
Solomon, Norman (2008) A Stochastic Method for Estimating Imputation
Accuracy. Doctoral thesis, University of Sunderland.

Downloaded from: http://sure.sunderland.ac.uk/3785/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively
contact sure@sunderland.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sunderland University Institutional Repository

https://core.ac.uk/display/9994776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A STOCHASTIC METHOD FOR
ESTIMATING IMPUTATION

ACCURACY

Norman Solomon

School of Computing and Technology
University of Sunderland

A thesis submitted in partial fulfilment of the requirements of the
University of Sunderland for the degree of Master of Philosophy

The research programme was carried out in collaboration with
Trends Business Research of Newcastle-Upon-Tyne

May 2008

Abstract

This thesis describes a novel imputation evaluation method and shows how this method can

be used to estimate the accuracy of the imputed values generated by any imputation

technique. This is achieved by using an iterative stochastic procedure to repeatedly measure

how accurately a set of randomly deleted values are “put back” by the imputation process.

The proposed approach builds on the ideas underpinning uncertainty estimation methods, but

differs from them in that it estimates the accuracy of the imputed values, rather than

estimating the uncertainty inherent within those values. In addition, a procedure for

comparing the accuracy of the imputed values in different data segments has been built into

the proposed method, but uncertainty estimation methods do not include such procedures.

This proposed method is implemented as a software application. This application is used to

estimate the accuracy of the imputed values generated by the expectation-maximisation (EM)

and nearest neighbour (NN) imputation algorithms. These algorithms are implemented

alongside the method, with particular attention being paid to the use of implementation

techniques which decrease algorithm execution times, so as to support the computationally

intensive nature of the method. A novel NN imputation algorithm is developed and the

experimental evaluation of this algorithm shows that it can be used to decrease the execution

time of the NN imputation process for both simulated and real datasets. The execution time of

the new NN algorithm was found to steadily decrease as the proportion of missing values in

the dataset was increased.

The method is experimentally evaluated and the results show that the proposed approach

produces reliable and valid estimates of imputation accuracy when it is used to compare the

accuracy of the imputed values generated by the EM and NN imputation algorithms. Finally,

a case study is presented which shows how the method has been applied in practice, including

a detailed description of the experiments that were performed in order to find the most

accurate methods of imputing the missing values in the case study dataset. A comprehensive

set of experimental results is given, the associated imputation accuracy statistics are analysed

and the feasibility of imputing the missing case study data is assessed.

Acknowledgements

Thanks to my supervisors, Dr. Giles Oatley and Dr. Ken McGarry, for their help and support.

Especially for their practical and positive suggestions for improving the structure and content

of this thesis.

I would also like to thank everyone at Trends Business Research (the collaborating company)

for the help and support they provided throughout the entire project lifecycle. In particular,

for helping to define the project objectives and for providing the case study dataset described

in chapter six.

Thanks to the UK Engineering and Physical Sciences Research Council who funded the work

under the Cooperative Awards in Science and Engineering scheme.

Finally, thanks to the late Richard P. Feynman whose inspirational writings kept me going

when progress was slow. Especially for the book “The Pleasure of Finding Things Out”,

Feynman, (2001).

Contents
Abstract.. ii

Acknowledgements...iii

1. Introduction .. 2

1.1 Description of the Work Undertaken ..4
1.1.1 Motivation for the Work.. 4
1.1.2 Objectives.. 5

1.2 Description of the Proposed Imputation Evaluation Method..6
1.2.1 Informal Description of the Method.. 6
1.2.2 Estimating the Predictive Power of Imputation Techniques ... 7
1.2.3 Functional Overview of the Method: Structure of the Thesis.. 9

1.3 Missing Data Mechanisms..10
1.3.1 Formal Definitions of Missing Data Mechanisms... 11
1.3.2 Informal Definitions of the MAR and MCAR Concepts... 12
1.3.3 Considering Missing Data Mechanisms in Practice .. 13
1.3.4 Solving the Missing Data Problem: Deletion or Imputation?.. 14

1.4 Summary of Thesis Chapters and Contribution..15

2. Maximum Likelihood Imputation Via the EM Algorithm 17

2.1 Maximum Likelihood Estimation ...18
2.1.1 The Fundamental Concept Underpinning MLE .. 18
2.1.2 Applying MLE to Incomplete Multivariate Datasets .. 20

2.2 The Expectation-Maximization Algorithm...21
2.2.1 History and Utility of the EM Algorithm .. 22
2.2.2 EM Imputation Algorithm Data Assumptions... 22
2.2.3 Functional Outline of the EM Imputation Algorithm.. 24
2.2.4 Using the SWEEP Operator to Impute Missing Values .. 26

2.3 A New Implementation of the EM Imputation Algorithm ...30
2.3.1 Verifying the Functionality of the New EM Implementation.. 30

2.4 Decreasing the Execution Time of the EM Imputation Algorithm.................................32
2.4.1 Factors Affecting EM Algorithm Execution Time.. 32
2.4.2 Measuring EM Execution Time Using Large Simulated Datasets 33

2.5 Summary...36

3. Nearest Neighbour Imputation.. 38

3.1 Implementation of the NN Imputation Algorithm ..39
3.1.1 Using the Missingness Pattern Structure to Find Nearest Neighbours 39
3.1.2 A General Purpose Nearest Neighbour Imputation Algorithm.. 40
3.1.3 Evaluating Nearest Neighbour Imputation Algorithms ... 41

3.2 Decreasing the Execution Time of NN Imputation Algorithms42

3.2.1 Using the Missingness Pattern Structure to Decrease Execution Time 43
3.2.2 Using Donor Matrices to Speed Up NN Imputation Algorithms 43
3.2.3 A Fast General Purpose Nearest Neighbour Imputation Algorithm................................ 45
3.2.4 Performance Evaluation Using Simulated Missing Value Datasets 46
3.2.5 Performance Evaluation Using Two Survey Datasets... 51

3.3 Summary...54

4. A Stochastic Method for Estimating Imputation Accuracy 56

4.1 Functional Overview of the Method ...57
4.2 Description of the Method ..57

4.2.1 Formal Description of the Method: Equations and Procedure... 58
4.2.2 Estimating the Accuracy of the Imputed Values in Data Segments 60
4.2.3 Comparing the Accuracy of the Imputed Values in Data Segments................................ 63

4.3 Comparative Evaluation of Similar Methods..65
4.3.1 Similar Approaches Used by Other Researchers... 65
4.3.2 Bootstrap and Jackknife Uncertainty Estimation .. 66
4.3.3 Multiple Imputation... 68
4.3.4 Limitations of Uncertainty Estimation Methods ... 69
4.3.5 Comparing the Proposed Method with Uncertainty Estimation Methods 70

4.4 Summary...72

5. Experimental Evaluation of the Method .. 74

5.1 Assessing the Reliability and Validity of the Proposed Method.....................................74
5.1.1 Description of the Dataset Used for the Experiments.. 75
5.1.2 Loading the Dataset and Analysing the Variables... 76
5.1.3 Assessing the Reliability of the Method.. 78
5.1.4 Assessing the Validity of the Method.. 85

5.2 Comparing the Predictive Power of Candidate Imputation Methods91
5.2.1 Performing the Nearest Neighbour Imputation Experiments .. 91
5.2.2 Choosing the Most Accurate Imputation Method ... 93
5.2.3 Least Distortion Evaluation... 94
5.2.4 Comparing the Distortions Caused by the EM and NN Algorithms 97

5.3 Summary...99

6. Applying the Method in Practice: A Case Study ... 101

6.1 Description of the Missing Value Dataset ..101
6.2 Missingness Pattern Analysis: Defining the Missing Data Problem102

6.2.1 Large Proportions of Missing Data ... 102
6.2.2 Unbalanced Missingness Patterns ... 104

6.3 Addressing the Problem of Extreme Outlier Values...105
6.3.1 Detecting TCD Financial Outlier Values Using Robust Z Scores................................. 107

6.4 Imputation Methods Used for the TCD Experiments ...109

6.4.1 Using the EM Algorithm to Impute TCD Financial Values.. 109
6.4.2 Using the Nearest Neighbour Algorithm to Impute TCD Financial Values.................. 112

6.5 SME and LARGE Firm Financial Imputation Experiments ...115
6.5.1 Definition of the EM Imputation Experiments .. 116
6.5.2 Definition of the Nearest Neighbour Imputation Experiments...................................... 117

6.6 Experimental Results: Estimating Imputation Accuracy ...118
6.6.1 Estimating the Accuracy of the Imputed Values ... 118
6.6.2 Estimating Imputation Accuracy in Data Segments .. 119
6.6.3 TCD Imputation Conclusions.. 121

6.7 Summary...122

7. Conclusions and Further Work... 124

7.1 Theory and Implementation of Imputation Methods ..124
7.2 The Proposed Imputation Evaluation Method ..126
7.3 Overall Conclusions and Further Work ..128

REFERENCES.. 130

APPENDICES ... 139

A TCD Imputation Experimental Results...140
B Complete EM Algorithm Pseudo-code...154
C Software and Hardware Platform Used ..165
D Notation and Terminology Used in This Thesis ...166
E Thesis Publications ...168

List of Figures

1.1 Numeric patterns in a data matrix that has some missing values .. 7

1.2 Estimating imputation accuracy : Structure of the thesis ... 9

1.3 Data matrix illustrating the MAR and MCAR missing data mechanisms...................................... 12

2.1 The parameters that describe a complete multivariate numeric dataset...................................... 20

2.2 Functional outline of the EM algorithm for multivariate imputation... 24

3.1 Imputing the missing value in column 4 of row 1 in a data matrix using a NN algorithm.............. 39

3.2 A general purpose nearest neighbour imputation algorithm .. 41

3.3 Constructing a donor matrix for multivariate NN imputation... 44

3.4 A fast general purpose nearest neighbour imputation algorithm.. 45

4.1 Functional overview of the proposed imputation evaluation method.. 57

4.2 Functional outline of the repetitive, stochastic imputation evaluation process 59

4.3 Estimating the accuracy of the imputed values in different data segments.................................. 60

4.4 An algorithm to perform balanced random deletions across missingness patterns 62

4.5 Adjusted functional outline for the proposed imputation evaluation method 64

4.6 Estimating imputation uncertainty using the Bootstrap method ... 66

4.7 Estimating imputation uncertainty using the Jackknife method.. 67

4.8 Estimating imputation uncertainty using multiple imputation.. 68

4.9 Common features of Bootstrap, Jackknife, MI and the proposed method 70

5.1 Implementation of the method: Data loading and variable analysis graphical user interface...... 77

5.2 Relationship between the method’s algorithm and its software implementation 79

5.3 Performing imputation evaluation experiments .. 80

5.4 Distribution of the RD values after imputation of DVHST94 using the EM algorithm 85

5.5 Deleting an “out of pattern” value - so that the imputation process can “put it back” 86

5.6 Distribution of the RD values after imputation of DVHST94 using the NN algorithm 93

5.7 Implementation of the least distortion evaluation process ... 95

5.8 Comparison of DVHST94 parameter distortions caused by the EM and NN algorithms............ 97

6.1 Detecting outlier values in a perfectly normally distributed variable using Z scores..................... 105

6.2 Removing outlier values from the PBT distribution for approximately 1.48 million Firms............. 107

6.3 Transforming the SME Payroll variable to an approximate normal distribution............................ 111

6.4 Implementation of the data segment analysis graphical user interface.. 120

List of Tables

2.1 EM algorithm execution times for 5 simulated datasets containing one million rows 34

2.2 EM algorithm execution times for simulated datasets containing 1 to 5 million rows 35

3.1 Comparison of execution times for the two NN algorithms .. 47

3.2 Predicted execution times (to the nearest hour) for the two algorithms 50

3.3 Description of the variables (data matrix columns) in the experimental datasets......................... 52

3.4 Comparison of algorithm execution times using segmented datasets ... 53

5.1 Description of the variables in the Canadian SSC health survey dataset 75

5.2 Description of SSC dataset imputation evaluation experiments 1 to 8... 78

5.3 Aggregated estimates of imputation accuracy for the SSC dataset experiments......................... 84

5.4 Description of SSC dataset imputation evaluation experiments 9 to 16....................................... 91

5.5 Aggregated estimates of imputation accuracy for the SSC dataset experiments......................... 92

5.6 Comparison of the imputation accuracy produced by the EM and NN algorithms 94

6.1 Description of the variables in TBR’s missing value dataset.. 102

6.2 Breakdown of proportions of missing financial data for each Firm size category......................... 103

6.3 Relative sizes of missingness patterns for each Firm size category .. 104

6.4 Description of financial outlier values with a robust Z score of more than ± 4.......................... 108

6.5 Representation of the Education / Health & Social Work UKSIC categories in the TCD 113

6.6 Description of TCD imputation evaluation experiment 1 (EM retaining outlier Firms) 116

6.7 Description of TCD imputation evaluation experiment 2 (EM deleting outlier Firms) 116

6.8 Description of TCD imputation evaluation experiment 3 (NN retaining outlier Firms) 117

6.9 Description of TCD imputation evaluation experiment 4 (NN deleting outlier Firms) 117

6.10 The twelve most accurate imputation methods found for the TCD financial variables 118

- 1 -

Chapter One

Introduction

- 2 -

1. Introduction

Non-response in surveys is perhaps the most prevalent missing data problem (Rubin, 1996a)

and it is often found that several of the variables in a survey dataset - such as a set of

questionnaires - have some missing values (Allison, 2001). Many statistical software

packages simply omit all cases that have one or more missing values (referred to as “case

deletion”) when computing the statistics that describe the dataset. This can bias the results of

the data analysis process and cause misleading conclusions to be drawn, as Schafer (1997)

points out;

“When the incomplete cases comprise only a small fraction of all cases (say, five

percent or less) then case deletion may be a perfectly reasonable solution to the

missing data problem. In multivariate settings where missing values occur on more

than one variable, however, the incomplete cases are often a substantial portion of

the entire dataset. If so, deleting them may be inefficient, causing large amounts of

information to be discarded. Moreover, omitting them from the analysis will tend to

introduce bias, to the extent that the incompletely observed cases differ

systematically from the completely observed ones”

Imputation methods attempt to solve the problem of missing data by replacing missing values

with plausible estimates, which avoids the problems described above. Essentially, all

imputation methods have the same basic objective. That is, they try to make the best possible

use of the information content (the patterns and so on) within the known values in a particular

dataset, to generate the best possible estimates for the missing values in that dataset.

Rubin (1996a) points out that the primary (usually achievable) objective of imputation is to

ensure that data analysis tools “can be applied to any dataset with missing values using the

same command structure and output standards as if there were no missing data”, and that a

further, desirable (but not always achievable) objective is to allow statistically valid

inferences to be drawn when analysing imputed datasets.

Chambers (2001) lists five “desirable properties for an imputation procedure” - i.e. a set of

criteria that can be used to evaluate the performance of any imputation method, as follows;

1. Predictive Accuracy - The imputation procedure should maximise preservation of true

values. That is, it should result in imputed values that are "close" as possible to the true

values.

2. Ranking Accuracy - The imputation procedure should maximise preservation of order

in the imputed values. That is, it should result in ordering relationships between

imputed values that are the same (or very similar) to those that hold in the true values.

- 3 -

3. Distributional Accuracy - The imputation procedure should preserve the distribution

of the true data values. That is, marginal and higher order distributions of the imputed

data values should be essentially the same as the corresponding distributions of the true

values.

4. Estimation Accuracy - The imputation procedure should reproduce the lower order

moments of the distributions of the true values. In particular, it should lead to unbiased

and efficient inferences for parameters of the distribution of the true values (given that

these true values are unavailable).

5. Imputation Plausibility - The imputation procedure should lead to imputed values that

are plausible. In particular, they should be acceptable values as far as the editing

procedure is concerned.

The list is taken directly from Chambers (2001), who explains that “The list itself is ranked

from properties that are hardest to achieve to those that are easiest”. This dissertation

describes a novel method for estimating the “predictive accuracy” of imputation techniques,

and as such it focuses on evaluating the performance of imputation methods using the first

criteria given above.

It is important to emphasise at the outset that the “true values” referred to above are the

actual, real values of the missing data items, which are by definition, unknown. Therefore, it

is impossible to prove that any imputation procedure has imputed values accurately, since

the true values can never be compared with the imputed values. Consequently, general

purpose methods for evaluating the accuracy of the imputed values generated by imputation

procedures have received very little attention in the literature.

However, the accuracy of the imputed values generated by imputation procedures can

be estimated and this dissertation describes the development of a novel, general purpose

imputation evaluation method that can be used to achieve this goal.

- 4 -

1.1 Description of the Work Undertaken

This section explains why the work was undertaken and describes how the collaboration with

the partner company led to the formulation of the project objectives.

1.1.1 Motivation for the Work

The work was funded by the UK Engineering and Physical Sciences Research Council

(EPSRC) under the Cooperative Awards in Science and Engineering (CASE) scheme. This

scheme allows students to collaborate with commercial organisations, so that the results of

the work will benefit the student, the academic institution to which that student belongs and

the commercial organisation involved. In this case the work was undertaken in an attempt to

solve the collaborating company’s missing data problem, as described below.

The collaborating company were Trends Business Research (TBR), who are based in

Newcastle-upon-Tyne. TBR offer business and economic research consultancy to clients in

the private and public sectors at local, regional, national and international levels. TBR’s

activities are based upon the collection, enrichment, analysis and reporting of information

describing UK business organisations, so as to further the strategic aims of their clients. This

information is stored in the Trends Central Database (TCD), which describes approximately

1.48 million UK business organisations (referred to as “Firms”), ranging from sole traders to

conglomerates. The TCD tables contain descriptions of each Firm, including its financial

situation, number of employees, business activities and geographical location. This allows

detailed statistical analysis of the data to be performed at various geographical levels - such

as postcode regions or political areas, such as constituencies and wards.

However, the TCD variables that describe each Firm’s financial situation all have missing

values - which constantly hampers the data analysis described above.

This problem is exacerbated by the following factors. Firstly, the proportions of missing

values for each financial variable are unusually large - i.e. they range from 27 to 96 percent,

depending on the variable. Secondly, 71 percent of the Firms described in the TCD have no

known financial figures whatsoever (all of the values are missing). Thirdly, the missingness

pattern structure (see the following section for a definition of missingness patterns) for the

financial variables is extremely unbalanced. Finally, the known values for each of the

financial variables all contain small proportions of very extreme outlier values.

- 5 -

However, the missing data problem is somewhat alleviated by the fact that larger Firms

(those with more employees) generally have smaller proportions of missing financial data -

i.e. the probability of a Firm’s financial figures being missing decreases as the Firm’s size

increases. And some of the variables that describe each Firm are fully observed, such as the

variables that specify each Firm’s geographical location. A more detailed description of the

TCD dataset and TBR’s missing data problem is given in chapter six.

1.1.2 Objectives

1. To discover whether imputation of the missing values in the collaborating company’s

database was feasible, given the overall poor quality of the dataset. The criterion used

to assess the feasibility of the imputation process was to be the predictive accuracy of

the imputed values.

2. To devise a new method for estimating the predictive accuracy of the imputed values

generated by any imputation technique. The method should build on the ideas

underpinning existing imputation evaluation methods.

3. To implement the method in the form of a software application that will allow users to

estimate the predictive power of any imputation technique.

4. To use the software application to experimentally evaluate the reliability and the

validity of the new method and to achieve the first objective.

- 6 -

1.2 Description of the Proposed Imputation Evaluation Method

This section gives an overview of the imputation evaluation method devised by the author

(a more detailed description is given in chapter four). Section 1.2.1 gives an informal

description of the method. Section 1.2.2 explains how the method can be used to estimate the

predictive power of imputation techniques. Section 1.2.3 gives a functional overview of the

method with reference to the contents of the rest of the thesis.

1.2.1 Informal Description of the Method

The method can be used to estimate the predictive accuracy of the imputed values for any

variable in the dataset (only one variable can be evaluated each time the method is

employed), where the required variable is chosen by the user of the software that implements

the method. However, the evaluation process can be repeated for all of the variables in the

dataset, if this is required. The functional steps of the method are summarised below.

1. A small proportion (perhaps up to 5%) of the known values are deleted at random from

within the variable to be evaluated (which will already have some missing values).

2. Deleted values are recorded just before they are deleted, and a measure of how

accurately they have been “put back” is taken when the imputation process is complete.

3. Steps 1 and 2 are repeated several times and the accuracy statistics computed at step 2

are stored after each repetition.

4. The stored statistics are aggregated so that the estimates of imputation accuracy

produced will be more statistically reliable.

This method is described as “stochastic” in this thesis because the known values are

randomly deleted at step 1. The repetition of steps 1 and 2 forms an essential part of the

method, because this process will produce more statistically reliable estimates of imputation

accuracy. The reason why this is true can be explained using the following example. Suppose

an unbiased coin was thrown twice and fell on heads both times. A maximum-likelihood

based statistical analysis of this small sample (see chapter two for a discussion of maximum

likelihood theory) would estimate the probability of the coin falling on a head as 100%.

However, if the coin was thrown ten times, then the estimate of the probability of a head

being thrown should move closer to the true value of 50%. And as the number of throws is

increased the estimate of the probability of a head being thrown should move closer and

closer to the true value. This principle applies to any stochastic process which attempts to

estimate unknown quantities, such as proposed imputation evaluation method

- 7 -

1.2.2 Estimating the Predictive Power of Imputation Techniques

The process used to estimate the predictive accuracy of imputed values is described in the

previous section. This process also estimates the predictive power of the imputation technique

used to generate the imputed values, which in turn allows the feasibility of using that

technique to be assessed.

The proposed method also allows the predictive power of candidate imputation techniques to

be compared, so that the technique that generates the most accurately imputed values can be

chosen (as described in chapter five). Estimating the predictive power of an imputation

technique is equivalent to measuring how well that technique has utilised the patterns within

the known values in the dataset. This idea is fundamental to the proposed approach and it is

discussed further below.

a b c

1 2 4

10 20 40

 40

2 4 8

100 200 2

 10 20

2000 4000 10

30 120

Fig 1.1 – Numeric patterns in a data matrix that has some missing values

Consider the values in the data matrix shown in Fig 1.1. The relationships between the

variables (the values in the matrix columns) a, b and c are very strong, with the exception

of the two “out of pattern” values (any other relationships found within the values in the Fig

1.1 matrix should be ignored here, since the idea of this section is to illustrate how data

patterns would be utilised by regression based imputation procedures).

Any regression based imputation procedure should produce accurate estimates for the missing

values, because the patterns within a large majority of the known values are so strong. The

important point to note is that the only information available to any imputation procedure

is contained within the patterns that exist among the known values in the dataset.

However, these patterns will degrade and weaken as the proportion of “out of pattern” values

increases, and ultimately the imputation process will become infeasible - i.e. this will occur

when the proportion of “out of pattern” values exceeds a certain critical value.

Matrix cells with missing values are
shaded and empty.

The relationships between the variables
have a simple pattern, where;
b = a x 2
c = b x 2

These two values are “out of pattern”
with the other known values.

- 8 -

Consider the following two extreme theoretical examples. (1) If every matrix cell with a

known value contained the same value, then imputation would be easy to achieve and there

would be very little uncertainty within the imputed values. (2) If every matrix cell with a

known value contained a randomly generated integer in the range one to a billion, then no

patterns would exist within the known values and imputation would be completely infeasible.

However, in practice the patterns within most datasets will fall somewhere towards the centre

of these two theoretical extremes.

Using the predictive power of the patterns in the dataset to assess imputation feasibility

The proposed method assesses the feasibility of employing a particular imputation technique

by measuring how well that technique utilises the predictive power of the patterns within the

known values in the dataset. That is, if the technique being evaluated by the method has been

devised to utilise the type of patterns that actually do exist, then that technique should

generate reasonably accurate estimates for the missing values.

The key point to note is that different types of imputation technique will utilise different types

of patterns when generating estimates for missing values. For example, regression based

techniques will utilise the relationships between variables to generate regression equations,

whereas nearest neighbour techniques will utilise the relationships between observations to

find similar matrix rows (using distance functions). However, the proposed method will work

equally well regardless of the types of patterns utilised by the imputation techniques it

evaluates - i.e. one of the strengths of the proposed method is that it does not need to

“know” how the imputation technique it is evaluating actually works. The following

example explains the reasoning underpinning this general purpose approach, with reference

to the functional description of the method given in the previous section.

If imputation method X repeatedly “puts back” the randomly deleted values inaccurately,

then the deleted values must not have fallen into the patterns that imputation method X used

to generate estimates for the missing values. Consequently, the patterns within the known

values in the dataset must not be strong enough to support imputation method X (but these

patterns might be much better utilised by imputation method Y or Z, depending on how these

methods work). Therefore, the feasibility of employing imputation method X to impute the

missing values is questionable. This approach can be used to evaluate and compare any

imputation method. The consequences of this approach are discussed in considerable detail in

the more suitable context of section 5.1.4.

- 9 -

1.2.3 Functional Overview of the Method: Structure of the Thesis

The diagram below gives an overview of the sequence of steps that are performed whenever

the proposed method is employed. The overall process can be used to estimate the accuracy

of the imputed values generated by any imputation technique.

Fig 1.2 – Estimating imputation accuracy : Structure of the thesis

The sequence of steps shown in Fig. 1.2 reflects the structure of the thesis. The following

points are important in this respect;

• Chapters 2 and 3 discuss the theory underpinning the imputation techniques that have

been implemented as part of the software that implements the proposed method. These

techniques have been implemented alongside the method in the form of an integrated

software application. This was essential, because it would impractical to implement the

repetitive process shown in steps 2 to 5 of Fig. 1.2 in any other way.

Chapter 4

Chapter 4

Chapters 5 and 6

1. Load the dataset with
missing values into the

imputation software

2. Randomly delete a small
% of known values from the

variable to be evaluated

3. Impute missing values
using the imputation

method being evaluated

This loop is
repeated
several times

4. Compute and store the
predictive accuracy
statistics for this run

5. Reverse the imputation
process (discard the

imputed values)

6. Compute the aggregate
predictive accuracy
statistics for all runs

7. Use the aggregate
statistics to assess

imputation feasibility

Chapters 2 and 3

Chapter 5

- 10 -

• Chapter 4 gives a formal explanation of how the proposed method can be used to

estimate the predictive accuracy of the imputed values generated by any imputation

technique (e.g. the techniques described in chapters 2 and 3, among others). The ideas

presented in this chapter form the principal contribution made in this dissertation.

• Chapters 5 and 6 Chapter 5 explains how the reliability and the validity of the

proposed method was experimentally evaluated. Chapter 6 assesses the feasibility of

imputing the missing values in the collaborating company’s dataset.

1.3 Missing Data Mechanisms

An understanding of the “mechanisms” that lead to missing data is an essential prerequisite

for an understanding of missing data problems and these ideas are referred to throughout the

thesis. This section defines the terminology used when discussing missing data mechanisms,

explains the theory underpinning these concepts and describes how this theory can be applied

in practice.

