximated by applying Gauss-Laguerre formula for∫ ∞
0

e−λ(u−t)Gamma(λ; a, b)dλ.

Finally, F55 can be computed according to exactly the same procedure as the one applied for F53,

therefore, the details are omitted here.

In Sections 5.1.4 and 5.1.5, numerical algorithms to approximate corresponding Brownian motion

probabilities in formulas (5.1) and (5.2) will be discussed.

5.1.3 A numerical algorithm for the stochastic number of dynamic hedgers model

Owing to the results of Corollary 2.8 and Section 4.3.1, it can be concluded that the conditional

probability of the time of the next jump is equal to
1− D̄1(u, t, Bt, w

D
t )
∫∞

0 e−λ(u−t)Gamma(λ; a+NZ
t , b+ (t− T0))dλ if St = s1

F57(u, t, Bt, w
D
t , a+NZ

t , b+ (t− T0)) if St = s2

1− D̄2(u, t, Bt, w
D
t )
∫∞

0 e−λ(u−t)Gamma(λ; a+NZ
t , b+ (t− T0))dλ if St = s3,
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where

F57(u, t, y, wDt , a, b)

=

(
1−

∫ ∞
0

e−λ(u−t)Gamma(λ; a, b)dλ

)
+ I
(
TD(wDt ) < u

)∫ ∞
0

e−λ(u−t)Gamma(λ; a, b)dλ×

×
[∫ H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

−∞

1√
2π(TD(wDt )− t)

e
− (x−y)2

2(TD(wDt )−t) (1− D̄1(u, TD(wDt ), x, wDt ))dx

+

∫ ∞
H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

1√
2π(TD(wDt )− t)

e
− (x−y)2

2(TD(wDt )−t) (1− D̄2(u, TD(wDt ), x, wDt ))dx
]
.

On the sets [St = s1] and [St = s3], this conditional probability can be numerically approximated

applying Gauss-Laguerre formula for∫ ∞
0

e−λ(u−t)Gamma(λ; a+NZ
t , b+ (t− T0))dλ

and ∫ ∞
0

e−λ(u−t)Gamma(λ; a+NZ
t , b+ (t− T0))dλ.

On the set [St = s2], one can apply Gauss-Laguerre formula∫ ∞
0

e−λ(u−t)Gamma(λ; a, b)dλ,

replace

∫ H(TD(wDt ),wDt ,κe
−r(T−TD(wDt )))

−∞

1√
2π(TD(wDt )− t)

e
− (x−y)2

2(TD(wDt )−t) (1− D̄1(u, TD(wDt ), x, wDt ))dx

by

n∑
i=1

(1− D̄1(u, TD(wDt ), xi−1, w
D
t )) + (1− D̄1(u, TD(wDt ), xi, w

D
t ))

2
×

×
∫ xi

xi−1

1√
2π(TD(wDt )− t)

e
− (x−y)2

2(TD(wDt )−t)dx

=
n∑
i=1

(1− D̄1(u, TD(wDt ), xi−1, w
D
t )) + (1− D̄1(u, TD(wDt ), xi, w

D
t ))

2
×

×
(

Φ
( xi − y√

TD(wDt )− t

)
− Φ

( xi−1 − y√
TD(wDt )− t

))
,

where

y + C1 = x0 < x1 < ... < xn = H(TD(wDt ), wDt , κe
−r(T−TD(wDt )))
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is an equally spaced grid on [y + C1, H(TD(wDt ), wDt , κe
−r(T−TD(wDt )))] with a constant C1 defined

according to (5.3), and then, similarly, replace∫ ∞
H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

1√
2π(TD(wDt )− t)

e
− (x−y)2

2(TD(wDt )−t) (1− D̄2(u, TD(wDt ), x, wDt ))dx

by

n∑
i=1

(1− D̄2(u, TD(wDt ), xi−1, w
D
t )) + (1− D̄2(u, TD(wDt ), xi, w

D
t ))

2
×

×
(

Φ
( xi − y√

TD(wDt )− t

)
− Φ

( xi−1 − y√
TD(wDt )− t

))
,

where

H(TD(wDt ), wDt , κe
−r(T−TD(wDt ))) = x0 < x1 < ... < xn = y − C1

is an equally spaced grid on [H(TD(wDt ), wDt , κe
−r(T−TD(wDt ))), y − C1].

In Section 5.1.5, numerical algorithms to compute corresponding probabilities D̄1 and D̄2 will be

discussed.

5.1.4 Examples of numerical techniques to calculate Brownian motion

hitting probabilities and densities for two-sided curved boundaries

In this section, the application of the numerical techniques developed by Skorohod [44], Novikov

et al. [32], Poetzelberger and Wang [37] and Buonocore et al. [12] to calculating Brownian motion

hitting probabilities

P
(
τ > u,Bu ≤ K

)
, u ∈ [0, T ], (5.4)

and

P
(
τ < u,Bτ = f(τ)

)
, u ∈ [0, T ], (5.5)

will be discussed, where

τ = inf
(
t ≥ 0 : Bt = f(t) or Bt = g(t)

)
,

deterministic functions f and g are in the class C2
(

[0, u]
)

and satisfy f(t) < g(t), ∀t ∈ [0, u],

and constant K is such that f(u) ≤ K ≤ g(u).
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To compute

P
(
τ > u,K1 ≤ Bu ≤ K2

)
, u ∈ [0, T ],

it can be used that

P
(
τ > u,K1 ≤ Bu ≤ K2

)
= P

(
τ > u,Bu ≤ K2

)
− P

(
τ > u,Bu ≤ K1

)
. (5.6)

Based on these results applied for K = g(u) and Brownian motions B and −B, the values of Dm,

Dm,1 and Dm,2 can be derived. Values of qm, φm, φm,1 and φm,2 can be calculated according to a

rectangle rule. Note that other numerical methods can be applied as well.

PDE approach

According to Skorohod [44],

P
(
τ > u,Bu ≤ K

)
= v1(0, 0)

and

P
(
τ < u,Bτ = f(τ)

)
= v2(0, 0),

where, for 0 < t < u and f(t) < x < g(t), functions v1(t, x) and v2(t, x) solve the backward linear

heat equation
∂vi
∂t

+
1

2

∂2vi
∂x2

= 0, i = 1, 2,

with corresponding boundary conditions

v1(t, f(t)) = 0, v1(t, g(t)) = 0, v1(u, x) = I
(
x ≤ K

)
and

v2(t, f(t)) = 1, v2(t, g(t)) = 0, v2(u, x) = 0.

To find v1(0, 0) and v2(0, 0), one can use 3-sigma and rectangle rules approximating function H

from formula (2.5) with

γ1x− z ×∆×
∑n

i=1 Φ
(
x−Kie−r(T−t)

Σ(t)

)
1√

2πσ2
κ

e
− (Ki−κ)2

2σ2
κ − γ2

γ3
(5.7)
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where κ− 3σκ = K0 < K1 < ... < Kn = κ+ 3σκ and ∆ = Ki+1−Ki, i = 0, 1, ..., n, and then apply

Crank-Nicolson finite difference method which is used for numerically solving the heat equation

(see, e.g., Thomas [45] and Wilmott et al. [47]).

Approximation by piecewise linear boundaries

In this section, an alternative to PDE approach to evaluate probabilities and densities that corre-

spond to formula (5.4) is considered.

Let f̂(t) and ĝ(t) be piecewise linear approximations for f(t) and g(t) on the interval [0, u], with

nodes ti, t0 = 0 < t1 < t2 < ... < tn = u, ∆ti = ti+1 − ti, such that f̂(ti) = f(ti) and ĝ(ti) = g(ti).

