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Abstract 

This thesis describes a novel imputation evaluation method and shows how this method can 

be used to estimate the accuracy of the imputed values generated by any imputation 

technique. This is achieved by using an iterative stochastic procedure to repeatedly measure 

how accurately a set of randomly deleted values are “put back” by the imputation process. 

The proposed approach builds on the ideas underpinning uncertainty estimation methods, but 

differs from them in that it estimates the accuracy of the imputed values, rather than 

estimating the uncertainty inherent within those values. In addition, a procedure for 

comparing the accuracy of the imputed values in different data segments has been built into 

the proposed method, but uncertainty estimation methods do not include such procedures. 

This proposed method is implemented as a software application. This application is used to 

estimate the accuracy of the imputed values generated by the expectation-maximisation (EM) 

and nearest neighbour (NN) imputation algorithms. These algorithms are implemented 

alongside the method, with particular attention being paid to the use of implementation 

techniques which decrease algorithm execution times, so as to support the computationally 

intensive nature of the method. A novel NN imputation algorithm is developed and the 

experimental evaluation of this algorithm shows that it can be used to decrease the execution 

time of the NN imputation process for both simulated and real datasets. The execution time of 

the new NN algorithm was found to steadily decrease as the proportion of missing values in 

the dataset was increased. 

The method is experimentally evaluated and the results show that the proposed approach 

produces reliable and valid estimates of imputation accuracy when it is used to compare the 

accuracy of the imputed values generated by the EM and NN imputation algorithms. Finally, 

a case study is presented which shows how the method has been applied in practice, including 

a detailed description of the experiments that were performed in order to find the most 

accurate methods of imputing the missing values in the case study dataset. A comprehensive 

set of experimental results is given, the associated imputation accuracy statistics are analysed 

and the feasibility of imputing the missing case study data is assessed. 
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Chapter One 

Introduction 
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1.   Introduction 

Non-response in surveys is perhaps the most prevalent missing data problem (Rubin, 1996a) 

and it is often found that several of the variables in a survey dataset - such as a set of 

questionnaires - have some missing values (Allison, 2001). Many statistical software 

packages simply omit all cases that have one or more missing values (referred to as “case 

deletion”) when computing the statistics that describe the dataset. This can bias the results of 

the data analysis process and cause misleading conclusions to be drawn, as Schafer (1997) 

points out; 

“When the incomplete cases comprise only a small fraction of all cases (say, five 

percent or less) then case deletion may be a perfectly reasonable solution to the 

missing data problem. In multivariate settings where missing values occur on more 

than one variable, however, the incomplete cases are often a substantial portion of 

the entire dataset. If so, deleting them may be inefficient, causing large amounts of 

information to be discarded. Moreover, omitting them from the analysis will tend to 

introduce bias, to the extent that the incompletely observed cases differ 

systematically from the completely observed ones”  

Imputation methods attempt to solve the problem of missing data by replacing missing values 

with plausible estimates, which avoids the problems described above. Essentially, all 

imputation methods have the same basic objective. That is, they try to make the best possible 

use of the information content (the patterns and so on) within the known values in a particular 

dataset, to generate the best possible estimates for the missing values in that dataset.  

Rubin (1996a) points out that the primary (usually achievable) objective of imputation is to 

ensure that data analysis tools “can be applied to any dataset with missing values using the 

same command structure and output standards as if there were no missing data”, and that a 

further, desirable (but not always achievable) objective is to allow statistically valid 

inferences to be drawn when analysing imputed datasets. 

Chambers (2001) lists five  “desirable properties for an imputation procedure”  -  i.e. a set of 

criteria that can be used to evaluate the performance of any imputation method, as follows; 

1. Predictive Accuracy  - The imputation procedure should maximise preservation of true 

values. That is, it should result in imputed values that are "close" as possible to the true 

values. 

2. Ranking Accuracy  - The imputation procedure should maximise preservation of order 

in the imputed values. That is, it should result in ordering relationships between 

imputed values that are the same (or very similar) to those that hold in the true values. 
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3. Distributional Accuracy  - The imputation procedure should preserve the distribution 

of the true data values. That is, marginal and higher order distributions of the imputed 

data values should be essentially the same as the corresponding distributions of the true 

values. 

4. Estimation Accuracy - The imputation procedure should reproduce the lower order 

moments of the distributions of the true values. In particular, it should lead to unbiased 

and efficient inferences for parameters of the distribution of the true values (given that 

these true values are unavailable). 

5. Imputation Plausibility  - The imputation procedure should lead to imputed values that 

are plausible. In particular, they should be acceptable values as far as the editing 

procedure is concerned. 

The list is taken directly from Chambers (2001), who explains that  “The list itself is ranked 

from properties that are hardest to achieve to those that are easiest”. This dissertation 

describes a novel method for estimating the “predictive accuracy”  of imputation techniques, 

and as such it focuses on evaluating the performance of imputation methods using the first 

criteria given above.  

It is important to emphasise at the outset that the “true values” referred to above are the 

actual, real values of the missing data items, which are by definition, unknown. Therefore, it 

is impossible to  prove  that any imputation procedure has imputed values accurately, since 

the true values can never be compared with the imputed values. Consequently, general 

purpose methods  for evaluating the accuracy of the imputed values generated by imputation 

procedures have received very little attention in the literature.  

However, the accuracy of the imputed values generated by imputation procedures  can 

be estimated  and this dissertation describes the development of a  novel, general purpose 

imputation evaluation method that can be used to achieve this goal. 
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1.1 Description of the Work Undertaken 

This section explains why the work was undertaken and describes how the collaboration with 

the partner company led to the formulation of the project objectives. 

1.1.1 Motivation for the Work 

The work was funded by the UK Engineering and Physical Sciences Research Council 

(EPSRC) under the Cooperative Awards in Science and Engineering (CASE) scheme. This 

scheme allows students to collaborate with commercial organisations, so that the results of 

the work will benefit the student, the academic institution to which that student belongs and 

the commercial organisation involved. In this case the work was undertaken in an attempt to 

solve the collaborating company’s missing data problem, as described below. 

The collaborating company were Trends Business Research (TBR), who are based in 

Newcastle-upon-Tyne. TBR offer business and economic research consultancy to clients in 

the private and public sectors at local, regional, national and international levels. TBR’s 

activities are based upon the collection, enrichment, analysis and reporting of information 

describing UK business organisations, so as to further the strategic aims of their clients. This 

information is stored in the Trends Central Database (TCD), which describes approximately 

1.48 million UK business organisations (referred to as “Firms”), ranging from sole traders to 

conglomerates. The TCD tables contain descriptions of each Firm, including its financial 

situation, number of employees, business activities and geographical location. This allows 

detailed statistical analysis of the data to be performed at various geographical levels - such 

as postcode regions or political areas, such as constituencies and wards. 

However, the TCD variables that describe each Firm’s financial situation all have missing 

values  -  which constantly hampers the data analysis described above. 

This problem is exacerbated by the following factors. Firstly, the proportions of missing 

values for each financial variable are unusually large  -  i.e. they range from 27 to 96  percent, 

depending on the variable. Secondly, 71 percent of the Firms described in the TCD have no 

known financial figures whatsoever (all of the values are missing). Thirdly, the missingness 

pattern structure (see the following section for a definition of missingness patterns) for the 

financial variables is extremely unbalanced. Finally, the known values for each of the 

financial variables all contain small proportions of very extreme outlier values.  
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However, the missing data problem is somewhat alleviated by the fact that larger Firms 

(those with more employees) generally have smaller proportions of missing financial data - 

i.e. the probability of a Firm’s financial figures being missing decreases as the Firm’s size 

increases. And some of the variables that describe each Firm are fully observed, such as the 

variables that specify each Firm’s geographical location. A more detailed description of the 

TCD dataset and TBR’s missing data problem is given in chapter six. 

1.1.2 Objectives 

1. To discover whether imputation of the missing values in the collaborating company’s 

database was feasible, given the overall poor quality of the dataset. The criterion used 

to assess the feasibility of the imputation process was to be the predictive accuracy of 

the imputed values. 

2. To devise a new method for estimating the predictive accuracy of the imputed values 

generated by any imputation technique. The method should build on the ideas 

underpinning existing imputation evaluation methods. 

3. To implement the method in the form of a software application that will allow users to 

estimate the predictive power of any imputation technique. 

4. To use the software application to experimentally evaluate the reliability and the 

validity of the new method and to achieve the first objective. 
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1.2 Description of the Proposed Imputation Evaluation Method 

This section gives an overview of the imputation evaluation method devised by the author    

(a more detailed description is given in chapter four). Section 1.2.1 gives an informal 

description of the method. Section 1.2.2 explains how the method can be used to estimate the 

predictive power of imputation techniques. Section 1.2.3 gives a functional overview of the 

method with reference to the contents of the rest of the thesis. 

1.2.1 Informal Description of the Method 

The method can be used to estimate the predictive accuracy of the imputed values for any 

variable in the dataset (only one variable can be evaluated each time the method is 

employed), where the required variable is chosen by the user of the software that implements 

the method. However, the evaluation process can be repeated for all of the variables in the 

dataset, if this is required. The functional steps of the method are summarised below. 

1. A small proportion (perhaps up to 5%) of the known values are deleted at random from 

within the variable to be evaluated  (which will already have some missing values). 

2. Deleted values are recorded just before they are deleted, and a measure of how 

accurately they have been “put back” is taken when the imputation process is complete. 

3. Steps 1 and 2 are repeated several times and the accuracy statistics computed at step 2 

are stored after each repetition. 

4. The stored statistics are aggregated so that the estimates of imputation accuracy 

produced will be more statistically reliable. 

This method is described as “stochastic” in this thesis because the known values are  

randomly deleted  at step 1. The repetition of steps 1 and 2 forms an essential part of the 

method, because this process will produce more statistically reliable estimates of imputation 

accuracy. The reason why this is true can be explained using the following example. Suppose 

an unbiased coin was thrown twice and fell on heads both times. A maximum-likelihood 

based statistical analysis of this small sample (see chapter two for a discussion of maximum 

likelihood theory)  would  estimate  the probability of the coin falling on a head as 100%.  

However, if the coin was thrown ten times, then the  estimate  of the probability of a head 

being thrown should move closer to the true value of 50%. And as the number of throws is 

increased the estimate of the probability of a head being thrown should move closer and 

closer to the true value. This principle applies to any stochastic process which attempts to 

estimate unknown quantities, such as proposed imputation evaluation method 
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1.2.2 Estimating the Predictive Power of Imputation Techniques 

The process used to estimate the predictive accuracy of imputed values is described in the 

previous section. This process also estimates the predictive power of the imputation technique 

used to generate the imputed values, which in turn allows the feasibility of using that 

technique to be assessed.   

The proposed method also allows the predictive power of candidate imputation techniques to 

be compared, so that the technique that generates the most accurately imputed values can be 

chosen (as described in chapter five). Estimating the predictive power of an imputation 

technique is equivalent to measuring how well that technique has utilised the patterns within 

the known values in the dataset. This idea is fundamental to the proposed approach and it is 

discussed further below. 

a b c 

1 2 4 

10 20 40 

 40  

2 4 8 

100 200 2 

 10 20 

2000 4000 10 

30  120 

Fig 1.1  –  Numeric patterns in a data matrix that has some missing values 

Consider the values in the data matrix shown in Fig 1.1. The relationships between the 

variables (the values in the matrix columns) a,  b  and  c  are very strong, with the exception 

of the two “out of pattern” values (any other relationships found within the values in the Fig 

1.1 matrix should be ignored here, since the idea of this section is to illustrate how data 

patterns would be utilised by regression based imputation procedures). 

Any regression based imputation procedure should produce accurate estimates for the missing 

values, because the patterns within a large majority of the known values are so strong. The 

important point to note is that  the only information available to any imputation procedure 

is contained within the patterns that exist among the known values in the dataset.  

However, these patterns will degrade and weaken as the proportion of “out of pattern” values 

increases, and ultimately the imputation process will become infeasible  - i.e. this will occur 

when the proportion of  “out of pattern” values exceeds a certain critical value.   

Matrix cells with missing values are 
shaded and empty. 

The relationships between the variables 
have a simple pattern, where; 
b  =  a  x  2 
c  =  b  x  2 

These two values are “out of pattern” 
with the other known values. 
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Consider the following two extreme theoretical examples. (1) If every matrix cell with a 

known value contained the same value, then imputation would be easy to achieve and there 

would be very little uncertainty within the imputed values. (2) If every matrix cell with a 

known value contained a randomly generated integer in the range one to a billion, then no 

patterns would exist within the known values and imputation would be completely infeasible. 

However, in practice the patterns within most datasets will fall somewhere towards the centre 

of these two theoretical extremes.  

Using the predictive power of the patterns in the dataset to assess imputation feasibility  

The proposed method assesses the feasibility of employing a particular imputation technique 

by measuring how well that technique utilises the predictive power of the patterns within the 

known values in the dataset. That is, if the technique being evaluated by the method has been 

devised to utilise the type of patterns that actually do exist, then that technique should 

generate reasonably accurate estimates for the missing values.  

The key point to note is that different types of imputation technique will utilise different types 

of patterns when generating estimates for missing values. For example, regression based 

techniques will utilise the relationships  between variables  to generate regression equations, 

whereas nearest neighbour techniques will utilise the relationships  between observations  to 

find similar matrix rows (using distance functions). However, the proposed method will work 

equally well regardless of the types of patterns utilised by the imputation techniques it 

evaluates - i.e. one of the strengths of the proposed method is that it does not need to 

“know” how the imputation technique it is evaluating actually works. The following 

example explains the reasoning underpinning this general purpose approach, with reference 

to the functional description of the method given in the previous section. 

If imputation method  X  repeatedly  “puts back” the randomly deleted values inaccurately, 

then the deleted values must not have fallen into the patterns that imputation method  X  used 

to generate estimates for the missing values. Consequently, the patterns within the known 

values in the dataset must not be strong enough to support imputation method X  (but these 

patterns might be much better utilised by imputation method Y or Z,  depending on how these 

methods work). Therefore, the feasibility of employing imputation method X  to impute the 

missing values is questionable. This approach can be used to evaluate and compare any 

imputation method. The consequences of this approach are discussed in considerable detail in 

the more suitable context of section 5.1.4. 
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1.2.3 Functional Overview of the Method: Structure of the Thesis 

The diagram below gives an overview of the sequence of steps that are performed whenever 

the proposed method is employed. The overall process can be used to estimate the accuracy 

of the imputed values generated by any imputation technique. 

 

 
Fig 1.2  –  Estimating imputation accuracy : Structure of the thesis 

The sequence of steps shown in Fig. 1.2 reflects the structure of the thesis. The following 

points are important in this respect; 

• Chapters 2 and 3   discuss the theory underpinning the imputation techniques that have 

been implemented as part of the software that implements the proposed method. These 

techniques have been implemented alongside the method in the form of an integrated 

software application. This was essential, because it would impractical to implement the 

repetitive process shown in steps 2 to 5  of  Fig. 1.2  in any other way. 

Chapter  4 

Chapter  4 

Chapters  5  and  6 

1. Load the dataset with 
missing values into the 

imputation software 

2. Randomly delete a small 
% of known values from the 

variable to be evaluated 

3. Impute missing values 
using the imputation  

method being evaluated 

This loop is 
repeated 
several times

4. Compute and store the 
predictive accuracy 
statistics for this run 

5. Reverse the imputation 
process  (discard the 

imputed values) 

6. Compute the aggregate 
predictive accuracy 
statistics for all runs 

7. Use the aggregate 
statistics to assess 

imputation feasibility 

Chapters 2 and 3 

Chapter  5 
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• Chapter 4  gives a formal explanation of how the proposed method can be used to 

estimate the predictive accuracy of the imputed values generated by any imputation 

technique  (e.g. the techniques described in chapters 2 and 3, among others).  The ideas 

presented in this chapter form the principal contribution made in this dissertation. 

• Chapters 5 and 6   Chapter 5 explains how the reliability and the validity of the 

proposed method was experimentally evaluated. Chapter 6 assesses the feasibility of 

imputing the missing values in the collaborating company’s dataset. 

1.3 Missing Data Mechanisms 

An understanding of the “mechanisms” that lead to missing data is an essential prerequisite 

for an understanding of missing data problems and these ideas are referred to throughout the 

thesis. This section defines the terminology used when discussing missing data mechanisms, 

explains the theory underpinning these concepts and describes how this theory can be applied 

in practice. 

Many imputation methods will find the most reliable estimates for missing values when these 

values are “missing at random” (MAR), rather than being “missing completely at random” 

(MCAR). These missing data patterns are referred to as “missing data mechanisms” within 

the literature that discusses missing data problems. Unfortunately, the nomenclature 

surrounding missing data mechanisms can be somewhat misleading for the uninitiated. For 

example, when data is said to be missing at random this means that there is some clearly 

identifiable  patterns  of  “missingness” within the dataset. In other words, the probability of 

missing values occurring for a particular variable depends on the values of another variable 

(or on the values of a particular combination of the other variables in the dataset). In fact, the 

definitions of the MAR and MCAR assumptions have been the cause of some confusion even 

among statisticians, as Allison (2001) points out, 

“More generally, researchers have often claimed or assumed that their data are 

“missing at random” without a clear understanding of what this means. Even 

statisticians were once vague or equivocal about this notion. However, Rubin 

(1976) put things on a solid foundation by rigorously defining different 

assumptions that might plausibly be made about missing data mechanisms”  

Section 1.3.1 gives a formal summary of Rubin’s (1976) definitions - as referred to by 

Allison, above - and clarifies the key concept of “ignorability” for practical purposes. Section 

1.3.2 attempts to clarify the concepts of MAR and MCAR using a simple illustrative dataset. 

Section 1.3.3 describes how missing data mechanisms are defined in practice and explains 

why it is impossible to prove the MAR and MCAR assumptions.  Section 1.3.4 explains why 

it is essential to assess the feasibility of the imputation process for data that is MAR. 
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1.3.1 Formal Definitions of Missing Data Mechanisms 

The statistical definitions of the MAR and MCAR assumptions were rigorously defined by 

Rubin (1976). This section gives a summary of Rubin’s definitions using a simple illustrative 

dataset. It can be important to refer to these definitions when discussing missing data 

mechanisms, to avoid misunderstandings. 

  Sex Income Age  Sex   Income      Age 
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Consider the example given by the matrices above. Let Y  be defined as a data matrix with 

one or more missing values in one or more of its columns, with elements represented by ijY  

where the ? symbol represents a missing value. Let M  be defined as a matrix of 

corresponding binary indicators with elements represented by ijM  , such that; 

 1=ijM    if    ijY    is present in Y 

 0=ijM    if    ijY    is missing in Y 

Further, let obsY  represent the subset of all values present in Y, and let misY represent the 

subset of all values missing  in Y,  such that ),( misobs YYY =  represents the entire dataset 

in Y.  Finally, let φ  represent a set of unknown parameters which describe the distribution in  

M,  then; 

 For MAR ),|(),,|( φφ obsmisobs YMPYYMP =  for all  φ,misY  

 For MCAR )|(),,|( φφ MPYYMP misobs =  for all  φ,Y  

MAR and ignorability are equivalent conditions in practice 

The missing data mechanism is said to be “ignorable” - as defined by Rubin (1987) - when 

the data in Y is MAR, and when φ  (the M distribution parameter) and θ  (the Y distribution 

parameter) are unrelated. However, in practice, it is hard to imagine a situation where φ  and 

θ  can be related, since knowing φ  is very unlikely to tell us anything about θ , and vice-

versa. In addition, even in the very rare cases where φ  and θ  are related imputation methods 

should produce the same results. Essentially, this means that we can treat MAR and 

ignorability as equivalent conditions and that we do not need to create or process the  M  

matrix and φ  when executing imputation algorithms for data that is MAR  (Allison, 2001). 
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1.3.2 Informal Definitions of the MAR and MCAR Concepts 

Generally, when considering missing data mechanisms we are interested in finding the 

probability that a value will be missing, rather than attempting to impute it. This section 

discusses missing data mechanisms informally, using the illustrative data matrix shown 

below - where the missing values are represented by  ?  symbols. 

  Sex  Income    Age 

   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

64?
3825000
4038000?
??

22?
?20000

F
F

M
M
M

Y  

Fig 1.3  –  Data matrix illustrating the MAR and MCAR missing data mechanisms 

The missing values in a particular column are said to be MAR if the probability that they 

are missing is unrelated to their value, after controlling for values in the other columns. 

For example, suppose that 50% of the males described by the data in the Fig. 1.3 matrix 

failed to report their income, but only 10% of the females failed to report their income. We 

could then say that the probability of a person’s income being missing depended on their sex. 

In this case the MAR condition would be satisfied if the probability of missing income values 

occurring in both categories (male and female) was unrelated to the values of the income 

variables within those categories. Note that, by the MAR definition, the probability of a 

person’s income being missing could also depend on their age, or on any combination of the 

set of variables used to describe a person.  

The missing values in a particular column are said to be MCAR if the probability that they 

are missing is unrelated to their value or to the values in any other column. 

For example, the MCAR condition would be satisfied if the probability that the values in the 

income column (variable) were missing did not depend on the values in any column in the 

matrix, including the income column itself. When the MCAR condition is satisfied for every 

column in the matrix then the subset of matrix rows (observations) that have a complete set of 

known values can be regarded as being a random sample of all rows in the matrix. Note that 

the MCAR condition allows the missingness patterns in two or more columns to be related. 

For example, if everyone who failed to report their age also failed to report their income, then 

the MCAR condition could still be satisfied for the age and income variables. 
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1.3.3 Considering Missing Data Mechanisms in Practice 

When considering alternative solutions to missing data problems it is important to realise that 

making an incorrect assumption about the missing data mechanism for any particular variable 

could devalue the results of the data analysis process. This could result in misleading 

conclusions being drawn, which would exacerbate the missing data problem. 

“It is clear that if the imputation model is seriously flawed in terms of capturing 

the missing data mechanism, then so will any analysis based on such imputations. 

This problem can be avoided by carefully investigating each specific application, 

and by making best use of knowledge and data.”   (Barnard and Meng, 1999) 

Knowledge of the missing value dataset defines missing data mechanisms 

The imputation of missing data is almost invariably a knowledge intensive process, where 

each missing data problem has its own unique characteristics. Consequently, the knowledge 

possessed by the data analyst concerning the properties of the dataset with missing values is 

the most important tool available when defining missing data mechanisms. For example, the 

dataset with missing values may have been created using the data taken from a set of returned 

questionnaires designed as part of a survey. In this case some questionnaires could contain 

missing data because some respondents failed to answer some of the questions put to them. 

The knowledge possessed by the designers of the questionnaire is paramount in this case, 

since they will understand the relationships between the variables, and consequently they will 

be able to define the missing data mechanism for each variable. For example, if it was known 

that respondents with certain characteristics (such as age or sex) were more likely to answer 

certain questions, then missing answers to those questions would be known to be MAR. 

However, if all respondents were considered equally likely to answer every question, then 

missing answers to all questions would be MCAR, (Barnard and Meng, 1999) 

When detailed knowledge of the relationships between the variables in the missing value 

dataset is unavailable it can be extremely difficult to define the mechanisms that lead to 

missing data using diagnostic procedures alone (Graham et al, 1994). However, regression 

based diagnostics can sometimes be used to detect non-MCAR patterns in situations where a 

good linear regression model can be fitted to the data (Simonoff, 1988; Toutenburg and 

Fieger, 2000)  

MAR and MCAR are assumptions which cannot be proved or disproved 

It is very important to emphasise that the MAR and MCAR mechanisms are, by definition, 

assumptions which provide a conceptual framework for the analysis of missing data problems 

and for assessing the applicability of any particular imputation technique, and that the idea of 

proving or disproving the correctness of these assumptions is not the point. This is perhaps 
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the most difficult idea to comprehend for those who are new to the study of missing data 

mechanisms, but it is the key idea underpinning this area of study. In fact, the MAR or 

MCAR assumption for a particular variable can never be proved - for the following reason. 

To prove both the MAR and the MCAR assumptions we need to prove that the probability of 

missing values occurring for a particular variable does not depend on the values of that 

variable (see Little and Rubin, 2002, among others). However, we can never prove that this 

supposition is either true or false, since we cannot compare the pattern in the subset of 

missing (unknown) values with the pattern in the subset of observed (known) values. 

1.3.4 Solving the Missing Data Problem: Deletion or Imputation? 

Consideration of the missing data mechanism is very important when deciding how to solve a 

particular missing data problem. Many statistical software applications offer the option of 

simply deleting all rows that have any missing values from the dataset (see for example, Nie 

et al, 1975). This approach is referred to as “listwise deletion” or “complete case analysis”. 

This can be a good solution when the missing data is MCAR and when the proportion of 

deleted rows is small (say up to 10%), because deleting the rows should not seriously bias the 

remaining data. However, when the values are MAR and the proportion of missing values is 

large, listwise deletion can seriously bias the remaining data, for the reasons explained below. 

Consider the data matrix given in Fig. 1.3, above. Suppose that the matrix contained an equal 

number of male and female observations (matrix rows), and that 50% of males failed to 

report their income, but only 10% of females failed to report their income. In this case 30% of 

the rows in the data matrix would have missing values and would be deleted. But the deleted 

rows in the male category would represent 25% of the dataset, whereas the deleted rows in 

the female category would represent only 5% of the dataset. This would bias the remaining 

data and any subsequent analysis based on this biased data could produce misleading 

conclusions. In situations of this type imputation is clearly preferable to listwise deletion. 

In many cases the solution to the missing data problem comes down to a choice between 

imputation or listwise deletion. The key question to ask when trying to make this choice is;  

Is the imputation process feasible?  The proposed imputation evaluation method has been 

devised to answer this question - and it is argued that this method makes a useful contribution 

to imputation theory, because it can be used to assess the feasibility of imputing missing 

values in  any numeric multivariate dataset, using any imputation method. 
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1.4 Summary of Thesis Chapters and Contribution 

An overview of the structure of the thesis is given in Fig. 1.2, above. This section summarises 

the contents of the following chapters and explains how they contribute to imputation theory.  

• Chapter 2   Discusses the theory underpinning maximum likelihood based imputation 

and shows how this approach can be used to impute missing values in datasets with 

multivariate missingness patterns. The description of the author’s implementation of the 

expectation-maximisation algorithm, and the experiments that evaluate its performance, 

contribute to the theory of maximum likelihood based imputation techniques. 

• Chapter 3  Explains the ideas underpinning the functionality of a novel, fast, nearest 

neighbour (NN) imputation algorithm and shows how these ideas can be used to reduce 

the execution time of the NN imputation process. A description of the experiments that 

evaluate the performance of the new NN algorithm is given. The ideas and the 

experimental results given in this chapter contribute to NN imputation theory. 

• Chapter 4   Describes the equations and processes which form the basis of the proposed 

imputation evaluation method and shows how this method can be used to evaluate any 

imputation technique. The proposed method is compared with the most similar methods 

found within the literature and it is shown that the proposed method builds on the ideas 

underpinning these methods, but differs from them in several important respects. The 

descriptions and explanations given in this chapter form the principal contribution to 

knowledge made by this thesis. 

• Chapter 5   Explains how the proposed method was experimentally evaluated and shows 

that this method produces reliable and valid estimates of imputation accuracy when it is 

used to evaluate the imputation techniques described in chapters 2 and 3. A description 

of the software that implements the method is given and an explanation of how this 

software can be used to compare the predictive power of candidate imputation methods 

is provided. This chapter extends the contribution made by chapter 4 by experimentally 

evaluating the method which forms the principal contribution. 

• Chapter 6  Explains how the proposed method was used to address the collaborating 

company’s (TBR’s) missing data problem. A description of the experiments that were 

performed in order to find the most accurate methods for imputing TBR’s missing values 

is given. The experimental results are analysed and conclusions are drawn. 

• Chapter 7  Summarises the thesis, draws conclusions and describes how the work 

described in chapters one to six could be continued. 
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Chapter Two 

Maximum Likelihood Imputation 
Via the EM Algorithm 
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2.   Maximum Likelihood Imputation Via the EM Algorithm 

The proposed imputation evaluation method is general purpose in nature, because it can be 

used to assess the feasibility of applying any imputation method to any numeric dataset. 

However, a “first cut” imputation method had to be implemented alongside the proposed 

evaluation method (in the form of an integrated software application) so that the proposed 

evaluation method would have an imputation method to evaluate. The imputation method that 

was chosen had to be general purpose in nature, in that it had to be capable of imputing 

missing values in any numeric dataset. Allison (2001) argues that there are only two methods 

of this type worth considering, 

“Many alternative methods have been proposed ........Unfortunately, most of these 

methods have little value, and many of them are inferior to listwise deletion. That’s 

the bad news. The good news is that statisticians have developed two novel 

approaches to handling missing data - maximum likelihood estimation and multiple 

imputation - that offer substantial improvements over listwise deletion.” 

This conclusion seems to be generally accepted among statisticians. For example, Little and 

Rubin (2002) - who have produced the standard reference work on missing data methods - 

devote the major portion of their book to a discussion of the maximum likelihood estimation 

(MLE) and multiple imputation (MI) methods.  

The imputation method selected for the first tests of the proposed imputation evaluation 

method was MLE via the expectation-maximisation (EM) algorithm (Dempster, Laird and 

Rubin, 1977).  MLE via EM was chosen in preference to MI because the MI approach can 

already be used to evaluate the results of the imputation process - i.e. MI is, at least in part, an 

imputation evaluation method, although it was designed primarily as an imputation technique. 

In fact, the ideas underpinning the proposed method build on the ideas underpinning MI  (the 

similarities and differences between MI and the proposed method are described in chapter 

four). The following sections discuss the theory underpinning MLE and the EM algorithm, 

and explain how these techniques can be implemented in practice. 

• Section 2.1  explains the fundamental concept underpinning MLE and describes how the 

MLE approach can be used to impute missing values in multivariate datasets. 

• Section 2.2 discusses the history and utility of the EM algorithm and gives an 

explanation of how EM can be implemented in practice, including a description of how 

EM can utilise the SWEEP operator to generate regression equations.  

• Section 2.3  describes how the author has implemented the EM algorithm as a software 

application and explains how the functionality of the new implementation was verified 

and how its performance was evaluated. 
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2.1 Maximum Likelihood Estimation 

Section 2.1.1 gives an explanation of the fundamental concept underpinning maximum 

likelihood estimation (MLE), using a simple illustrative example. Section 2.1.2 explains how 

MLE can be applied for the imputation of missing values in incomplete multivariate datasets. 

2.1.1 The Fundamental Concept Underpinning MLE 

Suppose we have a biased coin, such that the probability of the coin falling on a head = 0.6, 

and the probability of it falling on a tail = 0.4. Then suppose that we throw this coin twice - 

there are four possible outcomes, as follows; 

 (1)  Head, Head (2)  Head, Tail (3)  Tail, Head (4)  Tail, Tail 

Intuitively, we can see that, since the coin is biased towards falling on a head, outcome (1) is 

most probable, outcomes (2) and (3) are next (and equally) probable and outcome (4) is least 

probable. Stated more formally, we can say that the sequence of coin throws follows the 

Bernoulli distribution, such that the probability of any specific sequence of heads and tails 

occurring is given by; 

∏
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yy ii pppYP
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1)1()|(          (2.1) 

Where Y  represents a set of  n  throws, iy  represents a particular throw within this set, and  

p  gives the probability of a head occurring on any particular throw (which in this case = 0.6). 

For example, let 1 represent a head being thrown and 0 represent a tail being thrown. Then 

the probability of the occurrence of the set of throws represented by  Y = {1, 1}  is given by; 
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Suppose that another biased coin is thrown 5 times and that it falls on a head 4 times, such 

that Y = {1, 1, 1, 1, 0}  but this time the probability of the coin falling on a head is unknown. 

It follows that calculations such as the one given above cannot be performed on this set of 

throws, since the value of  p  cannot be “plugged in” to the equation. One approach to solving 

this problem is to find an estimate for the value of  p  which maximises the likelihood that the 

set of throws  Y = {1, 1, 1, 1, 0}  will occur. The process of finding the required value of  p  is 

referred to as “maximum likelihood estimation”. Stated more formally, we need to find the 

value of   p  which maximises the likelihood )|( YpL , where; 

∏
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Notice that the right hand side of this equation is identical to the right hand side of equation 

(2.1) above. However, in equation (2.1) we need to find the probability that the observed data 

Y  will occur for a given value of  p. Whereas in equation (2.2) we need to find the value of  p  

which maximises the likelihood that the observed data Y will occur. In this case we can find 

the required value of  p  by rearranging equation  (2.2)  so that  p  appears on the left hand 

side (the rearrangement is as given by Dunham, 2003); 
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Taking the log of each side (referred to as the loglikelihood) gives 
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Then taking the derivative with respect to  p  gives 
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Finally, setting the right hand side equal to zero, to find the  l (p)  maximum value, gives 
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applying this to the problem described by equation (2.2) gives 

8.0
5
4

5
ˆ

5
1 ===

∑ =i iy
p  

Thus, we can say that the value of  p  that maximizes the likelihood of  Y = {1, 1, 1, 1, 0}  

occurring is 0.8. It is important to emphasise that this value of  p  is an estimate based on 

single experiment with a very small sample, and that another such experiment involving 5 

throws of the biased coin could easily result in a completely different sequence, such as         

Y = {0, 0, 0, 0, 1}. However, the same MLE approach could be applied to a much larger 

experimental sample (say 1000 throws) and the results would be much more reliable, but still 

not conclusive, since the amount of bias in the coin is unknown, and can only be estimated.  