Many imputation methods will find the most reliable estimates for missing values when these

values are “missing at random” (MAR), rather than being “missing completely at random”

(MCAR). These missing data patterns are referred to as “missing data mechanisms” within

the literature that discusses missing data problems. Unfortunately, the nomenclature

surrounding missing data mechanisms can be somewhat misleading for the uninitiated. For

example, when data is said to be missing at random this means that there is some clearly

identifiable patterns of “missingness” within the dataset. In other words, the probability of

missing values occurring for a particular variable depends on the values of another variable

(or on the values of a particular combination of the other variables in the dataset). In fact, the

definitions of the MAR and MCAR assumptions have been the cause of some confusion even

among statisticians, as Allison (2001) points out,

“More generally, researchers have often claimed or assumed that their data are

“missing at random” without a clear understanding of what this means. Even

statisticians were once vague or equivocal about this notion. However, Rubin

(1976) put things on a solid foundation by rigorously defining different

assumptions that might plausibly be made about missing data mechanisms”

Section 1.3.1 gives a formal summary of Rubin’s (1976) definitions - as referred to by

Allison, above - and clarifies the key concept of “ignorability” for practical purposes. Section

1.3.2 attempts to clarify the concepts of MAR and MCAR using a simple illustrative dataset.

Section 1.3.3 describes how missing data mechanisms are defined in practice and explains

why it is impossible to prove the MAR and MCAR assumptions. Section 1.3.4 explains why

it is essential to assess the feasibility of the imputation process for data that is MAR.

- 11 -

1.3.1 Formal Definitions of Missing Data Mechanisms

The statistical definitions of the MAR and MCAR assumptions were rigorously defined by

Rubin (1976). This section gives a summary of Rubin’s definitions using a simple illustrative

dataset. It can be important to refer to these definitions when discussing missing data

mechanisms, to avoid misunderstandings.

 Sex Income Age Sex Income Age

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

64?
3825000
4038000?
??

22?
?20000

F
F

M
M
M

Y

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

101
111
110
001
101
011

M

Consider the example given by the matrices above. Let Y be defined as a data matrix with

one or more missing values in one or more of its columns, with elements represented by ijY

where the ? symbol represents a missing value. Let M be defined as a matrix of

corresponding binary indicators with elements represented by ijM , such that;

 1=ijM if ijY is present in Y

 0=ijM if ijY is missing in Y

Further, let obsY represent the subset of all values present in Y, and let misY represent the

subset of all values missing in Y, such that),(misobs YYY = represents the entire dataset

in Y. Finally, let φ represent a set of unknown parameters which describe the distribution in

M, then;

 For MAR),|(),,|(φφ obsmisobs YMPYYMP = for all φ,misY

 For MCAR)|(),,|(φφ MPYYMP misobs = for all φ,Y

MAR and ignorability are equivalent conditions in practice

The missing data mechanism is said to be “ignorable” - as defined by Rubin (1987) - when

the data in Y is MAR, and when φ (the M distribution parameter) and θ (the Y distribution

parameter) are unrelated. However, in practice, it is hard to imagine a situation where φ and

θ can be related, since knowing φ is very unlikely to tell us anything about θ , and vice-

versa. In addition, even in the very rare cases where φ and θ are related imputation methods

should produce the same results. Essentially, this means that we can treat MAR and

ignorability as equivalent conditions and that we do not need to create or process the M

matrix and φ when executing imputation algorithms for data that is MAR (Allison, 2001).

- 12 -

1.3.2 Informal Definitions of the MAR and MCAR Concepts

Generally, when considering missing data mechanisms we are interested in finding the

probability that a value will be missing, rather than attempting to impute it. This section

discusses missing data mechanisms informally, using the illustrative data matrix shown

below - where the missing values are represented by ? symbols.

 Sex Income Age

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

64?
3825000
4038000?
??

22?
?20000

F
F

M
M
M

Y

Fig 1.3 – Data matrix illustrating the MAR and MCAR missing data mechanisms

The missing values in a particular column are said to be MAR if the probability that they

are missing is unrelated to their value, after controlling for values in the other columns.

For example, suppose that 50% of the males described by the data in the Fig. 1.3 matrix

failed to report their income, but only 10% of the females failed to report their income. We

could then say that the probability of a person’s income being missing depended on their sex.

In this case the MAR condition would be satisfied if the probability of missing income values

occurring in both categories (male and female) was unrelated to the values of the income

variables within those categories. Note that, by the MAR definition, the probability of a

person’s income being missing could also depend on their age, or on any combination of the

set of variables used to describe a person.

The missing values in a particular column are said to be MCAR if the probability that they

are missing is unrelated to their value or to the values in any other column.

For example, the MCAR condition would be satisfied if the probability that the values in the

income column (variable) were missing did not depend on the values in any column in the

matrix, including the income column itself. When the MCAR condition is satisfied for every

column in the matrix then the subset of matrix rows (observations) that have a complete set of

known values can be regarded as being a random sample of all rows in the matrix. Note that

the MCAR condition allows the missingness patterns in two or more columns to be related.

For example, if everyone who failed to report their age also failed to report their income, then

the MCAR condition could still be satisfied for the age and income variables.

- 13 -

1.3.3 Considering Missing Data Mechanisms in Practice

When considering alternative solutions to missing data problems it is important to realise that

making an incorrect assumption about the missing data mechanism for any particular variable

could devalue the results of the data analysis process. This could result in misleading

conclusions being drawn, which would exacerbate the missing data problem.

“It is clear that if the imputation model is seriously flawed in terms of capturing

the missing data mechanism, then so will any analysis based on such imputations.

This problem can be avoided by carefully investigating each specific application,

and by making best use of knowledge and data.” (Barnard and Meng, 1999)

Knowledge of the missing value dataset defines missing data mechanisms

The imputation of missing data is almost invariably a knowledge intensive process, where

each missing data problem has its own unique characteristics. Consequently, the knowledge

possessed by the data analyst concerning the properties of the dataset with missing values is

the most important tool available when defining missing data mechanisms. For example, the

dataset with missing values may have been created using the data taken from a set of returned

questionnaires designed as part of a survey. In this case some questionnaires could contain

missing data because some respondents failed to answer some of the questions put to them.

The knowledge possessed by the designers of the questionnaire is paramount in this case,

since they will understand the relationships between the variables, and consequently they will

be able to define the missing data mechanism for each variable. For example, if it was known

that respondents with certain characteristics (such as age or sex) were more likely to answer

certain questions, then missing answers to those questions would be known to be MAR.

However, if all respondents were considered equally likely to answer every question, then

missing answers to all questions would be MCAR, (Barnard and Meng, 1999)

When detailed knowledge of the relationships between the variables in the missing value

dataset is unavailable it can be extremely difficult to define the mechanisms that lead to

missing data using diagnostic procedures alone (Graham et al, 1994). However, regression

based diagnostics can sometimes be used to detect non-MCAR patterns in situations where a

good linear regression model can be fitted to the data (Simonoff, 1988; Toutenburg and

Fieger, 2000)

MAR and MCAR are assumptions which cannot be proved or disproved

It is very important to emphasise that the MAR and MCAR mechanisms are, by definition,

assumptions which provide a conceptual framework for the analysis of missing data problems

and for assessing the applicability of any particular imputation technique, and that the idea of

proving or disproving the correctness of these assumptions is not the point. This is perhaps

- 14 -

the most difficult idea to comprehend for those who are new to the study of missing data

mechanisms, but it is the key idea underpinning this area of study. In fact, the MAR or

MCAR assumption for a particular variable can never be proved - for the following reason.

To prove both the MAR and the MCAR assumptions we need to prove that the probability of

missing values occurring for a particular variable does not depend on the values of that

variable (see Little and Rubin, 2002, among others). However, we can never prove that this

supposition is either true or false, since we cannot compare the pattern in the subset of

missing (unknown) values with the pattern in the subset of observed (known) values.

1.3.4 Solving the Missing Data Problem: Deletion or Imputation?

Consideration of the missing data mechanism is very important when deciding how to solve a

particular missing data problem. Many statistical software applications offer the option of

simply deleting all rows that have any missing values from the dataset (see for example, Nie

et al, 1975). This approach is referred to as “listwise deletion” or “complete case analysis”.

This can be a good solution when the missing data is MCAR and when the proportion of

deleted rows is small (say up to 10%), because deleting the rows should not seriously bias the

remaining data. However, when the values are MAR and the proportion of missing values is

large, listwise deletion can seriously bias the remaining data, for the reasons explained below.

Consider the data matrix given in Fig. 1.3, above. Suppose that the matrix contained an equal

number of male and female observations (matrix rows), and that 50% of males failed to

report their income, but only 10% of females failed to report their income. In this case 30% of

the rows in the data matrix would have missing values and would be deleted. But the deleted

rows in the male category would represent 25% of the dataset, whereas the deleted rows in

the female category would represent only 5% of the dataset. This would bias the remaining

data and any subsequent analysis based on this biased data could produce misleading

conclusions. In situations of this type imputation is clearly preferable to listwise deletion.

In many cases the solution to the missing data problem comes down to a choice between

imputation or listwise deletion. The key question to ask when trying to make this choice is;

Is the imputation process feasible? The proposed imputation evaluation method has been

devised to answer this question - and it is argued that this method makes a useful contribution

to imputation theory, because it can be used to assess the feasibility of imputing missing

values in any numeric multivariate dataset, using any imputation method.

- 15 -

1.4 Summary of Thesis Chapters and Contribution

An overview of the structure of the thesis is given in Fig. 1.2, above. This section summarises

the contents of the following chapters and explains how they contribute to imputation theory.

• Chapter 2 Discusses the theory underpinning maximum likelihood based imputation

and shows how this approach can be used to impute missing values in datasets with

multivariate missingness patterns. The description of the author’s implementation of the

expectation-maximisation algorithm, and the experiments that evaluate its performance,

contribute to the theory of maximum likelihood based imputation techniques.

• Chapter 3 Explains the ideas underpinning the functionality of a novel, fast, nearest

neighbour (NN) imputation algorithm and shows how these ideas can be used to reduce

the execution time of the NN imputation process. A description of the experiments that

evaluate the performance of the new NN algorithm is given. The ideas and the

experimental results given in this chapter contribute to NN imputation theory.

• Chapter 4 Describes the equations and processes which form the basis of the proposed

imputation evaluation method and shows how this method can be used to evaluate any

imputation technique. The proposed method is compared with the most similar methods

found within the literature and it is shown that the proposed method builds on the ideas

underpinning these methods, but differs from them in several important respects. The

descriptions and explanations given in this chapter form the principal contribution to

knowledge made by this thesis.

• Chapter 5 Explains how the proposed method was experimentally evaluated and shows

that this method produces reliable and valid estimates of imputation accuracy when it is

used to evaluate the imputation techniques described in chapters 2 and 3. A description

of the software that implements the method is given and an explanation of how this

software can be used to compare the predictive power of candidate imputation methods

is provided. This chapter extends the contribution made by chapter 4 by experimentally

evaluating the method which forms the principal contribution.

• Chapter 6 Explains how the proposed method was used to address the collaborating

company’s (TBR’s) missing data problem. A description of the experiments that were

performed in order to find the most accurate methods for imputing TBR’s missing values

is given. The experimental results are analysed and conclusions are drawn.

• Chapter 7 Summarises the thesis, draws conclusions and describes how the work

described in chapters one to six could be continued.

- 16 -

Chapter Two

Maximum Likelihood Imputation
Via the EM Algorithm

- 17 -

2. Maximum Likelihood Imputation Via the EM Algorithm

The proposed imputation evaluation method is general purpose in nature, because it can be

used to assess the feasibility of applying any imputation method to any numeric dataset.

However, a “first cut” imputation method had to be implemented alongside the proposed

evaluation method (in the form of an integrated software application) so that the proposed

evaluation method would have an imputation method to evaluate. The imputation method that

was chosen had to be general purpose in nature, in that it had to be capable of imputing

missing values in any numeric dataset. Allison (2001) argues that there are only two methods

of this type worth considering,

“Many alternative methods have been proposedUnfortunately, most of these

methods have little value, and many of them are inferior to listwise deletion. That’s

the bad news. The good news is that statisticians have developed two novel

approaches to handling missing data - maximum likelihood estimation and multiple

imputation - that offer substantial improvements over listwise deletion.”

This conclusion seems to be generally accepted among statisticians. For example, Little and

Rubin (2002) - who have produced the standard reference work on missing data methods -

devote the major portion of their book to a discussion of the maximum likelihood estimation

(MLE) and multiple imputation (MI) methods.

The imputation method selected for the first tests of the proposed imputation evaluation

method was MLE via the expectation-maximisation (EM) algorithm (Dempster, Laird and

Rubin, 1977). MLE via EM was chosen in preference to MI because the MI approach can

already be used to evaluate the results of the imputation process - i.e. MI is, at least in part, an

imputation evaluation method, although it was designed primarily as an imputation technique.

In fact, the ideas underpinning the proposed method build on the ideas underpinning MI (the

similarities and differences between MI and the proposed method are described in chapter

four). The following sections discuss the theory underpinning MLE and the EM algorithm,

and explain how these techniques can be implemented in practice.

• Section 2.1 explains the fundamental concept underpinning MLE and describes how the

MLE approach can be used to impute missing values in multivariate datasets.

• Section 2.2 discusses the history and utility of the EM algorithm and gives an

explanation of how EM can be implemented in practice, including a description of how

EM can utilise the SWEEP operator to generate regression equations.

• Section 2.3 describes how the author has implemented the EM algorithm as a software

application and explains how the functionality of the new implementation was verified

and how its performance was evaluated.

- 18 -

2.1 Maximum Likelihood Estimation

Section 2.1.1 gives an explanation of the fundamental concept underpinning maximum

likelihood estimation (MLE), using a simple illustrative example. Section 2.1.2 explains how

MLE can be applied for the imputation of missing values in incomplete multivariate datasets.

2.1.1 The Fundamental Concept Underpinning MLE

Suppose we have a biased coin, such that the probability of the coin falling on a head = 0.6,

and the probability of it falling on a tail = 0.4. Then suppose that we throw this coin twice -

there are four possible outcomes, as follows;

 (1) Head, Head (2) Head, Tail (3) Tail, Head (4) Tail, Tail

Intuitively, we can see that, since the coin is biased towards falling on a head, outcome (1) is

most probable, outcomes (2) and (3) are next (and equally) probable and outcome (4) is least

probable. Stated more formally, we can say that the sequence of coin throws follows the

Bernoulli distribution, such that the probability of any specific sequence of heads and tails

occurring is given by;

∏
=

−−=
n

i

yy ii pppYP
1

1)1()|((2.1)

Where Y represents a set of n throws, iy represents a particular throw within this set, and

p gives the probability of a head occurring on any particular throw (which in this case = 0.6).

For example, let 1 represent a head being thrown and 0 represent a tail being thrown. Then

the probability of the occurrence of the set of throws represented by Y = {1, 1} is given by;

36.06.06.0)6.01(6.0)6.0|1,1(
2

1

1 =×=−= ∏
=

−

i

yy iiP

Suppose that another biased coin is thrown 5 times and that it falls on a head 4 times, such

that Y = {1, 1, 1, 1, 0} but this time the probability of the coin falling on a head is unknown.

It follows that calculations such as the one given above cannot be performed on this set of

throws, since the value of p cannot be “plugged in” to the equation. One approach to solving

this problem is to find an estimate for the value of p which maximises the likelihood that the

set of throws Y = {1, 1, 1, 1, 0} will occur. The process of finding the required value of p is

referred to as “maximum likelihood estimation”. Stated more formally, we need to find the

value of p which maximises the likelihood)|(YpL , where;

∏
=

−−=
n

i

yy ii ppYpL
1

1)1()|((2.2)

- 19 -

Notice that the right hand side of this equation is identical to the right hand side of equation

(2.1) above. However, in equation (2.1) we need to find the probability that the observed data

Y will occur for a given value of p. Whereas in equation (2.2) we need to find the value of p

which maximises the likelihood that the observed data Y will occur. In this case we can find

the required value of p by rearranging equation (2.2) so that p appears on the left hand

side (the rearrangement is as given by Dunham, 2003);

∑−∑=−= == −

=

−∏
n
i i

n
i iii yny

n

i

yy ppppYpL 11)1()1()|(
1

1

Taking the log of each side (referred to as the loglikelihood) gives

)1log()log()(log)(
11

pynpypLpl
n

i
i

n

i
i −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+== ∑∑

==

Then taking the derivative with respect to p gives

∑ ∑
=

=
−

−
−=

∂
∂ n

i

n
i ii
p

yn

p
y

p
pl

1

1
1

)(

Finally, setting the right hand side equal to zero, to find the l (p) maximum value, gives

n

y
p

n
i i∑ == 1

applying this to the problem described by equation (2.2) gives

8.0
5
4

5
ˆ

5
1 ===

∑ =i iy
p

Thus, we can say that the value of p that maximizes the likelihood of Y = {1, 1, 1, 1, 0}

occurring is 0.8. It is important to emphasise that this value of p is an estimate based on

single experiment with a very small sample, and that another such experiment involving 5

throws of the biased coin could easily result in a completely different sequence, such as

Y = {0, 0, 0, 0, 1}. However, the same MLE approach could be applied to a much larger

experimental sample (say 1000 throws) and the results would be much more reliable, but still

not conclusive, since the amount of bias in the coin is unknown, and can only be estimated.

This simple example explains the central concept underpinning the MLE approach. This

approach can be applied for the solution of much more complex problems than the one

described above, such as the imputation of missing values in incomplete multivariate

datasets, as described below.

- 20 -

2.1.2 Applying MLE to Incomplete Multivariate Datasets

Conceptually, the equation which gives the probability of the occurrence of any specific

complete multivariate numeric dataset is similar to equation (2.1) as given in the previous

section. However, the parameters that describe the multivariate distribution are much more

complex, as shown in Fig. 2.1, below,

∏
=

=
n

i
iyfYP

1
)|()|(θθ (2.3)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΣΣΣ

ΣΣΣ
ΣΣΣ

−

=Σ=

ppppp

p

p

p

21

222122

112111

211

),(

µ

µ
µ

µµµ

µθ
MOMM

K

L

L

Where)......,(21 pµµµ contains the mean values for each Y column.

and nCSSCP=Σ is the Y matrix covariance matrix, where;

CSSCP = Corrected Sums of Squares and Cross Products matrix,

as described in Tabachnick and Fidell (2000)

Fig 2.1 – The parameters that describe a complete multivariate numeric dataset

Where Y is a data matrix with all values present,),(Σ= µθ represents the set of parameters

which describe the distribution of the data in Y and)|(θiyf gives the probability of the

occurrence of each row iy where i is in the range 1 to n, and n gives the number of rows

in Y. Thus, the probability of the occurrence of the complete Y dataset equals the product of

the probabilities of the occurrence of each row in Y.

However, we are interested in applying the MLE process to incomplete multivariate

datasets, such as the Y matrix shown below. To do this we must find an estimate for the value

of),(Σ= µθ which maximises the likelihood that the incomplete dataset in Y would

occur, as we did in the example in the previous section. The first step is to specify the

equation for the likelihood. Conceptually, this equation is similar to equation (2.2) given

above - but some explanation of the terminology used is required before it can be presented.

- 21 -

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11001
11111
10101
01100
11001
10101

Y

Consider an incomplete data matrix such as the one shown above. Let obsY represent the

subset of all values present in Y, and let misY represent the subset of all values missing in

Y, such that),(misobs YYY = represents the entire dataset in Y. Now let,

),......,(,2,1, iobsobsobsobs YYYY =

represent the subset obsY , where each element in),......,(,2,1, iobsobsobs YYY represents the

set of observed values in the corresponding row in Y. Further, let),(,, iobsiobs Σµ

represent the mean and covariance matrix for a particular row i in Y, (rather than for all rows

in Y, as given in equation (2.3) above). The loglikelihood based on obsY is then given by,

)|,(obsYl Σµ = const)()(
2
1ln

2
1

,,
1

1
,,,

1
, iobsiobs

n

i
iobs

Tiobsiobs
n

i
iobs yy µµ −Σ−−Σ− ∑∑

=

−

=

As given by Little and Rubin (2002). To impute the missing values in Y, we must find an

estimate for the value of),(Σµ which maximises the likelihood of the occurrence of obsY .

When found, the required value of),(Σµ can be used to estimate the missing values in Y,

thus completing the imputation process by producing a Y matrix with all missing values

“filled in”. However, the process of finding the value of),(Σµ which maximises

)|,(obsYl Σµ is complex, and the method of simply rearranging the above equation, so that

),(Σµ appears on the left hand side - as we did for equation (2.2) - cannot be applied in this

case. In fact, this maximum likelihood estimation process is so complex that an iterative

procedure, such as the EM algorithm, is regarded as the simplest way to proceed (Schafer,

1997; Little and Rubin, 2002). The following sections explain how this can be achieved.

2.2 The Expectation-Maximization Algorithm

Section 2.2.1 summarises the history of the expectation-maximisation (EM) algorithm and

discusses its utility. Section 2.2.2 describes the type of dataset that can be processed by the

EM algorithm. Section 2.2.3 explains how the EM algorithm can be used to impute missing

values in multivariate numeric datasets. Section 2.2.4 explains how the SWEEP operator can

be used to generate the regression equations used by the EM algorithm.

The Y matrix has 6 rows and 5 columns

The missing values are represented by a value of 0

The present values are represented by a value of 1

- 22 -

2.2.1 History and Utility of the EM Algorithm

The idea of solving complex statistical problems using an iterative MLE based approach goes

back as least as far as McKendrick (1926), who discusses the idea with reference to a medical

application. Hartley (1958), considers the general case and develops the theory extensively,

explaining many of the key concepts underpinning the entire approach. Orchard and

Woodbury (1972) go on to discuss the general applicability of the approach referring to it as

“the missing information principle”. Beale and Little (1975) develop these ideas further for

the “multivariate normal population” by creating an “iterated form” of the method proposed

by Buck (1960). The phrase “EM algorithm” first appears in the seminal paper by Dempster,

Laird and Rubin (1977), who describe the fundamental properties of the EM algorithm, and

discuss its general applicability to the problem of “computing maximum likelihood estimates

from incomplete data”. The concepts presented in that paper sparked a revolution in the

analysis of incomplete multivariate data, allowing for the efficient imputation of multivariate

missing data using an iterative MLE based approach.

The EM imputation method compares very favourably with other regression based imputation

methods, such as the “singular value decomposition method” (SVD) proposed by

Krzanowski (1988) and the “principal component method” (PCM) proposed by Dear (1959).

This conclusion has been reached by several researchers. See, for example, the useful

comparative analysis of the results produced by EM, SVD and PCM given in Bello (1995),

and the discussion of the application of MLE via the EM algorithm given in the standard

reference book on imputation methods produced by Little and Rubin (2002).

However, the EM approach can be used for more than just imputation. In fact, the range of

problems that can be addressed using EM is wide and varied, including problems which do

not usually involve the analysis of missing data, as discussed by Meng and Pellow (1992) and

McLachlan and Krishnan (1996), and as succinctly summarised by Schafer (1997)

“The influence of EM has been far reaching, not merely as a computational

technique, but as a paradigm for approaching difficult statistical problems. There

are many statistical problems which, at first glance, may not appear to involve

missing data, but which can be reformulated as missing data problems: mixture

models, hierarchical or random effects models, experiments with unbalanced data

and many more.”

2.2.2 EM Imputation Algorithm Data Assumptions

Consider a multivariate numeric data matrix Y with one or more missing values in one or

more of its columns. The EM algorithm can be used to impute the missing values in Y using

an iterative, regression based procedure - assuming that the dataset is suited to the EM

process. This section describes the type of dataset that can be processed by the EM algorithm

- 23 -

and discusses the problems that can arise when incorrect assumptions are made regarding the

properties of the dataset to be processed.

The version of the EM algorithm described here will find the most reliable estimates for the

missing values when all of the columns in the Y matrix are perfectly normally distributed,

and when the missing values are all MAR, as described in chapter one. However, in practice,

it is very unlikely that any data matrix will be perfectly normally distributed, and it will very

rarely happen that the missing values in every column in the matrix are missing at random –

so how should we proceed? Should we test the data to see if it is suitable to be processed by

the EM algorithm? Or should we assume that the data meets requirements and run the EM

algorithm immediately? The answer depends entirely on the nature of the dataset being

processed and on the circumstances surrounding the particular missing data problem.

Perhaps the most sensible approach would be to proceed with the imputation process unless

our knowledge of the dataset suggests that it is not suitable to be processed by the EM

algorithm. For example, suppose our knowledge of the data leads us to believe that the

columns in the data matrix are far from being normally distributed. To address this problem,

suppose we test every column in the matrix and find that 80% of these are approximately

normally distributed, with a small proportion of outliers - but that the distributions in the

remaining columns are unacceptable. The decision to be made in this case is whether the 20%

departure from normality invalidates the EM process, or whether it can be “worked around”

or ignored. Again, everything depends on the circumstances surrounding the missing data

problem. For example, the offending columns could be deleted from the matrix, but then the

missing data in those columns could not be imputed, and the observed data could not be used

to impute missing values in the remaining columns.

However, even in cases where some of the variables are non-normal, the EM algorithm can

still produce reliable estimates for missing values (Schafer, 1997). Furthermore, in some

cases variables can be transformed to approximate normality prior to imputation - e.g. using

the Box-Cox algorithm described in chapter six.

The MCAR assumption complicates the EM imputation process

When values are MCAR the parameters describing the missing data pattern (represented as a

binary matrix - see chapter one) must be re-estimated at each iteration of the EM algorithm.

And modelling the MCAR missing data pattern is very problematic in most cases and may be

impossible for some datasets. Hence, the version of the EM algorithm described below

assumes that the data is MAR, since implementing an MCAR version of the EM algorithm

would be extremely difficult for the reasons given above, as Allison (2000) points out;

- 24 -

“There are often strong reasons to suspect that the data are not MAR.

Unfortunately, not much can be done about this. While it’s possible to formulate

and estimate models for data that are not MAR, such models are complex,

untestable, and require specialized software. Hence any general purpose method

will necessarily invoke the MAR assumption”

2.2.3 Functional Outline of the EM Imputation Algorithm

function matrix EM_algorithm_for_missing_data_imputation (matrix Y, double e)

 matrix newθ = initial_parameter_estimate_for_matrix (Y)

 repeat

 estimate_missing_values_in_matrix_Y_using)(newθ

 newold θθ =

 newθ = new_parameter_estimate_for_matrix (Y)

 until em_has_converged (,newθ ,oldθ e)
 impute_missing_values_ in_matrix_Y_using)(newθ

 return Y

end function

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΣΣΣ

ΣΣΣ
ΣΣΣ

−

=Σ=

ppppp

p

p

p

new

21

222122

112111

211

),(

µ

µ
µ

µµµ

µθ
MOMM

K

L

L

Fig 2.2 – Functional outline of the EM algorithm for multivariate imputation

The functional outline given in Fig. 2.2 shows how the EM algorithm can be used to impute

the missing values in a multivariate, numeric data matrix Y, which is passed as a parameter to

the function, then returned with the missing values “filled in” just before the algorithm

terminates. Notice that the initial value of the Y distribution parameter newθ must be

estimated before the repeat loop starts (see Appendix B for an explanation of how this can

be achieved in practice). This parameter takes the form of the augmented covariance matrix

for the Y matrix, as shown in Fig. 2.2, above.