Then Novikov et al. [32] refers to Hall [23] that calculated

p(i, f̂ , ĝ | xi, xi+1) = P
(
f̂(t) < Bt < ĝ(t), ti ≤ t ≤ ti+1 | Bti = xi, Bti+1 = xi+1

)
= 1− P (a1, a2, b̂, xi)− P (−a2,−a1,−b̂,−xi),

where

P (a1, a2, b̂, xi) =
∞∑
j=1

e2b(2j−1)(jc+a2)e
2(jc+a2)

∆ti
(∆xi−b̂∆ti−(jc+a2)) −

∞∑
j=1

e4bj(2j−â)e
2

∆ti
jc(∆xi−b̂∆ti−jc),

with

a1 = g(ti+1)− xi, a2 = f(ti+1)− xi, b1 =
g(ti+1)− g(ti)

∆ti
, b2 =

f(ti+1)− f(ti)

∆ti
,

c = a1 − a2, b =
b2 − b1

2
, b̂ =

b2 + b1
2

, â =
a1 + a2

2
, ∆xi = xi+1 − xi,

and develops the recurrent algorithm to evaluate probability (5.4). Using that algorithm and

approximation (5.7), one can compute

z0(x) = p(0, f̂ , ĝ | 0, x)
1√

2πt1
exp(− x

2

2t1
)

and

zk(x) =

∫ ĝ(tk)

f̂(tk)
zk−1(y)p(k, f̂ , ĝ | y, x)

1√
2π∆tk

exp(−(x− y)2

2∆tk
)dy, k = 1, ..., n− 1,

and then evaluate (5.4) by calculating∫ K

f̂(tn)
zn−1(y)

1√
2πu

exp(− y
2

2u
)dy.
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Alternatively, to evaluate (5.4), one can use (5.7) and the Monte Carlo simulation method developed

in Poetzelberger and Wang [37] and generate a random sample X1,...,Xk from the multivariate

normal distribution of Bt1 ,...,Btn and estimate probability (5.4) by the sample mean

1

k

k∑
i=1

r2(Xi; f(t1), ..., f(tn−1), f(tn); g(t1), ..., g(tn−1),K),

where

r2(x1, ..., xn; a1, ..., an; b1, ..., bn)

= Πn
i=1I(ai < xi < bi)

(
1− exp

[
− 2

∆ti−1
(ai−1 − xi−1)(ai − xi)

]
− exp

[
− 2

∆ti−1
(bi−1 − xi−1)(bi − xi)

])
.

Volterra integral equations approach

Volterra integral equations approach is an alternative to PDE approach to calculate the probabilities

and densities that correspond to formula (5.5). According to Buonocore et al. [12], densities φm,1

and φm,2 satisfy a system of Volterra integral equations of the second kind: φm,1(t) = −2m(g(t), t | 0, 0) + 2
∫ t

0 [φm,1(s)m(g(t), t | g(s), s) + φm,2(s)m(g(t), t | f(s), s)]ds

φm,2(t) = 2m(f(t), t | 0, 0)− 2
∫ t

0 [φm,1(s)m(f(t), t | f(s), s) + φm,2(s)m(f(t), t | g(s), s)]ds,

where for all y ∈ R and s < t one has

m(f(t), t | y, s) = n(f(t), t | y, s)r(t, s, y),

n(x, t | y, s) = [2π(t− s)]−
1
2 exp

(
−(x− y)2

2(t− s)

)
,

r(t, s, y) =
f ′(t)

2
− f(t)− y

2(t− s)
,

and density φm defined in (2.45) is equal to

φm(t) = φm,1(t) + φm,2(t).

Buonocore et al. [12] has shown that if functions f(t) and g(t) are in the class C2
(

[0,∞)
)

, then

this system of Volterra integral equations possesses a unique continuous solution that can be found

numerically, e.g., according to a composite trapezium rule. One can apply (5.7), set the integration
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step ∆ > 0 and t = k∆, k = 1, 2, ..., and use the following approximation:

φm,1(∆) = −2m(g(∆),∆ | 0, 0),

φm,1(k∆) = −2m(g(k∆), k∆ | 0, 0)

+ 2∆

k−1∑
j=1

[φm,1(j∆)m(g(k∆), k∆ | g(j∆), j∆) + φm,2(j∆)m(g(k∆), k∆ | f(j∆), j∆)], k ≥ 2,

φm,2(∆) = 2m(f(∆),∆ | 0, 0),

φm,2(k∆) = 2m(f(k∆), k∆ | 0, 0)

− 2∆
k−1∑
j=1

[φm,1(j∆)m(f(k∆), k∆ | g(j∆), j∆) + φm,2(j∆)m(f(k∆), k∆ | f(j∆), j∆)], k ≥ 2.

The sum φm,1 +φm,2 then provides an evaluation of φm. Finally, the values of Dm, Dm,1 and Dm,2

can be calculated by applying a rectangle rule.

5.1.5 Examples of numerical techniques to calculate Brownian motion

hitting probabilities and densities for one-sided curved boundaries

In this section, it will be discussed how one can apply the numerical techniques developed by

Skorohod [44], Novikov et al. [33] and Wang and Poetzelberger [46] to calculate Brownian motion

hitting probability

P
(
τ > u,Bu ≤ K

)
, u ∈ [0, T ], (5.8)

where

τ = inf
(
t ≥ 0 : Bt = g(t)

)
,

deterministic function g is in the class C2
(

[0, u]
)

and satisfies g(0) > 0, and constant K is such

that K ≤ g(u), and the numerical techniques developed by Buonocore et al. [13] and Peskir [36]

to calculate the special case of formula (5.8), which corresponds to K = g(u),

P
(
τ > u

)
, u ∈ [0, T ]. (5.9)

To compute

P
(
τ > u,K1 ≤ Bu ≤ K2

)
, u ∈ [0, T ],
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formula (5.6) can be applied.

Based on these results applied for Brownian motions B and −B, probabilities Φ1, Φ2, D1, D2, D̄1,

D̄2, Dl and Du can be found. To calculate densities q1, q2, φ1, φ2, φ̄1, φ̄2, φl and φu, a rectangle

rule can be used. As in the two-sided boundary case, some other numerical methods can be applied

as well.

PDE approach

Since

P
(
Bt < g(t), t ∈ [0, u], and Bu ≤ K

)
= P

(
C < Bt < g(t), t ∈ [0, u], and Bu ≤ K

)
+ P

(
min
t∈[0,u]

Bt ≤ C, Bt < g(t), t ∈ [0, u], and Bu ≤ K
)

≤ P
(
C < Bt < g(t), t ∈ [0, u], and Bu ≤ K

)
+ P

(
min
t∈[0,u]

Bt ≤ C
)

≤ P
(
C < Bt < g(t), t ∈ [0, u], and Bu ≤ K

)
+ P

(
max
t∈[0,u]

Bt ≥ −C
)

and

P
(
Bt < g(t), t ∈ [0, u], and Bu ≤ K

)
≥ P

(
C < Bt < g(t), t ∈ [0, u], and Bu ≤ K

)
for all C < 0, probability (5.8) can be approximated with

P
(
C1 < Bt < g(t), t ∈ [0, u], and Bu ≤ K

)
, (5.10)

where a constant C1 is defined in (5.3). Probability (5.10) can be evaluated according to the PDE

approach discussed in Section 5.1.4.

Approximation by piecewise linear boundaries

Approximation by piecewise linear boundaries is an alternative to PDE approach to evaluate prob-

abilities and densities that correspond to formula (5.8).

Let ĝ(t) be piecewise linear approximations for g(t) on the interval [0, u], with nodes ti,

t0 = 0 < t1 < t2 < ... < tn = u, ∆ti = ti+1 − ti, such that ĝ(ti) = g(ti).
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Novikov et al. [33] calculates

p(i, ĝ | xi, xi+1) = P
(
Bt < ĝ(t), ti ≤ t ≤ ti+1 | Bti = xi, Bti+1 = xi+1

)
= I
(
ĝ(ti) > xi, ĝ(ti+1) > xi+1

)[
1− e−

2(ĝ(ti)−xi)(ĝ(ti+1)−xi+1)

∆ti

]
and develops the recurrent algorithm to evaluate probability (5.8). Applying (5.7) and that algo-

rithm, one can compute

z0(x) = p(0, ĝ | 0, x)
1√

2πt1
exp(− x

2

2t1
)

and

zk(x) =

∫ ĝ(tk)

−∞
zk−1(y)p(k, ĝ | y, x)

1√
2π∆tk

exp(−(x− y)2

2∆tk
)dy, k = 1, ...n− 1,

and then evaluate (5.8) by calculating∫ K

−∞
zn−1(y)

1√
2πu

exp(− y
2

2u
)dy.