This simple example explains the central concept underpinning the MLE approach. This 

approach can be applied for the solution of much more complex problems than the one 

described above, such as the imputation of missing values in incomplete multivariate 

datasets, as described below. 
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2.1.2 Applying MLE to Incomplete Multivariate Datasets 

Conceptually, the equation which gives the probability of the occurrence of any specific 

complete multivariate numeric dataset is similar to equation  (2.1)  as given in the previous 

section. However, the parameters that describe the multivariate distribution are much more 

complex, as shown in Fig. 2.1, below, 
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Where )......,( 21 pµµµ  contains the mean values for each Y column. 

and  nCSSCP=Σ   is the Y  matrix covariance matrix, where; 

CSSCP  =  Corrected Sums of Squares and Cross Products matrix,  

as described in Tabachnick and Fidell (2000) 

Fig 2.1  –  The parameters that describe a complete multivariate numeric dataset 

Where Y is a data matrix with all values present, ),( Σ= µθ  represents the set of parameters 

which describe the distribution of the data in Y and )|( θiyf  gives the probability of the 

occurrence of each  row iy  where  i  is in the range  1 to n,  and  n  gives the number of rows 

in Y.  Thus, the probability of the occurrence of the complete Y  dataset equals the product of 

the probabilities of the occurrence of each row in Y.  

However, we are interested in applying the MLE process to  incomplete  multivariate 

datasets, such as the Y matrix shown below. To do this we must find an estimate for the value 

of  ),( Σ= µθ   which maximises the likelihood that the incomplete dataset in Y  would 

occur, as we did in the example in the previous section. The first step is to specify the 

equation for the likelihood. Conceptually, this equation is similar to equation (2.2) given 

above - but some explanation of the terminology used is required before it can be presented.  
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Consider an incomplete data matrix such as the one shown above. Let obsY  represent the 

subset of all values present in Y,  and let misY  represent the subset of all values missing  in 

Y,  such that  ),( misobs YYY =   represents the entire dataset in Y.  Now let, 

),......,( ,2,1, iobsobsobsobs YYYY =  

represent the subset obsY , where each element in ),......,( ,2,1, iobsobsobs YYY  represents the 

set of observed values in the corresponding row in Y.  Further, let ),( ,, iobsiobs Σµ  

represent the mean and covariance matrix for a particular row i in Y,  (rather than for all rows 

in Y, as given in equation (2.3) above). The loglikelihood based on  obsY  is then given by, 
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As given by Little and Rubin (2002). To impute the missing values in Y, we must find an 

estimate for the value of  ),( Σµ   which maximises the likelihood of the occurrence of obsY . 

When found, the required value of ),( Σµ  can be used to estimate the missing values in Y,  

thus completing the imputation process by producing a Y matrix with all missing values 

“filled in”. However, the process of finding the value of ),( Σµ  which maximises 

)|,( obsYl Σµ  is complex, and the method of simply rearranging the above equation, so that 

),( Σµ  appears on the left hand side - as we did for equation (2.2) - cannot be applied in this 

case. In fact, this maximum likelihood estimation process is so complex that an iterative 

procedure, such as the EM algorithm, is regarded as the simplest way to proceed (Schafer, 

1997; Little and Rubin, 2002). The following sections explain how this can be achieved. 

2.2 The Expectation-Maximization Algorithm 

Section 2.2.1 summarises the history of the expectation-maximisation (EM) algorithm and 

discusses its utility. Section 2.2.2 describes the type of dataset that can be processed by the 

EM algorithm. Section 2.2.3 explains how the EM algorithm can be used to impute missing 

values in multivariate numeric datasets. Section 2.2.4 explains how the SWEEP operator can 

be used to generate the regression equations used by the EM algorithm. 

The Y  matrix has  6  rows  and  5  columns 

The  missing  values are represented by  a value of  0 

The  present  values are represented by  a value of  1 
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2.2.1 History and Utility of the EM Algorithm 

The idea of solving complex statistical problems using an iterative MLE based approach goes 

back as least as far as McKendrick (1926), who discusses the idea with reference to a medical 

application. Hartley (1958), considers the general case and develops the theory extensively, 

explaining many of the key concepts underpinning the entire approach. Orchard and 

Woodbury (1972) go on to discuss the general applicability of the approach referring to it as 

“the missing information principle”. Beale and Little (1975) develop these ideas further for 

the “multivariate normal population” by creating an “iterated form” of the method proposed 

by Buck (1960). The phrase “EM algorithm” first appears in the seminal paper by Dempster, 

Laird and Rubin (1977), who describe the fundamental properties of the EM algorithm, and 

discuss its general applicability to the problem of “computing maximum likelihood estimates 

from incomplete data”. The concepts presented in that paper sparked a revolution in the 

analysis of incomplete multivariate data, allowing for the efficient imputation of multivariate 

missing data using an iterative MLE based approach.  

The EM imputation method compares very favourably with other regression based imputation 

methods, such as the “singular value decomposition method” (SVD) proposed by 

Krzanowski (1988) and the “principal component method” (PCM) proposed by Dear (1959). 

This conclusion has been reached by several researchers. See, for example, the useful 

comparative analysis of the results produced by EM, SVD and PCM given in Bello (1995), 

and the discussion of the application of MLE via the EM algorithm given in the standard 

reference book on imputation methods produced by Little and Rubin (2002). 

However, the EM approach can be used for more than just imputation. In fact, the range of 

problems that can be addressed using EM is wide and varied, including problems which do 

not usually involve the analysis of missing data, as discussed by Meng and Pellow (1992) and 

McLachlan and Krishnan (1996), and as succinctly summarised by Schafer (1997) 

“The influence of EM has been far reaching, not merely as a computational 

technique, but as a paradigm for approaching difficult statistical problems. There 

are many statistical problems which, at first glance, may not appear to involve 

missing data, but which can be reformulated as missing data problems: mixture 

models, hierarchical or random effects models, experiments with unbalanced data 

and many more.” 

2.2.2 EM Imputation Algorithm Data Assumptions 

Consider a multivariate numeric data matrix  Y  with one or more missing values in one or 

more of its columns. The EM algorithm can be used to impute the missing values in  Y  using 

an iterative, regression based procedure - assuming that the dataset is suited to the EM 

process. This section describes the type of dataset that can be processed by the EM algorithm 
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and discusses the problems that can arise when incorrect assumptions are made regarding the 

properties of the dataset to be processed. 

The version of the EM algorithm described here will find the most reliable estimates for the 

missing values when all of the columns in the Y  matrix are perfectly normally distributed, 

and when the missing values are all MAR, as described in chapter one. However, in practice, 

it is very unlikely that any data matrix will be perfectly normally distributed, and it will very 

rarely happen that the missing values in every column in the matrix are missing at random – 

so how should we proceed?  Should we test the data to see if it is suitable to be processed by 

the EM algorithm? Or should we assume that the data meets requirements and run the EM 

algorithm immediately? The answer depends entirely on the nature of the dataset being 

processed and on the circumstances surrounding the particular missing data problem.  

Perhaps the most sensible approach would be to proceed with the imputation process unless 

our knowledge of the dataset suggests that it is not suitable to be processed by the EM 

algorithm. For example, suppose our knowledge of the data leads us to believe that the 

columns in the data matrix are far from being normally distributed. To address this problem, 

suppose we test every column in the matrix and find that 80% of these are approximately 

normally distributed, with a small proportion of outliers - but that the distributions in the 

remaining columns are unacceptable. The decision to be made in this case is whether the 20% 

departure from normality invalidates the EM process, or whether it can be “worked around” 

or ignored. Again, everything depends on the circumstances surrounding the missing data 

problem. For example, the offending columns could be deleted from the matrix, but then the 

missing data in those columns could not be imputed, and the observed data could not be used 

to impute missing values in the remaining columns.  

However, even in cases where some of the variables are non-normal, the EM algorithm can 

still produce reliable estimates for missing values (Schafer, 1997). Furthermore, in some 

cases variables can be transformed to approximate normality prior to imputation  -  e.g. using 

the Box-Cox algorithm described in chapter six. 

The MCAR assumption complicates the EM imputation process 

When values are MCAR the parameters describing the missing data pattern (represented as a 

binary matrix - see chapter one) must be re-estimated at each iteration of the EM algorithm. 

And modelling the MCAR missing data pattern is very problematic in most cases and may be 

impossible for some datasets. Hence, the version of the EM algorithm described below 

assumes that the data is MAR, since implementing an MCAR version of the EM algorithm 

would be extremely difficult for the reasons given above, as Allison (2000) points out; 
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“There are often strong reasons to suspect that the data are not MAR. 

Unfortunately, not much can be done about this. While it’s possible to formulate 

and estimate models for data that are not MAR, such models are complex, 

untestable, and require specialized software. Hence any general purpose method 

will necessarily invoke the MAR assumption” 

2.2.3 Functional Outline of the EM Imputation Algorithm 

function  matrix    EM_algorithm_for_missing_data_imputation  ( matrix Y,  double  e ) 

 matrix  newθ =   initial_parameter_estimate_for_matrix  (Y) 

 repeat 

   estimate_missing_values_in_matrix_Y_using  )( newθ  

  newold θθ =  

  newθ =  new_parameter_estimate_for_matrix  (Y) 

 until   em_has_converged  ( ,newθ ,oldθ  e ) 
 impute_missing_values_ in_matrix_Y_using  )( newθ  

 return Y 

end function 

where    
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Fig 2.2  –  Functional outline of the EM algorithm for multivariate imputation 

The functional outline given in Fig. 2.2 shows how the EM algorithm can be used to impute 

the missing values in a multivariate, numeric data matrix Y, which is passed as a parameter to 

the function, then returned with the missing values “filled in” just before the algorithm 

terminates. Notice that the initial value of the Y distribution parameter newθ must be 

estimated before the  repeat  loop starts (see Appendix B for an explanation of how this can 

be achieved in practice). This parameter takes the form of the augmented covariance matrix 

for the Y  matrix, as shown in Fig. 2.2, above. 

The function uses successive values of newθ to test for EM “convergence” from one 

iteration of the repeat  loop to the next. This is achieved by comparing each corresponding 

pair of elements in newθ and oldθ  using the function below (which is called from the 

function above). 
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function  boolean   em_has_converged  ( ,newθ ,oldθ  e ) 
 int   p  =   num_columns_in  ( newθ ) 

 for   int   i  =  0   to   p 

  for   int   j  =   i   to   p 

   if   )( ),(),(),( jinewjioldjinew e θθθ >−  

    return   false 

  next   j 

 next   i 

 return   true 

end function 

Where this function only returns a value of  true if the absolute difference between every 

corresponding pair of elements in newθ and oldθ  is ),( jinewe θ≤  where  ( )jinew ,θ  

represents each newθ element. The execution of this function is equivalent to comparing 

successive values of the observed data loglikelihood, using; 

)()()( obsnewobsoldobsnew YleYlYl θθθ ≤−  

where e is a small value, such as 0.0001. And where the value of )( obsnew Yl θ is 

guaranteed not to decrease (and will normally increase) with each iteration of EM, which 

makes convergence possible. Although the rate of convergence of EM can differ significantly 

from dataset to dataset in practice, which was found to be the case when conducting the 

experiments described in chapters five and six. See Meng (1990), Meng (1994) and Schafer 

(1997) for detailed discussions of the theory underpinning the rate of EM convergence.  

The key concept underpinning the functionality of the EM algorithm outline given in Fig. 2.2 

lies in the iterative re-estimation and reuse of newθ . Notice in particular the  repeat .… until  

loop functionality, where;  

1. newθ  is used to estimate the missing values in Y  

2. Y  is used to estimate newθ  

3. newθ  is used to estimate the missing values in Y  

4. Y  is used to estimate newθ  

…and so on, until the difference between successive values of newθ converge to the value 

of  e  (which is passed as a parameter to the EM function). When convergence is achieved the 

final set of element values in newθ will contain the Y distribution parameters which 

maximise the likelihood of the occurrence of the dataset in Y.  And, finally, newθ is used to 

compute the estimates for the missing values in  Y,  thus completing the imputation process. 
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The entire procedure is elegant and procedurally efficient and should have a fast execution 

time if it is well implemented (e.g. using the methods described in section 2.4). In fact, the 

EM imputation algorithm is generally recognised as having “elegant statistical properties 

and sound theoretical justification”  as pointed out by Bello (1995), among others. 

2.2.4 Using the SWEEP Operator to Impute Missing Values 

The EM imputation algorithm is essentially a regression based procedure which converts 

known values into predictor values, thus allowing missing values to be estimated using the 

regression equations so formed. The most complex problem to be solved when implementing 

EM in practice is to generate regression equations for each missingness pattern in the data 

matrix. For example, consider the Y data matrix given below, where 1 represents a known 

value and 0 represents a missing value. Rows 1 and 4 have missingness pattern 10101. Rows 

2 and 6 have missingness pattern  10011. Row 3 has missingness pattern 00110. 
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The problem is to find a method to generate regression equations for the imputation of each 

missing value in each different missingness pattern. Where each term in these equations is 

formed using the product of one of the known values in the row being imputed and one of the 

derived regression coefficients for the missingness pattern in question. This can be achieved 

using the versatile matrix “SWEEP operator” which can be applied for the solution of any 

sort of iterative, regression based, imputation problem. 

The SWEEP operator was first introduced by Beaton in (1964), but the version described here 

was originally defined by Dempster (1969). One of the earliest and most detailed tutorials on 

the use of SWEEP operator and related matrix transformations can be found in Goodnight 

(1979). A detailed and accessible description of the theory underpinning the use of the 

SWEEP operator with the EM algorithm can be found in Little and Rubin (2002).  

Applying the SWEEP operator to impute missing values as part of the EM algorithm 

The sections below give a straightforward explanation of how the SWEEP operator can be 

used to impute missing values in practice. The text includes a pseudo-code function that can 

be used to implement SWEEP as part of the EM algorithm. This function forms an integral 

part of the EM functional outline given in Fig. 2.2. That is, it will be called repeatedly from 
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the procedure  estimate_missing_values_in_matrix_Y_using )( newθ  which is called from 

within the  repeat .… until  loop given in Fig. 2.2. The precise nature of this functionality is 

described in great detail in the complete EM algorithm pseudo-code given in Appendix B.  

When the SWEEP operator is applied to the parameter describing the augmented Y 

covariance matrix θ  (as described in the previous section) it converts the known values into 

predictor values, which allows the missing values to be imputed using the regression 

equations so formed. For example, suppose a data matrix has four columns labelled 1Y  to 4Y  

where the data in a particular row is present for columns 1Y  and 2Y  but is missing for 

columns 3Y  and 4Y . In this case the repeated and correct use of the SWEEP operator on the 

θ matrix can be used to generate the regression coefficients of 3Y  on 1Y  and 2Y  and 

similarly of 4Y  on 1Y  and 2Y . This allows the missing values in columns 3Y  and 4Y  to be 

imputed using the pseudo-code implementation described below. 

Symmetric (p x p) numeric matrices can be “swept” on any row and column - i.e. the notation 

used to represent the SWEEP operation is TkSWP ][  where T  is the matrix being swept, 

and  k  is in the range  1 to p  or  0 to p  for augmented matrices, such as the one used in the 

example below. In practice, the SWEEP operator can be considered as a function, where the 

parameters passed to this function are; (1) the row and column to sweep on, in this case 

denoted by k and,  (2)  the matrix to be swept, in this case denoted by T.  The function adjusts 

the elements of  T  by sequentially executing the five steps defined below, then returns the 

adjusted  T.  For example, the matrix transformation given below shows how the SWEEP 

operation TSWP ]0[=θ  would be applied to a (3 x 3) version of the symmetric matrix  T. 

 (1)  kkkk t1−=θ   (4)  kkkljkjljl tttt −=θ  for  kj ≠   and  kl ≠  

 (2)  kkjkjk tt=θ  for  kj ≠  (5)  jllj θθ =  for  kj ≠   and  kl ≠  

 (3)  jkkj θθ =  for  kj ≠  
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Thus, we can say that the matrix T has been “swept on row and column 0”, and that the 

matrix θ has been set equal to the adjusted version of T created by the SWEEP operation 

(see Appendix B for an explanation of the purpose and use of the T matrix within the EM 

algorithm). Notice that, for symmetric matrices (such as those swept by the EM algorithm) 
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the upper right triangle is a mirror image of the lower left triangle - so the top right corner 

element and the bottom left corner element are equal etc.  

A pseudo-code implementation of the SWEEP operator 

The pseudo-code given below, which is based on the five steps given above, provides a fast 

and efficient computational procedure for implementing the SWEEP function. Note that the 

rows and columns of the  (p + 1) x (p + 1)  symmetric matrix passed to the function must be 

indexed from  0 to p,  rather than from  1 to (p + 1).  This is specifically required when 

processing the augmented EM matrices θ and T  (as explained further in Appendix B). 

function  matrix    sweep_matrix_on  ( int  k,   matrix  g ) 

  int   p   =   num_columns_in  (g) 

  matrix  s   =   new  matrix ( p,  p ) 

 kkkk gs 1−=  

 for   int  =i 0  to  p   &&   ki ≠  

  kkikik sgs −=  

  ikki ss =  

 next   i 

 for   int  =i 0  to  p   &&   ki ≠  

  for   int =j 0  to  p   &&  kj ≠  

   kjikijij gsgs −=  

   ijji ss =  

  next   j 

 next   i 

 return  s 

end function 

The most important point to note  regarding the use of this function by the EM algorithm is 

that calling it to sweep the matrix θ  on an element at row and column  k  converts that 

element from a dependant variable to an independent variable in the regression equation 

formed by its related elements in the swept matrix. Recalling that, for the EM algorithm, θ  

forms the  (p + 1) x (p + 1)  augmented covariance matrix - where p is the number of 

columns in Y, which are indexed from  0 to p. It can be shown that, for the bivariate case, 

with a (3 x 3) θ  matrix, the function call =θ sweep_matrix_on ),1( θ  will yield the 

regression coefficients of 2Y  on 1Y  as shown below, 
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After the sweep operation  θθ ]1[SWP=  has been performed; 

02θ  or  20θ         will give the intercept of  22Y  on 11Y  

12θ  or  21θ         will give the slope of  22Y  on 11Y ,  and consequently, 

11120222 YY θθ +=     will give the regression equation of  22Y  on 11Y  

This important result forms the functional basis of the expectation step of the EM algorithm 

as applied for the estimation of missing values in a multivariate dataset. And, essentially for 

the EM algorithm, the bivariate case given above can be extended to the multivariate case by 

performing a set of related consecutive sweeps of the θ  matrix - where the set of sweep 

indexes for a particular multivariate missingness pattern can be represented by; 

 θ],.....[ 1 nkkSWP  or by the equivalent notation; 

 θ)]([ kMSWP   where  Mk ∈   and   },....{ 1 nkkM =  

In addition - as Little and Rubin (2002) explain - it can be shown algebraically that the 

SWEEP operator is fully commutative. This means that the final computational result of any 

given set of consecutive sweeps will be the same regardless of the order in which those 

sweeps are performed. Stated more formally, in the case where the set 

},....{ 1 njjA = can be any permutation of the set  },....{ 1 nkkM = we can say; 

 In the general case    θθ ],.....[],.....[ 11 nn jjSWPkkSWP =  

 Or equivalently         θθ )]([)]([ jASWPkMSWP =  

The reverse SWEEP operator is an essential part of the EM algorithm 

The reverse SWEEP operator is called repeatedly from the complete EM algorithm pseudo-

code given in Appendix B. The reverse SWEEP operation is used to return a swept matrix to 

its original form using the notation θ][kRSW  where θ  is the matrix being swept in 

reverse, and  k  is in the range 1 to p,  or  0 to p  for augmented matrices, such as θ . For 

example, the following consecutive operations would sweep the θ  matrix then return it to its 

original form; 

θθ ][kSWP=     followed by    θθ ][kRSW=  

The reverse SWEEP operation θθ ][kRSW=  would be performed by sequentially 

executing the five steps defined below. Notice that these steps are almost identical to the 

steps for θθ ][kSWP= , the only difference being the presence of the minus sign in step (2). 
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 (1)  kkkk θθ 1−=   (4)  kkkljkjljl θθθθθ −=  for  kj ≠   and  kl ≠  

 (2)  kkjkjk θθθ −=  for  kj ≠  (5)  jllj θθ =  for  kj ≠   and  kl ≠  

 (3)  jkkj θθ =  for  kj ≠  

The  RSW  function could be implemented using a slightly adapted version of the pseudo-

code for the  sweep_matrix_on ()  function  (given above)  where the difference in the step 

(2) calculation is accounted for. Alternatively, the sweep_matrix_on () function could be 

adapted to perform both operations by passing an extra parameter to it, which would be used 

to determine the correct calculation to perform at step (2). Note that the notation for 

performing consecutive reverse sweeps is the same as for the sweep operation - i.e. 

θ],.....[ 1 nkkRSW  or θ)]([ kMRSW . Also note that  RSW  is fully commutative as 

for the SWEEP operation itself. 

2.3 A New Implementation of the EM Imputation Algorithm 

The functional outline of the EM algorithm and the SWEEP operator pseudo-code given 

above can be used to implement the EM algorithm in practice. These functional explanations 

have been expanded to give a complete pseudo-code listing for the implementation of EM for 

numeric multivariate imputation, which is given in Appendix B.  

This pseudo-code has been implemented as a fully reusable software class using the 

Microsoft C# programming language. The resulting EM class can be instantiated and used by 

any C# imputation application, regardless of the user interface created to support the 

imputation process. The user interface that has been developed to support the new EM 

implementation - and the implementation of the new imputation evaluation method - is 

described in chapter five. The following section explains how the functionality of the new 

EM implementation was tested and verified in practice. 

2.3.1 Verifying the Functionality of the New EM Implementation 

The results produced by the EM implementation described above were verified as being 

correct by comparing the augmented covariance matrices produced by the new 

implementation with the covariance matrices produced by the NORM imputation software. 

Several different versions of the NORM software can be freely downloaded from the 

Pennsylvania State University website at  http://www.stat.psu.edu/~jls/misoftwa.html  The 

most recent NORM application, (Version 2.03 for Microsoft Windows XP) was used to 

perform the verification experiments.  
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The NORM application was produced by Professor Joseph L. Schafer of Pennsylvania State 

University using the S-PLUS programming language. Schafer is one of the world’s leading 

authorities on the analysis of incomplete multivariate data, and the NORM application is very 

highly regarded academically. For example, Allison (2000) shows that in some cases NORM 

produces less biased imputed values than the commercial SOLAS (version 1.1) imputation 

application, which uses the multiple imputation method developed by Lavori et al (1995). 

And a useful description of how multiple imputation has been implemented (and could be 

better implemented) in the SOLAS (version 3.0) application and several other commercial 

imputation applications can be found in Horton and Lipsitz (2001).  

NORM operates only on numeric data, and estimates missing values using multiple 

imputation via the Bayesian data augmentation algorithm (Schafer, 1997). The EM algorithm 

is used only to generate the initial value of the covariance matrix ),( Σ= µθ , so as to speed 

up the data augmentation process. Use of the EM algorithm is an optional part of the NORM 

imputation process, but the resulting covariance matrix is automatically exported to a text 

file, which proved to be invaluable when testing the new EM implementation. Datasets with 

missing values must be loaded into the NORM application via text files. When the imputation 

process is complete NORM automatically copies the completed data matrix (with the missing 

values “filled in”) into another text file, which can then be used to update the missing values 

in the source dataset.  

Verifying the new EM implementation by comparing it with the NORM version of EM 

NORM comes with two demonstration datasets that have missing values, which are stored in 

text files. The first file contains a data matrix with 25 rows and 4 columns, with 27% missing 

values. The second file contains a data matrix with 279 rows and 12 columns, with just under 

8% missing values. These files were used to test the new EM implementation. In both cases 

all of the augmented covariance matrix element values produced by the new EM 

implementation and by NORM proved to be the same, to four significant figures. The final 

test was performed against an independent dataset with 32% missing values - as created by 

Ryan and Joiner in (1994) and described by Schafer in (1997). Again, all of the covariance 

matrix elements were found to be same, to four significant figures. These tests strongly 

suggest that the new EM implementation produces correctly imputed values, since the 

probability of both applications producing the same covariance matrix in three different 

datasets by chance was assumed to be very small. 
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2.4 Decreasing the Execution Time of the EM Imputation Algorithm 

The proposed imputation evaluation method requires repeated executions of the imputation 

method that is used to “put back” the values that are deleted, as explained in chapters one and 

four. When using the method in practice it could be necessary - for some experiments - to 

repeat the imputation process tens, or even hundreds, of times  (e.g. see chapters five and six). 

Consequently, it is important that the implementation of the EM algorithm described above 

should execute as quickly as possible. 

However, techniques for decreasing the execution time of imputation algorithms have 

received very little attention in the literature. By contrast, performance issues (algorithm 

execution time and so on) have received a great deal of attention in other disciplines. For 

example, in the field of data mining (Fayyad et al, 1996; Berson and Smith, 1997) a 

considerable amount of work has been done which focuses primarily on decreasing the 

execution time of various clustering algorithms. See, for example, the related papers by Ester 

et al (1996) and Wang and Hamilton (2003). This section redresses the balance somewhat by 

discussing the issues surrounding the execution speed of the EM algorithm. 

2.4.1 Factors Affecting EM Algorithm Execution Time 

Generally speaking, the execution time of any imputation algorithm will depend primarily on 

the size of the dataset being processed - e.g. in the case of the EM algorithm, execution time 

will increase as the size of the Y data matrix increases. However, the execution time of the 

EM algorithm is also closely linked to the number of missingness patterns present in Y, since 

the EM process must, by definition, use different regression equations (the number and size 

of the coefficients will differ) to impute the missing values in each missingness pattern. The 

maximum number of patterns that can occur in the Y matrix is p2 , where  p  is the number 

of columns (variables) in Y. However, each missingness pattern must be contained in at least 

one Y row, therefore the number of possible patterns cannot exceed the number of rows in  Y. 

It follows that the execution of the EM algorithm will take longer and longer to achieve as the 

number of missingness patterns in Y approaches the number of rows in Y, and that the slowest 

execution time will occur in the rare cases when every Y row has a unique pattern. 

It is generally accepted (see for example, Aho et al, 1983;  Knuth, 1997) that the execution 

time of  almost any algorithm  can be reduced by creating “lookup tables” etc. and storing 

these in RAM - thus removing the need to repeatedly recreate these data structures as they 

become needed to support the processing. Conversely, RAM storage requirements can 

usually be reduced by repeatedly recreating smaller data structures as they become needed 

during the processing. The key question to ask in each specific case is whether the decrease in 

execution time is sufficient to justify the RAM needed to store the lookup table. The pseudo-
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code version of the EM algorithm given in Appendix B attempts to optimise performance and 

minimise RAM storage requirements by creating only those lookup tables which prove to be 

the most beneficial for decreasing EM algorithm execution time. 

The fastest possible processing of the EM sufficient statistics matrix obsT will be needed for 

any efficient EM implementation (see Appendix B for a description of the purpose and use of 

the obsT matrix). This can be achieved by creating the initial version of the obsT matrix only 

once (at the start of algorithm) then storing and reusing it repeatedly. This avoids the 

unnecessary re-calculation of obsT at the start of every EM iteration, which considerably 

reduces algorithm execution time, since the initial version of obsT must be calculated using all 

of the rows in the Y data matrix, and this calculation will take proportionately longer to 

execute as the number of rows in Y  increases. This approach is also recommended by Schafer 

(1997) and it has been implemented within the pseudo-code given in Appendix B. 

A fast method for generating the regression equations needed to impute the missing values 

within each missingness pattern is an essential part of any EM implementation. This can be 

achieved by using the SWEEP operator (see section 2.2.4), and this approach has been used 

within the pseudo-code given in Appendix B. Use of the SWEEP operator when 

implementing EM is also is recommended by both Little and Rubin (2002) and Schafer 

(1997), who are perhaps the worlds leading authorities on the implementation of MLE based 

imputation methods.  

To facilitate EM processing the Y data matrix must be sorted into missingness pattern order. 

In other words, all rows with the same missingness pattern must be adjacent in the Y matrix. 

To achieve faster EM execution times it is essential this sorting process is performed using a 

sorting algorithm which requires no more than  (n log n)  row comparisons, where  n  is the 

number of rows in Y. More generally, it is important to note that any processing of the Y 

matrix requiring 2n  operations will become impractically slow when  n  becomes sufficiently 

large, where the value of  n  that causes unacceptable performance will of course depend on 

the computer hardware and software configuration used for the EM implementation.  

2.4.2 Measuring EM Execution Time Using Large Simulated Datasets 

The experiments described below contribute to the theory underpinning maximum 

likelihood based imputation via the EM algorithm.  The experiments were designed with the 

following three objectives in mind. The first two objectives do not seem to have been 

discussed anywhere else in the literature. The third objective is specific to the work described 

in this thesis. An explanation of how these objectives were achieved follows the list. 
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1. To define a standard method for creating randomly generated missing value datasets that 

can be used to compare the execution times of various EM algorithm implementations. 

2. To establish a set of benchmark EM algorithm execution times and related performance 

statistics (see table 2.2) against which any EM implementation can be compared. 

3. To measure the execution time of the new EM implementation, so as to discover whether 

this implementation was adequate for the purpose for which it was created. 

All of the experiments were performed against simulated data matrices containing 12 

columns and between 1 and 5 million rows. The randomly generated numeric values inserted 

into these matrices were integers between 1 and 100, with values greater than 70 being 

replaced with missing value indicators - numerically encoded as values of minus 9. 

Consequently, approximately 30% of the data appeared as missing, with the missing values 

appearing in randomly created missingness patterns within the rows in each simulated matrix. 

The EM performance experiments executed against these datasets were all carried out in 

November 2005, using the computer hardware and software configuration described in 

Appendix C.  

The first five experiments were designed to measure the execution time of the new EM 

implementation when processing a simulated data matrix containing 1 million rows and 12 

columns. Five different randomly generated datasets with missing values were created using 

the method described above. The results are shown in table 2.1, below. The three rightmost 

columns of the table show that the method used to generate the experimental datasets 

produced consistent results across all experiments. It can be seen that EM execution time is 

similar for each experiment, with (on average) 35% of this time being used to sort the data 

matrix rows into missingness pattern order (all rows with the same missingness pattern were 

made to be adjacent in the data matrix). 

Table 2.1 -  EM algorithm execution times for 5 simulated datasets containing one million rows 

Dataset 
Number 

Execution Time 
(seconds) 

Sort Time 
(seconds) 

Number of 
EM Iterations 

Number of 
Missing Values 

Number of 
Missingness Patterns 

1. 214 75 23 3,517,656 4083 

2. 233 77 26 3,518,489 4080 

3. 208 74 22 3,515,742 4081 

4. 206 73 21 3,515,821 4087 

5. 209 73 22 3,514,267 4086 

Column 
mean value 

214 74 23 3,516,397 4083 
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The second set of experiments were designed to measure the execution time of the new EM 

implementation when processing simulated data matrices containing 12 columns and between 

1 and 5 million rows. Five different randomly generated datasets with missing values were 

created using the method described above. The results are shown in table 2.2, below - with 

row 1 of the table showing the mean values of the results of the first set of experiments. 

Again, the three rightmost table columns show that the missing data simulation method 

produced consistent datasets. It can be seen that the relationship between algorithm execution 

time and the number of rows in the data matrix is approximately linear, with execution time 

steadily increasing as the size of the data matrix increases. Column 3 of table 2.2 shows that, 

on average, 39% of the algorithm’s execution time was required for sorting the data matrix 

rows into missingness pattern order. 

Table 2.2  -  EM algorithm execution times for simulated datasets containing 1 to 5 million rows 

Number of 
Data Rows 

Execution Time 
(seconds) 

Sort Time 
(seconds) 

Number of 
EM Iterations 

Number of 
Missing Values 

Number of 
Missingness Patterns 

1  million 214 74 23 3,516,397 4083 

2  million 448 164 24 7,035,515 4092 

3  million 685 264 24 10,541,612 4094 

4  million 962 365 25 14,058,748 4094 

5  million 1143 478 20 17,579,973 4097 

The final experiment shows that 60 million simulated data values (including over 17 million 

missing values) can be processed in just over 19 minutes using the new version of the EM 

algorithm developed by the author. Consequently, the new imputation evaluation method can 

be executed 10 times against a dataset containing 60 million values in just over 3 hours (using 

the hardware and software configuration described in Appendix C). It is therefore argued that 

the new implementation of the EM algorithm offers execution times which allow the 

proposed imputation evaluation method to be tested and evaluated against quite large datasets 

in practice. And that, consequently, the new implementation of EM has been successful, 

because it has been shown to be more than adequate for the purpose for which it was created. 
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2.5 Summary 

This chapter has explained the fundamental concepts underpinning the implementation of 

MLE  via the EM algorithm, and has shown how this approach can be used to impute missing 

values in datasets with multivariate missingness patterns. The history and utility of the EM 

algorithm has been discussed and the type of datasets that can be processed by the EM 

algorithm have been described.  

A description of how the author has implemented the EM algorithm as a software application 

has been given, including an explanation of how the SWEEP operator was used to the 

generate the regression equations needed for the execution of the EM imputation process.  

The experiments that evaluate the performance of the new EM implementation make some 

contribution to the theory of maximum likelihood imputation via the EM algorithm. 

The following chapter describes the second imputation technique that has been implemented 

and explains why it was chosen. Chapter four goes on to give a formal description of the 

imputation evaluation method devised by the author, and explains how it can be used to 

estimate the predictive accuracy of the imputed values generated by the imputation 

techniques described in this chapter and in chapter three.  