The function uses successive values of newθ to test for EM “convergence” from one

iteration of the repeat loop to the next. This is achieved by comparing each corresponding

pair of elements in newθ and oldθ using the function below (which is called from the

function above).

- 25 -

function boolean em_has_converged (,newθ ,oldθ e)
 int p = num_columns_in (newθ)

 for int i = 0 to p

 for int j = i to p

 if)(),(),(),(jinewjioldjinew e θθθ >−

 return false

 next j

 next i

 return true

end function

Where this function only returns a value of true if the absolute difference between every

corresponding pair of elements in newθ and oldθ is),(jinewe θ≤ where ()jinew ,θ

represents each newθ element. The execution of this function is equivalent to comparing

successive values of the observed data loglikelihood, using;

)()()(obsnewobsoldobsnew YleYlYl θθθ ≤−

where e is a small value, such as 0.0001. And where the value of)(obsnew Yl θ is

guaranteed not to decrease (and will normally increase) with each iteration of EM, which

makes convergence possible. Although the rate of convergence of EM can differ significantly

from dataset to dataset in practice, which was found to be the case when conducting the

experiments described in chapters five and six. See Meng (1990), Meng (1994) and Schafer

(1997) for detailed discussions of the theory underpinning the rate of EM convergence.

The key concept underpinning the functionality of the EM algorithm outline given in Fig. 2.2

lies in the iterative re-estimation and reuse of newθ . Notice in particular the repeat .… until

loop functionality, where;

1. newθ is used to estimate the missing values in Y

2. Y is used to estimate newθ

3. newθ is used to estimate the missing values in Y

4. Y is used to estimate newθ

…and so on, until the difference between successive values of newθ converge to the value

of e (which is passed as a parameter to the EM function). When convergence is achieved the

final set of element values in newθ will contain the Y distribution parameters which

maximise the likelihood of the occurrence of the dataset in Y. And, finally, newθ is used to

compute the estimates for the missing values in Y, thus completing the imputation process.

- 26 -

The entire procedure is elegant and procedurally efficient and should have a fast execution

time if it is well implemented (e.g. using the methods described in section 2.4). In fact, the

EM imputation algorithm is generally recognised as having “elegant statistical properties

and sound theoretical justification” as pointed out by Bello (1995), among others.

2.2.4 Using the SWEEP Operator to Impute Missing Values

The EM imputation algorithm is essentially a regression based procedure which converts

known values into predictor values, thus allowing missing values to be estimated using the

regression equations so formed. The most complex problem to be solved when implementing

EM in practice is to generate regression equations for each missingness pattern in the data

matrix. For example, consider the Y data matrix given below, where 1 represents a known

value and 0 represents a missing value. Rows 1 and 4 have missingness pattern 10101. Rows

2 and 6 have missingness pattern 10011. Row 3 has missingness pattern 00110.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11001
11111
10101
01100
11001
10101

Y

The problem is to find a method to generate regression equations for the imputation of each

missing value in each different missingness pattern. Where each term in these equations is

formed using the product of one of the known values in the row being imputed and one of the

derived regression coefficients for the missingness pattern in question. This can be achieved

using the versatile matrix “SWEEP operator” which can be applied for the solution of any

sort of iterative, regression based, imputation problem.

The SWEEP operator was first introduced by Beaton in (1964), but the version described here

was originally defined by Dempster (1969). One of the earliest and most detailed tutorials on

the use of SWEEP operator and related matrix transformations can be found in Goodnight

(1979). A detailed and accessible description of the theory underpinning the use of the

SWEEP operator with the EM algorithm can be found in Little and Rubin (2002).

Applying the SWEEP operator to impute missing values as part of the EM algorithm

The sections below give a straightforward explanation of how the SWEEP operator can be

used to impute missing values in practice. The text includes a pseudo-code function that can

be used to implement SWEEP as part of the EM algorithm. This function forms an integral

part of the EM functional outline given in Fig. 2.2. That is, it will be called repeatedly from

- 27 -

the procedure estimate_missing_values_in_matrix_Y_using)(newθ which is called from

within the repeat .… until loop given in Fig. 2.2. The precise nature of this functionality is

described in great detail in the complete EM algorithm pseudo-code given in Appendix B.

When the SWEEP operator is applied to the parameter describing the augmented Y

covariance matrix θ (as described in the previous section) it converts the known values into

predictor values, which allows the missing values to be imputed using the regression

equations so formed. For example, suppose a data matrix has four columns labelled 1Y to 4Y

where the data in a particular row is present for columns 1Y and 2Y but is missing for

columns 3Y and 4Y . In this case the repeated and correct use of the SWEEP operator on the

θ matrix can be used to generate the regression coefficients of 3Y on 1Y and 2Y and

similarly of 4Y on 1Y and 2Y . This allows the missing values in columns 3Y and 4Y to be

imputed using the pseudo-code implementation described below.

Symmetric (p x p) numeric matrices can be “swept” on any row and column - i.e. the notation

used to represent the SWEEP operation is TkSWP][where T is the matrix being swept,

and k is in the range 1 to p or 0 to p for augmented matrices, such as the one used in the

example below. In practice, the SWEEP operator can be considered as a function, where the

parameters passed to this function are; (1) the row and column to sweep on, in this case

denoted by k and, (2) the matrix to be swept, in this case denoted by T. The function adjusts

the elements of T by sequentially executing the five steps defined below, then returns the

adjusted T. For example, the matrix transformation given below shows how the SWEEP

operation TSWP]0[=θ would be applied to a (3 x 3) version of the symmetric matrix T.

 (1) kkkk t1−=θ (4) kkkljkjljl tttt −=θ for kj ≠ and kl ≠

 (2) kkjkjk tt=θ for kj ≠ (5) jllj θθ = for kj ≠ and kl ≠

 (3) jkkj θθ = for kj ≠

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

332313

232212

131211

ttt
ttt
ttt

T
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
==

11
2
1333111213231113

1112132311
2
12221112

11131112111
]0[

ttttttttt
ttttttttt

ttttt
TSWPθ

Thus, we can say that the matrix T has been “swept on row and column 0”, and that the

matrix θ has been set equal to the adjusted version of T created by the SWEEP operation

(see Appendix B for an explanation of the purpose and use of the T matrix within the EM

algorithm). Notice that, for symmetric matrices (such as those swept by the EM algorithm)

- 28 -

the upper right triangle is a mirror image of the lower left triangle - so the top right corner

element and the bottom left corner element are equal etc.

A pseudo-code implementation of the SWEEP operator

The pseudo-code given below, which is based on the five steps given above, provides a fast

and efficient computational procedure for implementing the SWEEP function. Note that the

rows and columns of the (p + 1) x (p + 1) symmetric matrix passed to the function must be

indexed from 0 to p, rather than from 1 to (p + 1). This is specifically required when

processing the augmented EM matrices θ and T (as explained further in Appendix B).

function matrix sweep_matrix_on (int k, matrix g)

 int p = num_columns_in (g)

 matrix s = new matrix (p, p)

 kkkk gs 1−=

 for int =i 0 to p && ki ≠

 kkikik sgs −=

 ikki ss =

 next i

 for int =i 0 to p && ki ≠

 for int =j 0 to p && kj ≠

 kjikijij gsgs −=

 ijji ss =

 next j

 next i

 return s

end function

The most important point to note regarding the use of this function by the EM algorithm is

that calling it to sweep the matrix θ on an element at row and column k converts that

element from a dependant variable to an independent variable in the regression equation

formed by its related elements in the swept matrix. Recalling that, for the EM algorithm, θ

forms the (p + 1) x (p + 1) augmented covariance matrix - where p is the number of

columns in Y, which are indexed from 0 to p. It can be shown that, for the bivariate case,

with a (3 x 3) θ matrix, the function call =θ sweep_matrix_on),1(θ will yield the

regression coefficients of 2Y on 1Y as shown below,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΣΣ
ΣΣ

−
=

22212

12111

211

µ
µ

µµ
θ

- 29 -

After the sweep operation θθ]1[SWP= has been performed;

02θ or 20θ will give the intercept of 22Y on 11Y

12θ or 21θ will give the slope of 22Y on 11Y , and consequently,

11120222 YY θθ += will give the regression equation of 22Y on 11Y

This important result forms the functional basis of the expectation step of the EM algorithm

as applied for the estimation of missing values in a multivariate dataset. And, essentially for

the EM algorithm, the bivariate case given above can be extended to the multivariate case by

performing a set of related consecutive sweeps of the θ matrix - where the set of sweep

indexes for a particular multivariate missingness pattern can be represented by;

 θ],.....[1 nkkSWP or by the equivalent notation;

 θ)]([kMSWP where Mk ∈ and },....{ 1 nkkM =

In addition - as Little and Rubin (2002) explain - it can be shown algebraically that the

SWEEP operator is fully commutative. This means that the final computational result of any

given set of consecutive sweeps will be the same regardless of the order in which those

sweeps are performed. Stated more formally, in the case where the set

},....{ 1 njjA = can be any permutation of the set },....{ 1 nkkM = we can say;

 In the general case θθ],.....[],.....[11 nn jjSWPkkSWP =

 Or equivalently θθ)]([)]([jASWPkMSWP =

The reverse SWEEP operator is an essential part of the EM algorithm

The reverse SWEEP operator is called repeatedly from the complete EM algorithm pseudo-

code given in Appendix B. The reverse SWEEP operation is used to return a swept matrix to

its original form using the notation θ][kRSW where θ is the matrix being swept in

reverse, and k is in the range 1 to p, or 0 to p for augmented matrices, such as θ . For

example, the following consecutive operations would sweep the θ matrix then return it to its

original form;

θθ][kSWP= followed by θθ][kRSW=

The reverse SWEEP operation θθ][kRSW= would be performed by sequentially

executing the five steps defined below. Notice that these steps are almost identical to the

steps for θθ][kSWP= , the only difference being the presence of the minus sign in step (2).

- 30 -

 (1) kkkk θθ 1−= (4) kkkljkjljl θθθθθ −= for kj ≠ and kl ≠

 (2) kkjkjk θθθ −= for kj ≠ (5) jllj θθ = for kj ≠ and kl ≠

 (3) jkkj θθ = for kj ≠

The RSW function could be implemented using a slightly adapted version of the pseudo-

code for the sweep_matrix_on () function (given above) where the difference in the step

(2) calculation is accounted for. Alternatively, the sweep_matrix_on () function could be

adapted to perform both operations by passing an extra parameter to it, which would be used

to determine the correct calculation to perform at step (2). Note that the notation for

performing consecutive reverse sweeps is the same as for the sweep operation - i.e.

θ],.....[1 nkkRSW or θ)]([kMRSW . Also note that RSW is fully commutative as

for the SWEEP operation itself.

2.3 A New Implementation of the EM Imputation Algorithm

The functional outline of the EM algorithm and the SWEEP operator pseudo-code given

above can be used to implement the EM algorithm in practice. These functional explanations

have been expanded to give a complete pseudo-code listing for the implementation of EM for

numeric multivariate imputation, which is given in Appendix B.

This pseudo-code has been implemented as a fully reusable software class using the

Microsoft C# programming language. The resulting EM class can be instantiated and used by

any C# imputation application, regardless of the user interface created to support the

imputation process. The user interface that has been developed to support the new EM

implementation - and the implementation of the new imputation evaluation method - is

described in chapter five. The following section explains how the functionality of the new

EM implementation was tested and verified in practice.

2.3.1 Verifying the Functionality of the New EM Implementation

The results produced by the EM implementation described above were verified as being

correct by comparing the augmented covariance matrices produced by the new

implementation with the covariance matrices produced by the NORM imputation software.

Several different versions of the NORM software can be freely downloaded from the

Pennsylvania State University website at http://www.stat.psu.edu/~jls/misoftwa.html The

most recent NORM application, (Version 2.03 for Microsoft Windows XP) was used to

perform the verification experiments.

- 31 -

The NORM application was produced by Professor Joseph L. Schafer of Pennsylvania State

University using the S-PLUS programming language. Schafer is one of the world’s leading

authorities on the analysis of incomplete multivariate data, and the NORM application is very

highly regarded academically. For example, Allison (2000) shows that in some cases NORM

produces less biased imputed values than the commercial SOLAS (version 1.1) imputation

application, which uses the multiple imputation method developed by Lavori et al (1995).

And a useful description of how multiple imputation has been implemented (and could be

better implemented) in the SOLAS (version 3.0) application and several other commercial

imputation applications can be found in Horton and Lipsitz (2001).

NORM operates only on numeric data, and estimates missing values using multiple

imputation via the Bayesian data augmentation algorithm (Schafer, 1997). The EM algorithm

is used only to generate the initial value of the covariance matrix),(Σ= µθ , so as to speed

up the data augmentation process. Use of the EM algorithm is an optional part of the NORM

imputation process, but the resulting covariance matrix is automatically exported to a text

file, which proved to be invaluable when testing the new EM implementation. Datasets with

missing values must be loaded into the NORM application via text files. When the imputation

process is complete NORM automatically copies the completed data matrix (with the missing

values “filled in”) into another text file, which can then be used to update the missing values

in the source dataset.

Verifying the new EM implementation by comparing it with the NORM version of EM

NORM comes with two demonstration datasets that have missing values, which are stored in

text files. The first file contains a data matrix with 25 rows and 4 columns, with 27% missing

values. The second file contains a data matrix with 279 rows and 12 columns, with just under

8% missing values. These files were used to test the new EM implementation. In both cases

all of the augmented covariance matrix element values produced by the new EM

implementation and by NORM proved to be the same, to four significant figures. The final

test was performed against an independent dataset with 32% missing values - as created by

Ryan and Joiner in (1994) and described by Schafer in (1997). Again, all of the covariance

matrix elements were found to be same, to four significant figures. These tests strongly

suggest that the new EM implementation produces correctly imputed values, since the

probability of both applications producing the same covariance matrix in three different

datasets by chance was assumed to be very small.

- 32 -

2.4 Decreasing the Execution Time of the EM Imputation Algorithm

The proposed imputation evaluation method requires repeated executions of the imputation

method that is used to “put back” the values that are deleted, as explained in chapters one and

four. When using the method in practice it could be necessary - for some experiments - to

repeat the imputation process tens, or even hundreds, of times (e.g. see chapters five and six).

Consequently, it is important that the implementation of the EM algorithm described above

should execute as quickly as possible.

However, techniques for decreasing the execution time of imputation algorithms have

received very little attention in the literature. By contrast, performance issues (algorithm

execution time and so on) have received a great deal of attention in other disciplines. For

example, in the field of data mining (Fayyad et al, 1996; Berson and Smith, 1997) a

considerable amount of work has been done which focuses primarily on decreasing the

execution time of various clustering algorithms. See, for example, the related papers by Ester

et al (1996) and Wang and Hamilton (2003). This section redresses the balance somewhat by

discussing the issues surrounding the execution speed of the EM algorithm.

2.4.1 Factors Affecting EM Algorithm Execution Time

Generally speaking, the execution time of any imputation algorithm will depend primarily on

the size of the dataset being processed - e.g. in the case of the EM algorithm, execution time

will increase as the size of the Y data matrix increases. However, the execution time of the

EM algorithm is also closely linked to the number of missingness patterns present in Y, since

the EM process must, by definition, use different regression equations (the number and size

of the coefficients will differ) to impute the missing values in each missingness pattern. The

maximum number of patterns that can occur in the Y matrix is p2 , where p is the number

of columns (variables) in Y. However, each missingness pattern must be contained in at least

one Y row, therefore the number of possible patterns cannot exceed the number of rows in Y.

It follows that the execution of the EM algorithm will take longer and longer to achieve as the

number of missingness patterns in Y approaches the number of rows in Y, and that the slowest

execution time will occur in the rare cases when every Y row has a unique pattern.

It is generally accepted (see for example, Aho et al, 1983; Knuth, 1997) that the execution

time of almost any algorithm can be reduced by creating “lookup tables” etc. and storing

these in RAM - thus removing the need to repeatedly recreate these data structures as they

become needed to support the processing. Conversely, RAM storage requirements can

usually be reduced by repeatedly recreating smaller data structures as they become needed

during the processing. The key question to ask in each specific case is whether the decrease in

execution time is sufficient to justify the RAM needed to store the lookup table. The pseudo-

- 33 -

code version of the EM algorithm given in Appendix B attempts to optimise performance and

minimise RAM storage requirements by creating only those lookup tables which prove to be

the most beneficial for decreasing EM algorithm execution time.

The fastest possible processing of the EM sufficient statistics matrix obsT will be needed for

any efficient EM implementation (see Appendix B for a description of the purpose and use of

the obsT matrix). This can be achieved by creating the initial version of the obsT matrix only

once (at the start of algorithm) then storing and reusing it repeatedly. This avoids the

unnecessary re-calculation of obsT at the start of every EM iteration, which considerably

reduces algorithm execution time, since the initial version of obsT must be calculated using all

of the rows in the Y data matrix, and this calculation will take proportionately longer to

execute as the number of rows in Y increases. This approach is also recommended by Schafer

(1997) and it has been implemented within the pseudo-code given in Appendix B.

A fast method for generating the regression equations needed to impute the missing values

within each missingness pattern is an essential part of any EM implementation. This can be

achieved by using the SWEEP operator (see section 2.2.4), and this approach has been used

within the pseudo-code given in Appendix B. Use of the SWEEP operator when

implementing EM is also is recommended by both Little and Rubin (2002) and Schafer

(1997), who are perhaps the worlds leading authorities on the implementation of MLE based

imputation methods.

To facilitate EM processing the Y data matrix must be sorted into missingness pattern order.

In other words, all rows with the same missingness pattern must be adjacent in the Y matrix.

To achieve faster EM execution times it is essential this sorting process is performed using a

sorting algorithm which requires no more than (n log n) row comparisons, where n is the

number of rows in Y. More generally, it is important to note that any processing of the Y

matrix requiring 2n operations will become impractically slow when n becomes sufficiently

large, where the value of n that causes unacceptable performance will of course depend on

the computer hardware and software configuration used for the EM implementation.

2.4.2 Measuring EM Execution Time Using Large Simulated Datasets

The experiments described below contribute to the theory underpinning maximum

likelihood based imputation via the EM algorithm. The experiments were designed with the

following three objectives in mind. The first two objectives do not seem to have been

discussed anywhere else in the literature. The third objective is specific to the work described

in this thesis. An explanation of how these objectives were achieved follows the list.

- 34 -

1. To define a standard method for creating randomly generated missing value datasets that

can be used to compare the execution times of various EM algorithm implementations.

2. To establish a set of benchmark EM algorithm execution times and related performance

statistics (see table 2.2) against which any EM implementation can be compared.

3. To measure the execution time of the new EM implementation, so as to discover whether

this implementation was adequate for the purpose for which it was created.

All of the experiments were performed against simulated data matrices containing 12

columns and between 1 and 5 million rows. The randomly generated numeric values inserted

into these matrices were integers between 1 and 100, with values greater than 70 being

replaced with missing value indicators - numerically encoded as values of minus 9.

Consequently, approximately 30% of the data appeared as missing, with the missing values

appearing in randomly created missingness patterns within the rows in each simulated matrix.

The EM performance experiments executed against these datasets were all carried out in

November 2005, using the computer hardware and software configuration described in

Appendix C.

The first five experiments were designed to measure the execution time of the new EM

implementation when processing a simulated data matrix containing 1 million rows and 12

columns. Five different randomly generated datasets with missing values were created using

the method described above. The results are shown in table 2.1, below. The three rightmost

columns of the table show that the method used to generate the experimental datasets

produced consistent results across all experiments. It can be seen that EM execution time is

similar for each experiment, with (on average) 35% of this time being used to sort the data

matrix rows into missingness pattern order (all rows with the same missingness pattern were

made to be adjacent in the data matrix).

Table 2.1 - EM algorithm execution times for 5 simulated datasets containing one million rows

Dataset
Number

Execution Time
(seconds)

Sort Time
(seconds)

Number of
EM Iterations

Number of
Missing Values

Number of
Missingness Patterns

1. 214 75 23 3,517,656 4083

2. 233 77 26 3,518,489 4080

3. 208 74 22 3,515,742 4081

4. 206 73 21 3,515,821 4087

5. 209 73 22 3,514,267 4086

Column
mean value

214 74 23 3,516,397 4083

- 35 -

The second set of experiments were designed to measure the execution time of the new EM

implementation when processing simulated data matrices containing 12 columns and between

1 and 5 million rows. Five different randomly generated datasets with missing values were

created using the method described above. The results are shown in table 2.2, below - with

row 1 of the table showing the mean values of the results of the first set of experiments.

Again, the three rightmost table columns show that the missing data simulation method

produced consistent datasets. It can be seen that the relationship between algorithm execution

time and the number of rows in the data matrix is approximately linear, with execution time

steadily increasing as the size of the data matrix increases. Column 3 of table 2.2 shows that,

on average, 39% of the algorithm’s execution time was required for sorting the data matrix

rows into missingness pattern order.

Table 2.2 - EM algorithm execution times for simulated datasets containing 1 to 5 million rows

Number of
Data Rows

Execution Time
(seconds)

Sort Time
(seconds)

Number of
EM Iterations

Number of
Missing Values

Number of
Missingness Patterns

1 million 214 74 23 3,516,397 4083

2 million 448 164 24 7,035,515 4092

3 million 685 264 24 10,541,612 4094

4 million 962 365 25 14,058,748 4094

5 million 1143 478 20 17,579,973 4097

The final experiment shows that 60 million simulated data values (including over 17 million

missing values) can be processed in just over 19 minutes using the new version of the EM

algorithm developed by the author. Consequently, the new imputation evaluation method can

be executed 10 times against a dataset containing 60 million values in just over 3 hours (using

the hardware and software configuration described in Appendix C). It is therefore argued that

the new implementation of the EM algorithm offers execution times which allow the

proposed imputation evaluation method to be tested and evaluated against quite large datasets

in practice. And that, consequently, the new implementation of EM has been successful,

because it has been shown to be more than adequate for the purpose for which it was created.

- 36 -

2.5 Summary

This chapter has explained the fundamental concepts underpinning the implementation of

MLE via the EM algorithm, and has shown how this approach can be used to impute missing

values in datasets with multivariate missingness patterns. The history and utility of the EM

algorithm has been discussed and the type of datasets that can be processed by the EM

algorithm have been described.

A description of how the author has implemented the EM algorithm as a software application

has been given, including an explanation of how the SWEEP operator was used to the

generate the regression equations needed for the execution of the EM imputation process.

The experiments that evaluate the performance of the new EM implementation make some

contribution to the theory of maximum likelihood imputation via the EM algorithm.

The following chapter describes the second imputation technique that has been implemented

and explains why it was chosen. Chapter four goes on to give a formal description of the

imputation evaluation method devised by the author, and explains how it can be used to

estimate the predictive accuracy of the imputed values generated by the imputation

techniques described in this chapter and in chapter three.

Chapter five describes how the two imputation techniques that were chosen have been

implemented alongside the proposed imputation evaluation method in the form of an

integrated software application, and explains how this application was used to experimentally

evaluate the reliability and the validity of the proposed method. Chapter six explains how the

software application was used to assess the feasibility of imputing the missing values in the

collaborating company’s dataset.

- 37 -

Chapter Three

Nearest Neighbour Imputation

- 38 -

3. Nearest Neighbour Imputation

The EM imputation algorithm was selected for the first tests of the proposed imputation

evaluation method for the reasons given in chapter two. This chapter describes the second

imputation method that was implemented and evaluated, and explains why it was chosen.

Imputation methods can be broadly categorised into parametric methods (statistical

approaches) and non-parametric methods (usually employing data mining techniques). The

EM algorithm was selected from among the parametric methods, and so it was decided that a

non-parametric method should be implemented next, for reasons of balance. The nearest

neighbour (NN) imputation method was selected from among the non-parametric group

because it is perhaps the most general purpose of all the non-parametric methods, and

because the ideas underlying it can be easily understood, as described below.

Nearest neighbour imputation algorithms replace the missing values within any particular

data matrix row (observation) by taking copies of the corresponding known values from the

most similar observation found in the dataset. This approach has two principal advantages

over parametric methods.

• For NN imputation the distributions of the variables in the missing value dataset are not

required to conform to any particular model. However, parametric imputation methods

can be sensitive to model misspecification, which can result in poorly imputed values

(Lazzeroni et al, 1990; Durrant, 2005).

• The imputed values generated by NN algorithms are copied directly from real cases

(donor observations). In other words, “they may not be perfect substitutes, but are

unlikely to be nonsensical values” (Chen and Shao, 2000). This avoids the nonsensical

errors that are occasionally produced by parametric approaches, such as producing

negative estimates for the number of employees in a business organisation etc.

The following sections explain how NN imputation was implemented as part of the integrated

application that implements the proposed imputation evaluation method.

• Section 3.1 explains the ideas underpinning the functionality of a general purpose NN

imputation algorithm devised by the author, and explains how similar methods can be

evaluated in practice.

• Section 3.2 proposes a method for reducing the execution time of any nearest neighbour

imputation algorithm and describes how this idea was evaluated experimentally. This

section forms part of the contribution made by this thesis.

- 39 -

3.1 Implementation of the NN Imputation Algorithm

Section 3.1.1 explains how the missingness patterns within the dataset rows can be used to

find each nearest neighbour. Section 3.1.2 explains how this approach was implemented in

the form of a general purpose NN imputation algorithm. Section 3.1.3 proposes some general

rules that can be applied for the evaluation of any NN imputation method.

3.1.1 Using the Missingness Pattern Structure to Find Nearest Neighbours

Nearest neighbour algorithms impute a missing value in a particular matrix row (dataset

observation) mS by taking a copy of the known value from the most similar donor row iS ,

such that icmc SS = , where c is the matrix column (variable) that has a missing value.

And where the most similar donor row is found by comparing mS with all of the other rows

in the matrix, and using the row that returns the smallest value of ()im SSd , as the donor -

i.e. finding the minimum value of the similarity measure ()im SSd , for all PS i ∈ , where

},....{ 1 nSSP = is the set of all matrix rows and where the variables in mS and iS are

suitably scaled, so that each variable carries the required weight in the similarity calculations.

And where ()im SSd , can be measured using any similarity function, such as the simple

Euclidean distance, or a more complex measure, such as the Hellinger distance (Lee and

Shin, 1999) or the Mahalanobis distance (Mahalanobis 1936; Stage and Crookston 2002).