Alternatively, to evaluate (5.8), one can use (5.7) and the Monte Carlo simulation method developed

in Wang and Poetzelberger [46] and generate a random sample X1,...,Xk from the multivariate

normal distribution of Bt1 ,...,Btn and estimate probability (5.8) by the sample mean

1

k

k∑
i=1

r1(Xi; g(t1), ..., g(tn−1),K),

where

r1(x1, ..., xn; b1, ..., bn) = Πn
i=1I(xi < bi)

(
1− exp

[
− 2

∆ti−1
(bi−1 − xi−1)(bi − xi)

])
.

Volterra integral equations

Volterra integral equations is an alternative to PDE approach to evaluate probabilities and densities

that correspond to formula (5.9).

According to Buonocore et al. [13], the density φ of the first passage time of B over g can be

determined implicitly from the integral equation

φ(t) = −2m(g(t), t | 0, 0) + 2

∫ t

0
φ(s)m(g(t), t | g(s), s)ds.

Buonocore et al. [13] has shown that if g(t) is C2
(

[0,∞)
)

-class function, then this integral equa-

tion possesses a unique continuous solution that can be found numerically applying a composite
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trapezium rule. One can apply (5.7), set the integration step ∆ > 0 and t = k∆, k = 1, 2, ..., and

use the following approximation:

φ(∆) = −2m(g(∆),∆ | 0, 0),

φ(k∆) = −2m(g(k∆), k∆ | 0, 0) + 2∆
k−1∑
j=1

φ(j∆)m(g(k∆), k∆ | g(j∆), j∆), k ≥ 2.

Alternatively, Peskir [36] has shown that this density function φ also satisfies a linear Volterra

integral equation of the first kind

Ψ(
g(t)√
t

) =

∫ t

0
Ψ(
g(t)− g(s)√

t− s
)φ(s)ds, t > 0,

where

Ψ(x) = 1−
∫ x

0

1√
2π

exp(−z
2

2
)dz.

Applying (5.7) and setting tj = j∆t for j = 0, 1, ..., n, ∆t = t
n and n ≥ 1, one can implement the

following numerical approximation algorithm:

∆t

i−1∑
j=1

Ψ(
g(ti)− g(tj)√

ti − tj
)φ(tj) = Ψ(

g(ti)√
ti

), i = 1, ..., n.

Finally, the cumulative distribution function of the first passage time of B over g can be determined

applying a rectangle rule.

5.1.6 Numerical studies

In this section, conditional distribution for the time of the next jump is computed for some given

set of parameters: t = 1, T = 5, α1 = 1, σκ = 1, κ = 50, γ1 = 1, γ2 = 1, γ3 = 1. For the constant

number of dynamic hedgers models, it is supposed that wDt = 14, which means that condition (2.10)

holds true, and the dynamics of lower and upper boundaries h2 and h1 is illustrated by Figure 5.1.

For the stochastic number of dynamic hedgers model, two different cases are considered. In the

first case, it is assumed that wDt = 14 and, similar to the constant number of dynamic hedgers

models, (2.10) holds true, therefore, the state process is either in the lower level state s1 or in the

upper level state s3. In the second case, it is assumed that wDt = 5, hence, the system does not

exhibit multiple equilibria and the state process is in the state s2. According to (2.49) and (2.5),

TD(wDt ) = 2.01 and H(TD(wDt ), wDt , κe
−r(T−TD(wDt ))) = 52.34. Figures 5.2-5.7 plot probabilities

of time to the next jump for different values of Bt.
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Fig. 5.1: Lower and upper boundaries: t = 1, T = 5, wDt = 14, α1 = 1, r = 0.001, σκ = 1, κ = 50, γ1 = 1,

γ2 = 1, γ3 = 1

Numerical studies for the endogenous switching model
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Fig. 5.2: Conditional probability of the time of the next jump given St = s1 computed according to the PDE

approach: t = 1, T = 5, wDt = 14, α1 = 1, r = 0.001, σκ = 1, κ = 50, γ1 = 1, γ2 = 1, γ3 = 1, c = 1,

a = 4, b = 5
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Fig. 5.3: Conditional probability of the time of the next jump given St = s2 computed according to the PDE

approach: t = 1, T = 5, wDt = 14, α1 = 1, r = 0.001, σκ = 1, κ = 50, γ1 = 1, γ2 = 1, γ3 = 1

Numerical studies for the exogenous shocks model
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Fig. 5.4: Conditional probability of the time of the next jump given St = s1 computed according to the PDE

approach: t = 1, T = 5, wDt = 14, α1 = 1, r = 0.001, σκ = 1, κ = 50, γ1 = 1, γ2 = 1, γ3 = 1, a = 4,

b = 5
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Fig. 5.5: Conditional probability of the time of the next jump given St = s2 computed according to the PDE

approach: t = 1, T = 5, wDt = 14, α1 = 1, r = 0.001, σκ = 1, κ = 50, γ1 = 1, γ2 = 1, γ3 = 1, a = 4,

b = 5

Numerical studies for the stochastic number of dynamic hedgers model
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Fig. 5.6: Conditional probability of the time of the next jump given St = s1 computed according to the PDE

approach: t = 1, T = 5, wDt = 14, α1 = 1, r = 0.001, σκ = 1, κ = 50, γ1 = 1, γ2 = 1, γ3 = 1, a = 4,

b = 5
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Fig. 5.7: Conditional probability of the time of the next jump given St = s2 computed according to the PDE

approach: t = 1, T = 5, wDt = 5, α1 = 1, r = 0.001, σκ = 1, κ = 50, γ1 = 1, γ2 = 1, γ3 = 1, a = 4,

b = 5

5.2 Alternative models

5.2.1 A numerical algorithm for the simple jump structure model

Owing to the results of Theorem 3.6 and Section 4.4, the conditional probability for the time of

the next jump can be numerically approximated by applying Gauss-Laguerre formula for

2√
2π

∫ ∞
0

[∫ ∞
Rt

(∫ ∞
γ(dSt ,τNt

,t,x)√
T (t,u)

e−
y2

2 dy
)
λe−λ(x−Rt)dx

]
Gamma

λ; a+ (Nt − 1) , b+

Nt−1∑
j=1

µj

 dλ.

5.2.2 A numerical algorithm for the Markov chain jump structure model

According to Theorem 3.7, the conditional probability of the time of the next jump can be numer-

ically approximated by applying Gauss-Laguerre formula for (3.26).
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5.2.3 Numerical studies

In this section, conditional distribution for the time of the next jump is calculated for two different

examples of (α(s), s ≥ 0): α(s) = 1 and α(s) = 1
s . Suppose that current time is t = 3. In the simple

jump structure model, it is also assumed that τNt = 2, a + (Nt − 1) = 4 and b +
∑Nt−1

j=1 µj = 5.

Figures 5.8-5.11 plot probabilities of time to the next jump for different values of dSt and DMC
t .

Numerical studies for the simple jump structure model
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Fig. 5.8: Conditional probability of the time of the next jump: t = 3, τNt
= 2, α(s) = 1, a + (Nt − 1) = 4,

b+
∑Nt−1
j=1 µj = 5
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Fig. 5.9: Conditional probability of the time of the next jump: t = 3, τNt = 2, α(s) = 1
s , a + (Nt − 1) = 4,

b+
∑Nt−1
j=1 µj = 5

Numerical studies for the Markov chain jump structure model
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Fig. 5.10: Conditional probability of the time of the next jump: t = 3 and α(s) = 1
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Fig. 5.11: Conditional probability of the time of the next jump: t = 3 and α(s) = 1
s
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6. CONCLUSION

In this thesis, I present a quantitative approach to the modelling of market booms and crashes

within a multiple equilibria continuous time framework. I consider five different multiple equilibria

models describing how market prices fluctuate and move from one regime to another.

As a starting point for my research I used a one-period multiple equilibria model from Gennotte

and Leland [21] and extended it into a continuous time framework. In the market microstructure

models discussed in Chapter 2, price is determined pursuant to the law of supply and demand. In

Chapter 3, I develop simple jump structure and Markov chain jump structure models within an

alternative framework in which pricing equation is given exogenously, and this is basically the main

drawback of this framework. For all the models presented in the thesis, I prove that the stock price

process is a càdlàg semimartingale; find conditional distributions for the time of, the type of and

the size of the next jump, which is defined as a point of discontinuity of this process; discuss the

parameter estimation procedures; and conduct a number of numerical studies. I develop alternative

models in order to overcome some drawbacks of the market microstructure models. For example, in

contrast to the market microstructure models described in Chapter 2, alternative models exclude

the possibility of negative prices and give expressions of conditional probabilities in explicit form.