Chapter five describes how the two imputation techniques that were chosen have been 

implemented alongside the proposed imputation evaluation method in the form of an 

integrated software application, and explains how this application was used to experimentally 

evaluate the reliability and the validity of the proposed method. Chapter six explains how the 

software application was used to assess the feasibility of imputing the missing values in the 

collaborating company’s dataset. 
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Chapter Three 

Nearest Neighbour Imputation 
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3.   Nearest Neighbour Imputation 

The EM imputation algorithm was selected for the first tests of the proposed imputation 

evaluation method for the reasons given in chapter two. This chapter describes the second 

imputation method that was implemented and evaluated, and explains why it was chosen. 

Imputation methods can be broadly categorised into parametric methods (statistical 

approaches)  and non-parametric methods  (usually employing data mining techniques). The 

EM algorithm was selected from among the parametric methods, and so it was decided that a 

non-parametric method should be implemented next, for reasons of balance. The nearest 

neighbour (NN) imputation method was selected from among the non-parametric group 

because it is perhaps the most general purpose of all the non-parametric methods, and 

because the ideas underlying it can be easily understood, as described below.  

Nearest neighbour imputation algorithms replace the missing values within any particular 

data matrix row (observation) by taking copies of the corresponding known values from the 

most similar observation found in the dataset. This approach has two principal advantages 

over parametric methods. 

• For NN imputation the distributions of the variables in the missing value dataset are not 

required to conform to any particular model. However, parametric imputation methods 

can be sensitive to model misspecification, which can result in poorly imputed values  

(Lazzeroni et al, 1990;  Durrant, 2005). 

• The imputed values generated by NN algorithms are copied directly from real cases 

(donor observations). In other words, “they may not be perfect substitutes, but are 

unlikely to be nonsensical values” (Chen and Shao, 2000). This avoids the nonsensical 

errors that are occasionally produced by parametric approaches, such as producing 

negative estimates for the number of employees in a business organisation etc. 

The following sections explain how NN imputation was implemented as part of the integrated 

application that implements the proposed imputation evaluation method.  

• Section 3.1  explains the ideas underpinning the functionality of a general purpose NN 

imputation algorithm devised by the author, and explains how similar methods can be 

evaluated in practice. 

• Section 3.2  proposes a method for reducing the execution time of any nearest neighbour 

imputation algorithm and describes how this idea was evaluated experimentally. This 

section forms part of the contribution made by this thesis. 
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3.1 Implementation of the NN Imputation Algorithm 

Section 3.1.1 explains how the missingness patterns within the dataset rows can be used to 

find each nearest neighbour. Section 3.1.2 explains how this approach was implemented in 

the form of a general purpose NN imputation algorithm. Section 3.1.3 proposes some general 

rules that can be applied for the evaluation of any NN imputation method. 

3.1.1 Using the Missingness Pattern Structure to Find Nearest Neighbours 

Nearest neighbour algorithms impute a missing value in a particular matrix row (dataset 

observation) mS  by taking a copy of the known value from the most similar donor row iS ,  

such that  icmc SS = , where  c  is the matrix column (variable) that has a missing value. 

And where the most similar donor row is found by comparing mS  with all of the other rows 

in the matrix, and using the row that returns the smallest value of  ( )im SSd ,  as the donor - 

i.e. finding the minimum value of the similarity measure ( )im SSd ,  for all PS i ∈ , where 

},....{ 1 nSSP = is the set of all matrix rows and where the variables in mS and iS  are 

suitably scaled, so that each variable carries the required weight in the similarity calculations. 

And where ( )im SSd ,  can be measured using any similarity function, such as the simple 

Euclidean distance, or a more complex measure, such as the Hellinger distance (Lee and 

Shin, 1999) or the Mahalanobis distance (Mahalanobis 1936; Stage and Crookston 2002). 

However, only some ( )im SS ,  pairs can be meaningfully compared, as follows; 

 

 1 2 3 4 5 

1 1 1 1 0 0 

2 1 1 1 1 0 

3 1 1 1 1 1 

4 0 1 1 0 1 

5 1 0 0 1 0 

Fig 3.1  -  Imputing the missing value in column 4 of row 1 in a data matrix using a NN algorithm 

Fig. 3.1 shows the missingness patterns for every row in a data matrix (where 1 represents a 

known value and 0 represents a missing value). The diagram shows the rows that can be 

considered as potential donors when imputing the missing value in column 4 of row 1. Notice 

that row 3 can be a potential donor for any other row, because it has a full set of known 

values. The most important point  is that row 2 can be considered as a potential donor, but 

row 5 cannot, because the similarity between rows 1 and 2 cannot be meaningfully compared 

with the similarity between rows 1 and 5. For example, a Euclidean distance calculation 

would produce a smaller value when measuring the similarity between rows 1 and 5, because 

List of missingness patterns for 
every row in the data matrix 

The missing value in column 4 of row 1 is to be imputed 

These potential donors have known values in the same columns as 
row 1 and they also have a known value in column 4 

Cannot be a donor because only 1 known value matches with row 1 

Cannot be a donor because no donor value is present in column 4 
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only one column would be included in the calculation, whereas 3 columns would be included 

in the calculation when measuring the distance between rows 1 and 2. 

However, row 5 could be considered as a potential donor if some form of weighting was 

included in the similarity calculation to compensate for the reduced number of variables used 

to measure that similarity. This approach has been tried and tested by Huang and Zhu (2002), 

who use an experimental “pseudo-nearest-neighbours”  method to impute missing values in 

multivariate Gaussian datasets, where the “pseudo-similarity” measurement implemented  

“is actually a weighted correlation value between the two vectors with partially missing 

element values”. A less complex, but somewhat similar, method of weighting was proposed 

much earlier by Dixon (1979) - and Junninen et al (2004) have evaluated Dixon’s method in 

practice by comparing it to various other imputation techniques. However, these weighting 

methods are best applied to Gaussian datasets where a good linear regression model can be 

fitted to the data  -  i.e. where the correlations between the variables are strong. Consequently, 

similarity measures that utilise variable weighting schemes were not implemented as part of 

the first software versions of the new imputation evaluation method, because this approach 

was not considered to be sufficiently general purpose in nature for the initial experiments. An 

algorithmic implementation of the imputation method described in Fig. 3.1 is given below. 

3.1.2 A General Purpose Nearest Neighbour Imputation Algorithm 

function  matrix   generic_NN_imputation_in_column  ( int  c,   matrix  data ) 
 dataMatrixRow   missRow,  donorRow,  closestRow 
 removeEmptyRowsIn  ( data ) 
 
 for  m  = 1   to  num_rows_in ( data ) 
  missRow  =  data ( m ) 
  if   ( missRow . patt ( c )  ==  0 ) 
   minDistance  =  null 
   for  d  =  1   to  num_rows_in ( data ) 
    donorRow  =  donors ( d ) 
    if   ( donorRow . patt ( c )  == 1 ) 
     match  =   true 
     j = 1 
     while  (  j  <=  num_cols_in ( missRow )   &&   match  ==  true ) 
      if   ( missRow . patt ( j )  ==  1    &&   donorRow . patt ( j )  ==  0 ) 
       match  =  false 
      end  if 
      j ++ 
     end  while 
     if   ( match  ==  true ) 
      distance  =  euclideanDistanceBetween  ( missRow,  donorRow ) 
      if   ( distance  <  minDistance   | |   minDistance  ==  null ) 
       minDistance  =  distance 
       closestRow  =  donorRow 
      end  if 
     end  if 



- 41 - 

    end  if 
   next  d 
   if   ( minDistance  !=  null ) 
    missRow ( c )  =  closestRow ( c ) 
   end  if 
  end  if 
 next  m 
 return  data 
end  function 

Fig 3.2  –  A general purpose nearest neighbour imputation algorithm 

The algorithm implements the row comparison method described in Fig. 3.1. The Euclidean 

distance is used to measure the similarity between observations, but any other similarity 

measure could be substituted. The following parameters are passed to the algorithm; 

(1)  int c  is the  data  matrix column containing the values to be imputed.   

(2)  matrix data  is the data matrix, which is passed to the algorithm with missing values in 

column  c  and returned with imputed values in column  c,  

Where the statement  missRow (c ) = closestRow (c ) imputes each missing value. And where 

each dataMatrixRow object contains a binary array  patt( ) which represents its missingness 

pattern (see chapter one). 

3.1.3 Evaluating Nearest Neighbour Imputation Algorithms 

The algorithm given in Fig. 3.2 is general purpose in nature, because it can be used to impute 

missing values in any numeric multivariate dataset. Many other NN imputation algorithms 

have been devised, but some of these have limited utility, because they were designed to 

solve a unique missing data problem. In other words, the functionality of these algorithms 

was customized to suit a specific type of dataset. However, NN algorithms all share the same 

basic functionality in that they all impute missing values by finding nearest neighbours and 

then copying values from them. Consequently, it is argued that the following three questions 

are the most appropriate ones to ask when evaluating any NN imputation algorithm.   

1. Is the similarity measure used suitable for the solution of the missing data problem?    

That is, does this measure find the best possible donor rows for imputation purposes?   

2. Is the method used to decide which dataset rows should be considered as potential 

donors appropriate? - e.g. if the dataset has been segmented, was this done in such a way 

that the search for each donor row takes place within the best possible subset of rows?   

3. Is the method used to decide which rows can be meaningfully compared logical, given 

the nature of the data?  This question is discussed further, below. 
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The first two questions need not be asked for the algorithm given in Fig. 3.2, because it is 

generic by design. That is, it can employ any method for measuring the similarity between 

observations and it can be executed against any sort of segmented dataset, regardless of the 

classification scheme used. On the other hand, the algorithm does specify which rows can be 

meaningfully compared, as shown in Fig. 3.1. However, it is argued that this is a good 

general purpose approach which can be applied for the solution of many missing data 

problems, for the following reasons; 

1. Non-response in surveys is perhaps the most prevalent missing data problem (Rubin, 

1996a), and it is often found that several of the variables in a survey dataset - such as a 

set of questionnaires - have some missing values (Allison, 2001). This creates many 

different missingness patterns within the dataset. The algorithm given in Fig. 3.2 can be 

applied to all such datasets (from surveys or otherwise), regardless of the structure and 

distribution of the missingness patterns they contain. 

2. Employing any method that involves comparing rows that do not have a common set of 

known values requires the use of a similarity measure that can return different values 

depending on the number of common values in the rows compared. It is argued that this 

approach should be avoided whenever possible, because it builds an additional level of 

uncertainty into the NN imputation process. 

3.2 Decreasing the Execution Time of NN Imputation Algorithms 

The proposed imputation evaluation method requires repeated executions of the imputation 

process that is used to “put back” the values that are deleted. Consequently, it is important 

that the implementation of the nearest neighbour algorithm should execute as quickly as 

possible. This section describes a new approach for decreasing the execution time of any 

NN imputation algorithm which forms part of the contribution. 

A considerable amount of work has been done to evaluate and compare the results produced 

by various NN imputation algorithms (Wasito and Mirkin 2005/2006; Durrant, 2005; Kalton, 

1982) and to analyse the functionality and properties of such algorithms (Chen and Shao, 

2000; Fay, 1999; Rancourt et al, 1994). In addition, several methods for measuring the 

similarity between dataset rows when searching for the nearest neighbour have been proposed 

(Dixon, 1979; Huang and Zhu 2002; Stage and Crookston 2002; Lee and Shin, 1999). 

However, the slow execution time and the resulting poor scalability of multivariate NN 

imputation algorithms has received very little attention - i.e. searching the dataset for each 

nearest neighbour takes longer and longer as the size of that dataset increases.  
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Section 3.2.1 addresses this problem by explaining how the execution time of the NN 

imputation process can be reduced. Sections 3.2.2 and 3.2.3 explain how this approach was 

implemented in practice. Section 3.2.4 describes how the execution time of the resulting 

algorithm was evaluated using a set of simulated missing value datasets. Section 3.2.5 

describes how the algorithm was evaluated using a real survey dataset and discusses the need 

for segmentation when performing NN imputation in large datasets. 

3.2.1 Using the Missingness Pattern Structure to Decrease Execution Time 

Generally, when NN algorithms are executed against complete datasets they compare a 

particular dataset row with every other row when searching for that rows nearest neighbour 

(unless the dataset is segmented by class, so that this search can be limited to the subset of 

rows within a single class, as discussed in section 3.2.5). Consequently, it is hard to see how 

the execution time of this type of NN algorithm can be decreased at the macro level.  

However, when NN algorithms are executed against incomplete datasets this is not the case. 

For example, suppose the dataset has 99% missing values. In this case many of the rows 

would be empty or they would have very few known values. Therefore, far fewer row 

comparisons would be required to find any particular nearest neighbour. Extending this idea 

it can be seen that as the proportion of missing data increases NN algorithm execution time 

can, in principle, be decreased by a corresponding proportion. This can be achieved by 

creating an algorithm that makes the best possible use of the information content within the 

missingness patterns that exist within the dataset - as described in the following section. This 

approach was first described by the author of this thesis in Solomon et al (2007b) - see 

Appendix E  for the full paper. 

3.2.2 Using Donor Matrices to Speed Up NN Imputation Algorithms 

It is argued that the functionality of  all NN imputation algorithms  that process datasets with 

multivariate missingness patterns must be fundamentally similar to the functionality of the 

algorithm given in Fig. 3.2, because every row must be compared with every other row when 

searching for each nearest neighbour. This is unavoidable, since it will be necessary to test 

each row in the dataset to discover whether it can be meaningfully compared with the 

imputed row before measuring the similarity. Where meaningful comparisons are defined in 

Fig. 3.1 for the algorithms given here, but they could be defined otherwise, as required.  

More precisely, we can say that NN algorithms generally have a time complexity of )( 2nO , 

where  n  is the number of rows in the data matrix (Dunham, 2003; Aho et al, 1983) - i.e. the 

algorithm execution time )(nT  is proportional to the square of the number of rows in the 

data matrix, such that 2)( cnnT = , where c is the constant of proportionality. However, the 
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algorithm given in the following section reduces the size of the constant of proportionality for 

all missing value datasets, which in turn reduces )(nT . An explanation of the ideas 

underpinning the algorithm’s functionality is given below. 

 

 1 2 3 4 

1 1 0 0 1 

2 1 0 1 1 

3 0 1 1 1 

4 1 1 1 1 

5 1 1 0 0 

Fig 3.3  -  Constructing a donor matrix for multivariate NN imputation 

The donor matrix shown in Fig. 3.3 would be constructed by the algorithm when imputing the 

missing values in column 3 of every data matrix row that has missingness pattern 1, where 1 

represents a known value and 0 represents a missing value. Only those data matrix rows that 

have the pattern shown in rows 2 and 4 can be added to this donor matrix, because these are 

the only rows with a known value in column 3 and with the same set of known values as the 

rows that have pattern 1. It can be seen that pattern 5 also has missing values in column 3. 

However, the rows with pattern 5 cannot use the same donor matrix as the rows with pattern 

1, since only those rows with pattern 4 can be used to construct the donor matrix in this case. 

Notice also that the rows with pattern 4 can be added to every donor matrix constructed by 

the algorithm, because pattern 4 has a full set of known values. This method is similar to, but 

faster than, the method implemented in the algorithm given in Fig. 3.2, because the search for 

each nearest neighbour is carried out within the subset of data matrix rows added to each 

donor matrix (rather than searching all of the rows in the data matrix every time).  

The idea of reducing execution time by creating donor matrices can be applied to almost any 

NN imputation algorithm. The principle underlying this idea is that the number of row 

comparisons can almost always be reduced by utilising the information content within the 

missingness patterns. The example given in Fig. 3.3 shows one way of applying this 

principle, but many other ways of applying it could be used. For example, when similarity 

measures that employ variable weighting schemes are used (Dixon, 1979; Huang and Zhu, 

2002) the minimum number of matching known values in each pair of rows compared could 

be specified - so as to avoid excessively weighted row comparisons. Or a specific 

combination of matching known values could be specified as being essential when searching 

for donor rows for the imputation of any particular variable. An algorithmic implementation 

of the approach described in Fig. 3.3 is given below. This algorithm is novel and it forms 

part of the contribution to knowledge made by this dissertation. 

This donor matrix would 
be constructed by the 
NN algorithm when 
imputing the missing 
values in column 3 of 
missingness pattern 1. 

All data matrix rows 
that have missingness 

pattern 2 

All data matrix rows 
that have missingness 

pattern 4 

Donor matrix constructed 
by the NN algorithm

List of missingness 
patterns in the data matrix

Each pattern 
contains a set 
of matrix rows 
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3.2.3 A Fast General Purpose Nearest Neighbour Imputation Algorithm 

function  matrix   fast_NN_imputation_in_column  ( int  c,   matrix  data ) 
 missPatternRow   missPatt,   matchPatt 
 dataMatrixRow   missRow,  donorRow,  closestRow 
 removeEmptyRowsIn  ( data ) 
 vector  patterns  =  missPatternListFor ( data ) 
 
 for   i  =  1   to   num_rows_in ( patterns ) 
  missPatt   =  patterns ( i )  
  if   ( missPatt . patt ( c )  ==  0 ) 
   donors  =  new  vector ( ) 
   for   p  =  1   to   num_rows_in ( patterns ) 
    matchPatt   =  patterns ( p )  
    if   ( matchPatt . patt ( c )  ==  1 ) 
     match  =   true 
     j = 1 
     while  (  j  <=  num_cols_in ( missPatt . patt )   &&   match  ==  true ) 
      if   ( missPatt . patt ( j )  ==  1   &&   matchPatt . patt ( j )  ==  0 ) 
       match  =  false 
      end  if 
      j ++ 
     end  while 
     if   ( match  ==  true ) 
      for  r  =  matchPatt . pattStartRow   to   matchPatt . pattEndRow 
       donors . add_to_end ( data ( r ) ) 
      next  r 
     end  if 
    end  if 
   next  p 
 
   for  m  =  missPatt . pattStartRow   to   missPatt . pattEndRow 
    missRow  =  data ( m ) 
    minDistance  =  null 
    for  d  =  1   to  num_rows_in ( donors ) 
     donorRow  =  donors ( d ) 
     distance  =  euclideanDistanceBetween  ( missRow,  donorRow ) 
     if   ( distance  <  minDistance   | |   minDistance  ==  null ) 
      minDistance  =  distance 
      closestRow  =  donorRow 
     end  if 
    next  d 
    if   ( minDistance  !=  null ) 
     missRow ( c )  =  closestRow ( c ) 
    end  if 
   next  m 
  end  if 
 next   i 
 return  data 
end  function 

Fig 3.4  –  A fast general purpose nearest neighbour imputation algorithm 
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The algorithm uses the Euclidean distance as a NN similarity measure, but any other measure 

could be substituted. The parameters passed to the algorithm are the same as those passed to 

the algorithm given in Fig. 3.2. The function  missPatternListFor (data)  creates and returns 

the  patterns  vector, which contains a list of missPatternRow objects, which represent the 

missingness patterns in the data matrix. Where each  missPatternRow object has the 

following attributes;  

(1)  A binary array  patt()  representing the missingness pattern. 

(2)  pattStartRow which gives the first row number of the pattern in the data matrix.  

(3)   pattEndRow  which gives the last row number of the pattern in the  data  matrix. 

Note that the algorithm requires the  data  matrix to be sorted into missingness pattern order 

(all rows with the same missingness pattern must be adjacent) so that the  missPatternRow 

objects can be utilised during the processing. 

3.2.4 Performance Evaluation Using Simulated Missing Value Datasets 

It is important to note that the NN algorithms given in Fig. 3.2 and Fig. 3.4 will produce the 

same set of imputed values when they are executed against the same  data  matrix - provided 

that the rows in this matrix are sorted into the same order (matrix row order affects the values 

imputed by NN algorithms). In other words, the algorithm given in Fig. 3.4 is simply an 

enhanced version of the algorithm given in Fig. 3.2.  

The pseudo-code versions of the two algorithms have been implemented using the Microsoft 

C# programming language (see Appendix C). This section explains how the execution times 

of the C# versions of the algorithms were compared by using them to impute missing values 

in a set of randomly generated datasets. The results of the experiments are given in table 3.1, 

below.  
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The experiments were designed to try to answer the following key questions;   

(1)  Would the method of creating donor matrices (implemented in the Fig. 3.4 algorithm) 

decrease NN algorithm execution time?   

(2)  Would the execution times of either of the two algorithms decrease as the proportion of 

missing data in the matrix was increased?  

Table 3.1  -  Comparison of execution times for the two NN algorithms 

Number of 
rows in the 
data matrix 

% of missing 
values in the 
data matrix 

Fig. 3.2 algorithm 
execution time 

(seconds) 

Fig. 3.4 algorithm 
execution time 

(seconds) 

10,000 
25 
50 
75 

7 
5 
4 

5 
2 
1 

20,000 
25 
50 
75 

26 
20 
16 

21 
9 
3 

30,000 
25 
50 
75 

58 
46 
37 

50 
22 
7 

40,000 
25 
50 
75 

104 
78 
62 

87 
38 
11 

50,000 
25 
50 
75 

159 
125 
102 

136 
58 
18 

60,000 
25 
50 
75 

233 
181 
140 

193 
94 
29 

70,000 
25 
50 
75 

315 
238 
195 

275 
127 
34 

80,000 
25 
50 
75 

417 
314 
241 

353 
159 
45 

90,000 
25 
50 
75 

529 
421 
300 

445 
195 
57 

100,000 
25 
50 
75 

649 
515 
379 

534 
247 
72 

110,000 
25 
50 
75 

787 
603 
464 

655 
300 
95 

120,000 
25 
50 
75 

918 
720 
559 

765 
357 
118 
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The experiments were performed against 12 sets of randomly generated data matrices 

containing between 10,000 and  120,000 rows, as shown in column 1 of table 3.1. The values 

inserted into these matrices were randomly generated integers in the range 1 to 100,  where 

25%, 50% and 75% of these values were randomly deleted in three stages. This process 

generated 36 different matrices, as shown in column 2 of table 3.1. Each of these matrices 

contained 7 columns, where the missing values in column 1 were imputed for every 

experiment. 

Each matrix contained the maximum possible number of missingness patterns. Generally, the 

maximum number of patterns in any matrix equals  2n,  where  n  is the number of columns in 

the matrix. In this case each matrix contained 7 columns, therefore 128  patterns were added 

to each matrix - where these patterns were balanced and evenly distributed across the rows in 

each matrix, because the missing values were deleted completely at random from across the 

entire matrix. The algorithms given in Fig. 3.2 and Fig. 3.4 were executed against all 36 of 

the matrices, thus creating 72 sets of experimental results, as shown in columns 3 and 4 of 

table 3.1. The results given in table 3.1, above are presented much more clearly in line chart 

form, below. 
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• The line charts given above show the comparative execution times (in seconds) for the 

algorithms given in Fig. 3.2  and  Fig. 3.4. Algorithm execution times are shown on the  y 

axis of each chart. The number of rows in the data matrices are shown on the  x  axis. 

• The charts show that the Fig. 3.4 algorithm executed more quickly than the Fig. 3.2 

algorithm for every experiment - i.e. the method of creating donor matrices implemented 

as part of the Fig. 3.4 algorithm did in fact decrease the execution times. It can be seen 

that this performance advantage increases as the proportion of missing data increases, with 

the largest difference between the algorithm execution times occurring for the largest 

input matrix shown on the final chart. 

• The execution time increases for both algorithms as the number of matrix rows increases, 

as expected. However, execution time also decreases for both algorithms as the proportion 

of missing data in each matrix increases - i.e. the fastest execution times for both 

algorithms are shown on the final chart, where each matrix has 75% missing values. 

• The regression equations shown on the charts are very close to the expected  2)( cnnT =  

results (see section 3.2.2), with the very small differences in the expected exponents 

perhaps explained by the small samples (12 results) used for the regression calculations.  

• The very high R2 values suggested that the regression equations could be used to predict 

algorithm execution times for larger matrices with some confidence  - e.g. the final chart 

shows that the equation for the Fig. 3.2 algorithm had an  R2 value of 0.9997. Some 

calculations were performed and the predicted execution times are shown in table 3.2, 

below. It can be seen that the method of creating donor matrices decreases NN algorithm 

execution time even for quite large matrices, and that this performance advantage 

increases markedly as the proportion of missing values in each data matrix is increased.  

Table 3.2  -  Predicted execution times (to the nearest hour) for the two algorithms 

Number of 
rows in the 
data matrix 

% of missing 
values in the 
data matrix 

Fig. 3.2 algorithm 
execution time 
(nearest hour) 

Fig. 3.4 algorithm 
execution time 
(nearest hour) 

1,000,000 
25 
50 
75 

17 
14 
10 

15 
8 
2 

2,000,000 
25 
50 
75 

65 
58 
38 

62 
33 
8 

3,000,000 
25 
50 
75 

146 
130 
84 

142 
78 
17 

4,000,000 
25 
50 
75 

257 
231 
148 

253 
141 
29 

 



- 51 - 

3.2.5 Performance Evaluation Using Two Survey Datasets 

The experiments described in the previous section were performed against simulated datasets. 

However, it is also important to compare the execution times of the Fig. 3.2 and Fig. 3.4 

algorithms using real datasets. For example, the simulated datasets all contained a full set of 

well balanced and evenly distributed missingness patterns, but this can hardly be expected to 

occur in practice. This point is crucial for the evaluation of the Fig. 3.4 algorithm, since the 

missingness pattern structure is used to create the donor matrices - i.e. the relative sizes and 

distributions of the missingness patterns are the key factors affecting the execution time of 

the Fig. 3.4 algorithm. 

The experiments described below compare the execution times of the two algorithms when 

they are executed against segmented datasets. This is an important consideration, because in 

practice datasets are often segmented by class, so that the search for each nearest neighbour 

can be limited to the subset of rows within a single class (Chen and Shao, 2000). The required 

classes can be created by segmenting the dataset using a fully observed categorical variable 

(as for the experiments described below) or by dividing the dataset into numeric class 

intervals using a fully observed numeric variable.  

This approach can improve the quality of the imputed values and reduce the execution time 

of the NN algorithm. Execution time is reduced because the search for each nearest neighbour 

takes place within a smaller number of dataset rows  - i.e. the subset of rows contained within 

a single class. The quality of the imputed values can be improved because they are taken 

(copied) from a set of donor rows that share the same characteristics - e.g. a set of people 

within a specified age group etc.  

Description of the experimental datasets   

Table 3.3, below describes the datasets that were used to perform the experiments. A much 

more detailed description of the datasets is given in chapter six. Each of the variables 

described in table 3.3 represents one of the columns inserted into the experimental data 

matrices. The ten variables taken together represent a data matrix row which describes a Firm 

(a business enterprise) within the UK. The first four variables listed were fully observed, but 

the other six (the currency variables) all had large proportions of missing data.  
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Table 3.3  -  Description of the variables (data matrix columns) in the experimental datasets 

Variable name Data type Variable description 

UKSIC_Category Integer 
An integer representation of a categorical alphanumeric code which 
defines the commercial activities carried out by each Firm, such as  
“Publishing of software”  etc. 

Employees Integer Specifies the number of people employed by each Firm 

Easting 
Northing 

Integer 
Pinpoints the geographical location of each Firm on the UK map, using 
two UK Ordnance Survey (OS) mapping co-ordinates. 

Sales    
Payroll  
Depreciation 
DirectorPay 
NetWorth 
PBT (Profit Before Tax) 

Currency 
Six numeric variables that describe each Firm’s financial situation. 
These variables all had large proportions of missing values. The Payroll 
variable was imputed for every experiment. 

Description of the experimental process   

The experiments were performed against two separate datasets, each of which contained the 

ten variables described in table 3.3  - i.e. both datasets had the same column structure, but the 

set of rows contained within each dataset differed, as follows. The first (and the largest) 

dataset described  1,128,463 MICRO  Firms, which are defined as those Firms with less than 

10 employees. The second (much smaller) dataset described  271,955  SMALL  Firms, which 

are defined as those Firms that have between 10 and 49 employees. 

The  UKSIC_Category  variable was used to segment both of the datasets at four different 

levels of granularity (see chapter six for a detailed description of how this was achieved). 

Where the lowest level of granularity created the smallest number of segments and the 

highest level of granularity created the largest number of segments. This process created eight 

different data matrices, as shown in column 5 of table 3.4, below. The algorithms described in 

Fig. 3.2 and Fig. 3.4 were executed against each of these matrices, where the missing  Payroll  

values were imputed for every experiment. This process created 16 sets of experimental 

results, as shown in the two rightmost columns of table 3.4.  

It is important to note that the Fig. 3.2 and Fig. 3.4 algorithms were amended so that the 

search for each nearest neighbour could be limited to the subset of rows within a single 

UKSIC_Category. The amendments made to the algorithms were quite simple, but they are not 

shown in the pseudo-code given in Fig. 3.2 and Fig. 3.4 for reasons of clarity. The 

experimental results are tabulated below. 
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The experiments were designed to try to answer the following key questions;   

(1)  Would the method of creating donor matrices (implemented in the Fig. 3.4 algorithm) 

decrease algorithm execution time  for large segmented datasets?   

(2)  Would dividing the data matrix into an increasingly large number of segments steadily 

decrease the execution times of either of the two algorithms? 

These questions need to be addressed because in practice datasets are often segmented by 

class, so that the search for each nearest neighbour can be limited to the subset of rows within 

a single class (Chen and Shao, 2000). Therefore, it is important to compare the performance  

the Fig 3.2 and Fig 3.4 algorithms when they are executed against segmented datasets. 

Table 3.4  -  Comparison of algorithm execution times using segmented datasets 

Description of 
experimental 

dataset  

Number of 
rows in the 
data matrix 

% of missing 
values in the 
data matrix 

Number of 
missingness 

patterns 

Number of  
category 
segments 

Fig. 3.2 algorithm 
execution time 

(minutes) 

Fig. 3.4 algorithm 
execution time 

(minutes) 

MICRO Firms 
(less than 10  
employees) 

1,128,463 61.72% 28 

58 
203 
412 
488 

312 
119 
53 
47 

44    (0.14) 
16    (0.13) 
9    (0.17) 
8    (0.17) 

SMALL Firms 
(10  to  49  

employees) 
271,955 54.97% 27 

57 
200 
409 
485 

17 
6 
3 
3 

6    (0.35) 
2    (0.33) 
1    (0.33) 
1    (0.33) 

The figures given in the three rightmost columns show that dividing the matrix into an 

increasingly large number of segments steadily decreased the execution time required for 

both algorithms. This occurred because as the number of segments was increased the search 

for each nearest neighbour took place within a smaller number of rows. The figures in 

brackets given in the rightmost column show the improvement in performance offered by the 

Fig. 3.4 algorithm for both datasets. For example, the first row of figures show that the Fig. 

3.4 algorithm executed in just under one seventh of the time (given to the nearest minute) 

taken by the Fig. 3.2 algorithm. It can be seen that these performance improvements are 

similar within each dataset, regardless of the number of segments created. 

Overall conclusion for the NN algorithm performance evaluation experiments   

The method of creating imputation donor matrices implemented in the Fig. 3.4 algorithm 

decreased the execution time of the Fig. 3.2 algorithm for both simulated and real datasets. 

This performance advantage increased markedly as the proportion of missing values in the 

data matrix was increased. 
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3.3 Summary 

This chapter has explained the ideas underpinning the functionality of a general purpose NN 

imputation algorithm that has been devised by the author, and has shown how these ideas can 

be used to reduce the execution time of the NN imputation process.  

An explanation of how the new algorithm has been implemented in practice has been given 

and some general rules for the evaluation of any NN imputation procedure have been 

proposed. A description of the experiments that were performed to evaluate the performance 

of the new algorithm has also been given, and the experimental results have been presented, 

analysed and discussed. The ideas and the experimental results presented in this chapter form 

part of the contribution to knowledge made by this thesis. 

This completes the descriptions of the two imputation techniques that have been implemented 

alongside the proposed imputation evaluation method in the form of an integrated software 

application. The following chapter gives a detailed description of the proposed evaluation 

method and explains how it can be used to estimate the predictive accuracy of the imputed 

values generated by any imputation technique - including the techniques described in this 

chapter and in chapter two.  

Chapter five goes on to describe how the integrated software application was used to 

experimentally evaluate the reliability and the validity of the proposed imputation evaluation 

method. Chapter six completes the fulfilment of the project objectives by using the integrated 

application to assess the feasibility of imputing the missing values in the collaborating 

company’s dataset. 
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Chapter Four 

A Stochastic Method for Estimating 
Imputation Accuracy 
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4.   A Stochastic Method for Estimating Imputation Accuracy 

This chapter describes the equations and processes which form the basis of the proposed 

imputation evaluation method and shows how this method can be used to evaluate any 

imputation technique. The proposed method is compared with the most similar methods 

found within the literature and it is shown that the proposed method builds on the ideas 

underpinning the most similar methods, but differs from them in several important respects. 

The functional steps of the proposed method are summarised below, 

1. A small proportion (perhaps up to 5%) of the known values are deleted at random from 

within the variable to be evaluated  (which will already have some missing values). 

2. Deleted values are recorded just before they are deleted, and a measure of how 

accurately they have been “put back” is taken when the imputation process is complete. 

3. Steps 1 and 2 are repeated several times and the accuracy statistics computed at step 2 

are stored after each repetition. 

4. The stored statistics are aggregated so that the estimates of imputation accuracy 

produced will be more statistically reliable. 