However, only some ()im SS , pairs can be meaningfully compared, as follows;

 1 2 3 4 5

1 1 1 1 0 0

2 1 1 1 1 0

3 1 1 1 1 1

4 0 1 1 0 1

5 1 0 0 1 0

Fig 3.1 - Imputing the missing value in column 4 of row 1 in a data matrix using a NN algorithm

Fig. 3.1 shows the missingness patterns for every row in a data matrix (where 1 represents a

known value and 0 represents a missing value). The diagram shows the rows that can be

considered as potential donors when imputing the missing value in column 4 of row 1. Notice

that row 3 can be a potential donor for any other row, because it has a full set of known

values. The most important point is that row 2 can be considered as a potential donor, but

row 5 cannot, because the similarity between rows 1 and 2 cannot be meaningfully compared

with the similarity between rows 1 and 5. For example, a Euclidean distance calculation

would produce a smaller value when measuring the similarity between rows 1 and 5, because

List of missingness patterns for
every row in the data matrix

The missing value in column 4 of row 1 is to be imputed

These potential donors have known values in the same columns as
row 1 and they also have a known value in column 4

Cannot be a donor because only 1 known value matches with row 1

Cannot be a donor because no donor value is present in column 4

- 40 -

only one column would be included in the calculation, whereas 3 columns would be included

in the calculation when measuring the distance between rows 1 and 2.

However, row 5 could be considered as a potential donor if some form of weighting was

included in the similarity calculation to compensate for the reduced number of variables used

to measure that similarity. This approach has been tried and tested by Huang and Zhu (2002),

who use an experimental “pseudo-nearest-neighbours” method to impute missing values in

multivariate Gaussian datasets, where the “pseudo-similarity” measurement implemented

“is actually a weighted correlation value between the two vectors with partially missing

element values”. A less complex, but somewhat similar, method of weighting was proposed

much earlier by Dixon (1979) - and Junninen et al (2004) have evaluated Dixon’s method in

practice by comparing it to various other imputation techniques. However, these weighting

methods are best applied to Gaussian datasets where a good linear regression model can be

fitted to the data - i.e. where the correlations between the variables are strong. Consequently,

similarity measures that utilise variable weighting schemes were not implemented as part of

the first software versions of the new imputation evaluation method, because this approach

was not considered to be sufficiently general purpose in nature for the initial experiments. An

algorithmic implementation of the imputation method described in Fig. 3.1 is given below.

3.1.2 A General Purpose Nearest Neighbour Imputation Algorithm

function matrix generic_NN_imputation_in_column (int c, matrix data)
 dataMatrixRow missRow, donorRow, closestRow
 removeEmptyRowsIn (data)

 for m = 1 to num_rows_in (data)
 missRow = data (m)
 if (missRow . patt (c) == 0)
 minDistance = null
 for d = 1 to num_rows_in (data)
 donorRow = donors (d)
 if (donorRow . patt (c) == 1)
 match = true
 j = 1
 while (j <= num_cols_in (missRow) && match == true)
 if (missRow . patt (j) == 1 && donorRow . patt (j) == 0)
 match = false
 end if
 j ++
 end while
 if (match == true)
 distance = euclideanDistanceBetween (missRow, donorRow)
 if (distance < minDistance | | minDistance == null)
 minDistance = distance
 closestRow = donorRow
 end if
 end if

- 41 -

 end if
 next d
 if (minDistance != null)
 missRow (c) = closestRow (c)
 end if
 end if
 next m
 return data
end function

Fig 3.2 – A general purpose nearest neighbour imputation algorithm

The algorithm implements the row comparison method described in Fig. 3.1. The Euclidean

distance is used to measure the similarity between observations, but any other similarity

measure could be substituted. The following parameters are passed to the algorithm;

(1) int c is the data matrix column containing the values to be imputed.

(2) matrix data is the data matrix, which is passed to the algorithm with missing values in

column c and returned with imputed values in column c,

Where the statement missRow (c) = closestRow (c) imputes each missing value. And where

each dataMatrixRow object contains a binary array patt() which represents its missingness

pattern (see chapter one).

3.1.3 Evaluating Nearest Neighbour Imputation Algorithms

The algorithm given in Fig. 3.2 is general purpose in nature, because it can be used to impute

missing values in any numeric multivariate dataset. Many other NN imputation algorithms

have been devised, but some of these have limited utility, because they were designed to

solve a unique missing data problem. In other words, the functionality of these algorithms

was customized to suit a specific type of dataset. However, NN algorithms all share the same

basic functionality in that they all impute missing values by finding nearest neighbours and

then copying values from them. Consequently, it is argued that the following three questions

are the most appropriate ones to ask when evaluating any NN imputation algorithm.

1. Is the similarity measure used suitable for the solution of the missing data problem?

That is, does this measure find the best possible donor rows for imputation purposes?

2. Is the method used to decide which dataset rows should be considered as potential

donors appropriate? - e.g. if the dataset has been segmented, was this done in such a way

that the search for each donor row takes place within the best possible subset of rows?

3. Is the method used to decide which rows can be meaningfully compared logical, given

the nature of the data? This question is discussed further, below.

- 42 -

The first two questions need not be asked for the algorithm given in Fig. 3.2, because it is

generic by design. That is, it can employ any method for measuring the similarity between

observations and it can be executed against any sort of segmented dataset, regardless of the

classification scheme used. On the other hand, the algorithm does specify which rows can be

meaningfully compared, as shown in Fig. 3.1. However, it is argued that this is a good

general purpose approach which can be applied for the solution of many missing data

problems, for the following reasons;

1. Non-response in surveys is perhaps the most prevalent missing data problem (Rubin,

1996a), and it is often found that several of the variables in a survey dataset - such as a

set of questionnaires - have some missing values (Allison, 2001). This creates many

different missingness patterns within the dataset. The algorithm given in Fig. 3.2 can be

applied to all such datasets (from surveys or otherwise), regardless of the structure and

distribution of the missingness patterns they contain.

2. Employing any method that involves comparing rows that do not have a common set of

known values requires the use of a similarity measure that can return different values

depending on the number of common values in the rows compared. It is argued that this

approach should be avoided whenever possible, because it builds an additional level of

uncertainty into the NN imputation process.

3.2 Decreasing the Execution Time of NN Imputation Algorithms

The proposed imputation evaluation method requires repeated executions of the imputation

process that is used to “put back” the values that are deleted. Consequently, it is important

that the implementation of the nearest neighbour algorithm should execute as quickly as

possible. This section describes a new approach for decreasing the execution time of any

NN imputation algorithm which forms part of the contribution.

A considerable amount of work has been done to evaluate and compare the results produced

by various NN imputation algorithms (Wasito and Mirkin 2005/2006; Durrant, 2005; Kalton,

1982) and to analyse the functionality and properties of such algorithms (Chen and Shao,

2000; Fay, 1999; Rancourt et al, 1994). In addition, several methods for measuring the

similarity between dataset rows when searching for the nearest neighbour have been proposed

(Dixon, 1979; Huang and Zhu 2002; Stage and Crookston 2002; Lee and Shin, 1999).

However, the slow execution time and the resulting poor scalability of multivariate NN

imputation algorithms has received very little attention - i.e. searching the dataset for each

nearest neighbour takes longer and longer as the size of that dataset increases.

- 43 -

Section 3.2.1 addresses this problem by explaining how the execution time of the NN

imputation process can be reduced. Sections 3.2.2 and 3.2.3 explain how this approach was

implemented in practice. Section 3.2.4 describes how the execution time of the resulting

algorithm was evaluated using a set of simulated missing value datasets. Section 3.2.5

describes how the algorithm was evaluated using a real survey dataset and discusses the need

for segmentation when performing NN imputation in large datasets.

3.2.1 Using the Missingness Pattern Structure to Decrease Execution Time

Generally, when NN algorithms are executed against complete datasets they compare a

particular dataset row with every other row when searching for that rows nearest neighbour

(unless the dataset is segmented by class, so that this search can be limited to the subset of

rows within a single class, as discussed in section 3.2.5). Consequently, it is hard to see how

the execution time of this type of NN algorithm can be decreased at the macro level.

However, when NN algorithms are executed against incomplete datasets this is not the case.

For example, suppose the dataset has 99% missing values. In this case many of the rows

would be empty or they would have very few known values. Therefore, far fewer row

comparisons would be required to find any particular nearest neighbour. Extending this idea

it can be seen that as the proportion of missing data increases NN algorithm execution time

can, in principle, be decreased by a corresponding proportion. This can be achieved by

creating an algorithm that makes the best possible use of the information content within the

missingness patterns that exist within the dataset - as described in the following section. This

approach was first described by the author of this thesis in Solomon et al (2007b) - see

Appendix E for the full paper.

3.2.2 Using Donor Matrices to Speed Up NN Imputation Algorithms

It is argued that the functionality of all NN imputation algorithms that process datasets with

multivariate missingness patterns must be fundamentally similar to the functionality of the

algorithm given in Fig. 3.2, because every row must be compared with every other row when

searching for each nearest neighbour. This is unavoidable, since it will be necessary to test

each row in the dataset to discover whether it can be meaningfully compared with the

imputed row before measuring the similarity. Where meaningful comparisons are defined in

Fig. 3.1 for the algorithms given here, but they could be defined otherwise, as required.

More precisely, we can say that NN algorithms generally have a time complexity of)(2nO ,

where n is the number of rows in the data matrix (Dunham, 2003; Aho et al, 1983) - i.e. the

algorithm execution time)(nT is proportional to the square of the number of rows in the

data matrix, such that 2)(cnnT = , where c is the constant of proportionality. However, the

- 44 -

algorithm given in the following section reduces the size of the constant of proportionality for

all missing value datasets, which in turn reduces)(nT . An explanation of the ideas

underpinning the algorithm’s functionality is given below.

 1 2 3 4

1 1 0 0 1

2 1 0 1 1

3 0 1 1 1

4 1 1 1 1

5 1 1 0 0

Fig 3.3 - Constructing a donor matrix for multivariate NN imputation

The donor matrix shown in Fig. 3.3 would be constructed by the algorithm when imputing the

missing values in column 3 of every data matrix row that has missingness pattern 1, where 1

represents a known value and 0 represents a missing value. Only those data matrix rows that

have the pattern shown in rows 2 and 4 can be added to this donor matrix, because these are

the only rows with a known value in column 3 and with the same set of known values as the

rows that have pattern 1. It can be seen that pattern 5 also has missing values in column 3.

However, the rows with pattern 5 cannot use the same donor matrix as the rows with pattern

1, since only those rows with pattern 4 can be used to construct the donor matrix in this case.

Notice also that the rows with pattern 4 can be added to every donor matrix constructed by

the algorithm, because pattern 4 has a full set of known values. This method is similar to, but

faster than, the method implemented in the algorithm given in Fig. 3.2, because the search for

each nearest neighbour is carried out within the subset of data matrix rows added to each

donor matrix (rather than searching all of the rows in the data matrix every time).

The idea of reducing execution time by creating donor matrices can be applied to almost any

NN imputation algorithm. The principle underlying this idea is that the number of row

comparisons can almost always be reduced by utilising the information content within the

missingness patterns. The example given in Fig. 3.3 shows one way of applying this

principle, but many other ways of applying it could be used. For example, when similarity

measures that employ variable weighting schemes are used (Dixon, 1979; Huang and Zhu,

2002) the minimum number of matching known values in each pair of rows compared could

be specified - so as to avoid excessively weighted row comparisons. Or a specific

combination of matching known values could be specified as being essential when searching

for donor rows for the imputation of any particular variable. An algorithmic implementation

of the approach described in Fig. 3.3 is given below. This algorithm is novel and it forms

part of the contribution to knowledge made by this dissertation.

This donor matrix would
be constructed by the
NN algorithm when
imputing the missing
values in column 3 of
missingness pattern 1.

All data matrix rows
that have missingness

pattern 2

All data matrix rows
that have missingness

pattern 4

Donor matrix constructed
by the NN algorithm

List of missingness
patterns in the data matrix

Each pattern
contains a set
of matrix rows

- 45 -

3.2.3 A Fast General Purpose Nearest Neighbour Imputation Algorithm

function matrix fast_NN_imputation_in_column (int c, matrix data)
 missPatternRow missPatt, matchPatt
 dataMatrixRow missRow, donorRow, closestRow
 removeEmptyRowsIn (data)
 vector patterns = missPatternListFor (data)

 for i = 1 to num_rows_in (patterns)
 missPatt = patterns (i)
 if (missPatt . patt (c) == 0)
 donors = new vector ()
 for p = 1 to num_rows_in (patterns)
 matchPatt = patterns (p)
 if (matchPatt . patt (c) == 1)
 match = true
 j = 1
 while (j <= num_cols_in (missPatt . patt) && match == true)
 if (missPatt . patt (j) == 1 && matchPatt . patt (j) == 0)
 match = false
 end if
 j ++
 end while
 if (match == true)
 for r = matchPatt . pattStartRow to matchPatt . pattEndRow
 donors . add_to_end (data (r))
 next r
 end if
 end if
 next p

 for m = missPatt . pattStartRow to missPatt . pattEndRow
 missRow = data (m)
 minDistance = null
 for d = 1 to num_rows_in (donors)
 donorRow = donors (d)
 distance = euclideanDistanceBetween (missRow, donorRow)
 if (distance < minDistance | | minDistance == null)
 minDistance = distance
 closestRow = donorRow
 end if
 next d
 if (minDistance != null)
 missRow (c) = closestRow (c)
 end if
 next m
 end if
 next i
 return data
end function

Fig 3.4 – A fast general purpose nearest neighbour imputation algorithm

- 46 -

The algorithm uses the Euclidean distance as a NN similarity measure, but any other measure

could be substituted. The parameters passed to the algorithm are the same as those passed to

the algorithm given in Fig. 3.2. The function missPatternListFor (data) creates and returns

the patterns vector, which contains a list of missPatternRow objects, which represent the

missingness patterns in the data matrix. Where each missPatternRow object has the

following attributes;

(1) A binary array patt() representing the missingness pattern.

(2) pattStartRow which gives the first row number of the pattern in the data matrix.

(3) pattEndRow which gives the last row number of the pattern in the data matrix.

Note that the algorithm requires the data matrix to be sorted into missingness pattern order

(all rows with the same missingness pattern must be adjacent) so that the missPatternRow

objects can be utilised during the processing.

3.2.4 Performance Evaluation Using Simulated Missing Value Datasets

It is important to note that the NN algorithms given in Fig. 3.2 and Fig. 3.4 will produce the

same set of imputed values when they are executed against the same data matrix - provided

that the rows in this matrix are sorted into the same order (matrix row order affects the values

imputed by NN algorithms). In other words, the algorithm given in Fig. 3.4 is simply an

enhanced version of the algorithm given in Fig. 3.2.

The pseudo-code versions of the two algorithms have been implemented using the Microsoft

C# programming language (see Appendix C). This section explains how the execution times

of the C# versions of the algorithms were compared by using them to impute missing values

in a set of randomly generated datasets. The results of the experiments are given in table 3.1,

below.

- 47 -

The experiments were designed to try to answer the following key questions;

(1) Would the method of creating donor matrices (implemented in the Fig. 3.4 algorithm)

decrease NN algorithm execution time?

(2) Would the execution times of either of the two algorithms decrease as the proportion of

missing data in the matrix was increased?

Table 3.1 - Comparison of execution times for the two NN algorithms

Number of
rows in the
data matrix

% of missing
values in the
data matrix

Fig. 3.2 algorithm
execution time

(seconds)

Fig. 3.4 algorithm
execution time

(seconds)

10,000
25
50
75

7
5
4

5
2
1

20,000
25
50
75

26
20
16

21
9
3

30,000
25
50
75

58
46
37

50
22
7

40,000
25
50
75

104
78
62

87
38
11

50,000
25
50
75

159
125
102

136
58
18

60,000
25
50
75

233
181
140

193
94
29

70,000
25
50
75

315
238
195

275
127
34

80,000
25
50
75

417
314
241

353
159
45

90,000
25
50
75

529
421
300

445
195
57

100,000
25
50
75

649
515
379

534
247
72

110,000
25
50
75

787
603
464

655
300
95

120,000
25
50
75

918
720
559

765
357
118

- 48 -

The experiments were performed against 12 sets of randomly generated data matrices

containing between 10,000 and 120,000 rows, as shown in column 1 of table 3.1. The values

inserted into these matrices were randomly generated integers in the range 1 to 100, where

25%, 50% and 75% of these values were randomly deleted in three stages. This process

generated 36 different matrices, as shown in column 2 of table 3.1. Each of these matrices

contained 7 columns, where the missing values in column 1 were imputed for every

experiment.

Each matrix contained the maximum possible number of missingness patterns. Generally, the

maximum number of patterns in any matrix equals 2n, where n is the number of columns in

the matrix. In this case each matrix contained 7 columns, therefore 128 patterns were added

to each matrix - where these patterns were balanced and evenly distributed across the rows in

each matrix, because the missing values were deleted completely at random from across the

entire matrix. The algorithms given in Fig. 3.2 and Fig. 3.4 were executed against all 36 of

the matrices, thus creating 72 sets of experimental results, as shown in columns 3 and 4 of

table 3.1. The results given in table 3.1, above are presented much more clearly in line chart

form, below.

7 column matrix with 25% missing values

0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 Fig. 3.2 algorithm
 Fig. 3.4 algorithm

y = 4E-08 x 2.0233

R2 = 0.9997

y = 8E-08 x 1.9787

R2 = 0.9998

- 49 -

7 column matrix with 50% missing values

0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 Fig. 3.2 algorithm
 Fig. 3.4 algorithm

y = 5E-08 x 2.0026

R2 = 0.9998

y = 1E-08 x 2.076

R2 = 0.9993

7 column matrix with 75% missing values

0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 Fig. 3.2 algorithm
 Fig. 3.4 algorithm

y = 5E-08 x 1.9732

R2 = 0.9997

y = 2E-08 x 1.9258

R2 = 0.9963

- 50 -

• The line charts given above show the comparative execution times (in seconds) for the

algorithms given in Fig. 3.2 and Fig. 3.4. Algorithm execution times are shown on the y

axis of each chart. The number of rows in the data matrices are shown on the x axis.

• The charts show that the Fig. 3.4 algorithm executed more quickly than the Fig. 3.2

algorithm for every experiment - i.e. the method of creating donor matrices implemented

as part of the Fig. 3.4 algorithm did in fact decrease the execution times. It can be seen

that this performance advantage increases as the proportion of missing data increases, with

the largest difference between the algorithm execution times occurring for the largest

input matrix shown on the final chart.

• The execution time increases for both algorithms as the number of matrix rows increases,

as expected. However, execution time also decreases for both algorithms as the proportion

of missing data in each matrix increases - i.e. the fastest execution times for both

algorithms are shown on the final chart, where each matrix has 75% missing values.

• The regression equations shown on the charts are very close to the expected 2)(cnnT =

results (see section 3.2.2), with the very small differences in the expected exponents

perhaps explained by the small samples (12 results) used for the regression calculations.

• The very high R2 values suggested that the regression equations could be used to predict

algorithm execution times for larger matrices with some confidence - e.g. the final chart

shows that the equation for the Fig. 3.2 algorithm had an R2 value of 0.9997. Some

calculations were performed and the predicted execution times are shown in table 3.2,

below. It can be seen that the method of creating donor matrices decreases NN algorithm

execution time even for quite large matrices, and that this performance advantage

increases markedly as the proportion of missing values in each data matrix is increased.

Table 3.2 - Predicted execution times (to the nearest hour) for the two algorithms

Number of
rows in the
data matrix

% of missing
values in the
data matrix

Fig. 3.2 algorithm
execution time
(nearest hour)

Fig. 3.4 algorithm
execution time
(nearest hour)

1,000,000
25
50
75

17
14
10

15
8
2

2,000,000
25
50
75

65
58
38

62
33
8

3,000,000
25
50
75

146
130
84

142
78
17

4,000,000
25
50
75

257
231
148

253
141
29

- 51 -

3.2.5 Performance Evaluation Using Two Survey Datasets

The experiments described in the previous section were performed against simulated datasets.

However, it is also important to compare the execution times of the Fig. 3.2 and Fig. 3.4

algorithms using real datasets. For example, the simulated datasets all contained a full set of

well balanced and evenly distributed missingness patterns, but this can hardly be expected to

occur in practice. This point is crucial for the evaluation of the Fig. 3.4 algorithm, since the

missingness pattern structure is used to create the donor matrices - i.e. the relative sizes and

distributions of the missingness patterns are the key factors affecting the execution time of

the Fig. 3.4 algorithm.

The experiments described below compare the execution times of the two algorithms when

they are executed against segmented datasets. This is an important consideration, because in

practice datasets are often segmented by class, so that the search for each nearest neighbour

can be limited to the subset of rows within a single class (Chen and Shao, 2000). The required

classes can be created by segmenting the dataset using a fully observed categorical variable

(as for the experiments described below) or by dividing the dataset into numeric class

intervals using a fully observed numeric variable.

This approach can improve the quality of the imputed values and reduce the execution time

of the NN algorithm. Execution time is reduced because the search for each nearest neighbour

takes place within a smaller number of dataset rows - i.e. the subset of rows contained within

a single class. The quality of the imputed values can be improved because they are taken

(copied) from a set of donor rows that share the same characteristics - e.g. a set of people

within a specified age group etc.

Description of the experimental datasets

Table 3.3, below describes the datasets that were used to perform the experiments. A much

more detailed description of the datasets is given in chapter six. Each of the variables

described in table 3.3 represents one of the columns inserted into the experimental data

matrices. The ten variables taken together represent a data matrix row which describes a Firm

(a business enterprise) within the UK. The first four variables listed were fully observed, but

the other six (the currency variables) all had large proportions of missing data.

- 52 -

Table 3.3 - Description of the variables (data matrix columns) in the experimental datasets

Variable name Data type Variable description

UKSIC_Category Integer
An integer representation of a categorical alphanumeric code which
defines the commercial activities carried out by each Firm, such as
“Publishing of software” etc.

Employees Integer Specifies the number of people employed by each Firm

Easting
Northing

Integer
Pinpoints the geographical location of each Firm on the UK map, using
two UK Ordnance Survey (OS) mapping co-ordinates.

Sales
Payroll
Depreciation
DirectorPay
NetWorth
PBT (Profit Before Tax)

Currency
Six numeric variables that describe each Firm’s financial situation.
These variables all had large proportions of missing values. The Payroll
variable was imputed for every experiment.

Description of the experimental process

The experiments were performed against two separate datasets, each of which contained the

ten variables described in table 3.3 - i.e. both datasets had the same column structure, but the

set of rows contained within each dataset differed, as follows. The first (and the largest)

dataset described 1,128,463 MICRO Firms, which are defined as those Firms with less than

10 employees. The second (much smaller) dataset described 271,955 SMALL Firms, which

are defined as those Firms that have between 10 and 49 employees.

The UKSIC_Category variable was used to segment both of the datasets at four different

levels of granularity (see chapter six for a detailed description of how this was achieved).

Where the lowest level of granularity created the smallest number of segments and the

highest level of granularity created the largest number of segments. This process created eight

different data matrices, as shown in column 5 of table 3.4, below. The algorithms described in

Fig. 3.2 and Fig. 3.4 were executed against each of these matrices, where the missing Payroll

values were imputed for every experiment. This process created 16 sets of experimental

results, as shown in the two rightmost columns of table 3.4.

It is important to note that the Fig. 3.2 and Fig. 3.4 algorithms were amended so that the

search for each nearest neighbour could be limited to the subset of rows within a single

UKSIC_Category. The amendments made to the algorithms were quite simple, but they are not

shown in the pseudo-code given in Fig. 3.2 and Fig. 3.4 for reasons of clarity. The

experimental results are tabulated below.

- 53 -

The experiments were designed to try to answer the following key questions;

(1) Would the method of creating donor matrices (implemented in the Fig. 3.4 algorithm)

decrease algorithm execution time for large segmented datasets?

(2) Would dividing the data matrix into an increasingly large number of segments steadily

decrease the execution times of either of the two algorithms?

These questions need to be addressed because in practice datasets are often segmented by

class, so that the search for each nearest neighbour can be limited to the subset of rows within

a single class (Chen and Shao, 2000). Therefore, it is important to compare the performance

the Fig 3.2 and Fig 3.4 algorithms when they are executed against segmented datasets.

Table 3.4 - Comparison of algorithm execution times using segmented datasets

Description of
experimental

dataset

Number of
rows in the
data matrix

% of missing
values in the
data matrix

Number of
missingness

patterns

Number of
category
segments

Fig. 3.2 algorithm
execution time

(minutes)

Fig. 3.4 algorithm
execution time

(minutes)

MICRO Firms
(less than 10
employees)

1,128,463 61.72% 28

58
203
412
488

312
119
53
47

44 (0.14)
16 (0.13)
9 (0.17)
8 (0.17)

SMALL Firms
(10 to 49

employees)
271,955 54.97% 27

57
200
409
485

17
6
3
3

6 (0.35)
2 (0.33)
1 (0.33)
1 (0.33)

The figures given in the three rightmost columns show that dividing the matrix into an

increasingly large number of segments steadily decreased the execution time required for

both algorithms. This occurred because as the number of segments was increased the search

for each nearest neighbour took place within a smaller number of rows. The figures in

brackets given in the rightmost column show the improvement in performance offered by the

Fig. 3.4 algorithm for both datasets. For example, the first row of figures show that the Fig.

3.4 algorithm executed in just under one seventh of the time (given to the nearest minute)

taken by the Fig. 3.2 algorithm. It can be seen that these performance improvements are

similar within each dataset, regardless of the number of segments created.

Overall conclusion for the NN algorithm performance evaluation experiments

The method of creating imputation donor matrices implemented in the Fig. 3.4 algorithm

decreased the execution time of the Fig. 3.2 algorithm for both simulated and real datasets.

This performance advantage increased markedly as the proportion of missing values in the

data matrix was increased.

- 54 -

3.3 Summary

This chapter has explained the ideas underpinning the functionality of a general purpose NN

imputation algorithm that has been devised by the author, and has shown how these ideas can

be used to reduce the execution time of the NN imputation process.

An explanation of how the new algorithm has been implemented in practice has been given

and some general rules for the evaluation of any NN imputation procedure have been

proposed. A description of the experiments that were performed to evaluate the performance

of the new algorithm has also been given, and the experimental results have been presented,

analysed and discussed. The ideas and the experimental results presented in this chapter form

part of the contribution to knowledge made by this thesis.

This completes the descriptions of the two imputation techniques that have been implemented

alongside the proposed imputation evaluation method in the form of an integrated software

application. The following chapter gives a detailed description of the proposed evaluation

method and explains how it can be used to estimate the predictive accuracy of the imputed

values generated by any imputation technique - including the techniques described in this

chapter and in chapter two.

Chapter five goes on to describe how the integrated software application was used to

experimentally evaluate the reliability and the validity of the proposed imputation evaluation

method. Chapter six completes the fulfilment of the project objectives by using the integrated

application to assess the feasibility of imputing the missing values in the collaborating

company’s dataset.

- 55 -

Chapter Four

A Stochastic Method for Estimating
Imputation Accuracy

- 56 -

4. A Stochastic Method for Estimating Imputation Accuracy

This chapter describes the equations and processes which form the basis of the proposed

imputation evaluation method and shows how this method can be used to evaluate any

imputation technique. The proposed method is compared with the most similar methods

found within the literature and it is shown that the proposed method builds on the ideas

underpinning the most similar methods, but differs from them in several important respects.