It seems that this topic has a high potential for future research. It would be of an interest to

calibrate the models and see how they work in different stock markets. Another direction is pricing

and hedging of securities with underlying following the dynamics of stock price processes of the

models presented here. Finally, it would be good to find a powerful framework that would possess

all of the good features of the models discussed.
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Proof of Theorem 2.1 This theorem will be proved in several steps.

Step 1 First, it will be shown that there exist some δ1 ∈ (0, T − T0) and ∆1 > 0 such that

h1(t)− h2(t) ≥ ∆1, ∀t ∈ (T − δ1, T ).

According to (2.12), (2.13) and (2.21),

A1 = lim
t↑T

p1(t) = κ−
√
−2σ2

κ ln
( γ1

wD

√
2πσ2

κ

)
and

A2 = lim
t↑T

p2(t) = κ+

√
−2σ2

κ ln
( γ1

wD

√
2πσ2

κ

)
,

which means that A1 < A2.

Then

lim
t↑T

∫ ∞
−∞

Φ
(Ke−r(T−t) − p1(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
−∞

Φ
(

lim
t↑T

Ke−r(T−t) − p1(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
A1

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

and

lim
t↑T

∫ ∞
−∞

Φ
(Ke−r(T−t) − p2(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
−∞

Φ
(

lim
t↑T

Ke−r(T−t) − p2(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
A2

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK.

Hence,

lim
t↑T

(
h1(t)− h2(t)

)
=

1

γ3

(
wD

∫ A2

A1

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK − 2γ1

√
−2σ2

κ ln
( γ1

wD

√
2πσ2

κ

))
=

2

γ3

(
γ1

√
2πσ2

κe
z2

2

∫ z

0

1√
2π
e−

y2

2 dy − γ1σκz
)

=: f(z),

where

z =

√
−2 ln

( γ1

wD

√
2πσ2

κ

)
> 0.
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Since f(0) = 0 and f ′(z) =
2γ1

√
2πσ2

κze
z2

2
∫ z
0

1√
2π
e−

y2

2 dy

γ3
is positive for z > 0 and 0 for z = 0, I obtain

that

lim
t↑T

(
h1(t)− h2(t)

)
> 0.

Finally, one can take, e.g., ∆1 = 1
2 limt↑T

(
h1(t)− h2(t)

)
and use the definition of the limit.

Step 2 Second, it will be proved that there exists some ∆2 > 0 such that

h1(t)− h2(t) ≥ ∆2, ∀t ∈ [T0, T − δ1].

Assume that t ∈ [T0, T − δ1]. Then (2.12), (2.13) and (2.21) imply that

p2(t)− p1(t) = 2

√
−2(σ2

κe
−r(T−t) + Σ2(t)) ln

( γ1

wD

√
2π(σ2

κe
−2r(T−t) + Σ2(t))

)
≥ 2

√
−2(σ2

κe
−r(T−T0) + α2

1

1− e−2rδ1

2r
) ln
( γ1

wD

√
2π(

α2
1

2r
+ (σ2

κ −
α2

1

2r
)e−2r(T−T0))

)
=: δ2 > 0,

which means that, for all y ∈ [− δ2
2 ,

δ2
2 ],

p1(t) ≤ κe−r(T−t) + y ≤ p2(t)

and, hence,

h1(t) ≥ h(t, κe−r(T−t) + y) ≥ h2(t). (.1)

Furthermore, in virtue of (2.7) and (2.20),

hx(t, κe−r(T−t) + y) =
1

γ3

(
γ1 −

wD√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

)e− y2

2(σ2
κe
−r(T−t)+Σ2(t))

)

≤ 1

γ3

(
γ1 −

wD√
2π
(
σ2
κe
−2r(T−T0) + Σ2(T0)

)e− y2

2(σ2
κe
−r(T−T0)+α2

1
1−e−2rδ1

2r )

)
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Condition (2.19) guarantees that there exists some positive δ3 ≤ δ2
2 such that

hx(t, κe−r(T−t) − δ3) = hx(t, κe−r(T−t) + δ3)

≤ 1

γ3

(
γ1 −

wD√
2π
(
σ2
κe
−2r(T−T0) + Σ2(T0)

)e− δ23

2(σ2
κe
−r(T−T0)+Σ2(T−δ1))

)

=: −δ4 < 0.

Taking the partial derivative with respect to x in (2.7) and using (2.20), it can be concluded that

hxx(t, x) =
wD(x− κe−r(T−t))

γ3

√
2π(σ2

κe
−2r(T−t) + Σ2(t))(σ2

κe
−r(T−t) + Σ2(t))

e
− (κe−r(T−t)−x)2

2(σ2
κe
−r(T−t)+Σ2(t)) ,

that is, hx(t, x) is a decreasing function of x for x ≤ κe−r(T−t) and an increasing function of x for

x ≥ κe−r(T−t).

It means that, for x ∈ [κe−r(T−t) − δ3, κe
−r(T−t) + δ3],

hx(t, x) ≤ max
(
hx(t, κe−r(T−t) − δ3), hx(t, κe−r(T−t) + δ3)

)
≤ −δ4.

Thus, by the mean value theorem and in view of (.1),

h1(t)− h2(t) ≥ h(t, κe−r(T−t) − δ3)− h(t, κe−r(T−t) + δ3) ≥ 2δ3δ4 > 0.

Step 3 Finally, it will be shown that there exists some ∆ > 0 such that

h1(t)− h2(t) ≥ ∆, ∀t ∈ [T0, T ).

Indeed, one can take ∆ = min(∆1,∆2), and the result follows. �

Proof of Theorem 2.7 The proof of this theorem will be done in several steps.

Step 1 Initial decomposition.

In virtue of Remark 2.8, St ∈ FPt . Hence, the following decomposition can be considered:

P(τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2 | FPt )

= EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FPt

)
=

3∑
i=1

I
[
St = si

]
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FPt

)
(.2)
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Step 2 Calculation of the conditional probability on the set [St = s1].

In view of Step 2 in Definition 2.1,

τNt+1 = inf
(
s > t : Bs ≥ hl(s; τNt + T lNt)

)
,

where function hl is defined by formula (2.30). To find conditional distribution for T lNt given FPt ,

note that the information that is available about T lNt is that

Bs < hl(s; τNt + T lNt), ∀s ∈ [τNt , t],

and, in view of the continuity of the Brownian motion and function hl, it is equivalent to

f l(T lNt) < 0,

where

f l(T lNt) = max
τNt≤s≤t

(
Bs − hl(s; τNt + T lNt)

)
. (.3)

Since h1(s) > h2(s),∀s ∈ [τNt , t], and ψ(x) = e−cx is a strictly decreasing function for c > 0,

formula (2.30) implies that, if 0 ≤ t1 < t2 ≤ t− τNt , then

hl(s; τNt + t1) = hl(s; τNt + t2) = h1(s),∀s ∈ [τNt , τNt + t1],

and

hl(s; τNt + t1) < hl(s; τNt + t2),∀s > τNt + t1,

that is, 
f l(t1) ≥ f l(t2) if f l(t1) < 0

f l(t1) > f l(t2) if f l(t1) ≥ 0.

(.4)

If f l(0) ≤ 0, then define Rlt by

Rlt = 0 (.5)

and if f l(0) > 0, define Rlt implicitly as the solution of

f l(Rlt) = 0, (.6)
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which exists and is unique due to (.4), the fact that

f l(t− τNt) = max
τNt≤s≤t

(
Bs − hl(s; t)

)
= max

τNt≤s≤t

(
Bs − h1(s)

)
< 0

and the continuity of function f l.

Recall that T lNt ∼ Exp(λl), and it means that conditional distribution for T lNt given FPt is the

distribution of T lNt conditional on the set [T lNt > Rlt], that is, its density function is given by

gl(x) = λle
−λl(x−Rlt), x ≥ Rlt. (.7)

Let

F
P,T lNt
t = σ{(Ps, T0 ≤ s ≤ t), T lNt}.