This method can be used to estimate the predictive accuracy of the imputed values for any 

variable in the missing value dataset, where the required variable is chosen by the user of the 

software that implements the method. However, the evaluation process can be repeated for all 

of the variables in the dataset, if required.  It is important to emphasise that the method can 

only  estimate  the accuracy of the imputed values and can never  prove  this accuracy, for the 

following reason. The true (actual, real) values of the missing data items are by definition, 

unknown. Therefore, it is impossible to prove that any imputation procedure has imputed 

values accurately, since the true values can never be compared with the imputed values. 

The descriptions and explanations given in this chapter form the principal contribution to 

knowledge made by this thesis. In particular, the equations and procedures described in 

section 4.2 are novel and the method used to compare the predictive accuracy of imputed 

values in different data segments is also original. 

• Section 4.1  gives a functional overview of the proposed method with reference to the 

formal description of the method which follows. 

• Section 4.2  describes the equations and the processes which form the basis of the 

method and explains how the proposed approach can be applied in practice. 

• Section 4.3  describes the most similar methods found within the literature and compares 

them with the proposed approach.  
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4.1 Functional Overview of the Method 

The diagram gives a general overview of the sequence of steps that are performed whenever 

the proposed imputation evaluation method is employed. 

 

 

Fig 4.1  –  Functional overview of the proposed imputation evaluation method 

Notice in particular the loop shown in steps 2 to 5 - which is given as a procedure in Fig. 4.2. 

This loop forms a essential part of the method because repeating the stochastic part of the 

process will produce more statistically reliable estimates of imputation accuracy. 

4.2 Description of the Method 

Section 4.2.1 gives a formal description of the equations and procedures which form the basis 

of the proposed method. Section 4.2.2 and 4.2.3 explain how the method can be used to 

estimate and compare the accuracy of the imputed values in different data segments (sets of 

related data matrix rows). 

1. Load the dataset with 
missing values into the 

imputation software 

2. Randomly delete a small 
% of known values from the 

variable to be evaluated 

3. Impute missing values 
using the imputation 

method being evaluated 

This loop is 
repeated 
several times 

4. Compute and store the 
predictive accuracy 
statistics for this run 

5. Reverse the imputation 
process  (discard the 

imputed values) 

6. Compute the aggregate 
predictive accuracy 
statistics for all runs 

Using equations  (4.6)  and  (4.7) 
given in section  4.2.1 

Using equations  (4.2),  (4.3)  and 
(4.5)  as given below 

See chapter  5 

See step  1  of the procedure 
given in Fig. 4.2 

See step  4  of the procedure 
given in Fig. 4.2  

As described below and in 
chapters  5  and  6  

7. Use the aggregate 
statistics to assess 

imputation feasibility 

See step  2  of the procedure 
given in Fig. 4.2 
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4.2.1 Formal Description of the Method: Equations and Procedure 

Consider a data matrix  Y  containing only real numbers, such as the matrix shown below. 

Each column in the matrix stores the values taken by a particular numeric variable. Each row 

in the matrix stores the values of a set of related numeric variables - such as a statistical 

observation or a set of values describing the attributes of a particular object. 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11001
11111
10101
01100
11001
10101

 

 

The equations given below can be used to estimate the accuracy of the imputed values in any 

numeric data matrix of the type shown above when the proposed imputation evaluation 

method is employed. A description of how these equations can be used to estimate the 

accuracy of the imputed values generated by any imputation method follows the equations.  

The equations and procedures which follow were devised by the author and they were first 

described in Solomon et al (2007a)  -  see Appendix E  for the full paper. 

     ijRD  =  
trueValY

imputedValYtrueValY

ij

ijij

.
.. −

  (4.1) 

Where  trueValYij .  is the true (known) value that was deleted. 

and  imputedValYij .  is the value generated by the imputation process. 
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SRD

MRDRDRZ ij
ij

−
=    (4.4)  ∑
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=
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ijRZ

z
MRZ 1     (4.5) 

Where   MRD   is the acronym for the  Mean Relative Difference. 

and    SRD   is the acronym for the  Standard deviation of the Relative Difference. 

and    RZ   is the  Relative difference  Z  score, where the  MRZ  gives the Mean  RZ  value. 

and     j   is the Y matrix column from which the values were randomly deleted and “put back” 

and    },....{ 1 mrrM =  is the set of rows in  Y  with a deleted value. 

and      i   indexes the set of rows in  M  (which will differ for every execution of the method). 

and    },....{ 1 zrrZ =  is the set of rows in  Y  that have an  RD  outlier value. 

j  =  1        2       3        4       5 

i  =  1 
       2 
       3 
       4 
       5 
       6 

The  Y  matrix has  6  rows  and  5  columns 

The  known  values are represented by  a value of  1 

The  missing  values are represented by  a value of  0 

The rows are indexed as   i  =  1  to  n 

The rows are indexed as   j  =  1  to  p 
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The RD gives the relative differences between the deleted (known) values and the imputed 

values in column  j  of  Y  -  i.e. if any particular ijRD  value equals zero then the deleted 

value has been “put back” with 100% accuracy. The MRD  gives the mean RD value - where 

smaller MRD values indicate greater accuracy within the imputed values as a whole. The  

SRD gives the standard deviation of the RD - where larger SRD values indicate greater 

variability of imputation accuracy. Values of  RZ  within any required range, such as 3±  

SRD’s above and below the MRD, define RD outliers. Essentially, the RZ is a measure of the 

number of SRD’s by which any particular value of  RD  deviates from the MRD - where the 

set of RD values are assumed to be approximately normally distributed for this purpose. The  

MRZ  gives the mean  RZ  value - where  PZ = z / m   gives the proportion of  RD  outliers 

found within the set  M. 

The main procedure:  Implementing the repetitive, stochastic evaluation process   

The imputation method being evaluated is executed  T  times and the values of equations 

(4.2),  (4.3)  and  (4.5)  are computed after each execution. The aggregate values are then 

used to estimate imputation accuracy after the loop terminates. This repetitive process should 

produce more statistically reliable estimates of imputation accuracy, as follows; 

for   t  =  1  to  T 

 1.  Randomly delete a small proportion of the known values in column  j  of  Y  to create matrix tY  

 2.  Impute the missing values in  tY  using the imputation method being evaluated 

 3.  Compute a set of evaluation statistics tS using tY -  i.e. compute values for  (4.2), (4.3) and (4.5) 

 4.  Restore the Y  matrix to its original condition  (as it was before starting the whole process) 

next   t 

Fig 4.2  -  Functional outline of the repetitive, stochastic imputation evaluation process 

The procedure produces  a set of sets  of imputation accuracy statistics { TSS K1 }  which 

describe the values that were deleted from the Y  matrix and then “put back” into the matrices 

{ TYY K1 } by the imputation method being evaluated. The means )(ˆ kµ  and the standard 

deviations  )(ˆ kσ  of  the imputation accuracy statistics in each of the sets  { TSS K1 } 

can then be used to estimate the accuracy of the imputed values, as follows; 

∑
=

=
T

t
ktk S

T 1
)()(

1µ̂      (4.6)            ( )∑
=

−=
T

t
kktk S

T 1

2
)()()( ˆ1ˆ µσ      (4.7) 

Where  k  indexes the members of each set tS  - i.e. the values of equations (4.2), (4.3) and 

(4.5) which are computed at step 3 of the Fig. 4.2 procedure. For example, )1(µ̂  will give 

the mean of the  MRD  values that were computed at step 3 of the procedure. 
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Repetition of the imputation process reflects the uncertainty within the imputed values  

Randomly deleting values from column j of the Y matrix will produce a unique set of 

imputation accuracy statistics for each iteration of the procedure given in Fig. 4.2. This 

repetitive, stochastic approach has formed an important part of imputation theory ever since 

Rubin (1978) first proposed the idea of multiple imputation (see section 4.3.3). The key idea 

underpinning all such approaches is that the repetitive stochastic nature of the overall process 

will reflect the uncertainty that exists within the imputed values. And this uncertainty will 

always be present to some degree, because it is impossible to prove that missing values have 

been imputed accurately. For example, if large, but very similar, values of the MRD appeared 

for many iterations of the loop given in Fig. 4.2, then the imputation process would have high 

uncertainty, but this uncertainty would not depend on the set of values that were missing. 

4.2.2 Estimating the Accuracy of the Imputed Values in Data Segments 

Generally, smaller MRD values indicate greater accuracy within the imputed values as a 

whole. However, larger SRD values show that this accuracy is highly variable, and therefore 

it may be localised within one or more clearly defined data segments (sets of related rows) 

within the variable being evaluated - such as a particular set of missingness patterns or a set 

of categories with clearly defined boundaries. In these cases it can be useful to discover the 

distribution of the RD values across these data segments, or to discover whether some 

segments contain higher proportions of RD outlier values than others. To achieve this it is 

essential to delete the same proportion of values from each segment before estimating the 

accuracy of the imputed values, so that each segment can be assessed equally. Deleting the 

same proportion of values from each segment will also preserve the relative number of 

missing values in each data segment, which will be particularly important when the data 

within the Y  matrix is MAR.  

 

 

Fig 4.3  -  Estimating the accuracy of the imputed values in different data segments 

Category 1 
1000  rows 

Category 2 
300  rows 

Category 5 
400  rows 

Category 3 
500  rows 

Data matrix segmented 
into categories 

Category 4 
(not evaluated) 

The MRD and SRD etc. 
are computed for all rows
in the Y data matrix. 
These statistics are also
computed separately for 
all categories that have
missing values, so that
they can be compared.
The same proportion of
values are deleted from
each category. 

Pattern 1 
200  rows 

Pattern 2 
(not evaluated) 

Pattern 3 
500  rows 

Pattern 4 
1000  rows 

Pattern 5 
(not evaluated) 

Data matrix segmented 
into missingness patterns

Only those missingness 
patterns that have the 
required structure have 
any values deleted. The 
same proportion of values 
are deleted from each 
such pattern. 
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Estimating the accuracy of the imputed values in each data segment separately allows the 

imputation accuracy statistics for each data segment to be compared and analysed. For 

example, a comparison of the statistics for each segment could reveal that the poor imputation 

accuracy in a particular segment has been caused by one or two extreme outlier RD values 

(see equations (4.4) and (4.5)).  In such a case the owner of the missing value dataset might 

decide to examine the data rows in the offending segment in detail, to discover why this has 

occurred. For example, the collaborating company (TBR, see chapter 6) considered this type 

of information to be very useful when they were compiling reports describing the Firms in 

different UKSIC categories - i.e. they wanted to know whether the imputed values in some 

UKSIC categories were more accurate than in others (they might decide not to impute the 

missing values in the least accurately imputed categories under any circumstances). 

When the dataset is segmented by category the process of deleting the same proportion of 

values from each category can be achieved by counting the number of rows in each category - 

i.e. larger categories will have more values deleted from them. The random deletion process 

can then be achieved by sorting the data matrix by category (as shown above), then deleting 

at random from within each category (each set of adjacent rows). However, it should be 

ensured that the proportion of known values that are retained within each category is 

sufficient to support the imputation process (where this is required, depending on the 

imputation method used, and on the proportion of truly missing values in each category). 

However, randomly deleting the same proportion of values from each of the missingness 

patterns to be evaluated is far from simple, because the algorithm used to perform these 

deletions must ensure that the process does not create any new (and hence artificial) 

missingness patterns within the data matrix. This process will allow the accuracy of the 

imputed values in each evaluated pattern to be assessed equally, which will be particularly 

important when data is MAR. This missingness pattern comparison process could have 

significant benefits for the evaluation of regression based imputation methods (such as the 

EM algorithm), because it allows the owners of the missing value dataset to see which 

missingness patterns produce the best and worst regression equations (and therefore the most 

and least reliable imputed values) for any particular dataset. 

A description of algorithm used to delete the same proportion of values from each 

missingness pattern (which is the most procedurally complex part of the proposed approach), 

is given below. The algorithm and the equations and procedure which follow it were first 

described by the author in Solomon et al (2007a). 
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function   matrix   balanced_ random_deletion_across_all_evaluated_patterns_in_the_data_matrix  
   ( matrix  data,   vector  patterns,   int  c,   int  d ) 
 dataMatrixRow   data_row 
 vector   match_rows 
 missPatternRow   patt 
 integer   rows_to_add,   random_row 
 boolean   match 
 
 for   i  =  1   to   num_rows_in ( patterns ) 
  patt   =   patterns ( i ) 
  if   ( patt ( c )  ==  missing   &&   some_values_are_present_in ( patt )  ==  true ) 
   match_rows  =  new  vector ( ) 
   for  k  =  1   to  num_rows_in ( data ) 
    data_row  =  data ( k ) 
    if   ( data_row ( c )  ==  present ) 
     match  =   true 
     for   j  =  1   to   num_columns_in ( data ) 
       if   ( patt ( j )  ==   present    &&    data_row ( j )  ==  missing ) 
       match  =  false 
      end  if 
     next   j 
     if   ( match  ==  true ) 
      match_rows . Add_To_End ( k ) 
     end  if 
    end  if 
   next  k 
 
   rows_to_add  =   ( d / 100 )  *  num_rows_in ( patt ) 
   if   ( num_rows_in ( match_rows )   >   rows_to_add  *  2 ) 
    for  k  =  1   to   rows_to_add 
     random_row  =  Random ( 1,   num_rows_in ( match_rows ) ) 
     data_row  =  data ( match_rows ( random_row ) ) 
     match_rows . Remove_Row ( random_row ) 
     for   j  =  1   to  num_columns_in ( data ) 
      if   ( patt ( j )  ==  missing ) 
       data_row ( j )  =  missing 
      end  if 
     next   j 
    next  k 
   end  if 
  end  if 
 next   i 
 return  data 
end  function 

Fig 4.4  -  An algorithm to perform balanced random deletions across missingness patterns 
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The following parameters are passed to the algorithm;  (1)  matrix data   is a multivariate data 

matrix containing several different missingness patterns. (2)  vector patterns  contains a list of 

the missingness patterns in the data matrix.  (3) int c  is the data matrix column from which 

the values will be deleted.  (4)  int  d   is the proportion of missing values to be added to each 

of the patterns to be evaluated - i.e. the number of rows in each pattern that has missing 

values in column  c  will be increased by  d%  (which is equivalent to deleting the values). 

Inside the code:  An explanation of the functionality of the pseudo-code algorithm 

The algorithm increases the number of rows in each of the missingness patterns to be 

evaluated by the same proportion. This is achieved by transferring  data  matrix rows from 

one pattern to another. For example, when deleting from  data  column one the algorithm 

might transfer a  data  row by changing its pattern from  “1111”  to  “0111”. However, the 

data rows transferred must have known values in the same columns as the  data  rows in the 

pattern to be evaluated (the pattern with rows added to it). For example, if the pattern to be 

evaluated was  “0011”,  then  data  rows with the pattern  “1100” could  not be  transferred to 

that pattern, but  data  rows with the pattern  “1111”, could be transferred to it. 

The final pair of nested  for  loops perform the random row transfers. However, this can only 

be achieved for a particular pattern if the number of  data  rows available for transfer (as 

stored in the  match_rows  vector) is more than double the number of rows to be added to the 

pattern to be evaluated. This ensures the stochastic nature of the row transfer process under 

repeated executions, which is an essential part of the proposed method. If the number of data 

rows available for transfer is too small, then the accuracy of the imputed values in the pattern 

to be evaluated cannot be estimated separately. However, this should occur very rarely  - i.e. 

when the proportion of missing values in column c is large (perhaps above 80%), or when the 

number of missingness patterns is a small proportion of the number of possible patterns. In 

these cases the method of comparing imputation accuracy across a clearly defined set of 

categories should be preferred. 

4.2.3 Comparing the Accuracy of the Imputed Values in Data Segments 

The idea of performing balanced random deletions across data segments (the set of categories 

or missingness patterns in the data matrix) allows the accuracy of the imputed values in each 

data segment to be assessed equally - i.e. the imputation accuracy statistics returned by 

equations (4.6) and (4.7) can be computed correctly for each different segment. To achieve 

this the procedure given in Fig. 4.2  needs to be modified as follows; 
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for   t  =  1  to  T 

 1.  Randomly delete the same proportion of values from each data segment  in Y  to create matrix tY  

 2.  Impute the missing values in  tY  using the imputation method being evaluated 

 3.  Compute a set of evaluation statistics tS using tY -  i.e. compute values for  (4.2), (4.3) and (4.5) 

 4.  for each  data segment  d  contained in  Y 

  Compute a set of evaluation statistics tdS -  i.e. compute values for  (4.2), (4.3) and (4.5) 

      next   d 

 5.  Restore the Y  matrix to its original condition  (as it was before starting the whole process) 

next   t 

Fig 4.5  -  Adjusted functional outline for the proposed imputation evaluation method 

Steps 2, 3 and 5 are identical to those given in the Fig. 4.2 procedure. Step 3 is retained so 

that equations (4.6) and (4.7) can still be used to estimate the accuracy of the imputed values 

within the data matrix as a whole. Generally, the procedure provides the same imputation 

evaluation functionality as the procedure given in Fig. 4.2, while adding the following 

improvements; 

• Step 1 has been enhanced - So that it will execute the procedures described in the 

preceding section  - i.e. Step 1 will now delete the same proportion of values from each 

data segment. This will allow the accuracy of the imputed values in each data segment to 

be assessed equally. 

• Step 4 has been inserted  - This will produce a separate set of imputation accuracy 

statistics for each data segment -  i.e. equations (4.2), (4.3) and (4.5) are computed  for 

each data segment d contained in Y. The following equations can then be used to 

estimate the accuracy of the imputed values in each data segment; 
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These equations are very similar to equations (4.6) and (4.7). The only difference being the 

addition of the qualifier  d  which specifies the data segment that )(ˆ kdµ  and  )(ˆ kdσ  

refer to. These statistics can be computed for all segments in Y  using a loop similar to the one 

given in Step 4 of the above procedure. 
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4.3 Comparative Evaluation of Similar Methods 

This section compares the proposed method with the most similar methods found within the 

literature.  Section 4.3.1 describes how the general idea of estimating imputation accuracy has 

been applied by other researchers. Section 4.3.2 and 4.3.3 describe the methods that are most 

similar to the proposed method  -  i.e. uncertainty estimation methods. Section 4.3.4 discusses 

the limitations of uncertainty estimation methods. Section 4.3.5 compares uncertainty 

estimation methods with the proposed method and discusses the similarities and the 

differences between these approaches. 

4.3.1 Similar Approaches Used by Other Researchers 

The general idea of evaluating imputation methods by measuring how accurately a set of 

deleted values have been “put back” has been frequently employed to evaluate the success of 

various new, and existing, imputation methods. However, researchers who employ this 

approach generally; (1) Create simulated datasets that have no missing values. (2) Delete 

values at random from these datasets, so that replacement accuracy can be measured. The 

following examples are typical of the approaches used by other researchers.  

• Tseng et al (2003) use two different methods of random data generation to create 

simulated datasets that have no missing values. Values are then deleted at random in 

increasingly large proportions from a single variable within these datasets. A new 

imputation method is then employed, and replacement accuracy is used to demonstrate 

that the new method performs better than some other methods, when it is applied to a 

specific type of dataset. 

• Wasito and Mirkin (2005) use a very similar approach to Tseng et al (2003). The 

principal difference being that values are deleted at random across the whole data 

matrix, rather than from just one variable. Again, the idea is to demonstrate that the new 

imputation method devised by the authors performs better than some other methods 

when applied to a specific type of randomly generated dataset. 

• Starick and Watson (2006) employ a more sophisticated method of generating the 

simulated dataset. Firstly, a sample of complete observations are taken from a real (not 

simulated) dataset - i.e. those dataset rows that have no missing values are copied. 

Secondly, values are deleted from the newly created dataset in such a way that the 

missing data mechanism (assumed to be MAR) within the source dataset is modelled. 

Various imputation methods are then executed and the replacement accuracy achieved 

by each method is compared using various statistical techniques - which are partly based 

on the evaluation criteria proposed by Chambers (2001).  
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The proposed method has some similarity to the approaches described above. However, these 

approaches also differ in several important respects. Firstly, they are usually applied to 

simulated, rather than real, datasets. Secondly, they are not devised to be general purpose 

imputation evaluation techniques - i.e. they are usually designed for a specific purpose (as an 

incidental part of a larger project), or to be applied to a specific type of dataset. Thirdly, the 

idea of measuring replacement accuracy using the statistics generated via a repetitive 

stochastic algorithm is not used. And finally, the idea of comparing the accuracy of the 

imputed values in different data segments is not used (this idea was first proposed by the 

author in Solomon et al (2007a)).  

The proposed method is most similar to uncertainty estimation methods    

The proposed method is most similar to those imputation evaluation methods that estimate 

the uncertainty inherent within the imputed values. Several such methods have been 

proposed, and a good general overview of these can be found in Little and Rubin (2002), with 

more detailed discussions given in Lee et al (2002) and Shao (2002). The following sections 

give a compact and straightforward summary of the functionality of the uncertainty 

estimation methods that are most similar to the proposed method. And it can be seen that the 

procedures described below have some similarity with the procedure given in Fig. 4.2, above. 

4.3.2 Bootstrap and Jackknife Uncertainty Estimation 

Consider a variable ( )nyyY K,1=  where some of the values are missing and where Y can 

be any of the variables in a multivariate dataset containing different missingness patterns.  

The Bootstrap variance estimation method (Efron, 1994; Shao and Sitter, 1996) and the 

Jackknife variance estimation method (Rao and Shao, 1992; Rao, 1996a; Chen and Shao, 

2001) can be used to estimate the uncertainty created by imputing the missing values in Y. 

Where uncertainty is estimated by computing the variance of a set of parameter point 

estimates (such as the mean), which describe a set of samples taken from Y, as follows; 

for   b  =  1  to  B 

 1.  Create a new bootstrap sample bY by randomly selecting some rows (with replacement) from Y  

 2.  Impute the missing values in bY using the imputation method being evaluated 

 3.  Compute a parameter point estimate bθˆ which describes the values in bY  

 4.  Restore the matrix that contains Y  to its original condition  (as it was before starting this process) 

next   b 

Fig 4.6  -  Estimating imputation uncertainty using the Bootstrap method 
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The procedure given in Fig. 4.6, above produces a set of estimates { Bθθ ˆ1̂ K } which 

describe the Bootstrap samples { BYY K1 }. The Bootstrap estimate of the variance  

bootV̂ can then be used to estimate imputation uncertainty, as follows; 
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The Fig. 4.6 procedure imputes the missing bY  values B times, then computes the variance 

of the resulting set of bθˆ estimates. The Jackknife variance estimation method is quite 

similar. The difference lies in the method used to create the set of samples, which in turn 

requires a more complex method of computing the variance, as described below; 

1.  Impute the missing values in  Y  using the imputation method being evaluated 

2.  Compute a parameter point estimate θˆ which describes the values in  Y 

for   j  =  1  to  n 

 1.  Delete value  j  (matrix row  j)  from  Y  to create a new jackknife sample  )(\ jY  

 2.  Impute the missing values in  )(\ jY  using the imputation method being evaluated 

 3.  Compute the same parameter estimate as above )(\ˆ jθ  which describes  the values in )(\ jY  

 4.  Restore the matrix that contains Y  to its original condition  (as it was before starting this process) 

next   j 

Fig 4.7  -  Estimating imputation uncertainty using the Jackknife method 

The procedure given in Fig. 4.7 produces a set of estimates { )(\)1(\ ˆˆ nθθ K } which 

describe the Jackknife samples { )(\)1(\ nYY K }. Where n is the number of values in  

( )nyyY K,1= ,   i.e. the number of rows in the multivariate data matrix which contains 

the variable Y.  The Jackknife estimate of the variance  jackV̂  can then be used to estimate 

imputation uncertainty, as follows; 
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The Jackknife method can be much more computationally intensive than the Bootstrap 

method when  n  is large, since the imputation process must be repeated  n  times. However, 

in these cases the execution time of the Jackknife procedure can be decreased by deleting a 

set of values (rather than just one) at each iteration of the loop. Although this would dilute the 

fundamental idea underpinning the entire Jackknife approach, so perhaps the Bootstrap 

method should be preferred in such cases. 
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4.3.3 Multiple Imputation 

Consider a variable  ( )nyyY K,1=   where some of the values are missing and where Y can 

be any of the variables in a multivariate dataset containing different missingness patterns. 

Multiple imputation (MI) (Rubin, 1978; Rubin, 1987; Rubin and Schenker, 1986, Rubin, 

1996a) can be used to estimate the uncertainty created by imputing the missing values in  Y,  

as follows; 

for   d  =  1  to  D 

 1.  Impute the missing values in Y  using a stochastic method to create a unique imputed dataset dY  

 2.  Compute a parameter point estimate dθˆ which describes the values in dY  

 3.  Compute the variance dV associated with dθˆ  

 4.  Restore the matrix that contains Y  to its original condition  (as it was before starting this process) 

next   d 

Fig 4.8  -  Estimating imputation uncertainty using multiple imputation 

The procedure given in Fig. 4.8 produces a set of estimates { Dθθ ˆ1̂ K } and a set of 

associated variances { DVV K1 } which describe the imputed datasets { DYY K1 }. The 

combined MI complete-data parameter point estimate for  { DYY K1 } is then given by; 
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The total variability DT , associated with Dθ , can then be used to estimate imputation 

uncertainty, as follows; 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
+

+= ∑∑
==

D

d
Dd

D

d
dD

DD
DV

D
T

1

2

1

ˆ
1

111 θθ    (4.10) 

It is important to emphasise that MI is primarily an imputation method, rather than a 

technique designed for the estimation of imputation uncertainty. However, 

“When the D sets of imputations are repeated random draws from the predictive 

distribution of the missing values under a particular model for nonresponse, the D 

complete-data inferences can be combined to form one inference that properly 

reflects uncertainty due to nonresponse under that model” 

As Little and Rubin (2002) succinctly explain. 
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4.3.4 Limitations of Uncertainty Estimation Methods 

The uncertainty estimation methods described in the two preceding sections have their 

limitations, and they make certain assumptions about the nature of the missing value dataset. 

These issues have been the subject of considerable debate among statisticians. The main 

points for discussion are summarised below. 

1. All of the uncertainty estimation methods described above assume (somewhat 

optimistically) that the imputation process has removed the bias within the dataset that 

was caused by the missing values  (Little and Rubin, 2002). 

2. The resampling methods described in section 4.3.2 are based on large-sample theory - 

i.e. they will return more reliable estimates of the variance for larger samples. However, 

“The theory underlying MI is Bayesian and can provide useful inferences in small 

samples”  (Little and Rubin, 2002). 

3. The MI method assumes that the model describing the missing value dataset has been 

correctly specified - i.e. the reliability of the variance estimates returned by the MI 

method is sensitive to model misspecification. However, the resampling methods return 

consistent variance estimates with minimal modelling assumptions, so they are more 

robust to model misspecification  (Lazzeroni et al, 1990;  Fay, 1996a). 

4. Resampling methods usually require several hundred executions of the imputation 

process, performed against an equal number of samples drawn from the missing value 

dataset. This can be impractical in some situations. However, MI is less computationally 

intensive, since it allows good inferences to be drawn for a wide range of estimands, 

using perhaps 10 (or less) imputed datasets  (Ezzati-Rice et al, 1995). 

5. The problem of obtaining reliable variance estimates using the Jackknife method after 

executing single imputation methods has sparked some debate. In particular, six articles 

in the Journal of the American Statistical Association, Vol. 91 (434) were devoted to a 

discussion of a paper on this topic by Rao (1996a). Including comments by Judkins 

(1996), Binder (1996) and Eltinge (1996). followed by rejoinders from Rubin, (1996b) 

and Fay (1996b) - and finally, a reply by the author of the debated paper in Rao (1996b). 

Various opinions were expressed but no single point of view was conclusively 

demonstrated as being correct. 
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4.3.5 Comparing the Proposed Method with Uncertainty Estimation Methods  

 

 
Fig 4.9  –  Common features of Bootstrap, Jackknife, MI and the proposed method 

The proposed method and the uncertainty estimation methods described in the two preceding 

sections are similar in that they all execute the imputation method (the method being 

evaluated) repeatedly against the same missing value dataset. This process produces a set of 

unique imputed datasets, as shown in Fig. 4.9  (although different techniques are used to 

create these datasets, as explained above). All four of the methods then go on to use the set of 

parameters that describe the unique datasets to evaluate the results of the imputation process. 

However, the four methods also differ in several important respects, as described below. 

In its purest form, the Jackknife method requires  n  repetitions of the imputation method, 

where  n  is number of rows in the dataset (see section 4.3.2). This can be impractical for 

large datasets (e.g. datasets containing millions of rows), particularly since the imputation 

method itself will take longer to execute as the size of the dataset increases. In addition, the 

Jackknife differs from the other methods in that the overall process is deterministic - i.e. a 

repeated execution of the overall Jackknife process (all iterations taken together) against the 

same dataset will always produce the same uncertainty estimate.  

The Bootstrap method introduces a stochastic element into the overall evaluation process by 

taking random samples from the dataset. In effect, this sampling process is equivalent to a 

repetitive randomised form of the listwise deletion process described in chapter one. 

However, there is no way of knowing whether any particular sample will fully reflect the 

missing data mechanism within the dataset as a whole. This could bias the uncertainty 

estimate produced by the Bootstrap when the data is MAR. It could be argued that this hardly 

matters, since the repetitive process should remove this bias - but it is unclear how many 

Bootstrap iterations would be needed to achieve this for any particular MAR configuration. 
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Multiple imputation builds on the ideas underpinning the resampling methods, but differs 

from them in that it integrates the repetitive stochastic part of the imputation evaluation 

process  with the imputation procedure  -  so that repeated executions of that procedure will 

“reflect variation within an imputation model and sensitivity to different imputation models” 

(Rubin, 1978).  However, unlike the resampling methods, MI achieves this while retaining all 

of the rows in the dataset. The proposed method also retains all of the rows in the dataset, so 

it has more in common with MI than either of the resampling methods in this respect.  

The proposed method differs from the other methods by estimating the accuracy of the 

imputed values  -  i.e. the other methods do not record deleted values and then measure 

how accurately they have been “put back” by the imputation process. The Bootstrap, MI 

and the proposed method are similar in that they all employ stochastic procedures, but the 

Jackknife method does not share this characteristic. However, the proposed method and the 

Bootstrap differ from MI in that the stochastic part of these methods is performed before the 

imputation process starts, rather than being integrated with that process. 

The problem of defining a “proper” multiple imputation method in practice  

The Bootstrap/Jackknife methods and the proposed method can all be used to evaluate any 

imputation technique, whereas the MI approach can only be confidently used for evaluation 

purposes when we are sure that the MI method employed is  “proper”,  in the sense defined 

by Rubin (1987, pp. 118-119)  and further summarised by Rubin (1996a). One of the clearest 

defintions of a proper MI method is given by Durrant (2005), who explains that for a proper 

MI method, equation (4.10) - given in section 4.3.3 - “is indeed a valid formula, providing an 

approximately unbiased estimator of the variance”. But it is very hard to verify the truth of 

this statement in practice, as Schafer (1997) points out; 

“Except in trivial cases  (e.g. univariate data missing completely at random), 

it can be extremely difficult to determine whether a multiple-imputation 

method is proper” 

Binder and Sun (1996) shed some light on this problem by discussing several complex 

examples, but these only cover a small proportion of the imputation problems that can occur. 

In practice, proper MI methods generally employ Bayesian imputation algorithms, even 

though theoretically this is not deemed to be essential. For example, Schafer’s (1997) 

implementation of MI employs the Markov chain Monte Carlo method (Tanner, 2005; Gilks 

et al, 1996) via the Bayesian data augmentation algorithm (Tanner and Wong, 1987). To 

summarise, we can say that the evaluation of imputation methods via MI uncertainty 

estimation can only be confidently applied when we are sure that the MI method used is 

proper - e.g. when that method employs a Bayesian imputation algorithm. However, the other 

three methods do not have this limitation. 
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4.4 Summary 

This chapter has described the imputation evaluation method devised by the author and has 

shown how this method can be used to estimate the predictive accuracy of the imputed values 

generated by any imputation technique.  

A functional overview of the proposed method has been given and the equations and 

procedures which form the basis of that method have been described in detail. An explanation 

of how the method can be used to compare the accuracy of the imputed values in different 

data segments has been given. These descriptions and explanations form the principal 

contribution to knowledge made by this thesis. 

A description of how the general idea of estimating imputation accuracy has been applied by 

other researchers has been given and it has been shown that the proposed method differs from 

these approaches in several important respects. The functionality of the most similar methods 

found within the literature (uncertainty estimation methods) has been described and the 

limitations of these methods have been discussed. The similarities and the differences 

between the proposed method and uncertainty estimation methods have been discussed, and it 

has been shown that the proposed method builds on the ideas underpinning uncertainty 

estimation methods, but differs from them in several important respects. 

The proposed method has been implemented alongside the imputation techniques described 

in chapters two and three in the form of an integrated software application. The following 

chapter describes how this application was used to experimentally evaluate the reliability and 

the validity of the proposed method. Chapter six goes on to explain how the integrated 

application was used to assess the feasibility of imputing the missing values in the 

collaborating company’s dataset, thus fulfilling the project objectives. 
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Chapter Five 

Experimental Evaluation of the Method 



- 74 - 

5.   Experimental Evaluation of the Method 

This chapter explains how the reliability and validity of the proposed imputation evaluation 

method was experimentally evaluated. This was essential for the following reasons. 