The functional steps of the proposed method are summarised below,

1. A small proportion (perhaps up to 5%) of the known values are deleted at random from

within the variable to be evaluated (which will already have some missing values).

2. Deleted values are recorded just before they are deleted, and a measure of how

accurately they have been “put back” is taken when the imputation process is complete.

3. Steps 1 and 2 are repeated several times and the accuracy statistics computed at step 2

are stored after each repetition.

4. The stored statistics are aggregated so that the estimates of imputation accuracy

produced will be more statistically reliable.

This method can be used to estimate the predictive accuracy of the imputed values for any

variable in the missing value dataset, where the required variable is chosen by the user of the

software that implements the method. However, the evaluation process can be repeated for all

of the variables in the dataset, if required. It is important to emphasise that the method can

only estimate the accuracy of the imputed values and can never prove this accuracy, for the

following reason. The true (actual, real) values of the missing data items are by definition,

unknown. Therefore, it is impossible to prove that any imputation procedure has imputed

values accurately, since the true values can never be compared with the imputed values.

The descriptions and explanations given in this chapter form the principal contribution to

knowledge made by this thesis. In particular, the equations and procedures described in

section 4.2 are novel and the method used to compare the predictive accuracy of imputed

values in different data segments is also original.

• Section 4.1 gives a functional overview of the proposed method with reference to the

formal description of the method which follows.

• Section 4.2 describes the equations and the processes which form the basis of the

method and explains how the proposed approach can be applied in practice.

• Section 4.3 describes the most similar methods found within the literature and compares

them with the proposed approach.

- 57 -

4.1 Functional Overview of the Method

The diagram gives a general overview of the sequence of steps that are performed whenever

the proposed imputation evaluation method is employed.

Fig 4.1 – Functional overview of the proposed imputation evaluation method

Notice in particular the loop shown in steps 2 to 5 - which is given as a procedure in Fig. 4.2.

This loop forms a essential part of the method because repeating the stochastic part of the

process will produce more statistically reliable estimates of imputation accuracy.

4.2 Description of the Method

Section 4.2.1 gives a formal description of the equations and procedures which form the basis

of the proposed method. Section 4.2.2 and 4.2.3 explain how the method can be used to

estimate and compare the accuracy of the imputed values in different data segments (sets of

related data matrix rows).

1. Load the dataset with
missing values into the

imputation software

2. Randomly delete a small
% of known values from the

variable to be evaluated

3. Impute missing values
using the imputation

method being evaluated

This loop is
repeated
several times

4. Compute and store the
predictive accuracy
statistics for this run

5. Reverse the imputation
process (discard the

imputed values)

6. Compute the aggregate
predictive accuracy
statistics for all runs

Using equations (4.6) and (4.7)
given in section 4.2.1

Using equations (4.2), (4.3) and
(4.5) as given below

See chapter 5

See step 1 of the procedure
given in Fig. 4.2

See step 4 of the procedure
given in Fig. 4.2

As described below and in
chapters 5 and 6

7. Use the aggregate
statistics to assess

imputation feasibility

See step 2 of the procedure
given in Fig. 4.2

- 58 -

4.2.1 Formal Description of the Method: Equations and Procedure

Consider a data matrix Y containing only real numbers, such as the matrix shown below.

Each column in the matrix stores the values taken by a particular numeric variable. Each row

in the matrix stores the values of a set of related numeric variables - such as a statistical

observation or a set of values describing the attributes of a particular object.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11001
11111
10101
01100
11001
10101

The equations given below can be used to estimate the accuracy of the imputed values in any

numeric data matrix of the type shown above when the proposed imputation evaluation

method is employed. A description of how these equations can be used to estimate the

accuracy of the imputed values generated by any imputation method follows the equations.

The equations and procedures which follow were devised by the author and they were first

described in Solomon et al (2007a) - see Appendix E for the full paper.

 ijRD =
trueValY

imputedValYtrueValY

ij

ijij

.
.. −

 (4.1)

Where trueValYij . is the true (known) value that was deleted.

and imputedValYij . is the value generated by the imputation process.

 ∑
∈

=
Mi

ijRD
m

MRD 1 (4.2) ()∑
∈

−=
Mi

ij MRDRD
m

SRD 21 (4.3)

SRD

MRDRDRZ ij
ij

−
= (4.4) ∑

∈
=

Zi
ijRZ

z
MRZ 1 (4.5)

Where MRD is the acronym for the Mean Relative Difference.

and SRD is the acronym for the Standard deviation of the Relative Difference.

and RZ is the Relative difference Z score, where the MRZ gives the Mean RZ value.

and j is the Y matrix column from which the values were randomly deleted and “put back”

and },....{ 1 mrrM = is the set of rows in Y with a deleted value.

and i indexes the set of rows in M (which will differ for every execution of the method).

and },....{ 1 zrrZ = is the set of rows in Y that have an RD outlier value.

j = 1 2 3 4 5

i = 1
 2
 3
 4
 5
 6

The Y matrix has 6 rows and 5 columns

The known values are represented by a value of 1

The missing values are represented by a value of 0

The rows are indexed as i = 1 to n

The rows are indexed as j = 1 to p

- 59 -

The RD gives the relative differences between the deleted (known) values and the imputed

values in column j of Y - i.e. if any particular ijRD value equals zero then the deleted

value has been “put back” with 100% accuracy. The MRD gives the mean RD value - where

smaller MRD values indicate greater accuracy within the imputed values as a whole. The

SRD gives the standard deviation of the RD - where larger SRD values indicate greater

variability of imputation accuracy. Values of RZ within any required range, such as 3±

SRD’s above and below the MRD, define RD outliers. Essentially, the RZ is a measure of the

number of SRD’s by which any particular value of RD deviates from the MRD - where the

set of RD values are assumed to be approximately normally distributed for this purpose. The

MRZ gives the mean RZ value - where PZ = z / m gives the proportion of RD outliers

found within the set M.

The main procedure: Implementing the repetitive, stochastic evaluation process

The imputation method being evaluated is executed T times and the values of equations

(4.2), (4.3) and (4.5) are computed after each execution. The aggregate values are then

used to estimate imputation accuracy after the loop terminates. This repetitive process should

produce more statistically reliable estimates of imputation accuracy, as follows;

for t = 1 to T

 1. Randomly delete a small proportion of the known values in column j of Y to create matrix tY

 2. Impute the missing values in tY using the imputation method being evaluated

 3. Compute a set of evaluation statistics tS using tY - i.e. compute values for (4.2), (4.3) and (4.5)

 4. Restore the Y matrix to its original condition (as it was before starting the whole process)

next t

Fig 4.2 - Functional outline of the repetitive, stochastic imputation evaluation process

The procedure produces a set of sets of imputation accuracy statistics { TSS K1 } which

describe the values that were deleted from the Y matrix and then “put back” into the matrices

{ TYY K1 } by the imputation method being evaluated. The means)(ˆ kµ and the standard

deviations)(ˆ kσ of the imputation accuracy statistics in each of the sets { TSS K1 }

can then be used to estimate the accuracy of the imputed values, as follows;

∑
=

=
T

t
ktk S

T 1
)()(

1µ̂ (4.6) ()∑
=

−=
T

t
kktk S

T 1

2
)()()(ˆ1ˆ µσ (4.7)

Where k indexes the members of each set tS - i.e. the values of equations (4.2), (4.3) and

(4.5) which are computed at step 3 of the Fig. 4.2 procedure. For example,)1(µ̂ will give

the mean of the MRD values that were computed at step 3 of the procedure.

- 60 -

Repetition of the imputation process reflects the uncertainty within the imputed values

Randomly deleting values from column j of the Y matrix will produce a unique set of

imputation accuracy statistics for each iteration of the procedure given in Fig. 4.2. This

repetitive, stochastic approach has formed an important part of imputation theory ever since

Rubin (1978) first proposed the idea of multiple imputation (see section 4.3.3). The key idea

underpinning all such approaches is that the repetitive stochastic nature of the overall process

will reflect the uncertainty that exists within the imputed values. And this uncertainty will

always be present to some degree, because it is impossible to prove that missing values have

been imputed accurately. For example, if large, but very similar, values of the MRD appeared

for many iterations of the loop given in Fig. 4.2, then the imputation process would have high

uncertainty, but this uncertainty would not depend on the set of values that were missing.

4.2.2 Estimating the Accuracy of the Imputed Values in Data Segments

Generally, smaller MRD values indicate greater accuracy within the imputed values as a

whole. However, larger SRD values show that this accuracy is highly variable, and therefore

it may be localised within one or more clearly defined data segments (sets of related rows)

within the variable being evaluated - such as a particular set of missingness patterns or a set

of categories with clearly defined boundaries. In these cases it can be useful to discover the

distribution of the RD values across these data segments, or to discover whether some

segments contain higher proportions of RD outlier values than others. To achieve this it is

essential to delete the same proportion of values from each segment before estimating the

accuracy of the imputed values, so that each segment can be assessed equally. Deleting the

same proportion of values from each segment will also preserve the relative number of

missing values in each data segment, which will be particularly important when the data

within the Y matrix is MAR.

Fig 4.3 - Estimating the accuracy of the imputed values in different data segments

Category 1
1000 rows

Category 2
300 rows

Category 5
400 rows

Category 3
500 rows

Data matrix segmented
into categories

Category 4
(not evaluated)

The MRD and SRD etc.
are computed for all rows
in the Y data matrix.
These statistics are also
computed separately for
all categories that have
missing values, so that
they can be compared.
The same proportion of
values are deleted from
each category.

Pattern 1
200 rows

Pattern 2
(not evaluated)

Pattern 3
500 rows

Pattern 4
1000 rows

Pattern 5
(not evaluated)

Data matrix segmented
into missingness patterns

Only those missingness
patterns that have the
required structure have
any values deleted. The
same proportion of values
are deleted from each
such pattern.

- 61 -

Estimating the accuracy of the imputed values in each data segment separately allows the

imputation accuracy statistics for each data segment to be compared and analysed. For

example, a comparison of the statistics for each segment could reveal that the poor imputation

accuracy in a particular segment has been caused by one or two extreme outlier RD values

(see equations (4.4) and (4.5)). In such a case the owner of the missing value dataset might

decide to examine the data rows in the offending segment in detail, to discover why this has

occurred. For example, the collaborating company (TBR, see chapter 6) considered this type

of information to be very useful when they were compiling reports describing the Firms in

different UKSIC categories - i.e. they wanted to know whether the imputed values in some

UKSIC categories were more accurate than in others (they might decide not to impute the

missing values in the least accurately imputed categories under any circumstances).

When the dataset is segmented by category the process of deleting the same proportion of

values from each category can be achieved by counting the number of rows in each category -

i.e. larger categories will have more values deleted from them. The random deletion process

can then be achieved by sorting the data matrix by category (as shown above), then deleting

at random from within each category (each set of adjacent rows). However, it should be

ensured that the proportion of known values that are retained within each category is

sufficient to support the imputation process (where this is required, depending on the

imputation method used, and on the proportion of truly missing values in each category).

However, randomly deleting the same proportion of values from each of the missingness

patterns to be evaluated is far from simple, because the algorithm used to perform these

deletions must ensure that the process does not create any new (and hence artificial)

missingness patterns within the data matrix. This process will allow the accuracy of the

imputed values in each evaluated pattern to be assessed equally, which will be particularly

important when data is MAR. This missingness pattern comparison process could have

significant benefits for the evaluation of regression based imputation methods (such as the

EM algorithm), because it allows the owners of the missing value dataset to see which

missingness patterns produce the best and worst regression equations (and therefore the most

and least reliable imputed values) for any particular dataset.

A description of algorithm used to delete the same proportion of values from each

missingness pattern (which is the most procedurally complex part of the proposed approach),

is given below. The algorithm and the equations and procedure which follow it were first

described by the author in Solomon et al (2007a).

- 62 -

function matrix balanced_ random_deletion_across_all_evaluated_patterns_in_the_data_matrix
 (matrix data, vector patterns, int c, int d)
 dataMatrixRow data_row
 vector match_rows
 missPatternRow patt
 integer rows_to_add, random_row
 boolean match

 for i = 1 to num_rows_in (patterns)
 patt = patterns (i)
 if (patt (c) == missing && some_values_are_present_in (patt) == true)
 match_rows = new vector ()
 for k = 1 to num_rows_in (data)
 data_row = data (k)
 if (data_row (c) == present)
 match = true
 for j = 1 to num_columns_in (data)
 if (patt (j) == present && data_row (j) == missing)
 match = false
 end if
 next j
 if (match == true)
 match_rows . Add_To_End (k)
 end if
 end if
 next k

 rows_to_add = (d / 100) * num_rows_in (patt)
 if (num_rows_in (match_rows) > rows_to_add * 2)
 for k = 1 to rows_to_add
 random_row = Random (1, num_rows_in (match_rows))
 data_row = data (match_rows (random_row))
 match_rows . Remove_Row (random_row)
 for j = 1 to num_columns_in (data)
 if (patt (j) == missing)
 data_row (j) = missing
 end if
 next j
 next k
 end if
 end if
 next i
 return data
end function

Fig 4.4 - An algorithm to perform balanced random deletions across missingness patterns

- 63 -

The following parameters are passed to the algorithm; (1) matrix data is a multivariate data

matrix containing several different missingness patterns. (2) vector patterns contains a list of

the missingness patterns in the data matrix. (3) int c is the data matrix column from which

the values will be deleted. (4) int d is the proportion of missing values to be added to each

of the patterns to be evaluated - i.e. the number of rows in each pattern that has missing

values in column c will be increased by d% (which is equivalent to deleting the values).

Inside the code: An explanation of the functionality of the pseudo-code algorithm

The algorithm increases the number of rows in each of the missingness patterns to be

evaluated by the same proportion. This is achieved by transferring data matrix rows from

one pattern to another. For example, when deleting from data column one the algorithm

might transfer a data row by changing its pattern from “1111” to “0111”. However, the

data rows transferred must have known values in the same columns as the data rows in the

pattern to be evaluated (the pattern with rows added to it). For example, if the pattern to be

evaluated was “0011”, then data rows with the pattern “1100” could not be transferred to

that pattern, but data rows with the pattern “1111”, could be transferred to it.

The final pair of nested for loops perform the random row transfers. However, this can only

be achieved for a particular pattern if the number of data rows available for transfer (as

stored in the match_rows vector) is more than double the number of rows to be added to the

pattern to be evaluated. This ensures the stochastic nature of the row transfer process under

repeated executions, which is an essential part of the proposed method. If the number of data

rows available for transfer is too small, then the accuracy of the imputed values in the pattern

to be evaluated cannot be estimated separately. However, this should occur very rarely - i.e.

when the proportion of missing values in column c is large (perhaps above 80%), or when the

number of missingness patterns is a small proportion of the number of possible patterns. In

these cases the method of comparing imputation accuracy across a clearly defined set of

categories should be preferred.

4.2.3 Comparing the Accuracy of the Imputed Values in Data Segments

The idea of performing balanced random deletions across data segments (the set of categories

or missingness patterns in the data matrix) allows the accuracy of the imputed values in each

data segment to be assessed equally - i.e. the imputation accuracy statistics returned by

equations (4.6) and (4.7) can be computed correctly for each different segment. To achieve

this the procedure given in Fig. 4.2 needs to be modified as follows;

- 64 -

for t = 1 to T

 1. Randomly delete the same proportion of values from each data segment in Y to create matrix tY

 2. Impute the missing values in tY using the imputation method being evaluated

 3. Compute a set of evaluation statistics tS using tY - i.e. compute values for (4.2), (4.3) and (4.5)

 4. for each data segment d contained in Y

 Compute a set of evaluation statistics tdS - i.e. compute values for (4.2), (4.3) and (4.5)

 next d

 5. Restore the Y matrix to its original condition (as it was before starting the whole process)

next t

Fig 4.5 - Adjusted functional outline for the proposed imputation evaluation method

Steps 2, 3 and 5 are identical to those given in the Fig. 4.2 procedure. Step 3 is retained so

that equations (4.6) and (4.7) can still be used to estimate the accuracy of the imputed values

within the data matrix as a whole. Generally, the procedure provides the same imputation

evaluation functionality as the procedure given in Fig. 4.2, while adding the following

improvements;

• Step 1 has been enhanced - So that it will execute the procedures described in the

preceding section - i.e. Step 1 will now delete the same proportion of values from each

data segment. This will allow the accuracy of the imputed values in each data segment to

be assessed equally.

• Step 4 has been inserted - This will produce a separate set of imputation accuracy

statistics for each data segment - i.e. equations (4.2), (4.3) and (4.5) are computed for

each data segment d contained in Y. The following equations can then be used to

estimate the accuracy of the imputed values in each data segment;

∑
=

=
T

t
ktdkd S

T 1
)()(

1µ̂ (4.8) ()∑
=

−=
T

t
kdktdkd S

T 1

2
)()()(ˆ1ˆ µσ (4.9)

These equations are very similar to equations (4.6) and (4.7). The only difference being the

addition of the qualifier d which specifies the data segment that)(ˆ kdµ and)(ˆ kdσ

refer to. These statistics can be computed for all segments in Y using a loop similar to the one

given in Step 4 of the above procedure.

- 65 -

4.3 Comparative Evaluation of Similar Methods

This section compares the proposed method with the most similar methods found within the

literature. Section 4.3.1 describes how the general idea of estimating imputation accuracy has

been applied by other researchers. Section 4.3.2 and 4.3.3 describe the methods that are most

similar to the proposed method - i.e. uncertainty estimation methods. Section 4.3.4 discusses

the limitations of uncertainty estimation methods. Section 4.3.5 compares uncertainty

estimation methods with the proposed method and discusses the similarities and the

differences between these approaches.

4.3.1 Similar Approaches Used by Other Researchers

The general idea of evaluating imputation methods by measuring how accurately a set of

deleted values have been “put back” has been frequently employed to evaluate the success of

various new, and existing, imputation methods. However, researchers who employ this

approach generally; (1) Create simulated datasets that have no missing values. (2) Delete

values at random from these datasets, so that replacement accuracy can be measured. The

following examples are typical of the approaches used by other researchers.

• Tseng et al (2003) use two different methods of random data generation to create

simulated datasets that have no missing values. Values are then deleted at random in

increasingly large proportions from a single variable within these datasets. A new

imputation method is then employed, and replacement accuracy is used to demonstrate

that the new method performs better than some other methods, when it is applied to a

specific type of dataset.

• Wasito and Mirkin (2005) use a very similar approach to Tseng et al (2003). The

principal difference being that values are deleted at random across the whole data

matrix, rather than from just one variable. Again, the idea is to demonstrate that the new

imputation method devised by the authors performs better than some other methods

when applied to a specific type of randomly generated dataset.

• Starick and Watson (2006) employ a more sophisticated method of generating the

simulated dataset. Firstly, a sample of complete observations are taken from a real (not

simulated) dataset - i.e. those dataset rows that have no missing values are copied.

Secondly, values are deleted from the newly created dataset in such a way that the

missing data mechanism (assumed to be MAR) within the source dataset is modelled.

Various imputation methods are then executed and the replacement accuracy achieved

by each method is compared using various statistical techniques - which are partly based

on the evaluation criteria proposed by Chambers (2001).

- 66 -

The proposed method has some similarity to the approaches described above. However, these

approaches also differ in several important respects. Firstly, they are usually applied to

simulated, rather than real, datasets. Secondly, they are not devised to be general purpose

imputation evaluation techniques - i.e. they are usually designed for a specific purpose (as an

incidental part of a larger project), or to be applied to a specific type of dataset. Thirdly, the

idea of measuring replacement accuracy using the statistics generated via a repetitive

stochastic algorithm is not used. And finally, the idea of comparing the accuracy of the

imputed values in different data segments is not used (this idea was first proposed by the

author in Solomon et al (2007a)).

The proposed method is most similar to uncertainty estimation methods

The proposed method is most similar to those imputation evaluation methods that estimate

the uncertainty inherent within the imputed values. Several such methods have been

proposed, and a good general overview of these can be found in Little and Rubin (2002), with

more detailed discussions given in Lee et al (2002) and Shao (2002). The following sections

give a compact and straightforward summary of the functionality of the uncertainty

estimation methods that are most similar to the proposed method. And it can be seen that the

procedures described below have some similarity with the procedure given in Fig. 4.2, above.

4.3.2 Bootstrap and Jackknife Uncertainty Estimation

Consider a variable ()nyyY K,1= where some of the values are missing and where Y can

be any of the variables in a multivariate dataset containing different missingness patterns.

The Bootstrap variance estimation method (Efron, 1994; Shao and Sitter, 1996) and the

Jackknife variance estimation method (Rao and Shao, 1992; Rao, 1996a; Chen and Shao,

2001) can be used to estimate the uncertainty created by imputing the missing values in Y.

Where uncertainty is estimated by computing the variance of a set of parameter point

estimates (such as the mean), which describe a set of samples taken from Y, as follows;

for b = 1 to B

 1. Create a new bootstrap sample bY by randomly selecting some rows (with replacement) from Y

 2. Impute the missing values in bY using the imputation method being evaluated

 3. Compute a parameter point estimate bθˆ which describes the values in bY

 4. Restore the matrix that contains Y to its original condition (as it was before starting this process)

next b

Fig 4.6 - Estimating imputation uncertainty using the Bootstrap method

- 67 -

The procedure given in Fig. 4.6, above produces a set of estimates { Bθθ ˆ1̂ K } which

describe the Bootstrap samples { BYY K1 }. The Bootstrap estimate of the variance

bootV̂ can then be used to estimate imputation uncertainty, as follows;

()∑
=

−
−

=
B

b
bootbboot

B
V

1

2ˆˆ
1

1ˆ θθ where ∑
=

=
B

b
bboot

B 1

ˆ1ˆ θθ

The Fig. 4.6 procedure imputes the missing bY values B times, then computes the variance

of the resulting set of bθˆ estimates. The Jackknife variance estimation method is quite

similar. The difference lies in the method used to create the set of samples, which in turn

requires a more complex method of computing the variance, as described below;

1. Impute the missing values in Y using the imputation method being evaluated

2. Compute a parameter point estimate θˆ which describes the values in Y

for j = 1 to n

 1. Delete value j (matrix row j) from Y to create a new jackknife sample)(\ jY

 2. Impute the missing values in)(\ jY using the imputation method being evaluated

 3. Compute the same parameter estimate as above)(\ˆ jθ which describes the values in)(\ jY

 4. Restore the matrix that contains Y to its original condition (as it was before starting this process)

next j

Fig 4.7 - Estimating imputation uncertainty using the Jackknife method

The procedure given in Fig. 4.7 produces a set of estimates {)(\)1(\ ˆˆ nθθ K } which

describe the Jackknife samples {)(\)1(\ nYY K }. Where n is the number of values in

()nyyY K,1= , i.e. the number of rows in the multivariate data matrix which contains

the variable Y. The Jackknife estimate of the variance jackV̂ can then be used to estimate

imputation uncertainty, as follows;

() ()∑
=

−
−

=
n

j
jackjjack

nn
V

1

2ˆ~
1

1ˆ θθ

where ())(\ˆ1ˆ~
jj nn θθθ −−= and ∑

=
=

n

j
jjack

n 1

~1ˆ θθ

The Jackknife method can be much more computationally intensive than the Bootstrap

method when n is large, since the imputation process must be repeated n times. However,

in these cases the execution time of the Jackknife procedure can be decreased by deleting a

set of values (rather than just one) at each iteration of the loop. Although this would dilute the

fundamental idea underpinning the entire Jackknife approach, so perhaps the Bootstrap

method should be preferred in such cases.

- 68 -

4.3.3 Multiple Imputation

Consider a variable ()nyyY K,1= where some of the values are missing and where Y can

be any of the variables in a multivariate dataset containing different missingness patterns.

Multiple imputation (MI) (Rubin, 1978; Rubin, 1987; Rubin and Schenker, 1986, Rubin,

1996a) can be used to estimate the uncertainty created by imputing the missing values in Y,

as follows;

for d = 1 to D

 1. Impute the missing values in Y using a stochastic method to create a unique imputed dataset dY

 2. Compute a parameter point estimate dθˆ which describes the values in dY

 3. Compute the variance dV associated with dθˆ

 4. Restore the matrix that contains Y to its original condition (as it was before starting this process)

next d

Fig 4.8 - Estimating imputation uncertainty using multiple imputation

The procedure given in Fig. 4.8 produces a set of estimates { Dθθ ˆ1̂ K } and a set of

associated variances { DVV K1 } which describe the imputed datasets { DYY K1 }. The

combined MI complete-data parameter point estimate for { DYY K1 } is then given by;

∑
=

=
D

d
dD

D 1

ˆ1 θθ

The total variability DT , associated with Dθ , can then be used to estimate imputation

uncertainty, as follows;

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
+

+= ∑∑
==

D

d
Dd

D

d
dD

DD
DV

D
T

1

2

1

ˆ
1

111 θθ (4.10)

It is important to emphasise that MI is primarily an imputation method, rather than a

technique designed for the estimation of imputation uncertainty. However,

“When the D sets of imputations are repeated random draws from the predictive

distribution of the missing values under a particular model for nonresponse, the D

complete-data inferences can be combined to form one inference that properly

reflects uncertainty due to nonresponse under that model”

As Little and Rubin (2002) succinctly explain.

- 69 -

4.3.4 Limitations of Uncertainty Estimation Methods

The uncertainty estimation methods described in the two preceding sections have their

limitations, and they make certain assumptions about the nature of the missing value dataset.

These issues have been the subject of considerable debate among statisticians. The main

points for discussion are summarised below.

1. All of the uncertainty estimation methods described above assume (somewhat

optimistically) that the imputation process has removed the bias within the dataset that

was caused by the missing values (Little and Rubin, 2002).

2. The resampling methods described in section 4.3.2 are based on large-sample theory -

i.e. they will return more reliable estimates of the variance for larger samples. However,

“The theory underlying MI is Bayesian and can provide useful inferences in small

samples” (Little and Rubin, 2002).

3. The MI method assumes that the model describing the missing value dataset has been

correctly specified - i.e. the reliability of the variance estimates returned by the MI

method is sensitive to model misspecification. However, the resampling methods return

consistent variance estimates with minimal modelling assumptions, so they are more

robust to model misspecification (Lazzeroni et al, 1990; Fay, 1996a).

4. Resampling methods usually require several hundred executions of the imputation

process, performed against an equal number of samples drawn from the missing value

dataset. This can be impractical in some situations. However, MI is less computationally

intensive, since it allows good inferences to be drawn for a wide range of estimands,

using perhaps 10 (or less) imputed datasets (Ezzati-Rice et al, 1995).

5. The problem of obtaining reliable variance estimates using the Jackknife method after

executing single imputation methods has sparked some debate. In particular, six articles

in the Journal of the American Statistical Association, Vol. 91 (434) were devoted to a

discussion of a paper on this topic by Rao (1996a). Including comments by Judkins

(1996), Binder (1996) and Eltinge (1996). followed by rejoinders from Rubin, (1996b)

and Fay (1996b) - and finally, a reply by the author of the debated paper in Rao (1996b).