Then, in view of the law of iterated expectations and the construction mechanism in Definition 2.1,

the following decomposition can be considered:

EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FPt

)
= EP

(
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| F

P,T lNt
t

)
| FPt

)
= EP

(
I
[
T lNt+1 ≥ u− τNt

]
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| F

P,T lNt
t

)
| FPt

)
+ EP

(
I
[
t− τNt < T lNt+1 < u− τNt

]
×

× EP
(
I
[
τNt+1 ≤ τNt + T lNt+1, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| F

P,T lNt
t

)
| FPt

)
+ EP

(
I
[
t− τNt < T lNt+1 < u− τNt

]
×

× EP
(
I
[
τNt + T lNt+1 < τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| F

P,T lNt
t

)
| FPt

)
+ EP

(
I
[
T lNt+1 ≤ t− τNt

]
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| F

P,T lNt
t

)
| FPt

)
.

The first two terms in this decomposition correspond to the scenario in which Brownian motion

hits h1. By construction, the next state of the state process is s3 and the jump size is equal to

Ju(τNt+1) defined in accordance with (2.33).

The other two terms correspond to the scenario in which Brownian motion hits the convex com-

bination of h1 and h2. The next state of the state process is equal to s3 with probability plu and

s2 with probability plm. If the next state is equal to s3 (respectively s2), then JNt+1 is equal to

J lu
(
τNt+1, h

l(τNt+1, τNt + T lNt)
)

(respectively J lm
(
τNt+1, h

l(τNt+1, τNt + T lNt)
)

) defined in accor-

dance with (2.33).

108



Applying formula (.7), I obtain the expression for F1 in terms of Brownian motion hitting densities

φ1 and φl:

F1(t, τNt , R
l
t, Bt, u, C1, C2)

= e−λl(u−τNt−R
l
t)

∫ u

t
I(s3 ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ u−τNt

t−τNt

(∫ τNt+x

t
I(s3 ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy
)
λle
−λl(x−Rlt)dx

+

∫ u−τNt

t−τNt

(∫ u

τNt+x
(pluI(s3 ∈ C1, J

lu(y, hl(y; τNt + x)) ∈ C2)

+ plmI(s2 ∈ C1, J
lm(y, hl(y; τNt + x)) ∈ C2))φl(y, τNt + x, t, Bt)dy

)
λle
−λl(x−Rlt)dx

+

∫ t−τNt

Rlt

(∫ u

t

[
pluI(s3 ∈ C1, J

lu(y, hl(y; τNt + x)) ∈ C2)

+ plmI(s2 ∈ C1, J
lm(y, hl(y; τNt + x)) ∈ C2)

]
φl(y, τNt + x, t, Bt)dy

)
λle
−λl(x−Rlt)dx,

where

φ1(u, t, y) = −∂D1(u, t, y)

∂u
, D1(u, t, y) = P

(
Bs < h1(t+ s)− y,∀s ∈ [0, u− t]

)
,

φl(u, v, t, y) = −∂D
l(u, v, t, y)

∂u
, Dl(u, v, t, y) = P

(
Bs < hl(t+ s; v)− y,∀s ∈ [0, u− t]

)
,

are Brownian motion hitting densities and probabilities of one-sided curved boundaries and Rlt is

defined in accordance with formulas (.3), (.5) and (.6).

Step 3 Calculation of the conditional probability on the set [St = s2].

According to the first scenario, Brownian motion hits the upper boundary h1 earlier than the lower

boundary h2, then the state process switches to the state s3 and the jump size is equal to Ju(τNt+1)

defined by (2.33). According to the other scenario, Brownian motion hits the lower boundary h2

earlier than the upper boundary h1, then the state process switches to the state s1 and the jump

size is equal to J l(τNt+1) defined by (2.33). Therefore,

EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FPt

)
= EP

(
I
[
BτNt+1 = h1(τNt+1), τNt+1 < u, s3 ∈ C1, J

u(τNt+1) ∈ C2

]
| FPt

)
+ EP

(
I
[
BτNt+1 = h2(τNt+1), τNt+1 < u, s1 ∈ C1, J

l(τNt+1) ∈ C2

]
| FPt

)
,

109



and I obtain the expression for F2 in terms of Brownian motion hitting densities φm,1 and φm,2:

F2(t, Bt, u, C1, C2) =

∫ u−t

0

[
I(s3 ∈ C1, J

u(t+ y) ∈ C2)φm,1(y, t, Bt)

+ I(s1 ∈ C1, J
l(t+ y) ∈ C2)φm,2(y, t, Bt)

]
dy,

where

φm,1(u, t, y) =
∂Dm,1(u, t, y)

∂u
, Dm,1(u, t, y) = P

(
τ(t, y) ≤ u− t, Bτ(t,y) = h1(t+ τ(t, y))− y

)
,

φm,2(u, t, y) =
∂Dm,2(u, t, y)

∂u
and Dm,2(u, t, y) = P

(
τ(t, y) ≤ u− t, Bτ(t,y) = h2(t+ τ(t, y))− y

)
and

τ(t, y) = inf{s ≥ 0 : Bs = h2(t+ s)− y or Bs = h1(t+ s)− y},

are Brownian motion hitting densities and probabilities of a two-sided curved boundary with τ(t, y)

as the first hitting time of this boundary.

Step 4 Calculation of the conditional probability on the set [St = s3].

Calculation procedure is patterned after Step 2. Similar to the lower equilibrium scenario, denote

by

fu(T uNt) = min
τNt≤s≤t

(
Bs − hu(s; τNt + T uNt)

)
. (.8)

If fu(0) ≥ 0, then define Rut by

Rut = 0 (.9)

and if fu(0) < 0, define Rut implicitly as the solution of

fu(Rut ) = 0. (.10)
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As a result, I obtain the expression for F3 in terms of Brownian motion hitting densities φ2 and φu:

F3(t, τNt , R
u
t , Bt, u, C1, C2)

= e−λu(u−τNt−R
u
t )

∫ u

t
I(s1 ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ u−τNt

t−τNt

(∫ τNt+x

t
I(s1 ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy
)
λue
−λu(x−Rut )dx

+

∫ u−τNt

t−τNt

(∫ u

τNt+x
(pulI(s1 ∈ C1, J

ul(y, hu(y; τNt + x)) ∈ C2)

+ pumI(s2 ∈ C1, J
um(y, hu(y; τNt + x)) ∈ C2))φu(y, τNt + x, t, Bt)dy

)
λue
−λu(x−Rut )dx

+

∫ t−τNt

Rut

(∫ u

t

[
pulI(s1 ∈ C1, J

ul(y, hu(y; τNt + x)) ∈ C2)

+ pumI(s2 ∈ C1, J
um(y, hu(y; τNt + x)) ∈ C2)

]
φu(y, τNt + x, t, Bt)dy

)
λue
−λu(x−Rut )dx,

where

φ2(u, t, y) = −∂D2(u, t, y)

∂u
, D2(u, t, y) = P

(
Bs > h2(t+ s)− y,∀s ∈ [0, u− t]

)
,

φu(u, v, t, y) = −∂D
u(u, v, t, y)

∂u
and Du(u, v, t, y) = P

(
Bs > hu(t+ s; v)− y,∀s ∈ [0, u− t]

)
are Brownian motion hitting densities and probabilities of one-sided curved boundaries, and Rut is

defined in accordance with formulas (.8)− (.10). �

Proof of Theorem 2.8 The proof of this theorem will be done in several steps.

Step 1 Consider the initial decomposition described by (.2) and denote by τ the remaining time

to the first arrival after t in the sunspot shock process Zt. Recall that τ is independent of FPt and

Zt is a Poisson process with intensity λZ . Hence, τ has an exponential distribution with parameter

λZ . Let

FP,τt = σ{(Ps, T0 ≤ s ≤ t), τ}.
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Step 2 Calculation of the conditional probability on the set [St = s1].

By the law of iterated expectations,

EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FPt

)
= EP

(
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
= EP

(
I
[
τ ≥ u− t

]
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
+ EP

(
I
[
τ < u− t

]
EP
(
I
[
τNt+1 < t+ τ, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
+ EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ ≤ h2(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
+ EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ > h2(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
.

The first term in this decomposition corresponds to the scenario that there are no shock arrivals

on [t, u) at all and, hence, Brownian motion hits the boundary h1 on (t, u). The new state of the

state process is equal to s3 and the jump size is Ju(τNt+1).