The scientific method requires that experiments should produce consistent and reliable results 

when they are repeated. The reliability of the results produced when performing experiments 

using stochastic processes - such as the proposed method - can be difficult to demonstrate, 

because such experiments will produce different results when they are repeated. However, 

when the results from several identical stochastic experiments are analysed using statistical 

methods it should be evident that the stochastic procedures employed have produced similar 

results, where this is required. For example, if the proposed method produced  very different  

sets of imputation accuracy statistics when the same experiment was repeated, then how 

could we know which sets of statistics gave the most useful results? 

It is also important to demonstrate that the proposed imputation evaluation method is valid. 

That is, to show that the imputation accuracy statistics produced by the method can be used 

assess the feasibility of imputing missing values using the required imputation technique. The 

explanations in the following sections show how the experimental results (estimates of 

imputation accuracy) given in this chapter can be used to assess the feasibility of imputing 

missing values using the imputation techniques described in chapters two and three. 

• Section 5.1  explains how the reliability and validity of the proposed method was 

experimentally evaluated and shows how the software that implements the method can 

be used to perform imputation evaluation experiments. 

• Section 5.2  explains how the method can be used to compare the predictive power of 

candidate imputation methods when they are used to impute the same set of missing 

values and introduces the idea of  “least distortion” imputation evaluation  (Pyle, 1999). 

5.1 Assessing the Reliability and Validity of the Proposed Method  

Section 5.1.1 describes the dataset that was used to perform all of the experiments described 

in this chapter. Section 5.1.2 describes the top level graphical user interface (GUI) of the 

software application that implements the proposed method. Section 5.1.3 describes the 

method reliability experiments and shows how the software’s GUI provides access to the 

equations and processes that form the basis of the proposed method. Section 5.1.4 describes 

the method validity experiments and shows how the software can be used to estimate the 

accuracy of the imputed values generated by the EM imputation algorithm. 
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5.1.1 Description of the Dataset Used for the Experiments 

The dataset used to perform the experiments can be freely downloaded from the Statistical 

Society of Canada (SSC) web page created by Bernier et al. (2002) - which is available at  

http://www.ssc.ca/documents/case_studies/2002/missing_e.html  (last accessed on 17th July 

2007). The dataset comes in the form of a Microsoft Excel file containing 2389 data rows and 

11 columns, with 2 of these columns having 29.22% missing values. A detailed analysis of 

the dataset, and a description of the associated imputation case study, can be found in Aguirre 

and Sun (2003). General information about the SSC can be found on their website - available 

at http://www.ssc.ca/main/new_e.html The following description of the health survey 

questionnaire used to create the dataset, and the table containing the descriptions of the 

dataset variables have also been taken from the web page created by Bernier et al (2002) 

“This case study on missing data uses a sub-sample of the 1994 National 

Population Health Survey…..The data represent persons, aged 20-65, living in a 

private household in the prairie provinces..... The questionnaires include content 

related to health status, use of health services, determinants of health, a health 

index, chronic conditions and activity restrictions. The use of health services is 

probed through visits to health care providers, both traditional and non-

traditional, and the use of drugs and other medications. Health determinants 

include smoking, alcohol use and physical activity.  As well, a section on self-care 

has also been included this cycle. The socio-demographic information includes 

age, sex, education, ethnicity, household income and labour force status”. 

Table 5.1  -  Description of the variables in the Canadian SSC health survey dataset 

Column (variable) name Variables with  29.22%  missing values 

GH_Q1 Numerical representation of the answer to  “In general, how would you describe your health?” 

DVHST94 Derived Health Status Index  (3 decimal places)  - HUI provisional score 

Column (variable) name Variables with  100%  data present 

AGEGRP Grouped age cohorts 

SEX Respondent's sex 

DVHHIN94 Derived total household income from all sources in the past 12 months 

DVBMI94 Derived Body Mass Index (1 decimal place) 

DVSMKT94 Derived type of smoker 

DVPP94 Derived depression variable - predicted probability (2 decimal points) 

NUMCHRON Numerical sum representing the answers to several health status questions 

VISITS Numerical sum representing the answers to several questions about visits to doctors and clinics. 

WT6 Survey weights 
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5.1.2 Loading the Dataset and Analysing the Variables 

This section describes the top level GUI of the software application that implements the 

proposed imputation evaluation method - focusing on a description of the data loading and 

variable analysis functionality provided. A description of how the software can be used to 

evaluate imputation methods is given in the following sections. 

The software has been developed using the C# programming language, utilising the computer 

hardware and software development environment described in Appendix C. The screenshots 

on the following page show how the software was used to load and analyse the dataset 

described in the previous section, and it can be seen that the variables shown in the screenshot 

grids are the same as those given in table 5.1, above. A description of the GUI features shown 

in the screenshots is given below. 

• Datasets can be loaded from Excel files by clicking on the    Load Data From Excel    button. 

The “.xls” file is selected using a standard Microsoft file selector window. The selected 

path/file name is displayed above the on-screen grid. Excel worksheet header row cells 

are automatically inserted as grid column headers (if any are found). Non-numeric cells 

found in the Excel worksheet are error trapped, and the user is informed of the problem 

• The numeric code used to represent missing values in the Excel worksheet cells must be 

entered by the user before loading the dataset (the default value of  -9  is shown in the 

screenshot). Grid cells with missing values are colour coded for easy identification of 

missingness patterns - both before and after the imputation process is performed. 

• A description of the variables in the loaded dataset can be shown in a sub-window by 

clicking on the  Show Column Statistics  button. The maximum, minimum, mean and 

standard deviation for each variable is shown, as well as the number and proportion of 

missing values for each variable. The distribution line chart for any variable can also be 

shown (see the following page). The distortion of the mean and standard deviation 

caused by the imputation process is also given (the utility of this feature is discussed in 

section 5.2.3).  All variable descriptions are fully updated after imputation is completed. 

• A description of the correlations between the dataset variables can be shown in a sub-

window by clicking on the    Show Column Correlations    button. The number and proportion 

of data matrix rows used to calculate the correlation between each pair of variables is 

shown. This is required, since some matrix rows will not have known values for every 

possible pair of variables (depending on the set of missingness patterns in the matrix). 

• A description of the relative size and distribution of the missingness patterns in the data 

matrix can be shown in a sub-window by clicking on the   Show Missing Patterns   button. 

The importance of missingness pattern analysis is discussed in chapter six. 
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Fig 5.1  –  Implementation of the method:  Data loading and variable analysis graphical user interface 
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5.1.3 Assessing the Reliability of the Method 

The previous section explained how the SSC dataset (as described in section 5.1.1) was 

loaded into the software application that implements the proposed method. This section 

describes how the dataset was used after it was loaded - i.e. the missing DVHST94 values 

were imputed and the results were used to assess the reliability and the validity of the 

proposed method. The experimental process is described in table 5.2, below. This remainder 

of this section attempts to answer experimental question 1 and the following section attempts 

to answer experimental question 2. 

Table 5.2  -  Description of SSC dataset imputation evaluation experiments 1 to 8 
 Imputation of  DVHST94  values using 50 executions of the EM algorithm 

EXPERIMENTAL QUESTIONS 

   1.  Does the evaluation method produce reliable results when it is executed repeatedly against the same dataset? 

   2.  Can the proposed imputation evaluation method be used to assess the feasibility of imputing DVHST94 values? 

Description of 
the missing 
value dataset 

• The SSC dataset containing 11 columns and 2389 rows - as described in section 5.1.1 

Variable to be 
imputed and 
evaluated 

• The variable to be imputed and evaluated was DVHST94, which had a range of 0.290 to 1.000  
(710 possible values, specified to 3 decimal places) 

• DVHST94 had 698 missing values -  i.e. 29.22% of the 2389 data matrix rows had missing values. 

Imputation 
method used for 
the experiment 

• Imputation was performed using the EM algorithm 

• The EM algorithm convergence value was 0.0001 

• No Box-Cox power transformations were performed for any variable. 

• The initial covariance matrix was created using all data matrix rows with a full set of known values. 

• All imputed values were rounded to 3 decimal places and negative imputed values were discarded. 

Imputation 
evaluation 
method 

• 50 executions of the EM imputation algorithm were performed (using the options described above). 

• The number of missing DVHST94 values was increased by 10% for each execution of EM.  That is,  
4.14% of the known DVHST94 values were randomly deleted and “put back” for each EM 
execution, using the Fig.4.5 algorithm. With balanced random deletion across missingness patterns. 

 

The tabular format shown above was designed to be used as a pro-forma which supports 

the use of the proposed method - and the same tabular format will be used to define all of 

the experiments described in this thesis.  

Using a standard pro-forma to specify the experimental questions, describe the dataset and 

define the experimental process allows the experiments to be precisely replicated - which is 

an essential part of the proposed approach. 
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The software implements the formal description of the method given in section 4.2.1 

The screenshots on the following page show how the experiments described in table 5.2 can 

be performed using the software. It is important to emphasise that the process described on 

the following page implements the imputation evaluation method described in section 4.2.1. 

The relationship between the formal description of the method and its software 

implementation is shown below (the Fig. 4.2 procedure is repeated here for clarity). 

for   t  =  1  to  T 

 1.  Randomly delete a small proportion of the known values in  column  j  of  Y  to create matrix tY  

 2.  Impute the missing values in  tY  using the imputation method being evaluated 

 3.  Compute a set of evaluation statistics tS using tY -  i.e. compute values for  (2.2), (2.3) and (2.5) 

 4.  Restore the Y  matrix to its original condition  (as it was before starting the whole process) 

next   t 

 

 

Fig 5.2  –  Relationship between the method’s algorithm and its software implementation 

Performing the imputation evaluation experiments described in table 5.2 

The following diagram shows how the entire imputation evaluation process can be performed 

using the software implementation of the method. The application provides a simple “point-

and-click” graphical user interface that is easy to use and understand. When the evaluation 

process is complete the user can view the estimates of imputation accuracy produced by the 

software - using various tables, line charts and histograms. These sub-windows and charts are 

automatically generated and displayed by the software. Some examples follow the diagram. 

The variable in 
column  j  of  Y 

The proportion of 
known values to 
be deleted from 
column  j  of  Y 

The value of  T 
given in the loop  
for  t  = 1  to  T 

When the user clicks on this button the algorithm shown above is executed and 
the estimates of imputation accuracy given by equations (4.6) and (4.7) are 
calculated and displayed in a sub-window - see section  4.2.1  for more details. 
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Fig 5.3 -  Performing imputation 
evaluation experiments 

The diagram shows how the software 
application developed by the author 
can be used to perform imputation 
evaluation experiments.  

The software provides a simple 
“point-and-click” interface that can 
help researchers to decide whether 
imputation is an appropriate solution 
to their missing data problem - as 
follows; 

STEP ONE 
Select the imputation method and set 
its parameters The default options for 
the EM algorithm (see above) are 
suitable for most datasets. 

STEP TWO 
Choose the imputation evaluation 
options. For example, enter the 
number of executions of the EM 
algorithm to be performed. 

STEP THREE 
View the imputation accuracy tables, 
line charts and histogram - using the 
options shown opposite. 

Imputation 
evaluation 
options 

Options for display of 
the three imputation 
accuracy tables   
(see the following 
page for an example) 

Options for display of 
various imputation 
accuracy line charts  
(see the following 
pages for examples) 

Options for display of 
the imputation 
accuracy histogram  
(see section  5.1.4  
for an example) 

Imputes missing values 
without  performing the 
imputation evaluation process 
 i.e. The known values are not 
deleted and then  “put back” 

EM imputation algorithm parameters
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The grid shown in the screenshot above gives the results of one of the experiments described 

in table 5.2. The grid was obtained by clicking on the  Show Accuracy Estimates   button shown on 

the previous page. The line charts below show the results of three more of these experiments, 

where the values in the MRD and SRD grid columns are plotted on the charts.  
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The  Mean  values for these 3 columns give the results for equation (4.6), as given in section 4.2.1 
The  STD  values give the results for equation (4.7),  also given in section 4.2.1. 
The number of EM executions  = T  as given in the loop  for  t  =  1 to T  in the Fig. 4.2 procedure 
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The two sets of data shown on each chart were sorted independently  - i.e. the  MRD  and 

SRD  figures for each EM execution do not match. This method of visual presentation enables 

the statistics produced for each experiment to be more easily compared and evaluated. The 

idea of the charts is to demonstrate that the method produces consistent results when it is 

repeated  - by showing that three identical, consecutive experiments produced similar sets of 

evaluation statistics. This conclusion is supported by the regression equations (which are 
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shown on the charts only for this purpose) and it can be seen that these equations are similar 

across all three charts. The MRZ and % Outlier charts for the same three experiments are 

shown below (all figures are rounded to 2 decimal places). 
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The two sets of data shown on each chart were sorted independently - i.e. the  MRZ  and  % 

Outliers  figures for each EM execution number do not match. It can be seen that the MRZ 

and % Outliers for each of the three experiments are similar. Five more identical, consecutive 

experiments were performed (see table 5.2) and the resulting charts were all found to be very 

similar to those given above. The results for all eight experiments (including the three 

described in the above charts) are shown below. The means µ̂  and the standard deviations 

σ̂  were computed using equations  (4.6)  and  (4.7),  as described in section 4.2.1. The mean 

value for each column in table 5.3, below is given in the bottom row of that table. 

Table 5.3  -  Aggregated estimates of imputation accuracy for the SSC dataset experiments  
(imputation of DVHST94 values using 50 executions of the EM algorithm) 

MRD SRD MRZ 
Experiment 

Number µ̂  σ̂  µ̂  σ̂  µ̂  σ̂  % Outliers 

1 0.09 0.02 0.15 0.07 5.45 1.60    2.52    

2 0.08 0.02 0.14 0.06 5.18 1.80 2.32 

3 0.09 0.02 0.15 0.06 5.56 1.26 2.63 

4 0.09 0.02 0.16 0.06 5.12 1.72 2.53 

5 0.09 0.02 0.15 0.07 5.19 1.34 2.68 

6 0.08 0.02 0.16 0.06 5.80 1.23 2.55 

7 0.09 0.02 0.14 0.06 5.45 1.91 2.23 

8 0.09 0.02 0.15 0.06 5.62 1.33 2.32 

Column 
Mean 0.09 0.02 0.15 0.06 5.42 1.52 2.47 
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Overall conclusion for the method reliability experiments 

The six line charts shown above - and the figures given in table 5.3, above - show that the 

proposed imputation evaluation method produced very similar results when eight identical, 

consecutive EM imputation experiments were performed against the SSC dataset. This shows 

that the proposed method produces reliable results when it is used to evaluate regression 

based imputation methods against numeric datasets of a certain type - i.e. datasets that are 

similar to the SSC dataset described above. 

5.1.4 Assessing the Validity of the Method 

This section attempts to answer experimental question 2, given in table 5.2, above  -  i.e. Can 

the proposed method be used to assess the feasibility of imputing DVHST94 values?  This 

question can be partially answered by considering the experimental results given above. 

However, the method can also be used to assess imputation accuracy variance, as follows.  

A reasonable benchmark value for  any imputation algorithm  would be an  MRD µ̂  value 

of  0.2 - e.g. the imputation process described in the previous section should “put back” the 

deleted DVHST94 values to within 20% of their true values (on average). The results in table 

5.3, above show that the deleted DVHST94 values were “put back” to within 9% of their true 

values (on average) for every experiment performed. However, the variance of the RD values 

also needs to be considered before any conclusion regarding the feasibility of DVHST94 

imputation can be drawn. This can be achieved using the approach described below. 

 

 

Fig 5.4  -  Distribution of the RD values after imputation of  DVHST94  using the EM algorithm 
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The mean RD value (the MRD) 
of 0.09 lies within this interval 

RD outliers lie within this interval.  
Outliers are defined as RD values that are  
more than  3  SRD’s  above or below the MRD. 
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The software application that implements the method automatically produces and displays 

RD histograms such as the one shown above (where the RD values are computed using 

equation (4.1), given in section 4.2.1). The automatic display of these histograms is one of the 

most important features of the software, because this helps users to make informed decisions 

regarding the feasibility of the imputation process. For example, the histogram shown above 

could be used to assess the feasibility of imputing the missing DVHST94 values (using the 

experimental process described in table 5.2, above) by using the following reasoning.  

The histogram shows that approximately 75% of the imputed DVHST94 values  (represented 

by the three leftmost histogram bars)  had an RD value of between zero and 0.09  - i.e. 75% 

of the values were imputed with an accuracy of  91% or above, with 28% imputed with more 

than 97% accuracy. The histogram also shows that only 16% of the DVHST94 values were 

imputed with less than 88% accuracy. However, approximately 2.5% of the imputed values 

were RD outliers  - i.e. the rightmost histogram bar shows that 2.5% of the 3,500 values were 

imputed with less than 46% accuracy. This raises the following questions; (1) Does this small 

proportion of inaccurately imputed values invalidate the DVHST94 imputation process?     

(2) Why were these values imputed so inaccurately?  The answers to these questions are 

discussed below - with reference to the following, theoretical, illustrative dataset. 
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Fig 5.5  -  Deleting an “out of pattern” value - so that the imputation process can “put it back” 

The relationships between the variables  a,  b  and  c  are very strong, with the exception of 

the single “out of pattern” value. Any good imputation procedure should produce reasonably 

accurate estimates for the missing values, because the patterns within a large majority of the 

known values are so strong. Suppose that the accuracy of the imputed values in column c  

was being evaluated using the proposed method. Further, suppose that the random deletion 

process employed by the method removed the single “out of pattern” value - so that a 

measure of how accurately it was “put back” could be taken. Most imputation methods 

(particularly regression based techniques) would then impute the “out of pattern” value very 

Matrix cells with missing values are 
shaded and empty. 

The relationships between the variables 
have a simple pattern, where; 
b  =  a  x  2 
c  =  b  x  2 

This value is “out of pattern” 
If it was deleted it would be “put back”  
inaccurately by the imputation process 
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inaccurately  because these methods would force the imputed value to fall into the patterns 

that exist within the majority of the known values. Therefore, when a measure of how 

accurately the deleted value was “put back” was taken, an RD outlier value would be created. 

For example, suppose that the imputation method produced a set of imputed values that all 

fell  perfectly  into the patterns among the known values shown in Fig. 5.5. The following RD 

value would then be calculated for the “out of pattern” value; 

   ijRD  =  
trueValY

imputedValYtrueValY

ij

ijij

.
.. −

 

Where  trueValYij .  is the true (known) value that was deleted. 

and  imputedValYij .  is the value generated by the imputation process. 

ijRD   =   
2
4002 −

  =   199 

However, the process of random deletion and “put back” employed by the proposed method 

is repeated many times, and consequently many other RD values would be calculated for the 

dataset shown in Fig. 5.5. Most of these RD values would equal zero, indicating 100% 

imputation accuracy. Nevertheless, the RD outlier value would inflate the MRD (the mean 

RD value). And if the MRD was considered in isolation - without taking the distribution of 

the RD values into account - then the user could draw an invalid conclusion regarding the 

feasibility of the imputation process. This is the principal reason why the automatic creation 

and display of RD histograms such as the one shown above is such an important part of the 

software implementation of the method  -  i.e. it allows the owner of the missing value dataset 

to consider the distribution of the RD values, so that the effects of extreme RD values can be 

put into perspective.  

For example, if the proportion of RD outliers is large then the proportion of “out of pattern” 

values within the dataset will also be large. Consequently, the patterns within the known 

values in the dataset may not be strong enough to support the imputation method being 

evaluated. Therefore, the feasibility of employing that method to impute the missing values is 

questionable. But what proportion of RD outliers will invalidate the imputation process for 

any particular missing value dataset?  The answer to this question can only be provided by 

the owner of that dataset. This point is discussed further in the overall conclusions for the 

method validity experiments, as given below. 
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Choosing the parameters that control the imputation evaluation process 

The parameters that control the execution of the imputation evaluation process are shown in 

Fig. 5.2. These are as follows; 

• The first parameter specifies the variable being evaluated for imputation accuracy  - e.g. 

this was the  DVHST94  variable for the experiments described above. This parameter is 

simply a matter of user choice. However, the imputation evaluation process can be 

repeated for all of the variables that have imputed values, if this is required. 

• The second parameter specifies the proportion of known values to be deleted and  “put 

back”  by the imputation process  - e.g. this was  4.14%  for the above experiments  (the 

number of missing values was increased by 10%). Generally, it has been found that 

deleting between  3%  and  5%  of the known values produced reliable results for all of 

the experimental datasets used to date. 

• The third parameter specifies the number of executions of the imputation method (the 

method being evaluated) to be performed - e.g. this was 50 executions of the EM 

algorithm for the above experiments. Generally, it has been found that at least 10 

executions are required for most datasets - but none of the experiments performed to 

date have required more than 50 executions. However, it could be necessary to repeat the 

imputation process many more times for some datasets. Consequently, it is important 

that the implementations of the imputation methods used should execute as quickly as 

possible. 

Some preliminary experimentation may be needed to find the optimum values for the second 

and third parameters. The simplest way to achieve this is to ensure that the RD histogram 

displayed by the software gives similar results when the evaluation process is repeated. For 

example, the three histograms given below show that the parameters chosen for the 

experiments described in table 5.2 produced very similar imputation accuracy statistics.  
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Overall conclusions for the method validity experiments 

The explanations and experimental results given above have shown how the imputation 

accuracy statistics produced by the proposed method can be used to assess the feasibility of 

imputing missing values. The experiments have also shown how the variance of the 

imputation accuracy statistics can be taken into account when considering imputation 

feasibility. Finally, it has been shown how the parameters that control the execution of the 

method can be chosen so as to ensure the reliability of the imputation accuracy statistics 

produced across repeated executions of the method. 

However, the final decision regarding the feasibility of the imputation process for any 

variable within any dataset  can only be taken by the user of the software. Although it is 

important to emphasise that this will be a largely subjective decision, based on the user’s 

knowledge and perspective. And of course different users could draw different conclusions 

regarding the feasibility of the same imputation process. These conclusions could be based on 

many factors - such as a consideration of how the imputed dataset will be used in practice, or 

a detailed knowledge of the missing data mechanism.  

It is argued that every missing data problem will be unique in some respects and that 

therefore the evaluation of the results of the imputation process must be based primarily on 

the knowledge and understanding of the user. Consequently, it is argued that there is no 

substitute for human judgment when considering these matters, and that the proposed 

approach simply facilitates the decision making process - by automating the calculation and 

display of various imputation accuracy statistics. 
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5.2 Comparing the Predictive Power of Candidate Imputation Methods 

This section shows how the proposed method can be used to compare the accuracy of the 

imputed values generated by the EM and nearest neighbour (NN) algorithms when they are 

used to impute the missing DVHST94 values in the SSC dataset. The comparison process 

also provides further evidence of the reliability and the validity of the proposed method. 

Section 5.2.1 assesses the feasibility of imputing DVHST94 values using the NN algorithm 

(see section 3.2.3). Section 5.2.2 explains how the proposed method was used to compare the 

accuracy of the imputed values generated by the EM and NN algorithms. Sections 5.2.3 and 

5.2.4 introduce the ideas underpinning “least distortion” imputation evaluation and show how 

this technique was used to compare the parameter distortions caused by the two algorithms. 

5.2.1 Performing the Nearest Neighbour Imputation Experiments 

The previous section explained how the proposed method was used to assess the feasibility of 

imputing missing DVHST94 values using the EM algorithm. This section explains how the 

feasibility of imputing DVHST94 values using the NN algorithm was assessed. This allows 

the predictive power of the two methods to be compared by considering the imputation 

accuracy statistics generated by both methods. The NN experimental process is described in 

table 5.4, below. This remainder of this section attempts to answer experimental question 1 

and the following two sections attempt to answer experimental question 2. 

Table 5.4  -  Description of SSC dataset imputation evaluation experiments 9 to 16 
 Imputation of  DVHST94  values using 50 executions of the NN algorithm 

EXPERIMENTAL QUESTIONS 

   1.  Is imputation of the missing DVHST94 values feasible using the nearest neighbour process defined below? 

   2.  How does the accuracy of the NN imputed values compare with the accuracy of the EM imputed values? 

Description of 
the missing 
value dataset 

• The SSC dataset containing 11 columns and 2389 rows - as described in section 5.1.1 

Variable to be 
imputed and 
evaluated 

• The variable to be imputed and evaluated was DVHST94, which had a range of 0.290 to 1.000  
(710 possible values, specified to 3 decimal places) 

• DVHST94 had 698 missing values -  i.e. 29.22% of the 2389 data matrix rows had missing values. 

Imputation 
method used for 
the experiment 

• Imputation was performed using the nearest neighbour algorithm described in section 3.2.3 

• The Euclidean distance was used to measure the similarity between observations (matrix rows) 

• All variables were transformed to standard Z scores prior to imputation - so that each variable 
would carry equal weight in the Euclidean distance calculations. 

Imputation 
evaluation 
method 

• 50 executions of the NN imputation algorithm were performed (using the method described above). 

• The number of missing DVHST94 values was increased by 10% for each execution of  NN. That is,  
4.14% of the known DVHST94 values were randomly deleted and “put back” for each NN 
execution, using the Fig.4.5 algorithm. With balanced random deletion across missingness patterns. 



- 92 - 

Eight identical, consecutive NN imputation experiments were performed using the method 

described in table 5.4, above. The results for all eight experiments are shown in table 5.5, 

below. The means µ̂  and the standard deviations σ̂  were computed using equations  (4.6)  

and  (4.7),  as described in chapter 4. The mean value for each column in table 5.5 is given in 

the bottom row of that table. 

Table 5.5  -  Aggregated estimates of imputation accuracy for the SSC dataset experiments  
(imputation of DVHST94 values using 50 executions of the NN algorithm) 

MRD SRD MRZ 
Experiment 

Number µ̂  σ̂  µ̂  σ̂  µ̂  σ̂  % Outliers 

9 0.12 0.02 0.18 0.06 5.05 1.44 2.49 

10 0.12 0.02 0.19 0.08 4.74 1.53 2.52 

11 0.11 0.02 0.17 0.06 4.72 1.19 2.60 

12 0.11 0.02 0.17 0.06 5.12 1.07 2.52 

13 0.12 0.02 0.18 0.06 4.94 1.16 2.46 

14 0.12 0.02 0.18 0.05 5.02 1.51 2.57 

15 0.11 0.02 0.17 0.06 5.21 1.49 2.29 

16 0.11 0.02 0.17 0.06 5.06 1.16 2.57 

Column 
Mean 0.12 0.02 0.18 0.06 4.98 1.32 2.50 

 

Table 5.5 shows that the results for the NN imputation experiments were very similar. It was 

also found that the eight sets of associated imputation accuracy charts (such as the MRD 

/SRD charts shown in section 5.1.3) produced by the software were also very similar. This 

provides further evidence of the reliability of the proposed method - i.e. it shows that the 

method produces consistent results when it is used to evaluate nearest neighbour imputation 

algorithms that are executed against a specific type of numeric dataset. 

Assessing the feasibility of imputing DVHST94 values using the NN algorithm  

The results given in table 5.5 show that the NN imputation process “put back” the deleted 

DVHST94 values to within at least 12% of their true values (on average) for every 

experiment performed. This suggests that imputation of the missing DVHST94 values via NN 

may be feasible. However, the variance of the RD values also needs to be considered before 

any conclusion regarding the feasibility of NN imputation can be drawn. This can be 

achieved by considering the variance of the RD values, as follows. 
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Fig 5.6  -  Distribution of the RD values after imputation of  DVHST94  using the NN algorithm 

The histogram shows that approximately 53% of the imputed DVHST94 values  (represented 

by the two leftmost histogram bars)  had an RD value of between zero and 0.06  - i.e. 53% of 

the values were imputed with an accuracy of  94% or above, with 26% imputed with more 

than 97% accuracy. The histogram also shows that less than 15% of the DVHST94 values 

were imputed with less than 82% accuracy. Approximately 3% of the imputed values were 

RD outliers - i.e. the rightmost histogram bar shows that 3% of the 3,500 values were 

imputed with less than  46%  accuracy.  

It was therefore concluded that imputation of the missing DVHST94 values using the NN 

algorithm is feasible. Although it is important to emphasise that this is - at least in part - a 

subjective conclusion, which is based on the authors knowledge and perspective (see the 

discussion of this issue in the conclusions for the previous section). 

5.2.2 Choosing the Most Accurate Imputation Method 

This section explains how the imputation accuracy statistics generated when executing the 

EM and NN algorithms can be compared, so that the algorithm that imputes the missing 

DVHST94 values most accurately can be chosen. This can be achieved as follows. 

• The RD distribution histograms shown in Figures 5.4 and 5.6 (see above) can be 

compared - i.e. the histograms and the analysis given immediately below each histogram 

can be compared. 
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• The mean values of the imputation accuracy statistics for the EM algorithm imputation 

experiments can be compared with the statistics for the NN algorithm experiments, as 

shown in table 5.6, below (these figures are also given in tables 5.3 and 5.5, above); 

Table 5.6  -  Comparison of the imputation accuracy produced by the EM and NN algorithms 
(mean values for  DVHST94  imputation across 8 sets of 50 executions of both methods) 

MRD SRD MRZ Imputation 
method 

evaluated µ̂  σ̂  µ̂  σ̂  µ̂  σ̂  % Outliers 

EM algorithm 0.09 0.02 0.15 0.06 5.42 1.52 2.47 

NN algorithm 0.12 0.02 0.18 0.06 4.98 1.32 2.50 

 

• The µ̂  values for the MRD show that the EM algorithm imputed the missing 

DVHST94 values more accurately than the NN algorithm  -  i.e. EM  “put back” the 

deleted values with 91% accuracy, whereas NN achieved 88% accuracy. The MRD 

standard deviation σ̂ was the same for both algorithms. 

• The µ̂  values for the SRD shows that the accuracy with which the deleted DVHST94 

values were “put back” was slightly more variable for the NN algorithm. The SRD 

standard deviation  σ̂  was the same for both algorithms. 

• The % Outliers values show that the EM algorithm produced fewer RD outliers than the 

NN algorithm. However, the µ̂  and the σ̂  for the MRZ show that the EM outliers 

were more extreme, and they had greater variability. 

It was therefore concluded that imputation via the EM algorithm should be preferred.  

However, the differences between the evaluation statistics produced by the two algorithms 

were quite small, so it could be beneficial to consider some further evidence before deciding 

which of the algorithms should be employed in practice. The following section describes one 

way of achieving this. 

5.2.3 Least Distortion Evaluation 

In many cases the criteria used to evaluate the results of the imputation process will depend 

primarily on how the imputed dataset will be used in practice. For example, in some cases it 

will be of primary importance that the mean value for a particular variable is not badly 

“damaged” by the imputation process - i.e. the mean value measured prior to imputation 

should not be significantly different to the mean value measured after imputation. Avoiding 

“damaging” the data can be particularly important when data mining algorithms are to be 

executed against the data, as Pyle (1999) explains; 
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“Even replacing the values at all has its dangers unless it is carefully done so as to 

cause the least damage to the data. It is every bit as important to avoid adding bias 

and distortion to the data as it is to make the information that is present available 

to the mining tool” 

Consequently, it was considered to be important that the proposed imputation evaluation 

method should measure the distortion caused by the imputation process. The distortion of the 

parameters that describe the relationships between variables (such as correlations and 

regression coefficients) can be measured. And the distortion of the parameters that describe  

each variable (such as the mean and standard deviation) can also be measured. This approach 

has been implemented as part of the software application developed by the author, using the 

process shown below; 

 

 

Fig 5.7  -  Implementation of the least distortion evaluation process 

The distortions caused by imputation are calculated using the following general formula; 

Distortion  =   After Imputation Statistic  –  Before Imputation Statistic 
Before Imputation Statistic 

For example, the post-imputation distortion in the mean might be calculated as follows,  

Distortion  =  %202.0
10

1012
==

−  

However, it is important to note that it will usually be impossible to generate imputed values 

that minimise the distortion of more than one parameter. For example, consider the following 

simple univariate example, given by Pyle (1999); 

Load the dataset into the 
imputation software 

Calculate the BEFORE 
imputation statistics 

Impute the missing 
values 

Calculate the AFTER 
imputation statistics 

Compare the BEFORE 
and AFTER statistics 

The mean and standard 
deviation for each variable 

Using the imputation 
method being evaluated 

The mean and standard 
deviation for each variable 

Measures the distortion caused 
by the imputation process 

See section 5.1.2 for 
more details 

Mean before imputation  =  10 
Mean after imputation     =  12 
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“For instance, consider the numbers 1, 2, 3, x, 5, where ‘x’ represents a missing 

value. What number should be plugged in as an unbiased estimate of the missing 

value? Ideally, a value is needed that will at least do no harm to the existing data. 

And here is a critical point – what does ‘least harm’ mean exactly? If the mean is 

to be unbiased, the missing value needs to be 2.75. If the standard deviation is to 

be unbiased, the missing value needs to be about 4.659” 

In such a situation the user of the imputation software would need to decide whether it was 

more important to minimise the distortion of the mean, or to minimise the distortion of the 

standard deviation - since it impossible to do both (as Pyle shows).  

Imputation methods usually reduce the variance within imputed variables  

In practice, the most common data distortion problem caused by imputation is reduced 

variance within the imputed variables. For example, regression based imputation methods 

almost always reduce the variance, because they use the patterns within the known values to 

generate regression equations - which are then used to estimate the missing values. Therefore, 

they must (by their very nature) strengthen the patterns that existed before imputation was 

performed  - e.g. see the discussion of the dataset given in Fig. 5.5.  