Various opinions were expressed but no single point of view was conclusively

demonstrated as being correct.

- 70 -

4.3.5 Comparing the Proposed Method with Uncertainty Estimation Methods

Fig 4.9 – Common features of Bootstrap, Jackknife, MI and the proposed method

The proposed method and the uncertainty estimation methods described in the two preceding

sections are similar in that they all execute the imputation method (the method being

evaluated) repeatedly against the same missing value dataset. This process produces a set of

unique imputed datasets, as shown in Fig. 4.9 (although different techniques are used to

create these datasets, as explained above). All four of the methods then go on to use the set of

parameters that describe the unique datasets to evaluate the results of the imputation process.

However, the four methods also differ in several important respects, as described below.

In its purest form, the Jackknife method requires n repetitions of the imputation method,

where n is number of rows in the dataset (see section 4.3.2). This can be impractical for

large datasets (e.g. datasets containing millions of rows), particularly since the imputation

method itself will take longer to execute as the size of the dataset increases. In addition, the

Jackknife differs from the other methods in that the overall process is deterministic - i.e. a

repeated execution of the overall Jackknife process (all iterations taken together) against the

same dataset will always produce the same uncertainty estimate.

The Bootstrap method introduces a stochastic element into the overall evaluation process by

taking random samples from the dataset. In effect, this sampling process is equivalent to a

repetitive randomised form of the listwise deletion process described in chapter one.

However, there is no way of knowing whether any particular sample will fully reflect the

missing data mechanism within the dataset as a whole. This could bias the uncertainty

estimate produced by the Bootstrap when the data is MAR. It could be argued that this hardly

matters, since the repetitive process should remove this bias - but it is unclear how many

Bootstrap iterations would be needed to achieve this for any particular MAR configuration.

Missing value
dataset

Unique imputed
dataset n

Unique imputed
dataset 2

Unique imputed
dataset 1

Imputation
evaluation

Imputation
process 2

Imputation
process 1

Imputation
process n

Dataset 1
parameters

Dataset 2
parameters

Dataset n
parameters

- 71 -

Multiple imputation builds on the ideas underpinning the resampling methods, but differs

from them in that it integrates the repetitive stochastic part of the imputation evaluation

process with the imputation procedure - so that repeated executions of that procedure will

“reflect variation within an imputation model and sensitivity to different imputation models”

(Rubin, 1978). However, unlike the resampling methods, MI achieves this while retaining all

of the rows in the dataset. The proposed method also retains all of the rows in the dataset, so

it has more in common with MI than either of the resampling methods in this respect.

The proposed method differs from the other methods by estimating the accuracy of the

imputed values - i.e. the other methods do not record deleted values and then measure

how accurately they have been “put back” by the imputation process. The Bootstrap, MI

and the proposed method are similar in that they all employ stochastic procedures, but the

Jackknife method does not share this characteristic. However, the proposed method and the

Bootstrap differ from MI in that the stochastic part of these methods is performed before the

imputation process starts, rather than being integrated with that process.

The problem of defining a “proper” multiple imputation method in practice

The Bootstrap/Jackknife methods and the proposed method can all be used to evaluate any

imputation technique, whereas the MI approach can only be confidently used for evaluation

purposes when we are sure that the MI method employed is “proper”, in the sense defined

by Rubin (1987, pp. 118-119) and further summarised by Rubin (1996a). One of the clearest

defintions of a proper MI method is given by Durrant (2005), who explains that for a proper

MI method, equation (4.10) - given in section 4.3.3 - “is indeed a valid formula, providing an

approximately unbiased estimator of the variance”. But it is very hard to verify the truth of

this statement in practice, as Schafer (1997) points out;

“Except in trivial cases (e.g. univariate data missing completely at random),

it can be extremely difficult to determine whether a multiple-imputation

method is proper”

Binder and Sun (1996) shed some light on this problem by discussing several complex

examples, but these only cover a small proportion of the imputation problems that can occur.

In practice, proper MI methods generally employ Bayesian imputation algorithms, even

though theoretically this is not deemed to be essential. For example, Schafer’s (1997)

implementation of MI employs the Markov chain Monte Carlo method (Tanner, 2005; Gilks

et al, 1996) via the Bayesian data augmentation algorithm (Tanner and Wong, 1987). To

summarise, we can say that the evaluation of imputation methods via MI uncertainty

estimation can only be confidently applied when we are sure that the MI method used is

proper - e.g. when that method employs a Bayesian imputation algorithm. However, the other

three methods do not have this limitation.

- 72 -

4.4 Summary

This chapter has described the imputation evaluation method devised by the author and has

shown how this method can be used to estimate the predictive accuracy of the imputed values

generated by any imputation technique.

A functional overview of the proposed method has been given and the equations and

procedures which form the basis of that method have been described in detail. An explanation

of how the method can be used to compare the accuracy of the imputed values in different

data segments has been given. These descriptions and explanations form the principal

contribution to knowledge made by this thesis.

A description of how the general idea of estimating imputation accuracy has been applied by

other researchers has been given and it has been shown that the proposed method differs from

these approaches in several important respects. The functionality of the most similar methods

found within the literature (uncertainty estimation methods) has been described and the

limitations of these methods have been discussed. The similarities and the differences

between the proposed method and uncertainty estimation methods have been discussed, and it

has been shown that the proposed method builds on the ideas underpinning uncertainty

estimation methods, but differs from them in several important respects.

The proposed method has been implemented alongside the imputation techniques described

in chapters two and three in the form of an integrated software application. The following

chapter describes how this application was used to experimentally evaluate the reliability and

the validity of the proposed method. Chapter six goes on to explain how the integrated

application was used to assess the feasibility of imputing the missing values in the

collaborating company’s dataset, thus fulfilling the project objectives.

- 73 -

Chapter Five

Experimental Evaluation of the Method

- 74 -

5. Experimental Evaluation of the Method

This chapter explains how the reliability and validity of the proposed imputation evaluation

method was experimentally evaluated. This was essential for the following reasons.

The scientific method requires that experiments should produce consistent and reliable results

when they are repeated. The reliability of the results produced when performing experiments

using stochastic processes - such as the proposed method - can be difficult to demonstrate,

because such experiments will produce different results when they are repeated. However,

when the results from several identical stochastic experiments are analysed using statistical

methods it should be evident that the stochastic procedures employed have produced similar

results, where this is required. For example, if the proposed method produced very different

sets of imputation accuracy statistics when the same experiment was repeated, then how

could we know which sets of statistics gave the most useful results?

It is also important to demonstrate that the proposed imputation evaluation method is valid.

That is, to show that the imputation accuracy statistics produced by the method can be used

assess the feasibility of imputing missing values using the required imputation technique. The

explanations in the following sections show how the experimental results (estimates of

imputation accuracy) given in this chapter can be used to assess the feasibility of imputing

missing values using the imputation techniques described in chapters two and three.

• Section 5.1 explains how the reliability and validity of the proposed method was

experimentally evaluated and shows how the software that implements the method can

be used to perform imputation evaluation experiments.

• Section 5.2 explains how the method can be used to compare the predictive power of

candidate imputation methods when they are used to impute the same set of missing

values and introduces the idea of “least distortion” imputation evaluation (Pyle, 1999).

5.1 Assessing the Reliability and Validity of the Proposed Method

Section 5.1.1 describes the dataset that was used to perform all of the experiments described

in this chapter. Section 5.1.2 describes the top level graphical user interface (GUI) of the

software application that implements the proposed method. Section 5.1.3 describes the

method reliability experiments and shows how the software’s GUI provides access to the

equations and processes that form the basis of the proposed method. Section 5.1.4 describes

the method validity experiments and shows how the software can be used to estimate the

accuracy of the imputed values generated by the EM imputation algorithm.

- 75 -

5.1.1 Description of the Dataset Used for the Experiments

The dataset used to perform the experiments can be freely downloaded from the Statistical

Society of Canada (SSC) web page created by Bernier et al. (2002) - which is available at

http://www.ssc.ca/documents/case_studies/2002/missing_e.html (last accessed on 17th July

2007). The dataset comes in the form of a Microsoft Excel file containing 2389 data rows and

11 columns, with 2 of these columns having 29.22% missing values. A detailed analysis of

the dataset, and a description of the associated imputation case study, can be found in Aguirre

and Sun (2003). General information about the SSC can be found on their website - available

at http://www.ssc.ca/main/new_e.html The following description of the health survey

questionnaire used to create the dataset, and the table containing the descriptions of the

dataset variables have also been taken from the web page created by Bernier et al (2002)

“This case study on missing data uses a sub-sample of the 1994 National

Population Health Survey…..The data represent persons, aged 20-65, living in a

private household in the prairie provinces..... The questionnaires include content

related to health status, use of health services, determinants of health, a health

index, chronic conditions and activity restrictions. The use of health services is

probed through visits to health care providers, both traditional and non-

traditional, and the use of drugs and other medications. Health determinants

include smoking, alcohol use and physical activity. As well, a section on self-care

has also been included this cycle. The socio-demographic information includes

age, sex, education, ethnicity, household income and labour force status”.

Table 5.1 - Description of the variables in the Canadian SSC health survey dataset

Column (variable) name Variables with 29.22% missing values

GH_Q1 Numerical representation of the answer to “In general, how would you describe your health?”

DVHST94 Derived Health Status Index (3 decimal places) - HUI provisional score

Column (variable) name Variables with 100% data present

AGEGRP Grouped age cohorts

SEX Respondent's sex

DVHHIN94 Derived total household income from all sources in the past 12 months

DVBMI94 Derived Body Mass Index (1 decimal place)

DVSMKT94 Derived type of smoker

DVPP94 Derived depression variable - predicted probability (2 decimal points)

NUMCHRON Numerical sum representing the answers to several health status questions

VISITS Numerical sum representing the answers to several questions about visits to doctors and clinics.

WT6 Survey weights

- 76 -

5.1.2 Loading the Dataset and Analysing the Variables

This section describes the top level GUI of the software application that implements the

proposed imputation evaluation method - focusing on a description of the data loading and

variable analysis functionality provided. A description of how the software can be used to

evaluate imputation methods is given in the following sections.

The software has been developed using the C# programming language, utilising the computer

hardware and software development environment described in Appendix C. The screenshots

on the following page show how the software was used to load and analyse the dataset

described in the previous section, and it can be seen that the variables shown in the screenshot

grids are the same as those given in table 5.1, above. A description of the GUI features shown

in the screenshots is given below.

• Datasets can be loaded from Excel files by clicking on the Load Data From Excel button.

The “.xls” file is selected using a standard Microsoft file selector window. The selected

path/file name is displayed above the on-screen grid. Excel worksheet header row cells

are automatically inserted as grid column headers (if any are found). Non-numeric cells

found in the Excel worksheet are error trapped, and the user is informed of the problem

• The numeric code used to represent missing values in the Excel worksheet cells must be

entered by the user before loading the dataset (the default value of -9 is shown in the

screenshot). Grid cells with missing values are colour coded for easy identification of

missingness patterns - both before and after the imputation process is performed.

• A description of the variables in the loaded dataset can be shown in a sub-window by

clicking on the Show Column Statistics button. The maximum, minimum, mean and

standard deviation for each variable is shown, as well as the number and proportion of

missing values for each variable. The distribution line chart for any variable can also be

shown (see the following page). The distortion of the mean and standard deviation

caused by the imputation process is also given (the utility of this feature is discussed in

section 5.2.3). All variable descriptions are fully updated after imputation is completed.

• A description of the correlations between the dataset variables can be shown in a sub-

window by clicking on the Show Column Correlations button. The number and proportion

of data matrix rows used to calculate the correlation between each pair of variables is

shown. This is required, since some matrix rows will not have known values for every

possible pair of variables (depending on the set of missingness patterns in the matrix).

• A description of the relative size and distribution of the missingness patterns in the data

matrix can be shown in a sub-window by clicking on the Show Missing Patterns button.

The importance of missingness pattern analysis is discussed in chapter six.

- 77 -

Fig 5.1 – Implementation of the method: Data loading and variable analysis graphical user interface

0

100

200

300

400

500

600

0.313 0.408 0.502 0.597 0.692 0.787 0.882 0.976

DVHST94

N
um

be
r o

f D
VH

ST
94

 ro
w

s

Frequency distribution for DVHST94

- 78 -

5.1.3 Assessing the Reliability of the Method

The previous section explained how the SSC dataset (as described in section 5.1.1) was

loaded into the software application that implements the proposed method. This section

describes how the dataset was used after it was loaded - i.e. the missing DVHST94 values

were imputed and the results were used to assess the reliability and the validity of the

proposed method. The experimental process is described in table 5.2, below. This remainder

of this section attempts to answer experimental question 1 and the following section attempts

to answer experimental question 2.

Table 5.2 - Description of SSC dataset imputation evaluation experiments 1 to 8
 Imputation of DVHST94 values using 50 executions of the EM algorithm

EXPERIMENTAL QUESTIONS

 1. Does the evaluation method produce reliable results when it is executed repeatedly against the same dataset?

 2. Can the proposed imputation evaluation method be used to assess the feasibility of imputing DVHST94 values?

Description of
the missing
value dataset

• The SSC dataset containing 11 columns and 2389 rows - as described in section 5.1.1

Variable to be
imputed and
evaluated

• The variable to be imputed and evaluated was DVHST94, which had a range of 0.290 to 1.000
(710 possible values, specified to 3 decimal places)

• DVHST94 had 698 missing values - i.e. 29.22% of the 2389 data matrix rows had missing values.

Imputation
method used for
the experiment

• Imputation was performed using the EM algorithm

• The EM algorithm convergence value was 0.0001

• No Box-Cox power transformations were performed for any variable.

• The initial covariance matrix was created using all data matrix rows with a full set of known values.

• All imputed values were rounded to 3 decimal places and negative imputed values were discarded.

Imputation
evaluation
method

• 50 executions of the EM imputation algorithm were performed (using the options described above).

• The number of missing DVHST94 values was increased by 10% for each execution of EM. That is,
4.14% of the known DVHST94 values were randomly deleted and “put back” for each EM
execution, using the Fig.4.5 algorithm. With balanced random deletion across missingness patterns.

The tabular format shown above was designed to be used as a pro-forma which supports

the use of the proposed method - and the same tabular format will be used to define all of

the experiments described in this thesis.

Using a standard pro-forma to specify the experimental questions, describe the dataset and

define the experimental process allows the experiments to be precisely replicated - which is

an essential part of the proposed approach.

- 79 -

The software implements the formal description of the method given in section 4.2.1

The screenshots on the following page show how the experiments described in table 5.2 can

be performed using the software. It is important to emphasise that the process described on

the following page implements the imputation evaluation method described in section 4.2.1.

The relationship between the formal description of the method and its software

implementation is shown below (the Fig. 4.2 procedure is repeated here for clarity).

for t = 1 to T

 1. Randomly delete a small proportion of the known values in column j of Y to create matrix tY

 2. Impute the missing values in tY using the imputation method being evaluated

 3. Compute a set of evaluation statistics tS using tY - i.e. compute values for (2.2), (2.3) and (2.5)

 4. Restore the Y matrix to its original condition (as it was before starting the whole process)

next t

Fig 5.2 – Relationship between the method’s algorithm and its software implementation

Performing the imputation evaluation experiments described in table 5.2

The following diagram shows how the entire imputation evaluation process can be performed

using the software implementation of the method. The application provides a simple “point-

and-click” graphical user interface that is easy to use and understand. When the evaluation

process is complete the user can view the estimates of imputation accuracy produced by the

software - using various tables, line charts and histograms. These sub-windows and charts are

automatically generated and displayed by the software. Some examples follow the diagram.

The variable in
column j of Y

The proportion of
known values to
be deleted from
column j of Y

The value of T
given in the loop
for t = 1 to T

When the user clicks on this button the algorithm shown above is executed and
the estimates of imputation accuracy given by equations (4.6) and (4.7) are
calculated and displayed in a sub-window - see section 4.2.1 for more details.

- 80 -

Fig 5.3 - Performing imputation
evaluation experiments

The diagram shows how the software
application developed by the author
can be used to perform imputation
evaluation experiments.

The software provides a simple
“point-and-click” interface that can
help researchers to decide whether
imputation is an appropriate solution
to their missing data problem - as
follows;

STEP ONE
Select the imputation method and set
its parameters The default options for
the EM algorithm (see above) are
suitable for most datasets.

STEP TWO
Choose the imputation evaluation
options. For example, enter the
number of executions of the EM
algorithm to be performed.

STEP THREE
View the imputation accuracy tables,
line charts and histogram - using the
options shown opposite.

Imputation
evaluation
options

Options for display of
the three imputation
accuracy tables
(see the following
page for an example)

Options for display of
various imputation
accuracy line charts
(see the following
pages for examples)

Options for display of
the imputation
accuracy histogram
(see section 5.1.4
for an example)

Imputes missing values
without performing the
imputation evaluation process
 i.e. The known values are not
deleted and then “put back”

EM imputation algorithm parameters

- 81 -

The grid shown in the screenshot above gives the results of one of the experiments described

in table 5.2. The grid was obtained by clicking on the Show Accuracy Estimates button shown on

the previous page. The line charts below show the results of three more of these experiments,

where the values in the MRD and SRD grid columns are plotted on the charts.

y = 0.0047x + 0.0348
R2 = 0.9841

y = 0.0013x + 0.0537
R2 = 0.9129

0

0.05

0.1

0.15

0.2

0.25

0.3

1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Im
pu

ta
tio

n
A

cc
ur

ac
y

MRD
SRD

EXPERIMENT 1 of 8 (see table 5.2)
Imputation of DVHST94 values using
50 executions of the EM algorithm

The Mean values for these 3 columns give the results for equation (4.6), as given in section 4.2.1
The STD values give the results for equation (4.7), also given in section 4.2.1.
The number of EM executions = T as given in the loop for t = 1 to T in the Fig. 4.2 procedure

- 82 -

The two sets of data shown on each chart were sorted independently - i.e. the MRD and

SRD figures for each EM execution do not match. This method of visual presentation enables

the statistics produced for each experiment to be more easily compared and evaluated. The

idea of the charts is to demonstrate that the method produces consistent results when it is

repeated - by showing that three identical, consecutive experiments produced similar sets of

evaluation statistics. This conclusion is supported by the regression equations (which are

y = 0.0042x + 0.0463
R2 = 0.9771

y = 0.0012x + 0.0596
R2 = 0.9308

0

0.05

0.1

0.15

0.2

0.25

0.3

1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Im
pu

ta
tio

n
A

cc
ur

ac
y

MRD
SRD

EXPERIMENT 3 of 8 (see table 5.2)
Imputation of DVHST94 values using
50 executions of the EM algorithm

y = 0.0042x + 0.0299
R2 = 0.9644

y = 0.0011x + 0.0566
R2 = 0.8943

0

0.05

0.1

0.15

0.2

0.25

0.3

1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Im
pu

ta
tio

n
A

cc
ur

ac
y

MRD
SRD

EXPERIMENT 2 of 8 (see table 5.2)
Imputation of DVHST94 values using
50 executions of the EM algorithm

- 83 -

shown on the charts only for this purpose) and it can be seen that these equations are similar

across all three charts. The MRZ and % Outlier charts for the same three experiments are

shown below (all figures are rounded to 2 decimal places).

0

1

2

3

4

5

6

7

8

9

1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Im
pu

ta
tio

n
A

cc
ur

ac
y

MRZ
% Outliers

EXPERIMENT 1 of 8 (see table 5.2)
Imputation of DVHST94 values using
50 executions of the EM algorithm

0

1

2

3

4

5

6

7

8

9

1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Im
pu

ta
tio

n
A

cc
ur

ac
y

MRZ
% Outliers

EXPERIMENT 2 of 8 (see table 5.2)
Imputation of DVHST94 values using
50 executions of the EM algorithm

- 84 -

The two sets of data shown on each chart were sorted independently - i.e. the MRZ and %

Outliers figures for each EM execution number do not match. It can be seen that the MRZ

and % Outliers for each of the three experiments are similar. Five more identical, consecutive

experiments were performed (see table 5.2) and the resulting charts were all found to be very

similar to those given above. The results for all eight experiments (including the three

described in the above charts) are shown below. The means µ̂ and the standard deviations

σ̂ were computed using equations (4.6) and (4.7), as described in section 4.2.1. The mean

value for each column in table 5.3, below is given in the bottom row of that table.

Table 5.3 - Aggregated estimates of imputation accuracy for the SSC dataset experiments
(imputation of DVHST94 values using 50 executions of the EM algorithm)

MRD SRD MRZ
Experiment

Number µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ % Outliers

1 0.09 0.02 0.15 0.07 5.45 1.60 2.52

2 0.08 0.02 0.14 0.06 5.18 1.80 2.32

3 0.09 0.02 0.15 0.06 5.56 1.26 2.63

4 0.09 0.02 0.16 0.06 5.12 1.72 2.53

5 0.09 0.02 0.15 0.07 5.19 1.34 2.68

6 0.08 0.02 0.16 0.06 5.80 1.23 2.55

7 0.09 0.02 0.14 0.06 5.45 1.91 2.23

8 0.09 0.02 0.15 0.06 5.62 1.33 2.32

Column
Mean 0.09 0.02 0.15 0.06 5.42 1.52 2.47

0

1

2

3

4

5

6

7

8

9

1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Im
pu

ta
tio

n
A

cc
ur

ac
y

MRZ
% Outliers

EXPERIMENT 3 of 8 (see table 5.2)
Imputation of DVHST94 values using
50 executions of the EM algorithm

- 85 -

Overall conclusion for the method reliability experiments

The six line charts shown above - and the figures given in table 5.3, above - show that the

proposed imputation evaluation method produced very similar results when eight identical,

consecutive EM imputation experiments were performed against the SSC dataset. This shows

that the proposed method produces reliable results when it is used to evaluate regression

based imputation methods against numeric datasets of a certain type - i.e. datasets that are

similar to the SSC dataset described above.

5.1.4 Assessing the Validity of the Method

This section attempts to answer experimental question 2, given in table 5.2, above - i.e. Can

the proposed method be used to assess the feasibility of imputing DVHST94 values? This

question can be partially answered by considering the experimental results given above.

However, the method can also be used to assess imputation accuracy variance, as follows.

A reasonable benchmark value for any imputation algorithm would be an MRD µ̂ value

of 0.2 - e.g. the imputation process described in the previous section should “put back” the

deleted DVHST94 values to within 20% of their true values (on average). The results in table

5.3, above show that the deleted DVHST94 values were “put back” to within 9% of their true

values (on average) for every experiment performed. However, the variance of the RD values

also needs to be considered before any conclusion regarding the feasibility of DVHST94

imputation can be drawn. This can be achieved using the approach described below.

Fig 5.4 - Distribution of the RD values after imputation of DVHST94 using the EM algorithm

0

5

10

15

20

25

30

0 t
o 0

.03

> 0
.03

 to
 0.

06

> 0
.06

 to
 0.

09

> 0
.09

 to
 0.

12

> 0
.12

 to
 0.

15

> 0
.15

 to
 0.

18

> 0
.18

 to
 0.

21

> 0
.21

 to
 0.

24

> 0
.24

 to
 0.

27

> 0
.27

 to
 0.

3

> 0
.3

to
0.3

3

> 0
.33

 to
 0.

36

> 0
.36

 to
 0.

39

> 0
.39

 to
 0.

42

> 0
.42

 to
 0.

45

> 0
.45

 to
 0.

48

> 0
.48

 to
 0.

51

> 0
.51

 to
 0.

54

> 0
.54

 to
 1.

64
5

Relative difference between true and imputed DVHST94 value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

Imputation accuracy for 3,500 imputed DVHST94 values
(imputation using 50 executions of the EM algorithm - see table 5.2)

The mean RD value (the MRD)
of 0.09 lies within this interval

RD outliers lie within this interval.
Outliers are defined as RD values that are
more than 3 SRD’s above or below the MRD.

- 86 -

The software application that implements the method automatically produces and displays

RD histograms such as the one shown above (where the RD values are computed using

equation (4.1), given in section 4.2.1). The automatic display of these histograms is one of the

most important features of the software, because this helps users to make informed decisions

regarding the feasibility of the imputation process. For example, the histogram shown above

could be used to assess the feasibility of imputing the missing DVHST94 values (using the

experimental process described in table 5.2, above) by using the following reasoning.

The histogram shows that approximately 75% of the imputed DVHST94 values (represented

by the three leftmost histogram bars) had an RD value of between zero and 0.09 - i.e. 75%

of the values were imputed with an accuracy of 91% or above, with 28% imputed with more

than 97% accuracy. The histogram also shows that only 16% of the DVHST94 values were

imputed with less than 88% accuracy. However, approximately 2.5% of the imputed values

were RD outliers - i.e. the rightmost histogram bar shows that 2.5% of the 3,500 values were

imputed with less than 46% accuracy. This raises the following questions; (1) Does this small

proportion of inaccurately imputed values invalidate the DVHST94 imputation process?

(2) Why were these values imputed so inaccurately? The answers to these questions are

discussed below - with reference to the following, theoretical, illustrative dataset.

a b c

1 2 4

5 10 20

10 20

 40 80

2 8

50 100 200

100 200 2

 10 20

30 120

20 40

Fig 5.5 - Deleting an “out of pattern” value - so that the imputation process can “put it back”

The relationships between the variables a, b and c are very strong, with the exception of

the single “out of pattern” value. Any good imputation procedure should produce reasonably

accurate estimates for the missing values, because the patterns within a large majority of the

known values are so strong. Suppose that the accuracy of the imputed values in column c

was being evaluated using the proposed method. Further, suppose that the random deletion

process employed by the method removed the single “out of pattern” value - so that a

measure of how accurately it was “put back” could be taken. Most imputation methods

(particularly regression based techniques) would then impute the “out of pattern” value very

Matrix cells with missing values are
shaded and empty.

The relationships between the variables
have a simple pattern, where;
b = a x 2
c = b x 2

This value is “out of pattern”
If it was deleted it would be “put back”
inaccurately by the imputation process

- 87 -

inaccurately because these methods would force the imputed value to fall into the patterns

that exist within the majority of the known values. Therefore, when a measure of how

accurately the deleted value was “put back” was taken, an RD outlier value would be created.

For example, suppose that the imputation method produced a set of imputed values that all

fell perfectly into the patterns among the known values shown in Fig. 5.5. The following RD

value would then be calculated for the “out of pattern” value;

 ijRD =
trueValY

imputedValYtrueValY

ij

ijij

.
.. −

Where trueValYij . is the true (known) value that was deleted.

and imputedValYij . is the value generated by the imputation process.

ijRD =
2
4002 −

 = 199

However, the process of random deletion and “put back” employed by the proposed method

is repeated many times, and consequently many other RD values would be calculated for the

dataset shown in Fig. 5.5. Most of these RD values would equal zero, indicating 100%

imputation accuracy. Nevertheless, the RD outlier value would inflate the MRD (the mean

RD value). And if the MRD was considered in isolation - without taking the distribution of

the RD values into account - then the user could draw an invalid conclusion regarding the

feasibility of the imputation process. This is the principal reason why the automatic creation

and display of RD histograms such as the one shown above is such an important part of the

software implementation of the method - i.e. it allows the owner of the missing value dataset

to consider the distribution of the RD values, so that the effects of extreme RD values can be

put into perspective.