The second term corresponds to the scenario that the first shock arrival time is t + τ < u and

Brownian motion hits the boundary h1 on (t, t + τ). As in the first scenario, the process switches

to s3, the jump size is equal to Ju(τNt+1).

According to the third scenario, the first shock arrival time is t + τ < u, the Brownian motion

value stays smaller than the value of the boundary h1 on (t, t + τ) and at the time of the shock

Bt+τ ≤ h2(t+ τ). As a consequence, there is no jump at time t+ τ .

The fourth scenario is the same is the third one with the only difference that Bt+τ > h2(t + τ).

Therefore, the price jumps at time t+ τ . With probability plu, the new state of the state process is

s3 and the jump size is J lu(t+ τ,Bt+τ ). With probability 1−plu, the new state of the state process

is s2 and the jump size is J lm(t+ τ,Bt+τ ).

In view of the independence of τ and FPt , the first and second terms are equal to

e−λZ(u−t)
∫ u

t
I(s3 ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy

and ∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(s3 ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy
]
dr.
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The third term is equal to

EP
(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ ≤ h2(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
= EP

(
I
[
τ < u− t

]
EP
(
EP
(
I
[
Bt+τ ≤ h2(t+ τ), (Bs < h1(s),∀s ∈ [t, t+ τ))

]
I
(
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

)
| FPt+τ

)
| FP,τt

)
| FPt

)
= EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ ≤ h2(t+ τ), (Bs < h1(s),∀s ∈ [t, t+ τ))

]
F11(t+ τ,Bt+τ , u, C1, C2) | FP,τt

)
| FPt

)
=

∫ u−t

0
λZe

−λZr
[∫ h2(t+r)

−∞
q1(x; r, t, Bt)F11(t+ r, x, u, C1, C2)dx

]
dr,

where q1(x; r, t, y) is the density of Br on the set
[
Bs < h1(t + s) − y,∀s ∈ [0, r]

]
, and the fourth

term is equal to

EP
(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ > h2(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
= EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ > h2(t+ τ), (Bs < h1(s),∀s ∈ [t, t+ τ))

]
I
(
SτNt+1 ∈ C1, JNt+1 ∈ C2

)
| FP,τt

)
| FPt

)
=

∫ u−t

0
λZe

−λZr
[∫ h1(t+r)

h2(t+r)
q1(x; r, t, Bt)

(
pluI(s3 ∈ C1, J

lu(t+ r, x) ∈ C2)

+ plmI(s2 ∈ C1, J
lm(t+ r, x) ∈ C2)

)
dx
]
dr.

Combining all the terms together implies that

F11(t, Bt, u, C1, C2) = e−λZ(u−t)
∫ u

t
I(s3 ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(s3 ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ h2(t+r)

−∞
q1(x; r, t, Bt)F11(t+ r, x, u, C1, C2)dx

+

∫ h1(t+r)

h2(t+r)
q1(x; r, t, Bt)

(
pluI(s3 ∈ C1, J

lu(t+ r, x) ∈ C2)

+ plmI(s2 ∈ C1, J
lm(t+ r, x) ∈ C2)

)
dx
]
dr.

Step 3 Calculation of conditional probability on the set [St = s2].

According to the first scenario, there are no shock arrivals on [t, u) at all and, hence, Brownian

motion hits one of the two boundaries h1 or h2 on (t, u). If it hits h1 earlier than h2, then the new
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state of the state process is s3 and the jump size is equal to Ju(t + τNt+1). If it hits h2 earlier

than h1, then the new state of the state process is s1 and the jump size is equal to J l(t + τNt+1).

According to the second scenario, the first shock arrival time is t + τ < u and Brownian motion

hits one of the two boundaries h1 or h2 on (t, t + τ), then the new state of the state process and

the jump size are determined by the same mechanism as in the first scenario. Finally, according

to the third scenario, the first shock arrival time is t+ τ < u and Brownian motion stays between

both boundaries h1 and h2 on [t, t + τ ]. With probability pmu, the new state of the state process

is s3 and the jump size is Jmu(t + τ,Bt+τ ). With probability 1 − pmu, the new state of the state

process is s1 and the jump size is Jml(t+ τ,Bt+τ ). Taking this decomposition, I obtain the formula

for F12:

F12(t, Bt, u, C1, C2)

= e−λZ(u−t)
∫ u

t

[
I(s3 ∈ C1, J

u(y) ∈ C2)φm,1(y, t, Bt) + I(s1 ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t

[
I(s3 ∈ C1, J

u(y) ∈ C2)φm,1(y, t, Bt) + I(s1 ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ h1(t+r)

h2(t+r)
qm(x; r, t, Bt)

(
pmuI(s3 ∈ C1, J

mu(t+ r, x) ∈ C2)

+ pmlI(s1 ∈ C1, J
ml(t+ r, x) ∈ C2)

)
dx
]
dr,

where qm(x; r, t, y) is the density of Br on the set
[
h2(t+ s)− y < Bs < h1(t+ s)− y,∀s ∈ [0, r]

]
.

Step 4 Calculation of conditional probability on the set [St = s3].

The conditional probability on the set [St = s3] satisfies

F13(t, Bt, u, C1, C2) = e−λZ(u−t)
∫ u

t
I(s1 ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(s1 ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ ∞
h1(t+r)

q2(x; r, t, Bt)F13(t+ r, x, u, C1, C2)dx

+

∫ h1(t+r)

h2(t+r)
q2(x; r, t, Bt)

(
pulI(s1 ∈ C1, J

ul(t+ r, x) ∈ C2)

+ pumI(s2 ∈ C1, J
um(t+ r, x) ∈ C2)

)
dx
]
dr,

where q2(x; r, t, y) is the density of Br on the set
[
Bs > h2(t+ s)− y,∀s ∈ [0, r]

]
. The calculation

procedure is patterned after Step 2. �
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Proof of Lemma 2.1 First, the following decomposition is considered.

P(τi+1 ≤ u, ZPi+1 ∈ C | FZ
P

τi ) = EP
(
I
[
τi+1 ≤ u, ZPi+1 ∈ C

]
| FZPτi

)
=

3∑
j=1

I
[
Sτi = sj

]
EP
(
I
[
τi+1 ≤ u, ZPi+1 ∈ C

]
| FZPτi

)
.

Applying the same technique as in the proof of Theorem 2.7, I obtain that the conditional proba-

bilities on the sets [Sτi = s1], [Sτi = s2] and [Sτi = s3] are equal to

F26(τi, Bτi , u, C)

= e−λl(u−τi)
∫ u

τi

I(pu(y, h1(y)) ∈ C1, J
u(y) ∈ C2)φ1(y, τi, Bτi)dy

+

∫ u−τi

0

(∫ τi+x

τi

I(pu(y, h1(y)) ∈ C1, J
u(y) ∈ C2)φ1(y, τi, Bτi)dy

)
λle
−λlxdx

+

∫ u−τi

0

(∫ u

τi+x
(pluI(pu(y, hl(y; τi + x)) ∈ C1, J

lu(y, hl(y; τi + x)) ∈ C2)

+ plmI(pm(y, hl(y; τi + x)) ∈ C1, J
lm(y, hl(y; τi + x)) ∈ C2))φl(y, τi + x, τi, Bτi)dy

)
λle
−λlxdx,

F27(τi, Bτi , u, C) =

∫ u−τi

0

[
I(pu(τi + y, h1(τi + y)) ∈ C1, J

u(τi + y) ∈ C2)φm,1(y, τi, Bτi)

+ I(pl(τi + y, h2(τi + y)) ∈ C1, J
l(τi + y) ∈ C2)φm,2(y, τi, Bτi)

]
dy

and

F28(τi, Bτi , u, C)

= e−λu(u−τi)
∫ u

τi

I(pl(y, h2(y)) ∈ C1, J
l(y) ∈ C2)φ2(y, τi, Bτi)dy

+

∫ u−τi

0

(∫ τi+x

τi

I(pl(y, h2(y)) ∈ C1, J
l(y) ∈ C2)φ2(y, τi, Bτi)dy

)
λue
−λuxdx

+

∫ u−τi

0

(∫ u

τi+x
(pulI(pl(y, hu(y; τi + x)) ∈ C1, J

ul(y, hu(y; τi + x)) ∈ C2)

+ pumI(pm(y, hu(y; τi + x)) ∈ C1, J
um(y, hu(y; τi + x)) ∈ C2))φu(y, τi + x, τi, Bτi)dy

)
λue
−λuxdx.