The multiple imputation (MI) method (described in section 4.3.3) was devised, at least in 

part, to solve the problem of variance distortion caused by imputation (Rubin, 1987). The 

idea of MI is to generate several different estimates for each missing value, using “repeated 

random draws from the predictive distribution of the missing values” (Little and Rubin, 

2002)  - i.e. stochastic  (usually Bayesian)  techniques are employed to generate the estimates. 

The set of estimates generated for each missing value are then “combined” to form a single 

estimate (e.g. the mean is usually taken). This process will increase the variance within the 

imputed values in most cases, and hence the distortion of the variance caused by the 

imputation process should be less severe. 

The proponents of MI argue that the MI process allows “statistically valid” (Rubin, 1996a) 

inferences (such as estimates of the variance) to be drawn when analysing the variables in the 

imputed dataset. However, some doubt has been cast upon the general truth of this assertion. 

For example, Binder (1996) points out that this depends on the properties of the dataset and 

on the nature of the missing data problem. Binder makes particular reference to the related 

papers on this topic by Fay (1991) and Fay (1992), arguing that, “Fay (1991, 1992) has 

described what I consider to be a scientific gem. He presented a simple situation where 

multiple imputation (MI) is not proper, even though one might expect it to be”. In other 

words, Fay presents some examples of the MI process which show that equation  (4.10), 

given in section 4.3.3 - does  not yield  an unbiased estimate of the variance - i.e. the MI 

process used is not “proper”, in the sense defined by Rubin (1987). 
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5.2.4 Comparing the Distortions Caused by the EM and NN Algorithms 

Section 5.2.2 concluded that the EM algorithm should be preferred over the NN algorithm for 

imputation of the DVHST94 values. However, the differences between the imputation 

accuracy statistics produced by the two algorithms were quite small. This section compares 

the distortions of the DVHST94 mean and standard deviation caused by both algorithms. 

 

 
Fig 5.8  –  Comparison of  DVHST94  parameter distortions caused by the EM and NN algorithms 
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The software application that implements the proposed method automatically produces and 

displays line charts such as the ones shown in Fig. 5.8  (see Fig. 5.3 for an explanation of how 

this is achieved). The two sets of data shown on both charts were sorted independently - i.e. 

the % Change in Mean  and the  % Change in STD  figures for each execution number do not 

match. This method of visual presentation enables the parameter distortion statistics produced 

by the EM and NN imputation algorithms to be more easily compared and evaluated.  

The charts show that the distortion of the mean caused by both algorithms was very similar 

i.e. all 50 executions of both algorithms reduced the DVHST94 mean value by between zero 

and one percent. Therefore, if the distortion of the mean was an important criteria for the 

comparative evaluation of the imputation methods, then the EM algorithm should still be 

preferred over the NN algorithm, because the distortion produced by both algorithms hardly 

differs. 

However, the distortion of the standard deviation (and hence the variance) caused by the two 

algorithms differs considerably. The EM imputation process reduced the variance of the 

DVHST94 values by between 12 and 13 percent across all 50 executions charted. This is a 

typical result for EM, since regression based imputation methods almost always decrease the 

variance, for the reasons given in the previous section. But the NN imputation process 

increased  the variance by between zero and just over five percent across the 50 executions. 

This is an unusual result, since reduced variance is often caused by over frequent use of the 

same donor cases when using NN algorithms to generate imputed values (Durrant, 2005).  

To conclude, we can say that if the distortion of the variance was an important criteria for the 

comparative evaluation of the imputation methods, then the user would need to consider the 

above charts very carefully before deciding whether the EM or the NN algorithm should be 

used to impute the missing DVHST94 values in practice. 
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5.3 Summary 

This chapter has explained how the proposed imputation evaluation method was 

experimentally evaluated and has shown that the method produces reliable and valid 

estimates of imputation accuracy when it is used to evaluate the imputed values generated by 

the EM and NN imputation techniques.  

An explanation of how the software that implements the method can be used to load a 

missing value dataset, analyse the variables it contains and assess the feasibility of imputing 

its missing values has been given. A description of how the proposed method can be used to 

compare the predictive power of candidate imputation methods has been provided. Finally, an 

explanation of how “least distortion” evaluation can be used to compare the parameter 

distortions caused by the candidate methods has been given. 

The following chapter explains how the proposed method was used to assess the feasibility of 

imputing the missing values in the collaborating company’s dataset. Finally, chapter seven 

presents the conclusions that have been drawn and describes how the work described in 

chapters one to six could be continued. 
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Chapter Six 

Applying the Method in Practice: 
A Case Study 
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6.   Applying the Method in Practice: A Case Study 

The work described in this thesis was funded by the EPSRC under the CASE scheme, as 

described in chapter one. This scheme allows students to collaborate with commercial 

organisations, so that the results of the work will benefit everyone concerned. For example, to 

research a topic of common interest, or to find the best way of solving a particular problem. 

In this case the collaborating company were Trends Business Research (TBR), and TBR’s 

missing data problem forms the case study described in this chapter. 

A description of how the collaboration with TBR led to the formulation of the project 

objectives is given in chapter one. The following sections describe how the proposed 

imputation evaluation method was used to achieve the first of these objectives. That is, to 

discover whether imputation of the missing values in TBR’s database was feasible, given the 

large proportions of missing data that it contained. 

• Section 6.1   describes the variables in TBR’s missing value dataset. 

• Section 6.2   gives a detailed description of TBR’s missing data problem. 

• Section 6.3   explains how the problems caused by the extreme outlier values in the TBR 

dataset were addressed. 

• Section 6.4   explains how the EM and NN algorithms (see chapters two and three) were 

customised so that they could be used to impute the missing values in TBR’s dataset. 

• Section 6.5  describes the experiments that were performed in order to find the most 

accurate methods for imputing TBR’s missing values. 

• Section 6.6   analyses the experimental results obtained and draws conclusions. 

6.1 Description of the Missing Value Dataset 

TBR’s missing value dataset is stored in a Microsoft SQL Server 2000® database (Vieira, 

2003) - referred to as the Trends Central Database (TCD). The records in this database 

describe approximately 1.48 million UK business organisations - referred to as Firms - 

ranging from sole traders to conglomerates. The TCD tables contain descriptions of each 

Firm, including its financial situation, number of employees, business activities and 

geographical location. The variables used to support the imputation process were extracted 

from the TCD using SQL,  so that they could be loaded into the software application that 

implements the proposed imputation evaluation method. These variables are described table 

6.1, below. 
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Table 6.1  -  Description of the variables in TBR’s missing value dataset 

Variable name Data type Variable description 

UKSIC_Category Integer 
An integer representation of a categorical alphanumeric code which 
defines the commercial activities carried out by each Firm, such as  
“Publishing of software”  etc. 

Employees Integer Specifies the number of people employed by each Firm 

Easting 
Northing 

Integer 
Pinpoints the geographical location of each Firm on the UK map, using 
two UK Ordnance Survey (OS) mapping co-ordinates. 

Sales 
Payroll 
Depreciation 
DirectorPay 
NetWorth 
PBT  (Profit Before Tax) 

Currency 
Six numeric variables that describe each Firm’s financial situation. 
These variables all had large proportions of missing values. 

Each of the ten variables described in table 6.1 represents one of the columns that was loaded 

into the data matrix that was used to perform the imputation process. The ten variables taken 

together represent a data matrix row, which describes a particular Firm. 

The first four variables listed in table 6.1 were fully observed, but the other six (the 

financial variables) all had large proportions of missing data. The imputation of the 

missing financial values was the problem to be solved. 

6.2 Missingness Pattern Analysis:  Defining the Missing Data Problem 

An analysis of the missingness patterns within the dataset is essential when attempting to 

solve any missing data problem. This proved to be especially important for the TCD dataset, 

which was known at the outset to have very serious missing financial data problems, as 

described in the following two sections. 

6.2.1 Large Proportions of Missing Data 

An analysis of the proportions of missing values for each of the six TCD financial variables  

(as described in table 6.1, above) revealed the following. Firstly, the proportions of missing 

values for each variable are unusually large - i.e. they range from 27 to 96 percent, depending 

on the variable. Secondly, 71 percent of the Firms in the TCD have no known financial 

figures whatsoever. The details are shown in the associated histogram and table below.  
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Table 6.2  -  Breakdown of proportions of missing financial data for each Firm size category 

Proportions % of missing financial values for each Firm size category  
Financial variable with 

missing values 1,128,463 
MICRO Firms 

271,955 
SMALL Firms 

61,389 
SME Firms 

18,770 
LARGE Firms 

Sales 94.52 87.91 67.50 50.49 

Payroll 96.15 87.95 63.08 53.39 

Depreciation 95.70 87.76 63.90 55.03 

DirectorPay 94.00 85.90 59.40 44.49 

NetWorth 81.27 59.67 40.69 26.69 

PBT 93.89 85.55 58.16 42.58 

A commonly recognised Firm size categorization scheme is shown in the associated 

histogram and table above, where the Firms are divided into four distinct Firm size 

categories. These categories are frequently used by TBR when they are compiling reports. 

For example, a report describing the current financial state of small to medium sized (SME) 

manufacturing companies in a specific geographical region might be required. 

Consequently, the missing data problems within each category can be addressed separately,  

i.e. the TCD dataset can be treated as if it were four separate datasets for the purposes of data 

analysis. This alleviates TBR’s missing data problems, because larger Firms (those with more 

employees) generally have smaller proportions of missing financial data, as table 6.2 shows. 

That is, the missing values for all six of the TCD financial variables are MAR, in that the 

probability of a Firm’s financial figures being missing decreases as the Firm’s size increases 
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6.2.2 Unbalanced Missingness Patterns 

An analysis of the missingness pattern structure for the TCD financial variables revealed that 

these patterns are extremely unbalanced. This exacerbates the problems caused by the large 

proportions of missing financial data described in the preceding section. The histogram below 

shows that the financial missingness patterns are dominated by the pattern where no financial 

figures are known, and the pattern where only the NetWorth figure is known. However, some 

of the Firms in the TCD have a complete set of Financial figures, as shown below. 

 

 
      Table 6.3  -  Relative sizes of missingness patterns for each Firm size category 

Missingness pattern type MICRO 
Firms % 

SMALL 
Firms % 

SME   
Firms % 

LARGE 
Firms % 

  No Financial figures known  81.27 59.67 40.68 26.62 

  All Financial figures known 3.22 9.56 27.83 41.46 

  Networth only known 12.57 25.78 17.11 15.28 

  Other missingness patterns 2.94 4.99 14.38 16.64 

 

The SME and LARGE Firm categories both have a significant proportion of Firms with a  

complete set  of Financial figures. Further, the SME and LARGE Firm categories both have a 

reasonable proportion of Firms that have at least one known Financial value (other than 

NetWorth),  as represented by the “Other missingness patterns”  histogram bar.  

Preliminary experiments revealed that the very large proportions of missing financial data 

and the unbalanced missingness patterns produced very inaccurate imputed financial 

values for the MICRO and SMALL Firm categories. It was therefore decided that all 

further efforts would be concentrated on the imputation of the missing financial values 

within the SME and LARGE Firm categories. 
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6.3 Addressing the Problem of Extreme Outlier Values 

Preliminary investigations revealed that a small proportion of very extreme outlier values 

were adding long tails of very low frequency intervals to the distributions of the TCD 

financial variables. The hypothesis was that these distorted distributions were reducing the 

accuracy of the imputed values. Therefore, an attempt was made to detect and remove those 

Firms that contained one or more outlier values in an effort to discover whether this would 

improve imputation accuracy.  

Several methods for the detection of outlier values have been proposed. See for example 

Iglewicz and Hoaglin (1993) and Rousseeuw and Leroy (1987). The outlier detection method 

proposed by the RSC (2001) was found to be an appropriate choice for the purpose of 

detecting the long tails of TCD outliers, for the reasons discussed below. The RSC (2001) 

method is simply a robust version of the outlier detection method that can be used when the 

variables of interest are normally distributed, as shown below. 

 

 

Fig 6.1  -  Detecting outlier values in a perfectly normally distributed variable using Z scores 

Fig. 6.1 shows how Z scores can be used to detect outlier values in a perfectly normally 

distributed variable. Where the Z score for any particular value iy  of the variable 
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Essentially, the Z score is a measure of the number of standard deviations by which any 

particular value of a variable deviates from the mean. Fig. 6.1 shows that for a perfectly 

normally distributed variable, 68.26% of the data lies within 1±  standard deviations of the 

mean, and  99.72%  of the data lies within 3±  standard deviations of the mean. Therefore, 

when the data is normally distributed, outlier values can be both defined and detected using 

any required Z score range. For example, Fig. 6.1 shows that the range 4±  would mark 

approximately  0.0064%  of the data values as outliers. 

However, this method of detecting outliers failed to produce the desired results for the TCD 

financial variables because the µ  and σ  for each of these variables was massively inflated 

by the small proportions of very extreme outlier values. In other words, the outlier values 

themselves were having such a disproportionate effect on the Z score calculations that very 

few outlier values were being detected. Nevertheless, it was found that the Z score method 

could be used to effectively detect TCD financial outliers by using robust, outlier resistant 

estimates of µ  and σ  to calculate the  Z  scores, as follows 

)(
)(ˆ

yMAD
ymedyZ i −=  

Where Ẑ  is a median based estimate of the standard Z score and  )(ymed  gives the median 

value for the variable ),( 21 nyyyy KK=  and  )(yMAD  gives the Median Absolute 

Difference for  ),( 21 nyyyy KK= , which is computed as follows,  

))()(,)(()( 21 ymedyymedyymedymedyMAD n −−−= KK  

The  median  is more robust measure of central tendency than the mean for distributions with 

long tails of low frequency extreme outliers (such as the TCD financial variables), because its 

value is not affected by the outliers themselves. The MAD is a more robust measure of 

variability than the standard deviation for distributions with long tails of low frequency 

extreme outliers, because its value is not affected by the outliers, since it is calculated using 

only the median - as explained by the RSC (2001). 
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6.3.1 Detecting TCD Financial Outlier Values Using Robust Z Scores 

The outlier detection method described in the previous section has been implemented as part 

of the software that implements the proposed imputation evaluation method. This 

functionality was used to detect the outlier values for all of the financial variables in the TCD. 

This proved to be very effective, as the example below shows. 

 

 
Fig 6.2  -  Removing outlier values from the PBT distribution for approximately 1.48 million Firms 
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Fig. 6.2 shows the results of removing outliers with a robust Ẑ  score of more than 4±  from 

the PBT variable’s distribution. The detail in the tails of the distribution shown in the first 

chart is obscured, because the number of Firms in the outlier intervals is generally less than  

six, which is a very small proportion of the scale on the chart’s y axis. The charts show that 

removing the small proportion (2.74%) of outlier values has dramatically rescaled the PBT 

maximum and minimum values. The removal process has also revealed - and centred - the 

hidden PBT approximation of normality shown in the second chart. The results of applying 

the same outlier detection process to all of the TCD financial variables are summarised in 

table 6.4, below. 

Table 6.4  -  Description of financial outlier values with a robust  Z  score of more than ± 4 

Description of statistic Sales Payroll Depreciation DirectorPay NetWorth PBT 

Proportion of outliers with a  Z 
score of more than ± 4 2.41% 2.02% 1.90% 3.35% 7.61% 2.74% 

Mean outlier  Z  score for the 
financial variable 135 79 254 39 380 219 

Maximum outlier  Z  score for 
the financial variable 60,268 247,364 923,849 29,712 1,748,221 347,476 

(Stan dev / mean)  ratio BEFORE 
removing the outliers 15 33 48 9 57 230 

(Stan dev / mean)  ratio AFTER 
removing the outliers 1.39 1.46 1.37 1.83 2.4 2.86 

Evidence of the  very extreme  nature of the financial outlier values is shown in the mean and 

maximum values of the Ẑ scores found. In the most extreme case, the NetWorth maximum 

Ẑ score was found to be 1,748,221. Table 6.4 also shows that before removing the outliers 

the standard deviation was very large compared to the mean, indicating the extremely high 

variance caused by the outliers. In the most extreme case, the PBT standard deviation was 

found to be 230 times larger than the mean. However, after removing the outliers it can be 

seen that the ratio of the standard deviation to the mean decreases substantially. 
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6.4 Imputation Methods Used for the TCD Experiments 

This section describes how the EM and NN algorithms (described in chapters two and three) 

were customised, so that they could be used to impute the missing values in TBR’s dataset. 

Section 6.4.1 explains how the variables used by the EM algorithm were chosen and 

transformed, so as to get the best possible results from the EM imputation process. Section 

6.4.2 explains how the NN imputation process was customised, so that the missing TCD 

financial values would be imputed with the greatest possible accuracy. 

6.4.1 Using the EM Algorithm to Impute TCD Financial Values 

The EM algorithm implementation described in chapter two was used impute the missing 

TCD financial values. The main questions to be answered when using the EM algorithm for 

this purpose were; 

1. Which of the variables in the TCD dataset should be included in the data matrix used 

by the EM algorithm? 

2. How could the variables in the EM data matrix be transformed, so as to get the best 

possible results from the EM imputation process? 

1.  Finding out which variables should be included in the EM data matrix 

The Easting and Northing variables pinpoint the geographical location of each Firm on the 

UK map (see the variable descriptions given in table 6.1). It is often argued that commercial 

enterprises in the south of the UK are more profitable than their counterparts in the north and 

that employees in the south earn more. Therefore, it was possible that adding these two 

variables to the data matrix would increase the predictive power of the regression equations 

generated by the EM imputation process. However, preliminary experiments revealed that the 

inclusion of these two variables slightly reduced the accuracy of the imputed values, so they 

were excluded from the EM data matrix. 

It seemed unlikely that adding the UKSIC_Category variable to the EM data matrix would 

increase the predictive power of the EM regression equations, since this variable is simply an 

integer representation of an alphanumeric code (see the following section for more details). 

However, this was tried, but it was found that the accuracy of the imputed financial values 

decreased noticeably, so the UKSIC_Category was excluded from the EM data matrix. 

The other variables in the dataset were the Employees variable and the six financial variables. 

These variables were added to the data matrix in various combinations and it was found that 

the most accurate imputed values were produced when they were all included. And of course 

this was necessary, since it was the missing financial values that were to be imputed. 
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2.  Transforming the variables to get the best results from the EM process 

It is well known that the EM algorithm performs at its best when the missing value dataset 

contains normally distributed variables (see Schafer, 1997, among others). However, some of 

the TCD financial variables were far from being normally distributed, even after the extreme 

outlier values were removed (using the method described in the previous section). Therefore, 

an attempt was made to transform the financial distributions to approximate normality using 

the equations given in the seminal paper by Box and Cox (1964), and as described below; 

The transformation  ),( )()(
2

)(
1

)( λλλλ
nyyyy KK=    of   ),( 21 nyyyy KK=  is given by;  
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Where  c  is a shift parameter chosen large enough to ensure that 0)( >+ cy , for all values 

in the matrix column containing  y.  The use of  c  is standard procedure, and it was required 

for the TCD variables, since Box-Cox transformations can only be applied to positive 

variables, and some of the TCD financial variables (such as PBT) can take negative values. 

The main problem to be solved when applying equation  (6.1)  to any particular variable is to 

find the value of the λ  parameter which will transform ),( 21 nyyyy KK=  to the best 

possible approximation of a normal distribution. Several algorithms have been developed to 

find the optimal value of λ . See for example Ogwang and Rao (1997) and Press et al. 

(1992). For imputation purposes the fast and efficient algorithm proposed by Coleman (2004) 

seemed to be the best choice. This algorithm uses an expectation-maximisation approach  (in 

the spirit of the EM algorithm)  to find the optimal value of λ . This is achieved by using an 

iterative procedure to maximise the following log-likelihood function; 
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Coleman’s (2004) algorithm was implemented as part of the software application that 

implements the proposed imputation evaluation method and it was found to be very effective. 

The results of applying this algorithm to the SME Payroll variable are shown below. 

for

for
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Fig 6.3  -  Transforming the SME Payroll variable to an approximate normal distribution 
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The two stage transformation process shown in Fig. 6.3 was applied to all of the variables in 

the data matrix used by the EM algorithm and the distributions were transformed to 

approximate normality in every case. When the imputation process was complete the 

variables in the matrix were restored to their original distributions, using the reverse Box-Cox 

transformations given by, 

⎪⎩

⎪
⎨
⎧

−

−+
=

cy

cy
y

)exp(

)1(
)(

/1)(

λ

λλλ
              

0
0

=
≠

λ
λ

 

Where  c  is the same shift parameter used in equation  (6.1),  given above. The experimental 

results given in Appendix A and in section 6.6 show that applying this two stage 

transformation process to the variables increased the accuracy of the imputed financial 

values. In addition, it was found that the application of this process increased the execution 

speed of the EM algorithm considerably - i.e. the number of iterations required for EM to 

converge (see section 2.2.3 for a discussion of EM convergence) decreased by about 30%  

(and in some cases much more) for every experiment. 

6.4.2 Using the Nearest Neighbour Algorithm to Impute TCD Financial Values 

The implementation of the EM algorithm described above  does not  utilise the information 

content within the fully observed UKSIC_Category, Easting and Northing variables (for the 

reasons given in the preceding section). However, preliminary experiments revealed that the 

accuracy of the imputed values increased when these three variables were utilised by the NN 

algorithm. The question was: would the NN algorithm produce more accurately imputed 

financial values than the EM algorithm because it utilised this additional information?  

The NN algorithm given in Fig. 3.4 was used to perform the imputation process. This 

algorithm imputes the missing financial value in a particular Firm (matrix row) mF  by 

taking a copy of the known value from the closest donor Firm dF , such that; 

Imputed financial value  dcmc FF ==  

Where  c  is the matrix column with the missing financial value (to be imputed). 

And where  m  is the matrix row index of the Firm with the missing value. 

And where  d  is the matrix row index of the Firm containing the donor value. 

Where the closest donor Firm dF is found by comparing mF  with all of the other Firms in 

the same UKSIC_Category as mF , and using the Firm that returns the smallest value of the 

multivariate Euclidean distance function ( )dm FFdist ,  as the donor - i.e. Finding the 

minimum value of   ( )dm FFdist ,   for all  RFd ∈ ,  where; 

for 

for 
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( ) ( )∑
∈

−=
Sj

mjdjdm FFFFdist 2,   for all   RFd ∈      (6.3) 

Where  },....{ 1 kFFR =  is the set of all Firms in the same UKSIC_Category as mF  

And where  d = 1  to  k  )( md ≠   indexes the Firms  (matrix rows)  in the set  R 

And where Sj ∈ indexes the matrix columns that have known values in both mF and dF  

i.e. using the matrix row comparison method defined in Fig. 3.1. 

Searching for donor Firms within the most suitable UKSIC categories 

The method used to decide whether a set of Firms were in the same UKSIC category 

(deciding which RFd ∈ )  requires further explanation, because the Firms within the TCD 

dataset can be segmented at five different levels of UKSIC granularity. The lowest level of 

granularity (level 1) creates the smallest number of segments and the highest level (level 5) 

creates the largest number of segments, as shown in table 6.5, below. 

Table 6.5  -  Representation of the Education / Health & Social Work UKSIC categories in the TCD 

UKSIC segmentation levels 1 to 5 
(Number of segments created) 

UKSIC category details as stored in the TCD database 

1 
(1) 

2 
(2) 

3 
(7) 

4 
(12) 

5 
(15) 

UKSIC 
code 

UKSIC category description 
Number 
of Firms 

8 0 0 0 0 80000 Education 58 

8 0 2 1 0 80210 General secondary education 27,997 

8 0 2 2 0 80220 Technical and vocational secondary education 183 

8 0 3 0 1 80301 Sub-degree level higher education 76 

8 0 3 0 2 80302 First-degree level higher education 4,563 

8 0 4 2 1 80421 Activities of private training providers 11,359 

8 0 4 2 9 80429 Other adult and other education not elsewhere classified 25,691 

8 5 1 1 0 85110 Hospital activities 5,287 

8 5 1 1 3 85113 Nursing home activities 3,003 

8 5 1 2 0 85120 Medical practice activities 17,418 

8 5 1 3 0 85130 Dental practice activities 11,308 

8 5 1 4 0 85140 Other human health activities 30,574 

8 5 2 0 0 85200 Veterinary activities 4,367 

8 5 3 1 2 85312 Non-charitable social work activities with accommodation 19,034 

8 5 3 2 2 85322 Non-charitable social work activities without accommodation 31,467 

The TCD dataset contains ten level 1 UKSIC segments, numbered 0 to 9, and all of the 

UKSIC categories in segment number 8 are shown in table 6.5, above. Hence, if the dataset 

was segmented at level 1, then ten segments would be created and the search for each donor 

Firm would take place within the largest possible number of UKSIC categories. It follows 

that segmenting the Firms at level 5 should produce the most accurately imputed values, 

because the search for each donor Firm would then take place within a single UKSIC 
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category. However, preliminary experiments revealed that segmenting at level 3 produced the 

best results, because segmenting at levels 4 and 5 created several segments with 100% 

missing values, which meant that no donor Firms could be found for many of the missing 

values. 

However, the benefits of searching for donor Firms within the best UKSIC segments were 

somewhat reduced, for the following reasons. Firstly, some UKSIC categories had much 

larger proportions of missing data than others. Secondly, some of the Firms in the TCD had 

been placed in the wrong UKSIC categories by mistake. This was partly caused by placing 

Firms which could  not be easily categorised  into “catch all” UKSIC categories, such as the 

“Other adult and other education not elsewhere classified”  category, shown in table 6.5. 

Scaling the variables used for the Euclidean distance calculations 

Equation (6.3) repeatedly measures the distance between two Firms in nine dimensional 

Euclidean space, because nine of the ten variables given in table 6.1 are included in the 

( )dm FFdist ,  computations (the UKSIC_Category is excluded). To clarify, if only the 

Easting and Northing variables were included in the computation then equation (6.3) would 

find the  geographically closest  donor Firm in the same UKSIC_Category as the Firm with 

the missing value - i.e. by comparing all of the two dimensional Euclidean distances, which 

can be easily visualised. 

However, some of the nine variables included in the computation had much larger values than 

others (such as NetWorth) and these variables were having a disproportionate effect on the 

( )dm FFdist ,  values. In particular, the Employees variable was being “swamped” by the 

(much larger) financial variables, so that the number of Employees was having very little 

effect on the ( )dm FFdist ,  results. This problem was solved as described below.  

Firstly, the Employees variable and the six financial variables were scaled, so that they all 

carried the same weight in the distance calculations. This was achieved by transforming the 

variable values to their Z scores prior to executing the NN algorithm, as suggested by Manly 

(1986). This simple process noticeably improved the accuracy of the imputed financial 

values. Secondly, the Easting and Northing variables were divided by 100,000 just after they 

were loaded into the data matrix. This gave these variables about one tenth of the weight of 

the other variables, which proved to be very effective. That is, various weighting schemes 

were tried for the Easting and Northing variables using a trial and error approach and dividing 

by 100,000 seemed to produce the most accurately imputed financial values. 
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6.5 SME and LARGE Firm Financial Imputation Experiments 

The missingness pattern analysis process described in section 6.2 defined the TCD missing 

data problem. This led to the conclusion that all further efforts should be concentrated on the 

imputation of missing financial values within the SME and LARGE Firm categories. 

Following this, the investigations described in section 6.3 led to the formulation of the 

hypothesis that removing all Firms containing one or more financial outlier values might 

improve imputation accuracy. This led to the implementation of a method for removing the 

outlier Firms, which proved to be very effective. Following this, the work described in 

section 6.4 led to the implementation of the EM and NN algorithm modifications needed for 

the imputation of the missing TCD financial values.  

Thus, the stage has been set for the description of the experiments which were designed to 

find the most accurate methods for imputing the missing financial values. The following two 

sections give a detailed description of these experiments. 

Description of the 48 financial variable imputation experiments 

Twelve sets of four imputation experiments were performed. The same TCD financial 

variable was imputed for each set of four experiments. For example, the list below describes 

the set of experiments that were performed for the SME Firm Payroll variable. 

1. Imputation using the  EM  algorithm  with outlier Firms  retained. 

2. Imputation using the  EM  algorithm  with outlier Firms  deleted. 

3. Imputation using the  NN  algorithm  with outlier Firms  retained. 

4. Imputation using the  NN  algorithm  with outlier Firms  deleted. 

The objective was to discover which of these four imputation methods would produce the 

most accurately imputed SME Payroll values. The same set of four experiments were 

performed for each of the following twelve variables; 

• SME Firm variables        Sales,  Payroll,  Depreciation,  DirectorPay,  NetWorth,  PBT 

• LARGE Firm variables   Sales,  Payroll,  Depreciation,  DirectorPay,  NetWorth,  PBT 

Thus, 48 experiments were performed in total. Fifty consecutive executions of the required 

imputation algorithm (EM or NN) were performed for each of the 48 experiments. Hence, 

2,400 executions of the imputation algorithms (1,200 for EM and 1,200 for NN) were 

performed. A small proportion of the known values were randomly deleted and “put back” 

for each execution of the  EM  and  NN  algorithms, using the procedure given in Fig. 4.5. 

That is, the proposed imputation evaluation method was executed 48 times, using 50 

iterations per execution. The following two sections describe the 48 experiments in more 

detail, using the pro-forma that has been designed to support the proposed method. 
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6.5.1 Definition of the EM Imputation Experiments 

Tables 6.6 and 6.7 describe the EM algorithm imputation evaluation experiments that were 

performed for the SME Payroll variable. The same pair of experiments were repeated for all 

12 of the SME and LARGE Firm financial variables. That is, the descriptions given in tables 

6.6 and 6.7 hold for all of the TCD financial variables, with the only difference being the 

proportion of missing values for each variable, as given in table 6.2, above. 

Table 6.6  -  Description of TCD imputation evaluation experiment  1  (EM retaining outlier Firms) 
 Imputation of  SME Payroll  values using 50 executions of the EM algorithm 

EXPERIMENTAL QUESTION 

Can the missing SME Payroll figures be accurately imputed using the EM imputation process described below? 

Description of 
the missing 
value dataset 

• All  61389  SME  Firms were loaded into the data matrix from the TCD database, using SQL. 

• The TCD columns loaded into the matrix were:  Sales,  Payroll,  Depreciation,  DirectorPay,  
NetWorth,  PBT  and  Employees.  All columns contained integer values only. 

Variable to be 
imputed and 
evaluated 

• The variable to be imputed and evaluated was Payroll. 

• Payroll had 38724 missing values -  i.e. 63.08% of the 61389 data matrix rows had missing values. 

Imputation 
method used for 
the experiment 

• Imputation was performed using the EM algorithm 

• The EM algorithm convergence value was 0.0001 

• Box-Cox power transformations were performed for all variables. 

• The initial covariance matrix was created using all data matrix rows with a full set of known values. 

• All imputed values were rounded to the nearest integer before estimating the predictive accuracy of 
the imputed values. 

Imputation 
evaluation 
method 

• 50 executions of the EM imputation algorithm were performed (using the options described above). 

• No outlier Firms were removed from the matrix. 

• 4.16% of the known Payroll values were randomly deleted and “put back” for each EM execution, 
using the Fig.4.5 algorithm. With balanced random deletion across all missingness patterns. 

 

Table 6.7  -  Description of TCD imputation evaluation experiment  2  (EM deleting outlier Firms) 
 Imputation of  SME Payroll  values using 50 executions of the EM algorithm 

EXPERIMENTAL QUESTION 

How would deleting outlier Firms from the data matrix affect EM imputation of the missing SME Payroll figures? 

This experiment was identical to the experiment described in table 6.6, except that all Firms (matrix rows) that contained  
any financial variable  with a robust  Z  score of more than ± 4 were deleted from the data matrix. That is, 8251 of the 
61389 Firms were deleted from the matrix prior to the first execution of the EM imputation process 
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6.5.2 Definition of the Nearest Neighbour Imputation Experiments  

Tables 6.8 and 6.9 describe the NN algorithm imputation evaluation experiments that were 

performed for the SME Payroll variable. The same pair of experiments were repeated for all 

12 of the SME and LARGE Firm financial variables. That is, the descriptions given in tables 

6.8 and 6.9 hold for all of the TCD financial variables, with the only difference being the 

proportion of missing values for each variable, as given in table 6.2, above. 

Table 6.8  -  Description of TCD imputation evaluation experiment  3  (NN retaining outlier Firms) 
 Imputation of  SME Payroll  values using 50 executions of the NN algorithm 

EXPERIMENTAL QUESTION 

Can the missing SME Payroll figures be accurately imputed using the NN imputation process described below? 

Description of 
the missing 
value dataset 

• All  61389  SME  Firms were loaded into the data matrix from the TCD database, using SQL. 

• The TCD columns loaded into the matrix were:  Sales,  Payroll,  Depreciation,  DirectorPay,  
NetWorth,  PBT,  Employees,  Easting,  Northing  and  UKSIC_Category.  All columns contained 
integer values (the UKSIC_Category contained integer representations of alphanumeric codes). 

Variable to be 
imputed and 
evaluated 

• The variable to be imputed and evaluated was Payroll. 

• Payroll had 38724 missing values -  i.e. 63.08% of the 61389 data matrix rows had missing values. 

Imputation 
method used for 
the experiment 

• Imputation was performed using the nearest neighbour algorithm described in section 3.2.3 

• The Euclidean distance was used to measure the similarity between Firms (data matrix rows). 

• All variables except Easting and Northing were transformed to standard Z scores prior to 
imputation - so that each variable would carry equal weight in the Euclidean distance calculations. 

• The Easting and Northing variables were divided by 100,000 just after they were loaded into the 
data matrix  (see the explanation for this given in section 6.4.2). 