For example, if the proportion of RD outliers is large then the proportion of “out of pattern”

values within the dataset will also be large. Consequently, the patterns within the known

values in the dataset may not be strong enough to support the imputation method being

evaluated. Therefore, the feasibility of employing that method to impute the missing values is

questionable. But what proportion of RD outliers will invalidate the imputation process for

any particular missing value dataset? The answer to this question can only be provided by

the owner of that dataset. This point is discussed further in the overall conclusions for the

method validity experiments, as given below.

- 88 -

Choosing the parameters that control the imputation evaluation process

The parameters that control the execution of the imputation evaluation process are shown in

Fig. 5.2. These are as follows;

• The first parameter specifies the variable being evaluated for imputation accuracy - e.g.

this was the DVHST94 variable for the experiments described above. This parameter is

simply a matter of user choice. However, the imputation evaluation process can be

repeated for all of the variables that have imputed values, if this is required.

• The second parameter specifies the proportion of known values to be deleted and “put

back” by the imputation process - e.g. this was 4.14% for the above experiments (the

number of missing values was increased by 10%). Generally, it has been found that

deleting between 3% and 5% of the known values produced reliable results for all of

the experimental datasets used to date.

• The third parameter specifies the number of executions of the imputation method (the

method being evaluated) to be performed - e.g. this was 50 executions of the EM

algorithm for the above experiments. Generally, it has been found that at least 10

executions are required for most datasets - but none of the experiments performed to

date have required more than 50 executions. However, it could be necessary to repeat the

imputation process many more times for some datasets. Consequently, it is important

that the implementations of the imputation methods used should execute as quickly as

possible.

Some preliminary experimentation may be needed to find the optimum values for the second

and third parameters. The simplest way to achieve this is to ensure that the RD histogram

displayed by the software gives similar results when the evaluation process is repeated. For

example, the three histograms given below show that the parameters chosen for the

experiments described in table 5.2 produced very similar imputation accuracy statistics.

- 89 -

*

0

5

10

15

20

25

30

0 t
o 0.

03

> 0
.03

 to
 0.

06

> 0
.06

 to
 0.

09

> 0
.09

 to
 0.

12

> 0
.12

 to
 0.

15

> 0
.15

 to
 0.

18

> 0
.18

 to
 0.

21

> 0
.21

 to
 0.

24

> 0
.24

 to
 0.

27

> 0
.27

 to
 0.

3

> 0
.3

to
0.3

3

> 0
.33 t

o 0
.36

> 0
.36 t

o 0
.39

> 0
.39 t

o 0
.42

> 0
.42

 to
 0.45

> 0
.45

 to
 0.

48

> 0
.48

 to
 0.

51

> 0
.51

 to
 0.

54

> 0
.54

 to
 1.

654

Relative difference between true and imputed DVHST94 value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

EXPERIMENT 1of 8 (see table 5.2)
Imputation accuracy for 3,500 imputed DVHST94 values

50 executions of the EM algorithm - with 4.14% of the known values deleted

MRD = 0.09
% Outliers = 2.26

0

5

10

15

20

25

30

0 t
o 0

.03

> 0
.03

 to
 0.

06

> 0
.06

 to
 0.

09

> 0
.09

 to
 0.

12

> 0
.12

 to
 0.

15

> 0
.15

 to
 0.

18

> 0
.18

 to
 0.

21

> 0
.21

 to
 0.

24

> 0
.24

 to
 0.

27

> 0
.27

 to
 0.

3

> 0
.3

to
0.3

3

> 0
.33 t

o 0
.36

> 0
.36

 to
 0.

39

> 0
.39 t

o 0
.42

> 0
.42

 to
 0.

45

> 0
.45 t

o 0
.48

> 0.48
 to

 0.
51

> 0
.51 t

o 0
.54

> 0
.54

 to
 1.

65
4

Relative difference between true and imputed DVHST94 value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

MRD = 0.08
% Outliers = 2.11

EXPERIMENT 2 of 8 (see table 5.2)
Imputation accuracy for 3,500 imputed DVHST94 values

50 executions of the EM algorithm - with 4.14% of the known values deleted

- 90 -

Overall conclusions for the method validity experiments

The explanations and experimental results given above have shown how the imputation

accuracy statistics produced by the proposed method can be used to assess the feasibility of

imputing missing values. The experiments have also shown how the variance of the

imputation accuracy statistics can be taken into account when considering imputation

feasibility. Finally, it has been shown how the parameters that control the execution of the

method can be chosen so as to ensure the reliability of the imputation accuracy statistics

produced across repeated executions of the method.

However, the final decision regarding the feasibility of the imputation process for any

variable within any dataset can only be taken by the user of the software. Although it is

important to emphasise that this will be a largely subjective decision, based on the user’s

knowledge and perspective. And of course different users could draw different conclusions

regarding the feasibility of the same imputation process. These conclusions could be based on

many factors - such as a consideration of how the imputed dataset will be used in practice, or

a detailed knowledge of the missing data mechanism.

It is argued that every missing data problem will be unique in some respects and that

therefore the evaluation of the results of the imputation process must be based primarily on

the knowledge and understanding of the user. Consequently, it is argued that there is no

substitute for human judgment when considering these matters, and that the proposed

approach simply facilitates the decision making process - by automating the calculation and

display of various imputation accuracy statistics.

0

5

10

15

20

25

30

0 t
o 0

.03

> 0
.03

 to
 0.

06

> 0
.06

 to
 0.

09

> 0
.09

 to
 0.

12

> 0
.12

 to
 0.

15

> 0
.15 t

o 0
.18

> 0
.18 t

o 0
.21

> 0
.21 t

o 0
.24

> 0
.24 t

o 0
.27

> 0
.27

 to
 0.

3

> 0
.3

to 0.
33

> 0
.33

 to
 0.

36

> 0
.36

 to
 0.

39

> 0
.39

 to
 0.

42

> 0
.42

 to
 0.

45

> 0
.45

 to
 0.

48

> 0
.48

 to
 0.

51

> 0
.51

 to
 0.

54

> 0
.54

 to
 1.

654

Relative difference between true and imputed DVHST94 value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

MRD = 0.09
% Outliers = 2.34

EXPERIMENT 3 of 8 (see table 5.2)
Imputation accuracy for 3,500 imputed DVHST94 values

50 executions of the EM algorithm - with 4.14% of the known values deleted

- 91 -

5.2 Comparing the Predictive Power of Candidate Imputation Methods

This section shows how the proposed method can be used to compare the accuracy of the

imputed values generated by the EM and nearest neighbour (NN) algorithms when they are

used to impute the missing DVHST94 values in the SSC dataset. The comparison process

also provides further evidence of the reliability and the validity of the proposed method.

Section 5.2.1 assesses the feasibility of imputing DVHST94 values using the NN algorithm

(see section 3.2.3). Section 5.2.2 explains how the proposed method was used to compare the

accuracy of the imputed values generated by the EM and NN algorithms. Sections 5.2.3 and

5.2.4 introduce the ideas underpinning “least distortion” imputation evaluation and show how

this technique was used to compare the parameter distortions caused by the two algorithms.

5.2.1 Performing the Nearest Neighbour Imputation Experiments

The previous section explained how the proposed method was used to assess the feasibility of

imputing missing DVHST94 values using the EM algorithm. This section explains how the

feasibility of imputing DVHST94 values using the NN algorithm was assessed. This allows

the predictive power of the two methods to be compared by considering the imputation

accuracy statistics generated by both methods. The NN experimental process is described in

table 5.4, below. This remainder of this section attempts to answer experimental question 1

and the following two sections attempt to answer experimental question 2.

Table 5.4 - Description of SSC dataset imputation evaluation experiments 9 to 16
 Imputation of DVHST94 values using 50 executions of the NN algorithm

EXPERIMENTAL QUESTIONS

 1. Is imputation of the missing DVHST94 values feasible using the nearest neighbour process defined below?

 2. How does the accuracy of the NN imputed values compare with the accuracy of the EM imputed values?

Description of
the missing
value dataset

• The SSC dataset containing 11 columns and 2389 rows - as described in section 5.1.1

Variable to be
imputed and
evaluated

• The variable to be imputed and evaluated was DVHST94, which had a range of 0.290 to 1.000
(710 possible values, specified to 3 decimal places)

• DVHST94 had 698 missing values - i.e. 29.22% of the 2389 data matrix rows had missing values.

Imputation
method used for
the experiment

• Imputation was performed using the nearest neighbour algorithm described in section 3.2.3

• The Euclidean distance was used to measure the similarity between observations (matrix rows)

• All variables were transformed to standard Z scores prior to imputation - so that each variable
would carry equal weight in the Euclidean distance calculations.

Imputation
evaluation
method

• 50 executions of the NN imputation algorithm were performed (using the method described above).

• The number of missing DVHST94 values was increased by 10% for each execution of NN. That is,
4.14% of the known DVHST94 values were randomly deleted and “put back” for each NN
execution, using the Fig.4.5 algorithm. With balanced random deletion across missingness patterns.

- 92 -

Eight identical, consecutive NN imputation experiments were performed using the method

described in table 5.4, above. The results for all eight experiments are shown in table 5.5,

below. The means µ̂ and the standard deviations σ̂ were computed using equations (4.6)

and (4.7), as described in chapter 4. The mean value for each column in table 5.5 is given in

the bottom row of that table.

Table 5.5 - Aggregated estimates of imputation accuracy for the SSC dataset experiments
(imputation of DVHST94 values using 50 executions of the NN algorithm)

MRD SRD MRZ
Experiment

Number µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ % Outliers

9 0.12 0.02 0.18 0.06 5.05 1.44 2.49

10 0.12 0.02 0.19 0.08 4.74 1.53 2.52

11 0.11 0.02 0.17 0.06 4.72 1.19 2.60

12 0.11 0.02 0.17 0.06 5.12 1.07 2.52

13 0.12 0.02 0.18 0.06 4.94 1.16 2.46

14 0.12 0.02 0.18 0.05 5.02 1.51 2.57

15 0.11 0.02 0.17 0.06 5.21 1.49 2.29

16 0.11 0.02 0.17 0.06 5.06 1.16 2.57

Column
Mean 0.12 0.02 0.18 0.06 4.98 1.32 2.50

Table 5.5 shows that the results for the NN imputation experiments were very similar. It was

also found that the eight sets of associated imputation accuracy charts (such as the MRD

/SRD charts shown in section 5.1.3) produced by the software were also very similar. This

provides further evidence of the reliability of the proposed method - i.e. it shows that the

method produces consistent results when it is used to evaluate nearest neighbour imputation

algorithms that are executed against a specific type of numeric dataset.

Assessing the feasibility of imputing DVHST94 values using the NN algorithm

The results given in table 5.5 show that the NN imputation process “put back” the deleted

DVHST94 values to within at least 12% of their true values (on average) for every

experiment performed. This suggests that imputation of the missing DVHST94 values via NN

may be feasible. However, the variance of the RD values also needs to be considered before

any conclusion regarding the feasibility of NN imputation can be drawn. This can be

achieved by considering the variance of the RD values, as follows.

- 93 -

Fig 5.6 - Distribution of the RD values after imputation of DVHST94 using the NN algorithm

The histogram shows that approximately 53% of the imputed DVHST94 values (represented

by the two leftmost histogram bars) had an RD value of between zero and 0.06 - i.e. 53% of

the values were imputed with an accuracy of 94% or above, with 26% imputed with more

than 97% accuracy. The histogram also shows that less than 15% of the DVHST94 values

were imputed with less than 82% accuracy. Approximately 3% of the imputed values were

RD outliers - i.e. the rightmost histogram bar shows that 3% of the 3,500 values were

imputed with less than 46% accuracy.

It was therefore concluded that imputation of the missing DVHST94 values using the NN

algorithm is feasible. Although it is important to emphasise that this is - at least in part - a

subjective conclusion, which is based on the authors knowledge and perspective (see the

discussion of this issue in the conclusions for the previous section).

5.2.2 Choosing the Most Accurate Imputation Method

This section explains how the imputation accuracy statistics generated when executing the

EM and NN algorithms can be compared, so that the algorithm that imputes the missing

DVHST94 values most accurately can be chosen. This can be achieved as follows.

• The RD distribution histograms shown in Figures 5.4 and 5.6 (see above) can be

compared - i.e. the histograms and the analysis given immediately below each histogram

can be compared.

0

5

10

15

20

25

30

0 t
o 0

.03

> 0
.03

 to
 0.06

> 0
.06

 to
 0.09

> 0
.09

 to
 0.12

> 0
.12

 to
 0.

15

> 0
.15

 to
 0.

18

> 0
.18

 to
 0.

21

> 0
.21

 to
 0.

24

> 0
.24

 to
 0.

27

> 0
.27

 to
 0.

3

> 0
.3

to
0.3

3

> 0
.33

 to
 0.

36

> 0
.36

 to
 0.

39

> 0
.39

 to
 0.

42

> 0
.42

 to
 0.

45

> 0
.45

 to
 0.

48

> 0
.48

 to
 0.

51

> 0
.51

 to
 0.

54

> 0
.54

 to
 1.

931

Relative difference between true and imputed DVHST94 value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

MRD = 0.11
% Outliers = 2.57

EXPERIMENT 16 (see table 5.4)
Imputation accuracy for 3,500 imputed DVHST94 values

50 executions of the NN algorithm - with 4.14% of the known values deleted

- 94 -

• The mean values of the imputation accuracy statistics for the EM algorithm imputation

experiments can be compared with the statistics for the NN algorithm experiments, as

shown in table 5.6, below (these figures are also given in tables 5.3 and 5.5, above);

Table 5.6 - Comparison of the imputation accuracy produced by the EM and NN algorithms
(mean values for DVHST94 imputation across 8 sets of 50 executions of both methods)

MRD SRD MRZ Imputation
method

evaluated µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ % Outliers

EM algorithm 0.09 0.02 0.15 0.06 5.42 1.52 2.47

NN algorithm 0.12 0.02 0.18 0.06 4.98 1.32 2.50

• The µ̂ values for the MRD show that the EM algorithm imputed the missing

DVHST94 values more accurately than the NN algorithm - i.e. EM “put back” the

deleted values with 91% accuracy, whereas NN achieved 88% accuracy. The MRD

standard deviation σ̂ was the same for both algorithms.

• The µ̂ values for the SRD shows that the accuracy with which the deleted DVHST94

values were “put back” was slightly more variable for the NN algorithm. The SRD

standard deviation σ̂ was the same for both algorithms.

• The % Outliers values show that the EM algorithm produced fewer RD outliers than the

NN algorithm. However, the µ̂ and the σ̂ for the MRZ show that the EM outliers

were more extreme, and they had greater variability.

It was therefore concluded that imputation via the EM algorithm should be preferred.

However, the differences between the evaluation statistics produced by the two algorithms

were quite small, so it could be beneficial to consider some further evidence before deciding

which of the algorithms should be employed in practice. The following section describes one

way of achieving this.

5.2.3 Least Distortion Evaluation

In many cases the criteria used to evaluate the results of the imputation process will depend

primarily on how the imputed dataset will be used in practice. For example, in some cases it

will be of primary importance that the mean value for a particular variable is not badly

“damaged” by the imputation process - i.e. the mean value measured prior to imputation

should not be significantly different to the mean value measured after imputation. Avoiding

“damaging” the data can be particularly important when data mining algorithms are to be

executed against the data, as Pyle (1999) explains;

- 95 -

“Even replacing the values at all has its dangers unless it is carefully done so as to

cause the least damage to the data. It is every bit as important to avoid adding bias

and distortion to the data as it is to make the information that is present available

to the mining tool”

Consequently, it was considered to be important that the proposed imputation evaluation

method should measure the distortion caused by the imputation process. The distortion of the

parameters that describe the relationships between variables (such as correlations and

regression coefficients) can be measured. And the distortion of the parameters that describe

each variable (such as the mean and standard deviation) can also be measured. This approach

has been implemented as part of the software application developed by the author, using the

process shown below;

Fig 5.7 - Implementation of the least distortion evaluation process

The distortions caused by imputation are calculated using the following general formula;

Distortion = After Imputation Statistic – Before Imputation Statistic
Before Imputation Statistic

For example, the post-imputation distortion in the mean might be calculated as follows,

Distortion = %202.0
10

1012
==

−

However, it is important to note that it will usually be impossible to generate imputed values

that minimise the distortion of more than one parameter. For example, consider the following

simple univariate example, given by Pyle (1999);

Load the dataset into the
imputation software

Calculate the BEFORE
imputation statistics

Impute the missing
values

Calculate the AFTER
imputation statistics

Compare the BEFORE
and AFTER statistics

The mean and standard
deviation for each variable

Using the imputation
method being evaluated

The mean and standard
deviation for each variable

Measures the distortion caused
by the imputation process

See section 5.1.2 for
more details

Mean before imputation = 10
Mean after imputation = 12

- 96 -

“For instance, consider the numbers 1, 2, 3, x, 5, where ‘x’ represents a missing

value. What number should be plugged in as an unbiased estimate of the missing

value? Ideally, a value is needed that will at least do no harm to the existing data.

And here is a critical point – what does ‘least harm’ mean exactly? If the mean is

to be unbiased, the missing value needs to be 2.75. If the standard deviation is to

be unbiased, the missing value needs to be about 4.659”

In such a situation the user of the imputation software would need to decide whether it was

more important to minimise the distortion of the mean, or to minimise the distortion of the

standard deviation - since it impossible to do both (as Pyle shows).

Imputation methods usually reduce the variance within imputed variables

In practice, the most common data distortion problem caused by imputation is reduced

variance within the imputed variables. For example, regression based imputation methods

almost always reduce the variance, because they use the patterns within the known values to

generate regression equations - which are then used to estimate the missing values. Therefore,

they must (by their very nature) strengthen the patterns that existed before imputation was

performed - e.g. see the discussion of the dataset given in Fig. 5.5.

The multiple imputation (MI) method (described in section 4.3.3) was devised, at least in

part, to solve the problem of variance distortion caused by imputation (Rubin, 1987). The

idea of MI is to generate several different estimates for each missing value, using “repeated

random draws from the predictive distribution of the missing values” (Little and Rubin,

2002) - i.e. stochastic (usually Bayesian) techniques are employed to generate the estimates.

The set of estimates generated for each missing value are then “combined” to form a single

estimate (e.g. the mean is usually taken). This process will increase the variance within the

imputed values in most cases, and hence the distortion of the variance caused by the

imputation process should be less severe.

The proponents of MI argue that the MI process allows “statistically valid” (Rubin, 1996a)

inferences (such as estimates of the variance) to be drawn when analysing the variables in the

imputed dataset. However, some doubt has been cast upon the general truth of this assertion.

For example, Binder (1996) points out that this depends on the properties of the dataset and

on the nature of the missing data problem. Binder makes particular reference to the related

papers on this topic by Fay (1991) and Fay (1992), arguing that, “Fay (1991, 1992) has

described what I consider to be a scientific gem. He presented a simple situation where

multiple imputation (MI) is not proper, even though one might expect it to be”. In other

words, Fay presents some examples of the MI process which show that equation (4.10),

given in section 4.3.3 - does not yield an unbiased estimate of the variance - i.e. the MI

process used is not “proper”, in the sense defined by Rubin (1987).

- 97 -

5.2.4 Comparing the Distortions Caused by the EM and NN Algorithms

Section 5.2.2 concluded that the EM algorithm should be preferred over the NN algorithm for

imputation of the DVHST94 values. However, the differences between the imputation

accuracy statistics produced by the two algorithms were quite small. This section compares

the distortions of the DVHST94 mean and standard deviation caused by both algorithms.

Fig 5.8 – Comparison of DVHST94 parameter distortions caused by the EM and NN algorithms

-14

-12

-10

-8

-6

-4

-2

0
1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Pe
rc

en
ta

ge
 C

ha
ng

e

% Change in Mean
% Change in STD

-2

-1

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49

Imputation Execution Number

Pe
rc

en
ta

ge
 C

ha
ng

e

% Change in Mean
% Change in STD

Distortions caused by the EM algorithm Distortions caused by the NN algorithm

- 98 -

The software application that implements the proposed method automatically produces and

displays line charts such as the ones shown in Fig. 5.8 (see Fig. 5.3 for an explanation of how

this is achieved). The two sets of data shown on both charts were sorted independently - i.e.

the % Change in Mean and the % Change in STD figures for each execution number do not

match. This method of visual presentation enables the parameter distortion statistics produced

by the EM and NN imputation algorithms to be more easily compared and evaluated.

The charts show that the distortion of the mean caused by both algorithms was very similar

i.e. all 50 executions of both algorithms reduced the DVHST94 mean value by between zero

and one percent. Therefore, if the distortion of the mean was an important criteria for the

comparative evaluation of the imputation methods, then the EM algorithm should still be

preferred over the NN algorithm, because the distortion produced by both algorithms hardly

differs.

However, the distortion of the standard deviation (and hence the variance) caused by the two

algorithms differs considerably. The EM imputation process reduced the variance of the

DVHST94 values by between 12 and 13 percent across all 50 executions charted. This is a

typical result for EM, since regression based imputation methods almost always decrease the

variance, for the reasons given in the previous section. But the NN imputation process

increased the variance by between zero and just over five percent across the 50 executions.

This is an unusual result, since reduced variance is often caused by over frequent use of the

same donor cases when using NN algorithms to generate imputed values (Durrant, 2005).

To conclude, we can say that if the distortion of the variance was an important criteria for the

comparative evaluation of the imputation methods, then the user would need to consider the

above charts very carefully before deciding whether the EM or the NN algorithm should be

used to impute the missing DVHST94 values in practice.

- 99 -

5.3 Summary

This chapter has explained how the proposed imputation evaluation method was

experimentally evaluated and has shown that the method produces reliable and valid

estimates of imputation accuracy when it is used to evaluate the imputed values generated by

the EM and NN imputation techniques.

An explanation of how the software that implements the method can be used to load a

missing value dataset, analyse the variables it contains and assess the feasibility of imputing

its missing values has been given. A description of how the proposed method can be used to

compare the predictive power of candidate imputation methods has been provided. Finally, an

explanation of how “least distortion” evaluation can be used to compare the parameter

distortions caused by the candidate methods has been given.

The following chapter explains how the proposed method was used to assess the feasibility of

imputing the missing values in the collaborating company’s dataset. Finally, chapter seven

presents the conclusions that have been drawn and describes how the work described in

chapters one to six could be continued.

- 100 -

Chapter Six

Applying the Method in Practice:
A Case Study

- 101 -

6. Applying the Method in Practice: A Case Study

The work described in this thesis was funded by the EPSRC under the CASE scheme, as

described in chapter one. This scheme allows students to collaborate with commercial

organisations, so that the results of the work will benefit everyone concerned. For example, to

research a topic of common interest, or to find the best way of solving a particular problem.

In this case the collaborating company were Trends Business Research (TBR), and TBR’s

missing data problem forms the case study described in this chapter.

A description of how the collaboration with TBR led to the formulation of the project

objectives is given in chapter one. The following sections describe how the proposed

imputation evaluation method was used to achieve the first of these objectives. That is, to

discover whether imputation of the missing values in TBR’s database was feasible, given the

large proportions of missing data that it contained.

• Section 6.1 describes the variables in TBR’s missing value dataset.

• Section 6.2 gives a detailed description of TBR’s missing data problem.

• Section 6.3 explains how the problems caused by the extreme outlier values in the TBR

dataset were addressed.

• Section 6.4 explains how the EM and NN algorithms (see chapters two and three) were

customised so that they could be used to impute the missing values in TBR’s dataset.

• Section 6.5 describes the experiments that were performed in order to find the most

accurate methods for imputing TBR’s missing values.

• Section 6.6 analyses the experimental results obtained and draws conclusions.

6.1 Description of the Missing Value Dataset

TBR’s missing value dataset is stored in a Microsoft SQL Server 2000® database (Vieira,

2003) - referred to as the Trends Central Database (TCD). The records in this database

describe approximately 1.48 million UK business organisations - referred to as Firms -

ranging from sole traders to conglomerates. The TCD tables contain descriptions of each

Firm, including its financial situation, number of employees, business activities and

geographical location. The variables used to support the imputation process were extracted

from the TCD using SQL, so that they could be loaded into the software application that

implements the proposed imputation evaluation method. These variables are described table

6.1, below.

- 102 -

Table 6.1 - Description of the variables in TBR’s missing value dataset

Variable name Data type Variable description

UKSIC_Category Integer
An integer representation of a categorical alphanumeric code which
defines the commercial activities carried out by each Firm, such as
“Publishing of software” etc.

Employees Integer Specifies the number of people employed by each Firm

Easting
Northing

Integer
Pinpoints the geographical location of each Firm on the UK map, using
two UK Ordnance Survey (OS) mapping co-ordinates.

Sales
Payroll
Depreciation
DirectorPay
NetWorth
PBT (Profit Before Tax)

Currency
Six numeric variables that describe each Firm’s financial situation.
These variables all had large proportions of missing values.

Each of the ten variables described in table 6.1 represents one of the columns that was loaded

into the data matrix that was used to perform the imputation process. The ten variables taken

together represent a data matrix row, which describes a particular Firm.

The first four variables listed in table 6.1 were fully observed, but the other six (the

financial variables) all had large proportions of missing data. The imputation of the

missing financial values was the problem to be solved.

6.2 Missingness Pattern Analysis: Defining the Missing Data Problem

An analysis of the missingness patterns within the dataset is essential when attempting to

solve any missing data problem. This proved to be especially important for the TCD dataset,

which was known at the outset to have very serious missing financial data problems, as

described in the following two sections.

6.2.1 Large Proportions of Missing Data

An analysis of the proportions of missing values for each of the six TCD financial variables

(as described in table 6.1, above) revealed the following. Firstly, the proportions of missing

values for each variable are unusually large - i.e. they range from 27 to 96 percent, depending

on the variable. Secondly, 71 percent of the Firms in the TCD have no known financial

figures whatsoever. The details are shown in the associated histogram and table below.

- 103 -

Table 6.2 - Breakdown of proportions of missing financial data for each Firm size category

Proportions % of missing financial values for each Firm size category
Financial variable with

missing values 1,128,463
MICRO Firms

271,955
SMALL Firms

61,389
SME Firms

18,770
LARGE Firms

Sales 94.52 87.91 67.50 50.49

Payroll 96.15 87.95 63.08 53.39

Depreciation 95.70 87.76 63.90 55.03

DirectorPay 94.00 85.90 59.40 44.49

NetWorth 81.27 59.67 40.69 26.69

PBT 93.89 85.55 58.16 42.58

A commonly recognised Firm size categorization scheme is shown in the associated

histogram and table above, where the Firms are divided into four distinct Firm size

categories. These categories are frequently used by TBR when they are compiling reports.