�
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Proof of Lemma 2.2 Applying Leibniz’s rule for differentiating integrals to F26, F27 and F28, I

obtain

F29(τi, Bτi , s, C) = e−λl(u−τi)I(pu(u, h1(u)) ∈ C1, J
u(u) ∈ C2)φ1(u, τi, Bτi)

+

∫ u−τi

0

(
pluI(pu(u, hl(u; τi + x)) ∈ C1, J

lu(u, hl(u; τi + x)) ∈ C2)

+ plmI(pm(u, hl(u; τi + x)) ∈ C1, J
lm(u, hl(u; τi + x)) ∈ C2))

)
φl(u, τi + x, τi, Bτi)λle

−λlxdx,

(.11)

F30(τi, Bτi , u, C) = I(pu(u, h1(u)) ∈ C1, J
u(u) ∈ C2)φm,1(u, τi, Bτi)

+ I(pl(u, h2(u)) ∈ C1, J
l(u) ∈ C2)φm,2(u, τi, Bτi) (.12)

and

F31(τi, Bτi , u, C) = e−λu(u−τi)I(pl(u, h2(u)) ∈ C1, J
l(u) ∈ C2)φ2(u, τi, Bτi)

+

∫ u−τi

0

(
pulI(pl(u, hu(u; τi + x)) ∈ C1, J

ul(u, hu(u; τi + x)) ∈ C2)

+ pumI(pm(u, hu(u; τi + x)) ∈ C1, J
um(u, hu(u; τi + x)) ∈ C2))

)
φu(u, τi + x, τi, Bτi)λue

−λuxdx.

(.13)

Finally, if C = R2, then indicator functions in (.11) − (.13) are equal to 1, and the result for

g(i+1)(u,R2) follows. �

Proof of Lemma 2.3 Calculations pattern after Theorem 2.8, and F35(u, t, Bt, C) satisfies

F35(u, t, Bt, C) = e−λZ(u−t)
∫ u

t
I(pu(y, h1(y)) ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(pu(y, h1(y)) ∈ C1, J

u(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ h2(t+r)

−∞
q1(x; r, t, Bt)F35(u, t+ r, x, C)dx

+

∫ h1(t+r)

h2(t+r)
q1(x; r, t, Bt)

(
pluI(pu(t+ r, x) ∈ C1, J

lu(t+ r, x) ∈ C2)

+ plmI(pm(t+ r, x) ∈ C1, J
lm(t+ r, x) ∈ C2)

)
dx
]
dr,
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F36(u, t, Bt, C)

= e−λZ(u−t)
∫ u

t

[
I(pu(y, h1(y)) ∈ C1, J

u(y) ∈ C2)φm,1(y, t, Bt)

+ I(pl(y, h2(y)) ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t

[
I(pu(y, h1(y)) ∈ C1, J

u(y) ∈ C2)φm,1(y, t, Bt)

+ I(pl(y, h2(y)) ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ h1(t+r)

h2(t+r)

(
pmuI(pu(t+ r, x) ∈ C1, J

mu(t+ r, x) ∈ C2)

+ pmlI(pl(t+ r, x) ∈ C1, J
ml(t+ r, x) ∈ C2)

)
qm(x; r, t, Bt)dx

]
dr

and F37(u, t, Bt, C) satisfies

F37(u, t, Bt, C) = e−λZ(u−t)
∫ u

t
I(pl(y, h2(y)) ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(pl(y, h2(y)) ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ ∞
h1(t+r)

q2(x; t, Bt, r)F37(u, t+ r, x, C)dx

+

∫ h1(t+r)

h2(t+r)
q2(x; t, Bt, r)

(
pulI(pl(t+ r, x) ∈ C1, J

ul(t+ r, x) ∈ C2)

+ pumI(pm(t+ r, x) ∈ C1, J
um(t+ r, x) ∈ C2)

)
dx
]
dr.

�

Proof of Lemma 2.4 Applying Leibniz’s rule for differentiating integrals to F35, F36 and F37, I

obtain that F38(u, t, Bt, C) satisfies

F38(u, t, Bt, C) = e−λZ(u−t)I(pu(u, h1(u)) ∈ C1, J
u(u) ∈ C2)φ1(u, t, Bt)

+ λZe
−λZ(u−t)

[∫ h1(u)

h2(u)
q1(x;u− t, t, Bt)

(
pluI(pu(u, x) ∈ C1, J

lu(u, x) ∈ C2)

+ plmI(pm(u, x) ∈ C1, J
lm(u, x) ∈ C2)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ h2(t+r)

−∞
q1(x; r, t, Bt)F38(u, t+ r, x, C)dx

]
dr, (.14)
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F39(u, t, Bt, C) = e−λZ(u−t)
[
I(pu(u, h1(u)) ∈ C1, J

u(u) ∈ C2)φm,1(u, t, Bt)

+ I(pl(u, h2(u)) ∈ C1), J l(u) ∈ C2)φm,2(u, t, Bt)
]

+ λZe
−λZ(u−t)

[∫ h1(u)

h2(u)
qm(x;u− t, t, Bt)

(
pmuI(pu(u, x) ∈ C1, J

mu(u, x) ∈ C2)

+ pmlI(pl(u, x) ∈ C1, J
ml(u, x) ∈ C2)

)
dx
]

(.15)

and F40(u, t, Bt, C) satisfies

F40(u, t, Bt, C) = e−λZ(u−t)I(pl(u, h2(u)) ∈ C1, J
l(u) ∈ C2)φ2(u, t, Bt)

+ λZe
−λZ(u−t)

[∫ h1(u)

h2(u)
q2(x; t, Bt, u− t)

(
pulI(pl(u, x) ∈ C1, J

ul(u, x) ∈ C2)

+ pumI(pm(u, x) ∈ C1, J
um(u, x) ∈ C2)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ ∞

h1(t+r)
q2(x; t, Bt, r)F40(u, t+ r, x, C)dx

]
dr. (.16)

In particular, for C = R2, indicator functions in (.14) − (.16) are equal to 1, and the result for

g(i+1)(u,R2) follows. �

Proof of Theorem 2.12 First, I prove that stochastic processes wDt , Bt and St are adapted

to the filtration FPt . By the pricing equation and continuity of Bt, for i = 1, 2, ...,

γ1Pτi − wDτi
∫∞
−∞Φ

(
Pτi−Ke

−r(T−τi)

Σ(τi)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK − γ2

γ3
= Bτi

and

γ1Pτi− − wDτi−1

∫∞
−∞Φ

(
Pτi−−Ke

−r(T−τi)

Σ(τi)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK − γ2

γ3
= Bτi ,

which means that

wDτi =
γ1∆Pτi + wDτi−1

∫∞
−∞Φ

(
Pτi−−Ke

−r(T−τi)

Σ(τi)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK

∫∞
−∞Φ

(
Pτi−Ke

−r(T−τi)

Σ(τi)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK

,

thus, since (τi < T, i = 1, 2, ...) are FPt -stopping times and wDT0
is known, it can be concluded that,

by induction, wDt =
∑∞

i=0w
D
τi I(τi ≤ t < τi+1) is adapted to the filtration FPt .
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Hence,

Bt =
γ1Pt + wDt

∫∞
−∞Φ

(
Pt−Ke−r(T−t)

Σ(t)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK − wR × aα2

α2
1
− wN × µN

γ3

is also adapted to the filtration FPt .

Finally, St is adapted to the filtration FPt since St =
∑∞

i=0 SτiI(τi ≤ t < τi+1) and, for all i = 0, 1, ...,

Sτi =


s1 if wDτi > gD(τi) and Pτi < p̄1(τi, w

D
τi )

s2 if wDτi ≤ g
D(τi)

s3 if wDτi > gD(τi) and Pτi > p̄2(τi, w
D
τi ).

The rest of the proof is patterned after Theorem 2.7 and Theorem 2.8. In view of the fact that

St is adapted to FPt , one can apply the initial decomposition described by (.2) and then calculate

conditional probabilities on the sets [St = s1], [St = s2] and [St = s3] considering all possible

scenarios in accordance with the model construction. Recall that, when the number of dynamic

hedgers changes, it is multiplied by a corresponding random variable ξi distributed according to a

uniform law with density function fξ(x) = 1
ξu−ξl , x ∈ [ξl, ξu], where 0 ≤ ξl < 1 < ξu.