• The search for each nearest neighbour was carried out within the UKSIC segment to which the 
recipient Firm (the Firm with a missing value) belonged  -  i.e. only those Firms in the same UKSIC 
segment as the recipient Firm were considered as potential donors  (as explained in section 6.4.2). 

Imputation 
evaluation 
method 

• 50 executions of the NN imputation algorithm were performed (using the options described above). 

• No outlier Firms were removed from the matrix. 

• 4.16% of the known Payroll values were randomly deleted and “put back” for each NN execution, 
using the Fig.4.5 algorithm. With balanced random deletion across all UKSIC segments. 

Table 6.9  -  Description of TCD imputation evaluation experiment  4  (NN deleting outlier Firms) 
 Imputation of  SME Payroll  values using 50 executions of the NN algorithm 

EXPERIMENTAL QUESTION 

How would deleting outlier Firms from the data matrix affect NN imputation of the missing SME Payroll figures? 

This experiment was identical to the experiment described in table 6.8, except that all Firms (matrix rows) that contained  
any financial variable  with a robust  Z  score of more than ± 4 were deleted from the data matrix. That is, 8251 of the 
61389 Firms were deleted from the matrix prior to the first execution of the NN imputation process 
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6.6 Experimental Results:  Estimating Imputation Accuracy 

A comprehensive set of experimental results for all 48 experiments is given in Appendix A. 

This comprises 13 pages of imputation accuracy statistics. Including two overall results tables 

(one for SME Firm imputation and one for LARGE Firm imputation). And twelve associated 

pairs of RD histograms and segment analysis tables (one pair for each of the methods shown 

in table 6.10, below). This section summarises these statistics and draws conclusions. 

6.6.1 Estimating the Accuracy of the Imputed Values 

The most accurate imputation method found for each of the twelve sets of four experiments 

described in the preceding section is shown in table 6.10, below. These twelve methods are 

also highlighted in tables A.1 and A.4 (see Appendix A). The RD histogram and segment 

analysis table associated with each of these methods is also given in Appendix A. The bullet 

points following the table summarise the conclusions that were drawn. 

Table 6.10  -  The twelve most accurate imputation methods found for the TCD financial variables  

Financial variable imputed 
and evaluated 

Most accurate imputation found 
method for variable 

Proportion % of missing 
values imputed 

SME Firm Sales NN  with outlier Firms deleted 96.92 

SME Firm Payroll NN  with outlier Firms deleted 96.55 

SME Firm Depreciation NN  with outlier Firms deleted 95.85 

SME Firm DirectorPay EM  with outlier Firms deleted 97.93 

SME Firm NetWorth EM  with outlier Firms deleted 99.98 

SME Firm PBT EM  with outlier Firms deleted 98.81 

LARGE Firm Sales NN  with outlier Firms deleted 90.24 

LARGE Firm Payroll NN  with outlier Firms deleted 89.86 

LARGE Firm Depreciation EM  with outlier Firms deleted 89.90 

LARGE Firm DirectorPay EM  with outlier Firms deleted 69.59 

LARGE Firm NetWorth EM  with outlier Firms deleted 99.88 

LARGE Firm PBT EM  with outlier Firms deleted 97.82 

 

• Deleting outlier Firms from the data matrix produced more accurately imputed values in 

22 out of 24 cases (see tables A.1 and A.4). The disadvantage was that the missing 

values in the deleted outlier Firms could not be imputed. However, the proportion of 

imputed values lost because of this was generally quite small, as table 6.10 shows. 

• A single anomalous result occurred for the EM algorithm, in that 26.39% of the LARGE 

Firm DirectorPay imputed values were discarded because they were wrongly imputed as 

negative numbers.  For NN imputation a very small proportion (at most 0.14%) of the 

missing values were not imputed for some Firms, because the UKSIC segments these 

Firms belonged to had  100%  missing values. 
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• The RD histograms for the twelve most accurate imputation methods  (see sections A.2 

and A.5)  show that at least 5.22%  (and in most cases far more) of the deleted values 

were “put back” very inaccurately for every experiment. That is, the patterns within the 

known values were not strong enough to support the EM and NN imputation methods. 

Therefore, the feasibility of using these methods to impute the missing values is 

questionable. See sections  1.3.2  and  5.1.4  for detailed discussions of this idea. 

• The Sales, Payroll and Depreciation variables were imputed  far more accurately  than 

the other three financial variables for both the SME and LARGE Firm categories. The 

NN algorithm produced the most accurate imputed values for these variables for five out 

of six of the results shown in table 6.10, above. 

• The accuracy of the imputed DirectorPay, NetWorth and PBT values was extremely 

poor, with huge MRD values being produced across the board. That is, the patterns 

within the known values for these variables were so weak that it is hard to see how the 

missing values could be accurately imputed using any imputation method. 

• The statistics given in tables A.1 and A.4 show that the changes in the mean and 

standard deviation (STD) caused by the imputation process were generally quite large. 

That is, the mean and STD were generally reduced  by about 20% to 40%, with a few 

notable exceptions. The NN algorithm caused smaller changes than the EM algorithm in 

almost every case, with the differences being quite marked for some experiments. 

6.6.2 Estimating Imputation Accuracy in Data Segments 

The proposed imputation evaluation method allows the accuracy of the imputed values in 

different data segments to be estimated separately (see sections 4.2.2 and 4.2.3 for full 

details). This allows the imputation accuracy statistics produced for each segment to be 

analysed and compared. The procedure used to calculate these statistics is given in Fig. 4.5. 

The execution of this procedure proved to be quite useful for the TCD dataset, for the reasons 

given below. 

The screenshot below shows how the segment analysis functionality has been implemented 

within the software. The imputation accuracy statistics shown in the grid were aggregated 

over 50 executions of the NN algorithm when imputing the missing LARGE Firm Payroll 

values. The statistics shown in the screenshot are also given in table A.4.2 in section A.6. The 

segment analysis results tables for the other eleven most accurate methods (see table 6.10, 

above) are given in sections A.3 and A.6. 
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Fig 6.4  -  Implementation of the data segment analysis graphical user interface 

The leftmost column shows the UKSIC segment being evaluated - with segmentation at 

UKSIC level one (see table 6.5, above). Column two shows the proportion of the total 

number of missing values (across the entire dataset) in each segment  - i.e. the values given in 

column two sum to 100%. The four rightmost columns show the imputation accuracy 

statistics produced for each segment (using equations (4.8) and (4.9), given in chapter four). 

The grid rows are sorted by MRD descending  - i.e. the segment with the least accurate 

imputed values is shown in the top row of the grid.  

The screenshot shows that segment 9 (which contains all Firms in the “Other Community, 

Social and Personal Service Activities” UKSIC categories)  has the least accurate imputed 

values. This type of information would be useful to TBR when they were compiling reports 

describing the Firms in one or more UKSIC categories. For example, it would be known that 

the imputed values in some UKSIC categories were more accurate than in others, and 

therefore TBR might decide not to impute the missing values in the least accurate categories 

under any circumstances. This approach is unique to the imputation evaluation method 

described in this dissertation and it is one of the strongest features of that method. 

The values shown in these columns are 
given by equation (4.8)  - see section 4.2.3 

These options toggle the grid column 
values between equations (4.8) and (4.9) 



- 121 - 

The proposed method also allows the accuracy of the imputed values in different  missingness 

patterns to be estimated separately. For example, the tables given in sections A.3 and A.6 

show that the missingness patterns containing the smallest number of known values imputed 

with the least accuracy in most cases, as one might expect. In particular, the missing values 

within the pattern with no known financial values were imputed very inaccurately across the 

board. Unfortunately, this pattern contained most of the missing values in the TCD dataset, so 

discarding the imputed values in this pattern would mean that very few missing values would 

be imputed for any TCD variable.  

However, the histogram given in section 6.2.2 shows that the missingness patterns within the 

TCD dataset were extremely unbalanced. Consequently, the advantages of comparing 

imputation accuracy across missingness patterns were reduced for the TCD. Nevertheless, the 

missingness pattern comparison process has significant benefits for the evaluation of 

regression based imputation methods (such as the EM algorithm), because it allows users to 

see which missingness patterns produce the best and worst regression equations for any 

particular dataset. 

6.6.3 TCD Imputation Conclusions 

The feasibility of imputing the missing TCD financial values is questionable, because the 

accuracy of the imputed values has been shown to be very poor across the board. The reasons 

for this are summarised below.  

• The large proportions of missing financial values (see section 6.2.1). 

• The unbalanced financial variable missingness patterns (see section 6.2.2). 

• Some UKSIC categories have much larger proportions of missing data than others.  

• Some of the Firms in the TCD have been placed in the wrong UKSIC categories. 

• The patterns within the known financial values are generally very weak. 

• The financial variables all have small proportions of extreme outlier values. 

These problems are embedded within the data itself, and so it is hard to see how they could be 

solved using any imputation method. However, it is important to emphasise that the final 

decision regarding the feasibility of imputing the missing financial values can only be taken 

by the staff at TBR. Consequently, it is argued that there is no substitute for human judgment 

when considering these matters, and that the proposed imputation evaluation method can only 

facilitate the decision making process by automating the calculation and display of various 

imputation accuracy statistics. 
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6.7 Summary 

This chapter has described how the proposed imputation evaluation method was used to 

address the collaborating company’s (TBR’s) missing data problem. That is, to discover 

whether imputation of the missing values in TBR’s database (the TCD) was feasible, given 

the overall poor quality of the data. 

The variables in the TCD dataset have been described and a detailed description of TBR’s 

missing data problem has been given. An explanation of how the problems caused by the 

extreme outlier values in the TCD dataset were addressed has been provided. A description of 

how the EM and NN algorithms (described in chapters two and three) were customised to suit 

the TCD dataset has been given. A description of the experiments that were performed in 

order to find the most accurate methods of imputing the missing TCD values has been 

provided. And finally, the experimental results have been summarised and conclusions have 

been drawn. 

The following chapter summarises the thesis, draws conclusions and describes how the work 

described in chapters one to six could be continued. 
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Chapter Seven 

Conclusions and Further Work 
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7.   Conclusions and Further Work 

This thesis has described a novel imputation evaluation method and has shown how this 

method can be used to estimate the accuracy of the imputed values generated by any 

imputation technique. The work was funded by the EPSRC under the CASE scheme and the 

resulting collaboration with the partner company led to the formulation of the project 

objectives, which are described in section 1.1.2. These objectives were achieved and the 

contributions to knowledge made by this work were; 

1. The new imputation evaluation method described in chapter four. The equations and 

procedures described in this chapter are novel and the method used to compare the 

accuracy of imputed values in different data segments is also original. 

2. The description and experimental evaluation of a novel general purpose NN imputation 

algorithm given in chapter three. 

These contributions are also described in the two published papers given in Appendix E.   

The following sections summarise the thesis chapters and discuss the conclusions that were 

drawn for each chapter.  

7.1 Theory and Implementation of Imputation Methods 

Chapter two summary 

Chapter two explained the fundamental concepts underpinning the implementation of MLE  

based imputation via the EM algorithm and showed how this approach could be used to 

impute missing values in numeric datasets with multivariate missingness patterns. The history 

and utility of the EM algorithm was discussed and the type of datasets that can be processed 

by the EM algorithm were described. A description of how the author has implemented the 

EM algorithm as a software application was given. 

Chapter two conclusions 

Techniques for decreasing the execution time of imputation algorithms have received very 

little attention in the literature. The experiments that evaluate the performance of the author’s 

implementation of the EM algorithm address this problem and make some contribution to the 

theory of maximum likelihood based imputation. The key findings were as follows; 

• It is essential to employ the fastest possible method to generate the regression equations 

used to impute the missing values in each missingness pattern. This can be achieved by 

using the SWEEP operator, as described in chapter two and in Appendix B.  



- 125 - 

• EM execution time can be substantially decreased by sorting the data matrix into 

missingness pattern order. It is essential this sorting process is performed using an 

algorithm which requires no more than  (n log n)  data matrix row comparisons, 

• The fastest possible method of processing the EM sufficient statistics matrix should be 

employed. This can be achieved by creating the initial version of this matrix only once, 

then storing and reusing it repeatedly, using the approach described in Appendix B. 

Chapter three summary 

Chapter three explained the ideas underpinning the development of a novel, general purpose 

NN imputation algorithm and showed how these ideas could be used to reduce the execution 

time of the NN imputation process. A description of the experiments that evaluated the 

performance of the new algorithm was given, and the experimental results were presented, 

analysed and discussed. The ideas and the experimental results presented in this chapter form 

part of the contribution to knowledge made by this dissertation.  

Chapter three conclusions 

As the proportion of missing values in the data matrix increases the execution time of NN 

imputation algorithms can be decreased by a corresponding proportion. The principle 

underlying this idea is that the number of row comparisons required to find any particular 

nearest neighbour can be reduced by utilising the information content within the missingness 

patterns in the dataset. The algorithm described in chapter three implements this principle and 

the experimental results show that this approach decreased the execution time of the NN 

imputation process for both simulated and real datasets. The algorithm’s execution time was 

found to steadily decrease as the proportion of missing values in the dataset was increased. 
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7.2 The Proposed Imputation Evaluation Method 

Chapter four summary 

Chapter four described the proposed imputation evaluation method and showed how this 

method could be used to estimate the accuracy of the imputed values generated by any 

imputation technique. A functional overview of the method was given and the equations and 

procedures which form the basis of the method were described. The proposed method was 

compared with the most similar methods found within the literature and it was shown that the 

method builds on the ideas underpinning these methods, but differs from them in several 

important respects. This ideas presented in this chapter form the principal contribution to 

knowledge made by this dissertation. 

Chapter four conclusions 

The general idea of evaluating imputation methods by measuring how accurately a set of 

deleted values have been “put back” has been frequently employed by other researchers. 

However, these approaches differ from the proposed method in several important respects. 

Firstly, they are usually applied to simulated, rather than real, datasets. Secondly, they are not 

devised to be general purpose imputation evaluation techniques - i.e. they are usually 

designed for a specific purpose (as an incidental part of a larger project), or to be applied to a 

specific type of dataset. Thirdly, the idea of measuring imputation accuracy using the 

statistics generated via a repetitive stochastic algorithm is not used. (see section 4.3.5 for 

further details). Finally, the idea of comparing the accuracy of the imputed values in different 

data segments is not used. 

The most similar methods found within the literature were uncertainty estimation methods. 

These methods are similar because they execute the imputation method being evaluated 

repeatedly against the missing value dataset, then go on to use the parameters that describe 

the resulting set of unique imputed datasets to evaluate the imputation process (see Fig. 4.9 

for a diagrammatic representation of this process). 

However, the proposed method differs from uncertainty estimation methods by estimating the 

accuracy of the imputed values, rather than estimating the uncertainty inherent within those 

values  -  i.e. uncertainty estimation methods  do not record deleted values  and then measure 

how accurately they have been “put back” by the imputation process. In addition, uncertainty 

estimation methods are not generally used to compare the uncertainty within imputed values 

in different data segments, although there seems to be no reason why they could not be 

adapted for this purpose. 
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Chapter five summary 

Chapter five explained how the reliability and validity of the proposed method was 

experimentally evaluated. A description of the software that implements the method was 

given, including some screenshots of the graphical user interface that showed how the 

software can be used in practice. An explanation of how the parameters that control the 

execution of the method can be chosen was given. Finally, a description of how the method 

can be used to compare the effectiveness of candidate imputation methods was provided. 

Chapter five conclusions 

The experimental results given in chapter five show that the method produces reliable and 

valid estimates of imputation accuracy when it is used to evaluate the imputed values 

generated by the EM and NN imputation techniques. However, the final decision regarding 

the feasibility of the imputation process can only be taken by the owner of the missing value 

dataset, and the proposed method can only facilitate the decision making process by 

automating the calculation and display of various imputation accuracy statistics. 

Chapter six summary 

Chapter six described how the method was used to discover whether imputation of the 

missing values in TBR’s database (the TCD) was feasible. The variables in the TCD dataset 

were described and a detailed description of TBR’s missing data problem was given. A 

description of the experiments that were performed in order to find the most accurate 

methods of imputing the missing TCD values was given. Finally, the experimental results 

(given in Appendix A) were summarised and conclusions were drawn. 

Chapter six conclusions 

The feasibility of imputing the missing values in the TCD dataset is questionable, because the 

accuracy of the imputed values was shown to be very poor across the board. This occurred 

because of the extremely poor quality of the dataset. That is, the problems that caused the 

poor imputation accuracy are embedded within the data itself, so it is hard to see how they 

could be solved using any imputation method. However, it is important to emphasise that the 

final decision regarding the feasibility of imputing the missing TCD values can only be taken 

by the staff at TBR. 
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7.3 Overall Conclusions and Further Work 

All imputation methods have the same basic objective. That is, they try to make the best 

possible use of the information content (the patterns and so on) within the known values in a 

particular dataset, to generate the best possible estimates for the missing values in that 

dataset. And of course, this is the only possible approach, since the information content 

within the known values is the only thing we have to “go on”. It follows that imputation 

evaluation methods should also make the best possible use of the information content within 

the  known values, and the method proposed in this thesis does just this. 

The idea of evaluating imputation techniques by measuring how accurately they can “put 

back” a set of deleted values is a simple and intuitive approach to imputation evaluation, 

which can be easily understood by the owner of any missing value dataset. And it is difficult 

to discount the results produced by this method, since it would be very hard to deny the 

success of any imputation technique which can be shown to have repeatedly “put back” a set 

of randomly deleted values with a high degree of accuracy. 

Despite these (seemingly obvious) conclusions, this dissertation describes the first attempt 

to develop the “delete and put back” approach into a general purpose imputation 

evaluation method.  However, the implementation of the method described here could be 

developed further, as follows, 

• The method could be tested against many different types of dataset and conclusions 

regarding its utility for those types of dataset could be drawn. It is important to 

emphasise the idea of dataset types in this respect, because every missing value dataset 

will be unique in some respects and consequently every missing data problem will also 

be unique. Therefore, the only way to properly evaluate the utility of the proposed 

method for any particular dataset is to execute it against that dataset and then consider 

the imputation accuracy statistics that are produced.  

• Chambers (2001) lists five criteria that can be used to evaluate the performance of any 

imputation technique (see chapter one). The “delete and put back” method described in 

this thesis evaluates performance using the first of these criteria (predictive accuracy), 

but it could be adapted to evaluate performance using the other four. This could be 

achieved by comparing the properties of the deleted (known) values and the values that 

are “put back” (the imputed values) using techniques that have not been applied in this 

thesis. For example, the correlations between these two sets of variables could be 

measured, or their distributions could be compared (using line charts or numerical 

methods), or any other required numerical or visual technique could be used measure 

and compare their attributes. 
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• The proposed method has been used to estimate the accuracy of the imputed values 

generated by the EM and NN imputation techniques in this thesis. However, the method 

could be used to estimate the accuracy of the imputed values generated by any other 

imputation technique, so that the effectiveness of these techniques could be compared.  

In particular, the method could be adapted to estimate the accuracy of the imputed values 

generated by multiple imputation techniques, which are generally recognised as being 

the most effective imputation methods. 

• The imputation evaluation statistics produced by the proposed method could be 

compared with the statistics produced by other imputation evaluation methods. This 

would be best achieved by implementing several evaluation methods alongside one 

another in a single integrated software application. In particular, the results produced by 

the proposed approach could be compared with the results produced by uncertainty 

estimation methods, which have some similarity with the proposed approach. 
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APPENDICES 

A  TCD Imputation Experimental Results 
Tables of experimental results for the case study given in chapter six. 

B  Complete EM Algorithm Pseudo-code 
Gives a complete pseudo-code version of the EM imputation algorithm.  

C  Software and Hardware Platform Used 
Describes the computer platform used to do all of the work described in this thesis. 

D  Notation and Terminology Used in This Thesis 
Describes the mathematical notation and the associated nomenclature used in this thesis. 

E  Thesis Publications 
Details of the two published papers resulting from the work described in this thesis. 
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A TCD Imputation Experimental Results  

This appendix presents the imputation accuracy statistics that were generated during the 

experimental imputation of the financial variables in the collaborating company’s database. 

The contents are referenced extensively from within chapter six. The sub-sections on the 

following pages contain two sets of associated tables and histograms, as follows; 

SME Firm financial variable imputation experiments 

A.1  -  Table showing imputation accuracy statistics for all 24 imputation experiments. 

A.2  -  Histograms showing accuracy variance for the 6 most accurate imputation methods.  

A.3  -  Tables showing segmented accuracy for the 6 most accurate imputation methods. 

LARGE Firm financial variable imputation experiments 

A.4  -  Table showing imputation accuracy statistics for all 24 imputation experiments. 

A.5  -  Histograms showing accuracy variance for the six most accurate imputation methods. 

A.6  -  Tables showing segmented accuracy for the six most accurate imputation methods. 

 
 



- 141 - 

Table A.1 
Imputation accuracy statistics for SME Firm financial variables  -  Using 50 executions of the EM and NN algorithms with and without outlier Firms  

The highlighted rows show the most accurate method for each variable  -  Variable reference numbers  (e.g. A.1.1 Sales)  refer to the charts and tables which follow 

MRD SRD MRZ % CHANGE in Mean % CHANGE in STD Firm variable 
imputed and 

evaluated 

Imputation method used 
for the experiment 

(50 executions per row)  µ̂  σ̂  µ̂  σ̂  µ̂  σ̂  % Outliers µ̂  σ̂  µ̂  σ̂  

EM with outlier Firms 54.58 66.54 1,298.61 1,912.29 18.58 8.34 0.32 -42.68 0.19 -38.14 0.93 

EM deleting outlier Firms 48.03 55.40 1,092.29 1,583.56 16.68 8.25 0.41 -27.43 0.11 -46.15 0.04 

NN with outlier Firms 30.92 27.16 833.36 954.06 20.39 9.85 0.26 -29.85 0.89 -28.38 6.08 
A.1.1 
Sales 

NN deleting outlier Firms 15.38 15.97 358.84 450.20 17.10 8.72 0.45 -22.32 0.27 -11.51 0.34 

EM with outlier Firms 5.51 3.71 76.96 96.97 12.75 7.01 0.66 -30.42 0.30 -40.22 0.04 

EM deleting outlier Firms 6.38 3.45 83.16 93.29 11.97 5.78 0.65 -20.15 0.08 -35.13 0.05 

NN with outlier Firms 4.66 4.62 85.13 147.84 13.44 6.81 0.52 -16.98 0.55 -8.31 3.96 
A.1.2 
Payroll 

NN deleting outlier Firms 3.52 2.68 54.31 73.02 14.88 8.08 0.51 -14.95 0.24 -1.65 0.33 

EM with outlier Firms 33.78 57.39 900.30 1,622.68 17.27 9.86 0.52 -45.97 0.23 -38.55 0.83 

EM deleting outlier Firms 28.23 44.16 718.86 1,229.59 16.19 9.57 0.54 -29.92 0.09 -41.40 0.03 

NN with outlier Firms 37.65 127.41 1,222.04 4,653.49 18.01 10.14 0.38 -23.94 0.77 -17.09 2.28 
A.1.3 
Depreciation 

NN deleting outlier Firms 16.24 25.31 381.64 655.77 15.20 8.76 0.53 -18.58 0.43 -7.74 0.68 

EM with outlier Firms 16,211.46 7,032.13 58,958.34 208,060.42 5.80 6.04 0.13 -46.81 0.12 -37.15 0.23 

EM deleting outlier Firms 11,574.16 779.77 21,909.73 1,196.48 4.50 0.37 1.14 -50.62 0.13 -35.67 0.02 

NN with outlier Firms 44,708.42 5,306.07 198,334.78 68,299.78 6.29 1.35 1.54 -22.38 0.56 -31.36 6.13 
A.1.4 
DirectorPay 

NN deleting outlier Firms 25,852.51 2,863.12 87,034.84 7,965.85 4.80 0.21 2.84 -22.96 0.32 -7.54 0.28 

EM with outlier Firms 148,532.24 27,323.87 753,671.86 89,631.70 5.44 0.33 2.71 -15.60 0.25 -23.65 0.00 

EM deleting outlier Firms 33,729.05 5,671.18 140,904.07 13,559.47 4.94 0.30 3.10 -4.70 0.03 -27.60 0.01 

NN with outlier Firms 235,595.16 213,992.19 3,892,032.86 4,940,644.72 12.98 6.33 0.60 -21.81 1.05 -22.35 1.96 
A.1.5 
NetWorth 

NN deleting outlier Firms 39,572.53 9,986.93 256,427.87 52,331.23 6.67 0.73 1.79 -1.40 0.33 -0.86 0.19 

EM with outlier Firms 5,392.76 8,595.93 93,017.92 242,404.33 12.38 4.09 0.67 9.87 4.02 -36.44 0.02 

EM deleting outlier Firms 1,208.20 419.79 12,039.58 2,788.43 9.93 2.17 0.98 -21.63 0.19 -42.29 0.02 

NN with outlier Firms 6,077.73 6,430.00 125,461.32 184,234.01 15.22 5.66 0.39 -0.68 5.39 -34.51 1.43 
A.1.6 
PBT 

NN deleting outlier Firms 2,221.97 1,168.25 35,719.64 17,026.37 13.50 3.71 0.45 -17.64 0.78 -9.12 0.33 
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A.2   Most Accurate Imputation Methods for SME Firms 
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A.1.1 SME Firm Sales imputation 

Using 50 executions of the NN algorithm with outlier Firms deleted 
Imputation accuracy for 47,261 imputed values 

Proportion within 100% of true value  =  83.02% 
    Proportion  > 380% of true value  =  5.51% 

A.1.2 SME Firm Payroll imputation 

Using 50 executions of the NN algorithm with outlier Firms deleted 
Imputation accuracy for 47,117 imputed values 

Proportion within 100% of true value  =  86.82% 
    Proportion  > 380% of true value  =  5.22% 



- 143 - 

 

 

0

2

4

6

8

10

12

14

16

18

0 t
o 0

.2

> 0
.2 

to 
0.4

> 0
.4 

to 
0.6

> 0
.6 

to 
0.8

> 0
.8 

to 
1

> 1
 to

 1.
2

> 1
.2 

to 
1.4

> 1
.4 

to 
1.6

> 1
.6 

to 
1.8

> 1
.8 

to 
2

> 2
 to

 2.
2

> 2
.2 

to 
2.4

> 2
.4 

to 
2.6

> 2
.6 

to 
2.8

> 2
.8 

to 
3

> 3
 to

 3.
2

> 3
.2 

to 
3.4

> 3
.4 

to 
3.6

> 3
.6 

to 
3.8

> 3
.8 

to 
52

45
4

Relative difference between true and imputed Depreciation value 

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d 
va

lu
es

A.1.3 SME Firm Depreciation imputation 

Using 50 executions of the NN algorithm with outlier Firms deleted 
Imputation accuracy for 47,913 imputed values 

Proportion within 100% of true value  =  75.97% 
    Proportion  > 380% of true value  =  8.05% 
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A.1.4 SME Firm DirectorPay imputation 

Using 50 executions of the EM algorithm with outlier Firms deleted 
Imputation accuracy for 44,900 imputed values 

Proportion within 100% of true value  =  72.01% 
      Proportion  > 380% of true value  =  26.00% 
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A.1.5 SME Firm NetWorth imputation

Using 50 executions of the EM algorithm with outlier Firms deleted 
Imputation accuracy for 31,350 imputed values 

Proportion within 100% of true value  =  54.76% 
      Proportion  > 380% of true value  =  29.42% 
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A.1.6 SME Firm PBT imputation 

Using 50 executions of the EM algorithm with outlier Firms deleted 
Imputation accuracy for 44,500 imputed values 

Proportion within 100% of true value  =  57.37% 
      Proportion  > 380% of true value  =  14.51% 
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A.3   Most Accurate Imputation Method Segments for SME Firms 

Table A.1.1  -  SME Sales imputation  -  50 executions of NN with outlier Firms deleted   
Accuracy of imputed values in UKSIC categories  -  With Firms segmented at UKSIC level 1    

UKSIC 
Category 
Level 1 

% missing 
Sales 
values 

MRD SRD MRZ 
% of RD 
outlier 
rows 

4 5.26 89.91 702.02 7.51 1.74 

6 8.65 27.04 232.82 7.18 1.93 

7 21.03 19.83 231.60 10.33 1.06 

9 5.16 6.40 32.36 5.66 2.74 

1 3.40 6.13 31.55 5.67 3.04 

5 22.79 5.15 53.46 10.14 1.12 

8 21.18 4.36 22.47 6.52 2.27 

0 0.76 3.71 9.37 1.80 4.66 

2 9.48 2.28 15.99 9.19 1.19 

3 3.23 1.59 8.37 6.73 1.92 

Table A.1.2  -  SME Payroll imputation  -  50 executions of NN with outlier Firms deleted 
Accuracy of imputed values in UKSIC categories  -  With Firms segmented at UKSIC level 1    

UKSIC 
Category 
Level 1 

% missing 
Payroll 
values  

MRD SRD MRZ 
% of RD 
outlier 
rows 

9 5.63 13.27 66.64 4.88 3.49 

6 9.04 8.36 60.76 7.41 1.84 

7 22.63 6.21 56.53 8.24 1.49 

4 4.49 3.81 22.29 6.81 2.22 

8 21.66 3.09 12.59 5.42 2.78 

0 0.70 1.90 3.54 1.91 4.46 

2 7.77 1.50 10.81 9.32 1.27 

5 22.39 1.26 7.09 8.35 1.56 

1 3.01 1.26 4.66 5.92 2.36 

3 2.62 0.95 3.70 6.22 2.44 

Table A.1.3  -  SME Depreciation imputation  -  50 executions of NN with outlier Firms deleted 
Accuracy of imputed values in UKSIC categories  -  With Firms segmented at UKSIC level 1    

UKSIC 
Category 
Level 1 

% missing 
Depreciation 

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

4 4.53 126.37 1042.74 6.97 2.04 

2 7.87 15.29 194.02 8.25 1.41 

6 9.19 5.53 30.33 6.29 2.35 

1 3.00 4.93 26.56 6.54 2.26 

7 22.57 4.66 25.92 8.69 1.41 

9 5.59 4.45 16.32 4.83 3.20 

8 21.60 3.65 16.38 5.42 2.86 

5 22.82 2.66 17.42 9.98 1.10 

3 2.64 2.50 11.76 7.22 1.86 

0 0.69 1.65 3.17 1.85 4.31 
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Table A.1.4  -  SME DirectorPay imputation  -  50 executions of EM with outlier Firms deleted 
Accuracy of imputed values in missingness patterns  -  With DirectorPay in pattern position 4   

DirectorPay 
Missingness 

Pattern 

% missing 
DirectorPay 

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

0000101 28.32 12,662.65 26,139.14 4.13 2.55 

0010111 0.01 11,543.89 0.00 0.00 0.00 

0000111 0.34 11,337.58 14,771.77 0.00 0.00 

0000001 69.93 11,176.79 19,491.34 0.00 0.00 

1000111 1.36 10,433.19 25,239.07 1.95 4.46 

1010111 0.02 6,593.23 0.00 0.00 0.00 

1000101 0.01 5,328.30 0.00 0.00 0.00 

Table A.1.5  -  SME NetWorth imputation  -  50 executions of EM with outlier Firms deleted 
Accuracy of imputed values in missingness patterns  -  With NetWorth in pattern position 5    

NetWorth 
Missingness 

Pattern 

% missing 
NetWorth 

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

0000001 99.98 33,836.98 141,116.31 4.93 3.10 

0011001 0.01 1.47 0.00 0.00 0.00 

0111001 0.01 1.46 0.00 0.00 0.00 

Table A.1.6  -  SME PBT imputation  -  50 executions of EM with outlier Firms deleted 
Accuracy of imputed values in missingness patterns  -  With PBT in pattern position 6 

PBT 
Missingness 

Pattern 

% missing 
PBT  

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

0000001 70.78 1,377.02 12,660.87 10.23 1.08 

0000101 28.66 840.25 8,202.69 11.00 0.96 

0001101 0.30 661.97 935.06 0.00 0.00 

0101101 0.01 53.58 0.00 0.00 0.00 

1101101 0.04 22.10 0.00 0.00 0.00 

1111101 0.02 6.20 0.00 0.00 0.00 

1000101 0.01 4.07 0.00 0.00 0.00 

0111001 0.01 2.27 0.00 0.00 0.00 

0011001 0.01 2.15 0.00 0.00 0.00 

1001101 0.01 2.01 0.00 0.00 0.00 

0111101 0.01 1.96 0.00 0.00 0.00 

1011101 0.01 1.67 0.00 0.00 0.00 
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Table A.4 
Imputation accuracy statistics for LARGE Firm financial variables  -  Using 50 executions of the EM and NN algorithms with and without outlier Firms  

The highlighted rows show the most accurate method for each variable  -  Variable reference numbers  (e.g. A.4.1 Sales)  refer to the charts and tables which follow 

MRD SRD MRZ % CHANGE in Mean % CHANGE in STD Firm variable 
imputed and 

evaluated 

Imputation method used 
for the experiment 

(50 executions per row) µ̂  σ̂  µ̂  σ̂  µ̂  σ̂  % Outliers µ̂  σ̂  µ̂  σ̂  

EM with outlier Firms 698.32 1,999.09 10,391.28 30,862.94 11.64 3.43 0.81 -30.33 2.21 35.37 25.20 

EM deleting outlier Firms 246.96 541.35 3,277.08 7,629.30 11.40 3.34 0.86 -29.16 0.11 -32.70 0.04 