It can be concluded that F44(t, wDt , Bt, u, C1, C2) is equal to

F44(t, wDt , Bt, u, C1, C2)

= e−λZ(u−t)
∫ u

t
I(s3 ∈ C1, p̄

u(y, wDt , H1(y, wDt ))− p̄1(y, wDt ) ∈ C2)φ̄1(y, t, Bt, w
D
t )dy

+

∫ u−t

0

(∫ t+r

t
I(s3 ∈ C1, p̄

u(y, wDt , H1(y, wDt ))− p̄1(y, wDt ) ∈ C2)φ̄1(y, t, Bt, w
D
t )dy

)
λZe

−λZrdr

+

∫ u−t

0

(∫ H1(t+r,wDt )

−∞

[∫ ξu

ξl
F48(y, wDt , t+ r, x, C1, C2)fξ(y)dy

]
q̄1(x; r, t, Bt, w

D
t )dx

)
λZe

−λZrdr,

where

φ̄1(u, t, y, x) = −∂D̄1(u, t, y, x)

∂u
and D̄1(u, t, y, x) = P

(
Bs < H1(t+ s, x)− y, 0 ≤ s ≤ u− t

)
are Brownian motion hitting density and probability of one-sided curved boundary, q̄1(x; r, t, y, wDt )

is the density of Br on the set
[
Bs < H1(t+ s, wDt )− y,∀s ∈ [0, r]

]
and

F48(y, wDt , t+ r, x, C1, C2)

= I
(
ywDt > gD(t+ r)

)
I
(
x < H1(t+ r, ywDt )

)
I
(
s1 ∈ C1, p̄

l(t+ r, ywDt , x)− p̄l(t+ r, wDt , x) ∈ C2

)
+ I
(
ywDt > gD(t+ r)

)
I
(
x ≥ H1(t+ r, ywDt )

)
I
(
s3 ∈ C1, p̄

u(t+ r, ywDt , x)− p̄l(t+ r, wDt , x) ∈ C2

)
+ I
(
ywDt ≤ gD(t+ r)

)
I
(
s2 ∈ C1, p̄(t+ r, ywDt , x)− p̄l(t+ r, wDt , x) ∈ C2

)
.
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Similarly, F46(t, wDt , Bt, u, C1, C2) is equal to

F46(t, wDt , Bt, u, C1, C2)

= e−λZ(u−t)
∫ u

t
I(s1 ∈ C1, p̄

l(y, wDt , H2(y, wDt ))− p̄2(y, wDt ) ∈ C2)φ̄2(y, t, Bt, w
D
t )dy

+

∫ u−t

0

(∫ t+r

t
I(s1 ∈ C1, p̄

l(y, wDt , H2(y, wDt ))− p̄2(y, wDt ) ∈ C2)φ̄2(y, t, Bt, w
D
t )dy

)
λZe

−λZrdr

+

∫ u−t

0

(∫ ∞
H2(t+r,wDt )

[∫ ξu

ξl
F49(y, wDt , t+ r, x, C1, C2)fξ(y)dy

]
q̄2(x; r, t, Bt, w

D
t )dx

)
λZe

−λZrdr,

where

φ̄2(u, t, y, x) = −∂D̄2(u, t, y, x)

∂u
and D̄2(u, t, y, x) = P

(
Bs > H2(t+ s, x)− y, 0 ≤ s ≤ u− t

)
are Brownian motion hitting density and probability of one-sided curved boundary, q̄2(x; r, t, y, wDt )

is the density of Br on the set
[
Bs > H2(t+ s, wDt )− y,∀s ∈ [0, r]

]
and

F49(y, wDt , t+ r, x, C1, C2)

= I
(
ywDt > gD(t+ r)

)
I
(
x > H2(t+ r, ywDt )

)
I
(
s3 ∈ C1, p̄

u(t+ r, ywDt , x)− p̄u(t+ r, wDt , x) ∈ C2

)
+ I
(
ywDt > gD(t+ r)

)
I
(
x ≥ H2(t+ r, ywDt )

)
I
(
s1 ∈ C1, p̄

l(t+ r, ywDt , x)− p̄u(t+ r, wDt , x) ∈ C2

)
+ I
(
ywDt ≤ gD(t+ r)

)
I
(
s2 ∈ C1, p̄(t+ r, ywDt , x)− p̄u(t+ r, wDt , x) ∈ C2

)
.

Finally, if I denote by

F50(y, wDt , t+ r, x, C1, C2)

= I
(
ywDt > gD(t+ r)

)[
I
(
x ≤ H2(t+ r, ywDt )

)
+ plI

(
H2(t+ r, ywDt ) < x < H1(t+ r, ywDt )

)]
× I
(
s1 ∈ C1, p̄

l(t+ r, ywDt , x)− p̄(t+ r, wDt , x) ∈ C2

)]
+ I
(
ywDt > gD(t+ r)

)[
I
(
x ≥ H1(t+ r, ywDt )

)
+ puI

(
H2(t+ r, ywDt ) < x < H1(t+ r, ywDt )

)]
× I
(
s3 ∈ C1, p̄

u(t+ r, ywDt , x)− p̄(t+ r, wDt , x) ∈ C2

)]
+ I
(
ywDt ≤ gD(t+ r)

)
I
(
s2 ∈ C1, p̄(t+ r, ywDt , x)− p̄(t+ r, wDt , x) ∈ C2

)
,
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then F45(t, wDt , Bt, u, C1, C2) is equal to

F45(t, wDt , T
D(wDt ), Bt, u, C1, C2)

= I
(
TD(wDt ) ≥ u

)∫ u−t

0

(∫ ∞
−∞

[∫ ξu

ξl
F50(y, wDt , t+ r, x, C1, C2)fξ(y)dy

] 1√
2πr

e−
(x−Bt)

2

2r dx
)
λZe

−λZrdr

+ I
(
TD(wDt ) < u

)
×

×
[∫ TD(wDt )−t

0

(∫ ∞
−∞

[∫ ξu

ξl
F50(y, wDt , t+ r, x, C1, C2)fξ(y)dy

] 1√
2πr

e−
(x−Bt)

2

2r dx
)
λZe

−λZrdr

+

∫ u−t

TD(wDt )−t
λZe

−λzr
(∫ H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

−∞

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t)×

× [

∫ t+r

TD(wDt )
I
(
s3 ∈ C1, p̄

u(z, wDt , H1(z, wDt ))− p̄1(z, wDt ) ∈ C2)
)
φ̄1(z, TD(wDt ), x, wDt )dz]dx

+

∫ ∞
H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t)×

× [

∫ t+r

TD(wDt )
I
(
s1 ∈ C1, p̄

l(z, wDt , H2(z, wDt ))− p̄2(z, wDt ) ∈ C2)
)
φ̄2(z, TD(wDt ), x, wDt )dz]dx

)
dr

+

∫ u−t

TD(wDt )−t
λZe

−λzr
(∫ H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

−∞

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t)×

×
[∫ ξu

ξl
F48(y, wDt , t+ r, x, C1, C2)fξ(y)dy

]
D̄1(t+ r, TD(wDt ), x, wDt )dx

+

∫ ∞
H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t)×

×
[∫ ξu

ξl
F49(y, wDt , t+ r, x, C1, C2)fξ(y)dy

]
D̄2(t+ r, TD(wDt ), x, wDt )dx

)
dr

+ e−λZ(u−t)
(∫ H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

−∞

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t)×

× [

∫ u

TD(wDt )
I
(
s3 ∈ C1, p̄

u(z, wDt , H1(z, wDt ))− p̄1(z, wDt ) ∈ C2)
)
φ̄1(z, TD(wDt ), x, wDt )dz]dx

+

∫ ∞
H(TD(wDt ),wDt ,κe

−r(T−TD(wDt )))

1√
2π(TD(wDt )− t)

e
− (x−Bt)

2

2(TD(wDt )−t)×

× [

∫ u

TD(wDt )
I
(
s1 ∈ C1, p̄

l(z, wDt , H2(z, wDt ))− p̄2(z, wDt ) ∈ C2)
)
φ̄2(z, TD(wDt ), x, wDt )dz]dx

)]
.
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