NN with outlier Firms 424.82 1,527.01 7,343.15 27,368.50 13.21 4.32 0.64 -25.42 0.76 -18.03 0.72 
A.4.1 
Sales 

NN deleting outlier Firms 69.18 69.89 747.65 736.47 11.08 3.44 0.90 -21.36 0.76 -10.48 0.54 

EM with outlier Firms 18.67 36.17 228.85 558.89 10.61 3.70 0.98 -43.78 0.33 -32.54 0.14 

EM deleting outlier Firms 12.75 22.90 138.81 332.99 9.46 3.59 1.22 -24.38 0.12 -32.53 0.05 

NN with outlier Firms 7.93 7.08 79.67 102.00 10.63 4.07 0.94 -19.83 1.27 -4.09 2.61 
A.4.2 
Payroll 

NN deleting outlier Firms 5.14 4.90 48.23 72.07 9.49 3.31 1.12 -16.20 0.62 -2.84 0.55 

EM with outlier Firms 11.16 7.78 93.11 109.20 9.37 3.15 1.15 -50.48 0.29 -33.74 0.12 

EM deleting outlier Firms 9.23 5.06 67.48 60.92 9.44 3.50 1.21 -36.65 0.12 -34.89 0.03 

NN with outlier Firms 14.98 10.62 167.25 166.00 11.69 3.72 0.76 -34.34 1.60 -29.17 2.68 
A.4.3 
Depreciation 

NN deleting outlier Firms 20.45 21.10 246.21 293.60 11.22 3.57 0.83 -19.79 1.54 -7.23 0.46 

EM with outlier Firms 18,311.84 3,158.18 38,139.02 27,944.88 4.49 4.55 0.36 -41.12 0.06 -25.62 0.24 

EM deleting outlier Firms 9,415.28 1,552.82 19,302.37 4,440.20 5.47 2.21 1.50 -50.56 0.09 -23.64 0.03 

NN with outlier Firms 117,380.58 21,445.38 419,769.60 110,591.52 6.26 2.08 1.94 -15.39 1.15 -12.33 5.31 
A.4.4 
DirectorPay 

NN deleting outlier Firms 67,941.77 11,573.54 189,884.37 24,061.41 4.55 0.57 2.86 -21.82 0.58 -8.41 0.31 

EM with outlier Firms 2,690,235.09 1,490,351.67 13,362,848.25 5,740,207.98 6.26 1.54 2.39 -11.41 0.10 -14.71 0.00 

EM deleting outlier Firms 217,467.93 58,376.49 777,225.19 134,158.24 4.41 0.47 3.94 -3.37 0.03 -19.41 0.00 

NN with outlier Firms 1,918,119.56 5,161,620.72 23,868,083.51 76,975,512.57 9.78 2.97 1.08 -5.84 1.31 7.71 2.97 
A.4.5 
NetWorth 

NN deleting outlier Firms 276,864.10 111,033.05 1,568,598.11 529,779.65 6.56 1.27 2.03 2.06 3.45 0.78 1.63 

EM with outlier Firms 167,159.25 112,553.11 1,514,183.24 834,385.60 10.10 2.94 1.08 -6.81 2.07 -24.88 0.04 

EM deleting outlier Firms 12,136.88 7,499.75 95,026.91 53,176.02 8.44 2.53 1.51 -15.08 0.21 -32.13 0.02 

NN with outlier Firms 88,376.40 98,270.00 1,135,090.68 1,170,841.87 13.32 3.53 0.60 -25.15 5.47 -11.70 1.09 
A.4.6 
PBT 

NN deleting outlier Firms 21,820.40 19,409.05 242,274.70 202,342.06 11.50 2.84 0.76 -11.67 2.39 -8.10 0.81 
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A.5   Most Accurate Imputation Methods for LARGE Firms 
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A.4.1 LARGE Firm Sales imputation 

Using 50 executions of the NN algorithm with outlier Firms deleted 
Imputation accuracy for 12,474 imputed values 

Proportion within 100% of true value  =  79.63% 
    Proportion  > 380% of true value  =  8.26% 

A.4.2 LARGE Firm Payroll imputation 

Using 50 executions of the NN algorithm with outlier Firms deleted 
Imputation accuracy for 12,722 imputed values 

Proportion within 100% of true value  =  82.25% 
    Proportion  > 380% of true value  =  7.59% 
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A.4.3 LARGE Firm Depreciation imputation 

Using 50 executions of the EM algorithm with outlier Firms deleted 
Imputation accuracy for 12,100 imputed values 

Proportion within 100% of true value  =  76.31% 
       Proportion  > 380% of true value  =  13.99% 
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A.4.4 LARGE Firm DirectorPay imputation 

Using 50 executions of the EM algorithm with outlier Firms deleted 
Imputation accuracy for 10,200 imputed values 

Proportion within 100% of true value  =  66.27% 
       Proportion  > 380% of true value  =  33.07% 
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A.4.5 LARGE Firm NetWorth imputation

Using 50 executions of the EM algorithm with outlier Firms deleted 
Imputation accuracy for 6,400 imputed values 

Proportion within 100% of true value  =  46.62% 
       Proportion  > 380% of true value  =  36.78% 
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A.4.6 LARGE Firm PBT imputation

Using 50 executions of the EM algorithm with outlier Firms deleted 
Imputation accuracy for 10,250 imputed values 

Proportion within 100% of true value  =  52.20% 
      Proportion  > 380% of true value  =  19.85% 
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A.6   Most Accurate Imputation Method Segments for LARGE Firms 

Table A.4.1  -  LARGE Firm Sales imputation  -  50 executions of NN with outlier Firms deleted   
Accuracy of imputed values in UKSIC categories  -  With Firms segmented at UKSIC level 1    

UKSIC 
Category 
Level 1 

% missing 
Sales 
values  

MRD SRD MRZ 
% of RD 
outlier 
rows 

9 4.08 452.57 1,434.67 2.49 6.33 

8 13.82 272.73 720.57 0.00 0.00 

6 10.58 85.17 405.84 4.30 3.81 

1 4.25 84.02 388.09 4.57 3.62 

2 8.51 56.38 358.04 5.64 2.45 

5 18.23 40.38 228.35 5.47 3.06 

7 33.49 18.52 119.76 6.48 2.23 

0 0.51 6.68 10.56 0.00 0.00 

4 3.18 3.97 9.09 1.32 3.82 

3 3.32 1.69 4.99 3.67 3.67 

Table A.4.2  -  LARGE Firm Payroll imputation  -  50 executions of NN with outlier Firms deleted 
Accuracy of imputed values in UKSIC categories  -  With Firms segmented at UKSIC level 1    

UKSIC 
Category 
Level 1 

% missing 
Payroll 
values  

MRD SRD MRZ 
% of RD 
outlier 
rows 

9 4.40 32.86 103.30 2.36 6.16 

0 0.54 12.54 21.13 0.00 0.00 

4 3.29 8.12 21.25 0.00 0.00 

6 11.30 7.53 22.26 4.13 4.56 

7 33.44 6.52 34.86 6.28 2.41 

1 4.11 2.48 8.96 4.20 3.55 

3 3.23 1.76 5.03 4.10 3.76 

8 13.68 1.32 2.31 0.00 0.00 

5 17.74 1.25 3.82 4.75 2.95 

2 8.26 0.91 2.09 5.11 3.11 
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Table A.4.3 - LARGE Firm Depreciation imputation - 50 executions EM with outlier Firms deleted 
Accuracy of imputed values in missingness patterns  -  With Depreciation in pattern position 3    

Depreciation 
Missingness 

Pattern 

% missing 
Depreciation 

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

0000111 0.52 18.06 16.65 0.00 0.00 

0000001 53.80 11.60 75.44 8.45 1.47 

0001001 0.02 10.49 0.00 0.00 0.00 

0000101 29.36 8.89 44.61 6.46 2.35 

0001101 0.61 8.29 7.61 0.00 0.00 

0001111 5.53 3.67 8.01 1.87 4.31 

1000111 2.51 3.03 4.52 0.00 0.00 

0101111 0.60 2.35 1.70 0.00 0.00 

0101001 0.02 2.22 0.00 0.00 0.00 

1001111 3.58 1.99 3.52 0.00 0.00 

0101101 0.01 1.80 0.00 0.00 0.00 

1001101 0.12 1.52 0.00 0.00 0.00 

1000101 0.02 1.46 0.00 0.00 0.00 

1101101 0.09 1.44 0.00 0.00 0.00 

1101111 3.17 1.29 1.78 0.00 0.00 

Table A.4.4 - LARGE Firm DirectorPay imputation - 50 executions of EM with outlier Firms deleted 
Accuracy of imputed values in missingness patterns  -  With DirectorPay in pattern position 4   

DirectorPay 
Missingness 

Pattern 

% missing 
DirectorPay 

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

1010111 0.09 13,980.01 0.00 0.00 0.00 

1000101 0.02 13,005.70 0.00 0.00 0.00 

0000111 0.61 11,135.54 9,421.53 0.00 0.00 

1000111 2.90 11,085.65 20,296.14 0.00 0.00 

0000101 34.02 10,142.37 20,777.49 4.47 2.52 

0000001 62.35 8,840.99 15,339.61 2.24 1.52 

Table A.4.5  -  LARGE Firm NetWorth imputation  -  50 executions of EM with outlier Firms deleted 
Accuracy of imputed values in missingness patterns  -  With NetWorth in pattern position 5    

NetWorth 
Missingness 

Pattern 

% missing 
NetWorth 

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

0000001 99.86 222,440.15 785,472.93 4.39 3.98 

0001001 0.04 30,868.23 0.00 0.00 0.00 

0111001 0.06 5.35 0.00 0.00 0.00 

0101001 0.04 2.31 0.00 0.00 0.00 
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Table A.4.6  -  LARGE Firm PBT imputation  -  50 executions of EM with outlier Firms deleted 
Accuracy of imputed values in missingness patterns  -  With PBT in pattern position 6 

PBT 
Missingness 

Pattern 

% missing 
PBT 

values  
MRD SRD MRZ 

% of RD 
outlier 
rows 

0000001 63.92 14,295.15 95,696.56 7.70 1.98 

0000101 34.88 10,135.42 67,981.28 7.10 2.06 

0001101 0.73 856.74 855.99 0.00 0.00 

1000101 0.02 40.86 0.00 0.00 0.00 

1101101 0.11 29.86 0.00 0.00 0.00 

0001001 0.02 16.42 0.00 0.00 0.00 

1001101 0.14 5.39 0.00 0.00 0.00 

0101001 0.02 4.99 0.00 0.00 0.00 

0111101 0.05 3.35 0.00 0.00 0.00 

0101101 0.01 2.93 0.00 0.00 0.00 

1111101 0.04 2.78 0.00 0.00 0.00 

0111001 0.04 2.16 0.00 0.00 0.00 
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B Complete EM Algorithm Pseudo-code 

The following set of pseudo-code listings and explanations give a complete algorithmic 

description of the EM algorithm for numeric multivariate imputation. The pseudo-code 

should allow programmers to implement the algorithm as a software application using any 

programming language. Particular attention is paid to the use of implementation techniques 

which decrease algorithm execution time, as explained in chapter 2. 

Complete pseudo-code listings for all functions called from within the main algorithm follow, 

including detailed descriptions of the purpose, creation and processing of every data structure 

needed to support the implementation. Note that the pseudo-code uses operators such as  +=  

and  ++  etc. These operators are commonly used in object oriented programming languages 

such as Java and C#.  See the standard texts on these languages for more details.  

The following notations are used within the algorithm 

 M (r)    Refers to a particular row  r  in the matrix  M. 

ijM   Refers to the element at row  i  and column  j  in matrix  M. 

jV    Refers to element  j  in vector V,  where jV  can be a number or a matrix. 

matrix   M  =  0  Removes all rows from matrix M. 

vector  V  =  0  Removes all elements from vector V. 

for   int Vj ∈  Where  j  is an integer loop variable which takes every value in the vector V. 

The following simple functions are called from within the algorithm.  

The pseudo-code for these functions is not given here, since the first three should be included 

as part of the built in functionality in most modern programming languages, and the final two 

can be easily written by any experienced programmer. See the following sections for full and 

detailed descriptions of the more complex functions called. 

num_rows_in  (X)     Returns the number of rows in matrix or vector  X. 

num_columns_in  (X)     Returns the number of columns in matrix or vector  X. 

remove_matrix_row  ( X (r) ) Removes row  r  from matrix  X.  All rows below then move up so 
that row  r + 1  becomes row  r  etc. and the matrix becomes 
compacted. 

missingness_pattern_in  ( X (r) )     Returns a binary vector V  representing row  r  in matrix  X  where, 
 jV = 1   if  rjX is present  or jV = 0   if rjX is missing - e.g. 
 V  =  { 1, 0, 1 }  indicates that the values in elements 1rX and 

3rX  are present in row  r  of  X,  and that the value in element 
2rX is missing. 

num_missing_values_in  ( X (r) )     Returns the number of missing values found in row  r  of matrix  X  
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The following parameters are passed to the top level EM algorithm, as given below 

1. Y  is a data matrix with one or more missing values in one or more of its columns. The 

estimates for the missing values in  Y  are imputed just before the algorithm terminates. 

2. m  is the maximum number of iterations that can be performed before the convergence 

loop terminates. This parameter should be passed as a suitably large number (such as 

500 or above).  

3. e  is the oldnew θθ −  difference used to terminate the algorithm’s convergence loop. 

This parameter should be passed as a suitably small value (such as 0.0001) to ensure 

close convergence.  

function  matrix  EM_algorithm_for_missing_data_imputation  ( matrix Y,  int  m,  double  e ) 
 Y  =  pattern_ordered_matrix  (Y )  
 int  n = 0,   int  s = 0,    int  f  = 0,   matrix  R = 0,    vector  Z  =  0 
 while   ( num_rows_in (Y )  >  0 ) 
  s ++ 
  R (s)  =  missingness_pattern_in  (Y (1)) 
  int  i = 0,   matrix  X = 0 
  while   ( R (s)  = =  missingness_pattern_in  (Y (1)) ) 
   i ++ 
   X (i)   =  Y (1) 
   remove_matrix_row  ( Y (1) ) 
  end  while 
  if   ( num_missing_values_in  (R (s))  = =   num_columns_in  (R) ) 
    remove_matrix_row  (R (s)) 
    s - - 
  else 
    if   ( num_missing_values_in  (R (s))  = =  0 )  
    f  =  s   
    end   if 
   sZ =  X 
    n  +=  i 
  end   if 
 end  while 
 matrix  newθ =   initial_parameter_estimate  (Z,  f ) 
 matrix  obsT =   observed_data_sufficient_statistics  (Z, R)  
 int  0=t  
 repeat 
  matrix  obsTT =  
  matrix  newθθ =   
  for   int   s = 1  to  num_rows_in  (R)   
   int  a = 0,    int  b = 0,    vector  o = 0,    vector  m = 0 
   for   int   j = 1   to  num_columns_in  (R)   
    if  sjR( = =  1 ) 
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     a ++  :    joa =  
    else 
     b ++  :   jmb =  
    end   if 
    if  sjR( = =  1  &&  jjθ >   0 ) 
     θ =  sweep_matrix_on ),( θj  
    end  if 
    if  sjR( = =   0  &&  jjθ <   0 ) 
     θ =  reverse_sweep_matrix_on ),( θj  
    end   if 
   next   j 
   matrix  X  = sZ  
   for   int  i  = 1   to  num_rows_in ( X )  
    vector  c  =  0 
    for   int mj ∈  
     jjc 0θ=  
     for   int  ok ∈  
      jc +=  ikkj Xθ  
     next  k 
    next   j 
    for  int mj ∈  
     jj cT =+0  
     jj TT 00 =  
     for  int  ok ∈  
      kjT +=  ikj Xc  
      kjjk TT =  
     next   k 
     for   int  mk ∈  &&   jk ≥  
      kjT +=  jkkj cc+θ  
      kjjk TT =  
     next   k 
    next   j 
   next   i 
  next   s 
  newold θθ =  
  newθ =  sweep_matrix_on  ),0( 1Tn −  
   t ++ 
 until   (em_has_converged( ,newθ ,oldθ  e)   ||   mt = ) 
 Z  =  impute_missing_values  ( ,newθ R ,  Z ) 
 return  Z 
end function 
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B.1   Missingness Patterns and Associated Data Structures 

The most important data structure processed within the main EM pseudo-code algorithm 

given above is the Y data matrix, which has one or more missing values in one or more of its 

columns. This matrix is passed as a parameter to the algorithm, which estimates the missing 

values, then returns a completed version of Y, with the missing values “filled in”. For 

example, the Y matrix shown below has  n = 6  rows  and  p = 5  columns. The missing values 

are represented by ?  symbols, and the present values are represented by  –  symbols. 
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Rows 1 and 4 of Y both have the same missingness pattern, where missing values occur in 

columns 2Y  and 4Y , but this pattern does not occur in any other rows of Y.  Notice that rows 

2 and 6 have the same missingness pattern, and that rows 3 and 5 both have unique patterns. 

These four distinct patterns are stored in the R matrix, where 0 represents a missing value and 

1 represents a present value. The corresponding elements in the Z vector each contain a 

matrix, where each such matrix  X(s) contains copies of all the rows in Y that have the pattern 

in R(s). For example, we can see that row one of R contains the missingness pattern found in 

rows 1 and  4  of  Y,  and the 1X  matrix will contain copies of these two Y  rows.  

A new pair of temporary workspace matrices o  and  m  are also generated, then discarded, 

for each iteration of the algorithm’s  repeat.…..until  loop. These matrices are used to 

facilitate processing by storing the column numbers corresponding to the observed and 

missing elements of each missingness pattern in R.  For example, row 1 of R has observed 

values in columns 1, 3 and 5, and has missing values in columns 2 and 4. The corresponding  

o  and  m  matrices store these values, as shown below. 
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To facilitate the creation of the R and Z matrices, the rows in Y must first be sorted into 

missingness pattern blocks, where each such block contains all of the rows in Y that have the 

same missingness pattern. It is absolutely crucial for fast algorithm performance that this 
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sorting of the rows in Y is achieved using an algorithm which requires no more than  (n log n)  

row comparisons, where  n  is the number of rows in  Y.  

B.2   Overview of Pseudo-code Functionality 

The R  matrix and the set of  X  matrices contained in the Z vector are created at the start of 

the algorithm using the two nested  while.…..end  while  loops shown at the top of the 

pseudo-code. When this process is complete each X matrix in the Z vector will contain a 

different set of rows - where each such set corresponds to a unique missingness pattern. This 

process improves algorithm performance by removing the need to repeatedly search Y  for the 

rows corresponding to each missingness pattern. After each Y row has been copied into an X 

matrix it is immediately deleted from Y, using the function call  remove_matrix_row (Y(1)). 

This is essential, since keeping two copies of each Y row would be very wasteful of RAM,  

particularly in cases where the number of rows in Y was large. Note that the data for the set of 

Y rows which have missing values in all elements are excluded from both the R matrix and 

the Z vector, since these rows contribute nothing to the EM process, and they can cause 

significant deterioration in algorithm performance.  

Each missingness pattern in the R matrix is processed separately within the algorithm’s  

repeat.…..until  loop, using the nested  for  loops contained within the  for int s = 1 to 

num_rows_in (R)  loop. The processing of each missingness pattern - which is stored in a 

separate  X  matrix -  is outlined below. 

1. The coefficients of the regression equation used to estimate the missing values in each 

row of the X matrix are created and stored in the θ  matrix. This is achieved by 

repeatedly “sweeping” θ  using the pattern specified in R(s). Note that the same 

regression equation is used to estimate the missing values in every row of  X. 

2. The missing values in each row of  X  are estimated by summing the products of the 

observed values in each row and the regression equation coefficients contained within 

the swept version of θ . Note that each row in  X  is processed separately within the loop   

for  int  i  = 1  to  num_rows_in (X)  and that the estimated values for each  X  row are 

stored in the  c  vector, which is a temporary workspace. 

3. The estimated values in the c vector are added to the appropriate elements within the T  

matrix using a set of nested  for  loops. This completes the processing for the current 

missingness pattern. The process now repeats from step 1, and continues until every 

missingness in R  has been processed. 
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When the above three step iteration has completed the estimates for every missing value in Y 

will be fully accumulated into T.  The completed T matrix is then used to recalculate newθ  

ready for the start of the next iteration, using the pseudo-code function call newθ = 

sweep_matrix_on ),0( 1Tn − . 

The repeat…...until loop stop condition (em_has_converged( ,newθ ,oldθ e) || mt = )  

compares each corresponding pair of elements in newθ  and oldθ  using the function below. 

The e parameter should be passed to the EM algorithm as a small value (such as 0.0001) to 

ensure close convergence. The  t = m  test is included in the stop condition to ensure that the 

algorithm always terminates after a maximum of  m  iterations  (where m  is passed to the 

EM algorithm as a parameter). This will be important when θ convergence is slow. 

function  boolean   em_has_converged( ,newθ ,oldθ  e) 
 int   p  =   num_columns_in  ( newθ ) 
 for   int   i  =  0   to   p 
  for   int   j  =   i   to   p 
   if   )( ),(),(),( jinewjioldjinew e θθθ >−  
    return   false 
  next   j 
 next   i 
 return   true 
end function 

B.3   Complex Functions Called From Within the Algorithm 

At the start of the EM pseudo-code function the Y matrix is partitioned into a related set of X 

matrices, where each X matrix represents a particular missingness pattern in Y, as described 

in the previous section. However, for conceptual simplicity the sections that follow will refer 

to the Y matrix itself, rather than to the equivalent set of  X  matrices in Z.  

impute_missing_values  ( matrix ,θ  matrix R,  vector Z ) 

This function is called at the end of the main algorithm’s  repeat…...until  loop,  just after 

EM convergence is achieved. The function imputes the missing values in the set of X  

matrices contained within the passed  Z  vector using;  (1) The passed θ  parameter, which 

contains the final value of the augmented covariance matrix, as generated within the 

algorithms convergence loop, and  (2) The passed R parameter, which contains a list of each 

unique missingness pattern found in the Y  matrix. 
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This function can be called from any procedure that generates a maximum likelihood estimate 

for the covariance matrix θ , since creation of the other parameters passed to the function is 

simple. Notice in particular the sweep_matrix_on ),( θj  and reverse_sweep_matrix_on 

),( θj  sub-function calls, which transform the θ  matrix into the state required to impute the 

missing values for the current missingness pattern, which is in turn retrieved from the R  

matrix for the current iteration of the outer loop  for  int   s = 1  to  num_rows_in  (R)   

Finally, the missing values in every row of the X  matrix (which is retrieved from the Z vector 

for the current missingness pattern) are imputed using the command cX ij = . Where  c  is 

computed by summing the products of the observed values in the current row of X  and the 

regression equation coefficients contained within the swept version of θ . 

function  matrix   impute_missing_values  ( matrix θ , matrix R,  vector Z ) 
 for   int   s = 1  to  num_rows_in  (R)   
  int  a = 0,    int  b = 0,    vector  o = 0,    vector   m = 0 
  for   int   j = 1  to  num_columns_in  (R)   
   if  sjR( = =  1 ) 
    a ++  :    jo a =  
   else 
    b ++  :   jmb =  
   end   if 
   if  sjR( = =  1  &&  jjθ >   0 ) 
    θ =  sweep_matrix_on ),( θj  
   end  if 
   if  sjR( = =   0  &&  jjθ <   0 ) 
    θ =  reverse_sweep_matrix_on ),( θj  
   end   if 
  next  j 
  matrix  X  = sZ  
  for   int  i  = 1   to  num_rows_in  (X )   
   double  c = 0 
   for   int mj ∈  
     jc 0θ=  
     for  int   ok ∈  
     c  += ikkj Xθ  
     next  k 
    cX ij =  
   next  j 
  next  i 
 next  s 
 return  Z 
end function 
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initial_parameter_estimate  ( vector  Z,   int f ) 

The EM process requires that the initial value of the ),( Σ= µθ  parameter, which describes 

the distribution of the complete dataset in the Y matrix, must be estimated before the 

algorithm’s convergence loop is started. The pseudo-code given below returns θ  as a  (p + 1) 

x (p + 1)  augmented covariance matrix, where  p  is the number of columns in Y.  For 

implementation simplicity, the rows and columns of the calculated matrix  T  are indexed 

from  0 to p,  rather than from  1 to  (p + 1). 

function  matrix   initial_parameter_estimate  ( vector Z,   int  f ) 
 matrix  X  = fZ  
 int   n  =   num_rows_in  (X) 
 int   p  =   num_columns_in  (X) 
 if  )( pn ≤  
  θ  =  alternative_parameter_estimate  (Z) 
  return θ  
 end  if 
 matrix  T  =   new  matrix  (p + 1,  p + 1) 
 =00T  n 
 for   int   i  = 1  to  n 
  for   int   c = 1  to  p 
   cT0 += icX  
   0cT  =  cT0  
   for   int   j  =  c   to   p 
    cjT += ijic XX  
    jcT =  cjT  
   next   j 
  next   c 
 next   i 
 n

TT =    
 θ = sweep_matrix_on  (0, T) 
 return  θ  
end function 

It is important to note that the function above estimates the starting value of ),( Σ= µθ  by 

performing calculations based only on the complete data rows in the Y  matrix  (i.e. those 

rows with no missing values),  and this method can be used in most cases. However, notice 

that the function given above exits (near the top of the pseudo-code) when the number of 

complete rows is less than or equal to the number of columns in Y, which should rarely occur 

in practice. When this does occur an alternative method of estimating the initial value of θ  

should be used, depending on the nature of the distribution in Y, as described by Schafer 
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(1997). For example, the means and covariances could be calculated using only the observed 

data values. Little and Rubin (2002) explain that caution should be exercised in cases where 

difficulty arises in estimating the starting value of θ . In these cases the Y dataset may not be 

amenable to the EM process, and it could be sensible to simply terminate the algorithm by 

displaying a warning message to the user, explaining that the Y dataset should be examined 

further before proceeding with the imputation process. 

observed_data_sufficient_statistics  ( vector  Z,   matrix  R ) 

This function returns the obsT matrix, which is created only once (at the start of algorithm) 

then stored and used repeatedly. The structure of the  T(s)  and  )(sTobs   matrices, and the 

methods for calculating their elements are given below. 
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Where the sums in each individual  T(s)  element  (such as  1iyΣ  etc.)  are taken over the 

subset of rows in Y  that have the same missingness pattern  (as stored in the corresponding 

R(s) row)  and where sn  gives the total number of rows in Y  that have that particular 

missingness pattern. The matrix  T  contains the sum of all such T(s) matrices, where each 

element stores the calculated sums for both the observed and the missing elements of the 

rows in Y.  However, the obsT matrix we require should contain only the calculated sums for 

the observed elements in Y.  Despite this difference, the required obsT matrix can be 

calculated in a very similar way to T, the only difference being that the elements in the rows 

and columns that correspond to missing values in Y  are set equal to zero. For example, 

consider a Y matrix that has four columns labelled 1Y  to 4Y , where the data for a particular 

missingness pattern  s  is present for columns 1Y , 3Y  and 4Y ,  but is missing for column 2Y . 

In this case obsT can be calculated as shown below  (notice that the elements in )(sTobs  are 

the same as those in  T(s),  except for the row and column corresponding to 2Y ). 
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Where the elements in each )(sTobs  contain the calculated sums for a particular missingness 

pattern s.  However, we require the matrix obsT which contains the sum of all such matrices, 

where  s = 1 to S  and  S  gives the total number of unique missingness patterns present in Y. 

The pseudo-code function below calculates and returns obsT using the method shown above. 

For implementation simplicity, the rows and columns in the passed parameters  Z  and  R, 

and in the matrix  X,  are indexed starting at 1, whereas the rows and columns in the 

augmented matrices obsT and  T  are indexed from  0 to p. 

function  matrix   observed_data_sufficient_statistics  ( vector Z,  matrix R ) 
  int   n  =   num_rows_in  (R) 
  int   p  =   num_columns_in  (R) 
  matrix  obsT  =   new  matrix  (p + 1,  p + 1) 
 for   int  s  = 1   to  n 
  matrix  )(sTobs  =  0 
  matrix  X  = sZ  
   int   r  =  num_rows_in  (X) 
  00)(sTobs =  r 
  for   int   i  = 1  to  r 
   for   int   c = 1  to  p 
    cobs sT 0)( += scic RX  
    0)( cobs sT  =  cobs sT 0)(  
    for   int   j  =  c   to   p 
     cjobs sT )( += sjijscic RXRX  
     jcobs sT )( =  cjobs sT )(  
    next   j 
   next   c 
  next   i 
  obsT +=  )(sTobs  
 next  s 
 return  obsT  
end function 
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The use of the obsT matrix within the EM algorithm, and its relationship to the T and 

newθ matrices, is outlined below  (refer to the main EM pseudo-code listing for further 

clarification).  

1. The T matrix is set equal to obsT at the start of the algorithm’s  repeat.…..until  loop. At 

this stage of the processing  T  will contain only the data for the observed values in Y.   

2. The missing values in Y are estimated using the current value of the θ  parameter, then 

accumulated into T  using the nested   for…. next  loops contained within the overall  

repeat.…..until  code structure. 

3. Just before the current iteration of the  repeat.…..until  loop ends the T matrix is used to 

recalculate newθ using the function call  newθ =  sweep_matrix_on  ),0( 1Tn −  

4. The process begins again at step 1. Note that the obsT matrix does not need to be 

recalculated at this stage, since it has already been stored in RAM by the above function 

(as previously explained).  

This processing method is very performance efficient because it allows newθ to be 

recalculated at the end of each EM iteration using a single call of the sweep function. The 

alternative method of recalculating newθ would require accessing and processing every row in 

the Y matrix, which would take much longer, particularly if the number of rows in Y was 

large. This efficient procedure is perhaps the most procedurally elegant aspect of the EM 

algorithm. It also explains why the estimated values are accumulated into the T matrix, rather 

than being imputed directly into Y, during each iteration of the algorithm. Another important 

performance benefit of the above process is that the missing values in the elements of the Y 

matrix need only be imputed once – just before the algorithm terminates. 
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C Software and Hardware Platform Used  

All of the software development and all of the experimentation described in this thesis were 

carried out in the period between October 2004 and July 2007. The following computer 

platform was used to develop the software, and to perform the experiments.  

• All software was developed using the Microsoft  C#  programming language  (Hejlsberg 

et al, 2004) within the Microsoft .NET 2003 software development environment 

(Version 7.1.3088  utilising the .NET Framework,  Version 1.1.4322  SP1). 

• The Microsoft Windows XP Professional® operating system Version 2002 was used.  

No other applications were running while any of the experiments were being performed. 

• A Dell Dimension® 8400 desktop personal computer (PC) with an Intel Pentium® 4 

CPU running at 3GHz was used. This computer had 3 gigabytes of  RAM.  
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D Notation and Terminology Used in This Thesis 

This appendix describes the mathematical notation and the associated nomenclature used in 

this thesis. In a sense, this section defines the central problem addressed within the thesis,       

in that the proposed imputation evaluation method has been devised to assess the feasibility 

of imputing missing values in numeric data matrices such as the one shown below. 
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The matrix rows are indexed as   i = 1  to  n 
The matrix columns are indexed as   j = 1  to  p 
Matrix elements are referenced using  ijY  

Known values are represented by a value of  1 

Missing values are represented by a value of  0 

e.g.  rows 1 and 4 have “missingness pattern” 10101 

Fig D.1  –  Matrix notation used to represent missing value datasets in this thesis 

The matrix notation shown in Fig. D.1 is used across the entire thesis. Each column in the 

matrix stores the values taken by a particular numeric variable. And each row in the matrix 

stores the values of a set of related variables - such as a statistical observation or a set of 

values describing the attributes of a particular object. It is important to note that the actual 

values stored in the matrix elements  are not shown  in the matrix above. Instead, the state of 

“missingness” for each value is shown - in such a way that the “missingness pattern” for each 

row in the matrix can be seen. These missingness patterns are referred to throughout the 

thesis using the notation given in Fig. D.1. Exceptions to this notation are clearly stated 

where they are used. 

However, the nomenclature used to describe rectangular datasets with missing values differs 

depending on the discipline that refers to them, and the problem of missing data is common to 

many of these disciplines. For example, in statistics the dataset with missing values is 

generally referred to as a sample, the rows in the dataset are referred to as observations and 

the columns as variables. In survey sampling, the dataset is also referred to as a sample, but 

the rows are called respondents and the columns are known as responses. To further confuse 
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matters, disciplines such as the study of relational databases and data mining theory use their 

own distinctive terminology to describe rectangular datasets. 

To avoid confusion this thesis generally refers to the  dataset  as a  “matrix”  which contains 

“rows” and “columns”. Although matrix rows are occasionally be referred to as  

“observations” and matrix columns are sometimes be referred to as “variables”,  where this is 

required to clarify the meaning of the explanations given  (depending on context). 
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E Thesis Publications 

This appendix contains copies of the two published papers that were written by the author as 

the work described in this thesis progressed. The first paper discusses the ideas that led to the 

development of the imputation evaluation method described in chapter four. The second 

paper discusses the work described in chapter three. Full publication details are given below. 
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Engineering), ISBN: 978-988-98671-2-6,  pp. 974-982, Newswood Limited, International 

Association of Engineers, Hong Kong.  

Solomon, N., Oatley, G. and McGarry, K, (2007b), A Fast Multivariate Nearest Neighbour 

Imputation Algorithm, In: Proceedings of the World Congress on Engineering 2007 

(International Conference of Computational Statistics and Data Engineering), ISBN: 978-
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