For example, a report describing the current financial state of small to medium sized (SME)

manufacturing companies in a specific geographical region might be required.

Consequently, the missing data problems within each category can be addressed separately,

i.e. the TCD dataset can be treated as if it were four separate datasets for the purposes of data

analysis. This alleviates TBR’s missing data problems, because larger Firms (those with more

employees) generally have smaller proportions of missing financial data, as table 6.2 shows.

That is, the missing values for all six of the TCD financial variables are MAR, in that the

probability of a Firm’s financial figures being missing decreases as the Firm’s size increases

0

10

20

30

40

50

60

70

80

90

100

MICRO Firms
 (less than 10 Employees)

SMALL Firms
(10 to 49 Employees)

SME Firms
(50 to 249 Employees)

LARGE Firms
(250 Employees and above)

To
ta

l
pr

op
or

tio
n

%

%

Total proportion % of missing financial values for Firm size category

Total proportion % of Firms with no known financial figures of any kind

- 104 -

6.2.2 Unbalanced Missingness Patterns

An analysis of the missingness pattern structure for the TCD financial variables revealed that

these patterns are extremely unbalanced. This exacerbates the problems caused by the large

proportions of missing financial data described in the preceding section. The histogram below

shows that the financial missingness patterns are dominated by the pattern where no financial

figures are known, and the pattern where only the NetWorth figure is known. However, some

of the Firms in the TCD have a complete set of Financial figures, as shown below.

 Table 6.3 - Relative sizes of missingness patterns for each Firm size category

Missingness pattern type MICRO
Firms %

SMALL
Firms %

SME
Firms %

LARGE
Firms %

 No Financial figures known 81.27 59.67 40.68 26.62

 All Financial figures known 3.22 9.56 27.83 41.46

 Networth only known 12.57 25.78 17.11 15.28

 Other missingness patterns 2.94 4.99 14.38 16.64

The SME and LARGE Firm categories both have a significant proportion of Firms with a

complete set of Financial figures. Further, the SME and LARGE Firm categories both have a

reasonable proportion of Firms that have at least one known Financial value (other than

NetWorth), as represented by the “Other missingness patterns” histogram bar.

Preliminary experiments revealed that the very large proportions of missing financial data

and the unbalanced missingness patterns produced very inaccurate imputed financial

values for the MICRO and SMALL Firm categories. It was therefore decided that all

further efforts would be concentrated on the imputation of the missing financial values

within the SME and LARGE Firm categories.

0

10

20

30

40

50

60

70

80

90

MICRO Firms
 (less than 10 Employees)

SMALL Firms
(10 to 49 Employees)

SME Firms
(50 to 249 Employees)

LARGE Firms
(250 Employees and above)

To
ta

l p
ro

po
rti

on
 %

 No Financial figures known
 All Financial figures known
 Networth only known
 Other missingness patterns

- 105 -

6.3 Addressing the Problem of Extreme Outlier Values

Preliminary investigations revealed that a small proportion of very extreme outlier values

were adding long tails of very low frequency intervals to the distributions of the TCD

financial variables. The hypothesis was that these distorted distributions were reducing the

accuracy of the imputed values. Therefore, an attempt was made to detect and remove those

Firms that contained one or more outlier values in an effort to discover whether this would

improve imputation accuracy.

Several methods for the detection of outlier values have been proposed. See for example

Iglewicz and Hoaglin (1993) and Rousseeuw and Leroy (1987). The outlier detection method

proposed by the RSC (2001) was found to be an appropriate choice for the purpose of

detecting the long tails of TCD outliers, for the reasons discussed below. The RSC (2001)

method is simply a robust version of the outlier detection method that can be used when the

variables of interest are normally distributed, as shown below.

Fig 6.1 - Detecting outlier values in a perfectly normally distributed variable using Z scores

Fig. 6.1 shows how Z scores can be used to detect outlier values in a perfectly normally

distributed variable. Where the Z score for any particular value iy of the variable

),(21 nyyyy KK= with mean µ and standard deviation σ is given by;

σ
µ−

= iyZ

68.26%

 - 4 -3 -2 -1 0 +1 +2 +3 +4

95.44%

99.72%

Z score

Proportions of data under a perfect normal curve for various Z score values

Outliers with a Z Score >
4 represent less than
0.0032% of the data

Fr
eq

ue
nc

y

Outliers with a Z Score <
-4 represent less than
0.0032% of the data

- 106 -

Essentially, the Z score is a measure of the number of standard deviations by which any

particular value of a variable deviates from the mean. Fig. 6.1 shows that for a perfectly

normally distributed variable, 68.26% of the data lies within 1± standard deviations of the

mean, and 99.72% of the data lies within 3± standard deviations of the mean. Therefore,

when the data is normally distributed, outlier values can be both defined and detected using

any required Z score range. For example, Fig. 6.1 shows that the range 4± would mark

approximately 0.0064% of the data values as outliers.

However, this method of detecting outliers failed to produce the desired results for the TCD

financial variables because the µ and σ for each of these variables was massively inflated

by the small proportions of very extreme outlier values. In other words, the outlier values

themselves were having such a disproportionate effect on the Z score calculations that very

few outlier values were being detected. Nevertheless, it was found that the Z score method

could be used to effectively detect TCD financial outliers by using robust, outlier resistant

estimates of µ and σ to calculate the Z scores, as follows

)(
)(ˆ

yMAD
ymedyZ i −=

Where Ẑ is a median based estimate of the standard Z score and)(ymed gives the median

value for the variable),(21 nyyyy KK= and)(yMAD gives the Median Absolute

Difference for),(21 nyyyy KK= , which is computed as follows,

))()(,)(()(21 ymedyymedyymedymedyMAD n −−−= KK

The median is more robust measure of central tendency than the mean for distributions with

long tails of low frequency extreme outliers (such as the TCD financial variables), because its

value is not affected by the outliers themselves. The MAD is a more robust measure of

variability than the standard deviation for distributions with long tails of low frequency

extreme outliers, because its value is not affected by the outliers, since it is calculated using

only the median - as explained by the RSC (2001).

- 107 -

6.3.1 Detecting TCD Financial Outlier Values Using Robust Z Scores

The outlier detection method described in the previous section has been implemented as part

of the software that implements the proposed imputation evaluation method. This

functionality was used to detect the outlier values for all of the financial variables in the TCD.

This proved to be very effective, as the example below shows.

Fig 6.2 - Removing outlier values from the PBT distribution for approximately 1.48 million Firms

0

30000

60000

90000

120000

150000

180000

210000

240000

-16814301000 -9292728175 -1771155350 6329000000

PBT value

Fr
eq

ue
nc

y
 (n

um
be

r o
f F

irm
s)

PBT distribution BEFORE removing the 2.74% outliers

0

5000

10000

15000

20000

25000

30000

35000

40000

-182509 -56708 69091 204568

PBT value

Fr
eq

ue
nc

y
 (n

um
be

r o
f F

irm
s)

PBT distribution AFTER removing the 2.74% outliers

- 108 -

Fig. 6.2 shows the results of removing outliers with a robust Ẑ score of more than 4± from

the PBT variable’s distribution. The detail in the tails of the distribution shown in the first

chart is obscured, because the number of Firms in the outlier intervals is generally less than

six, which is a very small proportion of the scale on the chart’s y axis. The charts show that

removing the small proportion (2.74%) of outlier values has dramatically rescaled the PBT

maximum and minimum values. The removal process has also revealed - and centred - the

hidden PBT approximation of normality shown in the second chart. The results of applying

the same outlier detection process to all of the TCD financial variables are summarised in

table 6.4, below.

Table 6.4 - Description of financial outlier values with a robust Z score of more than ± 4

Description of statistic Sales Payroll Depreciation DirectorPay NetWorth PBT

Proportion of outliers with a Z
score of more than ± 4 2.41% 2.02% 1.90% 3.35% 7.61% 2.74%

Mean outlier Z score for the
financial variable 135 79 254 39 380 219

Maximum outlier Z score for
the financial variable 60,268 247,364 923,849 29,712 1,748,221 347,476

(Stan dev / mean) ratio BEFORE
removing the outliers 15 33 48 9 57 230

(Stan dev / mean) ratio AFTER
removing the outliers 1.39 1.46 1.37 1.83 2.4 2.86

Evidence of the very extreme nature of the financial outlier values is shown in the mean and

maximum values of the Ẑ scores found. In the most extreme case, the NetWorth maximum

Ẑ score was found to be 1,748,221. Table 6.4 also shows that before removing the outliers

the standard deviation was very large compared to the mean, indicating the extremely high

variance caused by the outliers. In the most extreme case, the PBT standard deviation was

found to be 230 times larger than the mean. However, after removing the outliers it can be

seen that the ratio of the standard deviation to the mean decreases substantially.

- 109 -

6.4 Imputation Methods Used for the TCD Experiments

This section describes how the EM and NN algorithms (described in chapters two and three)

were customised, so that they could be used to impute the missing values in TBR’s dataset.

Section 6.4.1 explains how the variables used by the EM algorithm were chosen and

transformed, so as to get the best possible results from the EM imputation process. Section

6.4.2 explains how the NN imputation process was customised, so that the missing TCD

financial values would be imputed with the greatest possible accuracy.

6.4.1 Using the EM Algorithm to Impute TCD Financial Values

The EM algorithm implementation described in chapter two was used impute the missing

TCD financial values. The main questions to be answered when using the EM algorithm for

this purpose were;

1. Which of the variables in the TCD dataset should be included in the data matrix used

by the EM algorithm?

2. How could the variables in the EM data matrix be transformed, so as to get the best

possible results from the EM imputation process?

1. Finding out which variables should be included in the EM data matrix

The Easting and Northing variables pinpoint the geographical location of each Firm on the

UK map (see the variable descriptions given in table 6.1). It is often argued that commercial

enterprises in the south of the UK are more profitable than their counterparts in the north and

that employees in the south earn more. Therefore, it was possible that adding these two

variables to the data matrix would increase the predictive power of the regression equations

generated by the EM imputation process. However, preliminary experiments revealed that the

inclusion of these two variables slightly reduced the accuracy of the imputed values, so they

were excluded from the EM data matrix.

It seemed unlikely that adding the UKSIC_Category variable to the EM data matrix would

increase the predictive power of the EM regression equations, since this variable is simply an

integer representation of an alphanumeric code (see the following section for more details).

However, this was tried, but it was found that the accuracy of the imputed financial values

decreased noticeably, so the UKSIC_Category was excluded from the EM data matrix.

The other variables in the dataset were the Employees variable and the six financial variables.

These variables were added to the data matrix in various combinations and it was found that

the most accurate imputed values were produced when they were all included. And of course

this was necessary, since it was the missing financial values that were to be imputed.

- 110 -

2. Transforming the variables to get the best results from the EM process

It is well known that the EM algorithm performs at its best when the missing value dataset

contains normally distributed variables (see Schafer, 1997, among others). However, some of

the TCD financial variables were far from being normally distributed, even after the extreme

outlier values were removed (using the method described in the previous section). Therefore,

an attempt was made to transform the financial distributions to approximate normality using

the equations given in the seminal paper by Box and Cox (1964), and as described below;

The transformation),()()(
2

)(
1

)(λλλλ
nyyyy KK= of),(21 nyyyy KK= is given by;

⎪⎩

⎪
⎨
⎧

+
−+=

)ln(
/)1)(()(

cy
cyy λλ

λ

0
0

=
≠

λ
λ

 (6.1)

Where c is a shift parameter chosen large enough to ensure that 0)(>+ cy , for all values

in the matrix column containing y. The use of c is standard procedure, and it was required

for the TCD variables, since Box-Cox transformations can only be applied to positive

variables, and some of the TCD financial variables (such as PBT) can take negative values.

The main problem to be solved when applying equation (6.1) to any particular variable is to

find the value of the λ parameter which will transform),(21 nyyyy KK= to the best

possible approximation of a normal distribution. Several algorithms have been developed to

find the optimal value of λ . See for example Ogwang and Rao (1997) and Press et al.

(1992). For imputation purposes the fast and efficient algorithm proposed by Coleman (2004)

seemed to be the best choice. This algorithm uses an expectation-maximisation approach (in

the spirit of the EM algorithm) to find the optimal value of λ . This is achieved by using an

iterative procedure to maximise the following log-likelihood function;

∑∑
==

−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ −−=

n

i
i

n

i
i yyy

n
n

11

2
)()()ln()1(1ln

2
)(λλ λλl (6.2)

Where i indexes),()()(
2

)(
1

)(λλλλ
nyyyy KK= and),(21 nyyyy KK= , and where,

∑
=

=
n

i
iy

n
y

1

)()(1 λλ
 in equation (6.2) gives the mean value of

)(λ
iy

Coleman’s (2004) algorithm was implemented as part of the software application that

implements the proposed imputation evaluation method and it was found to be very effective.

The results of applying this algorithm to the SME Payroll variable are shown below.

for

for

- 111 -

Fig 6.3 - Transforming the SME Payroll variable to an approximate normal distribution

Fr
eq

ue
nc

y
(n

um
be

r o
f F

irm
s)

Payroll value

0

4000

8000

12000

16000

20000

24000

88 491963106 983926125 1475889144 1967852163

SME Payroll BEFORE removing outliers

Fr
eq

ue
nc

y
(n

um
be

r o
f F

irm
s)

0

200

400

600

800

1000

1200

1400

88 1757355 3514623 5271891 7029159

Payroll value

SME Payroll AFTER removing outliers

0

200

400

600

800

1000

1200

1400

16 1763 3510 5257

SME Payroll transformed to approximate normality

Fr
eq

ue
nc

y
(n

um
be

r o
f F

irm
s)

Payroll value

- 112 -

The two stage transformation process shown in Fig. 6.3 was applied to all of the variables in

the data matrix used by the EM algorithm and the distributions were transformed to

approximate normality in every case. When the imputation process was complete the

variables in the matrix were restored to their original distributions, using the reverse Box-Cox

transformations given by,

⎪⎩

⎪
⎨
⎧

−

−+
=

cy

cy
y

)exp(

)1(
)(

/1)(

λ

λλλ

0
0

=
≠

λ
λ

Where c is the same shift parameter used in equation (6.1), given above. The experimental

results given in Appendix A and in section 6.6 show that applying this two stage

transformation process to the variables increased the accuracy of the imputed financial

values. In addition, it was found that the application of this process increased the execution

speed of the EM algorithm considerably - i.e. the number of iterations required for EM to

converge (see section 2.2.3 for a discussion of EM convergence) decreased by about 30%

(and in some cases much more) for every experiment.

6.4.2 Using the Nearest Neighbour Algorithm to Impute TCD Financial Values

The implementation of the EM algorithm described above does not utilise the information

content within the fully observed UKSIC_Category, Easting and Northing variables (for the

reasons given in the preceding section). However, preliminary experiments revealed that the

accuracy of the imputed values increased when these three variables were utilised by the NN

algorithm. The question was: would the NN algorithm produce more accurately imputed

financial values than the EM algorithm because it utilised this additional information?

The NN algorithm given in Fig. 3.4 was used to perform the imputation process. This

algorithm imputes the missing financial value in a particular Firm (matrix row) mF by

taking a copy of the known value from the closest donor Firm dF , such that;

Imputed financial value dcmc FF ==

Where c is the matrix column with the missing financial value (to be imputed).

And where m is the matrix row index of the Firm with the missing value.

And where d is the matrix row index of the Firm containing the donor value.

Where the closest donor Firm dF is found by comparing mF with all of the other Firms in

the same UKSIC_Category as mF , and using the Firm that returns the smallest value of the

multivariate Euclidean distance function ()dm FFdist , as the donor - i.e. Finding the

minimum value of ()dm FFdist , for all RFd ∈ , where;

for

for

- 113 -

() ()∑
∈

−=
Sj

mjdjdm FFFFdist 2, for all RFd ∈ (6.3)

Where },....{ 1 kFFR = is the set of all Firms in the same UKSIC_Category as mF

And where d = 1 to k)(md ≠ indexes the Firms (matrix rows) in the set R

And where Sj ∈ indexes the matrix columns that have known values in both mF and dF

i.e. using the matrix row comparison method defined in Fig. 3.1.

Searching for donor Firms within the most suitable UKSIC categories

The method used to decide whether a set of Firms were in the same UKSIC category

(deciding which RFd ∈) requires further explanation, because the Firms within the TCD

dataset can be segmented at five different levels of UKSIC granularity. The lowest level of

granularity (level 1) creates the smallest number of segments and the highest level (level 5)

creates the largest number of segments, as shown in table 6.5, below.

Table 6.5 - Representation of the Education / Health & Social Work UKSIC categories in the TCD

UKSIC segmentation levels 1 to 5
(Number of segments created)

UKSIC category details as stored in the TCD database

1
(1)

2
(2)

3
(7)

4
(12)

5
(15)

UKSIC
code

UKSIC category description
Number
of Firms

8 0 0 0 0 80000 Education 58

8 0 2 1 0 80210 General secondary education 27,997

8 0 2 2 0 80220 Technical and vocational secondary education 183

8 0 3 0 1 80301 Sub-degree level higher education 76

8 0 3 0 2 80302 First-degree level higher education 4,563

8 0 4 2 1 80421 Activities of private training providers 11,359

8 0 4 2 9 80429 Other adult and other education not elsewhere classified 25,691

8 5 1 1 0 85110 Hospital activities 5,287

8 5 1 1 3 85113 Nursing home activities 3,003

8 5 1 2 0 85120 Medical practice activities 17,418

8 5 1 3 0 85130 Dental practice activities 11,308

8 5 1 4 0 85140 Other human health activities 30,574

8 5 2 0 0 85200 Veterinary activities 4,367

8 5 3 1 2 85312 Non-charitable social work activities with accommodation 19,034

8 5 3 2 2 85322 Non-charitable social work activities without accommodation 31,467

The TCD dataset contains ten level 1 UKSIC segments, numbered 0 to 9, and all of the

UKSIC categories in segment number 8 are shown in table 6.5, above. Hence, if the dataset

was segmented at level 1, then ten segments would be created and the search for each donor

Firm would take place within the largest possible number of UKSIC categories. It follows

that segmenting the Firms at level 5 should produce the most accurately imputed values,

because the search for each donor Firm would then take place within a single UKSIC

- 114 -

category. However, preliminary experiments revealed that segmenting at level 3 produced the

best results, because segmenting at levels 4 and 5 created several segments with 100%

missing values, which meant that no donor Firms could be found for many of the missing

values.

However, the benefits of searching for donor Firms within the best UKSIC segments were

somewhat reduced, for the following reasons. Firstly, some UKSIC categories had much

larger proportions of missing data than others. Secondly, some of the Firms in the TCD had

been placed in the wrong UKSIC categories by mistake. This was partly caused by placing

Firms which could not be easily categorised into “catch all” UKSIC categories, such as the

“Other adult and other education not elsewhere classified” category, shown in table 6.5.

Scaling the variables used for the Euclidean distance calculations

Equation (6.3) repeatedly measures the distance between two Firms in nine dimensional

Euclidean space, because nine of the ten variables given in table 6.1 are included in the

()dm FFdist , computations (the UKSIC_Category is excluded). To clarify, if only the

Easting and Northing variables were included in the computation then equation (6.3) would

find the geographically closest donor Firm in the same UKSIC_Category as the Firm with

the missing value - i.e. by comparing all of the two dimensional Euclidean distances, which

can be easily visualised.

However, some of the nine variables included in the computation had much larger values than

others (such as NetWorth) and these variables were having a disproportionate effect on the

()dm FFdist , values. In particular, the Employees variable was being “swamped” by the

(much larger) financial variables, so that the number of Employees was having very little

effect on the ()dm FFdist , results. This problem was solved as described below.

Firstly, the Employees variable and the six financial variables were scaled, so that they all

carried the same weight in the distance calculations. This was achieved by transforming the

variable values to their Z scores prior to executing the NN algorithm, as suggested by Manly

(1986). This simple process noticeably improved the accuracy of the imputed financial

values. Secondly, the Easting and Northing variables were divided by 100,000 just after they

were loaded into the data matrix. This gave these variables about one tenth of the weight of

the other variables, which proved to be very effective. That is, various weighting schemes

were tried for the Easting and Northing variables using a trial and error approach and dividing

by 100,000 seemed to produce the most accurately imputed financial values.

- 115 -

6.5 SME and LARGE Firm Financial Imputation Experiments

The missingness pattern analysis process described in section 6.2 defined the TCD missing

data problem. This led to the conclusion that all further efforts should be concentrated on the

imputation of missing financial values within the SME and LARGE Firm categories.

Following this, the investigations described in section 6.3 led to the formulation of the

hypothesis that removing all Firms containing one or more financial outlier values might

improve imputation accuracy. This led to the implementation of a method for removing the

outlier Firms, which proved to be very effective. Following this, the work described in

section 6.4 led to the implementation of the EM and NN algorithm modifications needed for

the imputation of the missing TCD financial values.

Thus, the stage has been set for the description of the experiments which were designed to

find the most accurate methods for imputing the missing financial values. The following two

sections give a detailed description of these experiments.

Description of the 48 financial variable imputation experiments

Twelve sets of four imputation experiments were performed. The same TCD financial

variable was imputed for each set of four experiments. For example, the list below describes

the set of experiments that were performed for the SME Firm Payroll variable.

1. Imputation using the EM algorithm with outlier Firms retained.

2. Imputation using the EM algorithm with outlier Firms deleted.

3. Imputation using the NN algorithm with outlier Firms retained.

4. Imputation using the NN algorithm with outlier Firms deleted.

The objective was to discover which of these four imputation methods would produce the

most accurately imputed SME Payroll values. The same set of four experiments were

performed for each of the following twelve variables;

• SME Firm variables Sales, Payroll, Depreciation, DirectorPay, NetWorth, PBT

• LARGE Firm variables Sales, Payroll, Depreciation, DirectorPay, NetWorth, PBT

Thus, 48 experiments were performed in total. Fifty consecutive executions of the required

imputation algorithm (EM or NN) were performed for each of the 48 experiments. Hence,

2,400 executions of the imputation algorithms (1,200 for EM and 1,200 for NN) were

performed. A small proportion of the known values were randomly deleted and “put back”

for each execution of the EM and NN algorithms, using the procedure given in Fig. 4.5.

That is, the proposed imputation evaluation method was executed 48 times, using 50

iterations per execution. The following two sections describe the 48 experiments in more

detail, using the pro-forma that has been designed to support the proposed method.

- 116 -

6.5.1 Definition of the EM Imputation Experiments

Tables 6.6 and 6.7 describe the EM algorithm imputation evaluation experiments that were

performed for the SME Payroll variable. The same pair of experiments were repeated for all

12 of the SME and LARGE Firm financial variables. That is, the descriptions given in tables

6.6 and 6.7 hold for all of the TCD financial variables, with the only difference being the

proportion of missing values for each variable, as given in table 6.2, above.

Table 6.6 - Description of TCD imputation evaluation experiment 1 (EM retaining outlier Firms)
 Imputation of SME Payroll values using 50 executions of the EM algorithm

EXPERIMENTAL QUESTION

Can the missing SME Payroll figures be accurately imputed using the EM imputation process described below?

Description of
the missing
value dataset

• All 61389 SME Firms were loaded into the data matrix from the TCD database, using SQL.

• The TCD columns loaded into the matrix were: Sales, Payroll, Depreciation, DirectorPay,
NetWorth, PBT and Employees. All columns contained integer values only.

Variable to be
imputed and
evaluated

• The variable to be imputed and evaluated was Payroll.

• Payroll had 38724 missing values - i.e. 63.08% of the 61389 data matrix rows had missing values.

Imputation
method used for
the experiment

• Imputation was performed using the EM algorithm

• The EM algorithm convergence value was 0.0001

• Box-Cox power transformations were performed for all variables.

• The initial covariance matrix was created using all data matrix rows with a full set of known values.

• All imputed values were rounded to the nearest integer before estimating the predictive accuracy of
the imputed values.

Imputation
evaluation
method

• 50 executions of the EM imputation algorithm were performed (using the options described above).

• No outlier Firms were removed from the matrix.

• 4.16% of the known Payroll values were randomly deleted and “put back” for each EM execution,
using the Fig.4.5 algorithm. With balanced random deletion across all missingness patterns.

Table 6.7 - Description of TCD imputation evaluation experiment 2 (EM deleting outlier Firms)
 Imputation of SME Payroll values using 50 executions of the EM algorithm

EXPERIMENTAL QUESTION

How would deleting outlier Firms from the data matrix affect EM imputation of the missing SME Payroll figures?

This experiment was identical to the experiment described in table 6.6, except that all Firms (matrix rows) that contained
any financial variable with a robust Z score of more than ± 4 were deleted from the data matrix. That is, 8251 of the
61389 Firms were deleted from the matrix prior to the first execution of the EM imputation process

- 117 -

6.5.2 Definition of the Nearest Neighbour Imputation Experiments

Tables 6.8 and 6.9 describe the NN algorithm imputation evaluation experiments that were

performed for the SME Payroll variable. The same pair of experiments were repeated for all

12 of the SME and LARGE Firm financial variables. That is, the descriptions given in tables

6.8 and 6.9 hold for all of the TCD financial variables, with the only difference being the

proportion of missing values for each variable, as given in table 6.2, above.

Table 6.8 - Description of TCD imputation evaluation experiment 3 (NN retaining outlier Firms)
 Imputation of SME Payroll values using 50 executions of the NN algorithm

EXPERIMENTAL QUESTION

Can the missing SME Payroll figures be accurately imputed using the NN imputation process described below?

Description of
the missing
value dataset

• All 61389 SME Firms were loaded into the data matrix from the TCD database, using SQL.

• The TCD columns loaded into the matrix were: Sales, Payroll, Depreciation, DirectorPay,
NetWorth, PBT, Employees, Easting, Northing and UKSIC_Category. All columns contained
integer values (the UKSIC_Category contained integer representations of alphanumeric codes).

Variable to be
imputed and
evaluated

• The variable to be imputed and evaluated was Payroll.

• Payroll had 38724 missing values - i.e. 63.08% of the 61389 data matrix rows had missing values.

Imputation
method used for
the experiment

• Imputation was performed using the nearest neighbour algorithm described in section 3.2.3

• The Euclidean distance was used to measure the similarity between Firms (data matrix rows).

• All variables except Easting and Northing were transformed to standard Z scores prior to
imputation - so that each variable would carry equal weight in the Euclidean distance calculations.

• The Easting and Northing variables were divided by 100,000 just after they were loaded into the
data matrix (see the explanation for this given in section 6.4.2).

• The search for each nearest neighbour was carried out within the UKSIC segment to which the
recipient Firm (the Firm with a missing value) belonged - i.e. only those Firms in the same UKSIC
segment as the recipient Firm were considered as potential donors (as explained in section 6.4.2).

Imputation
evaluation
method

• 50 executions of the NN imputation algorithm were performed (using the options described above).

• No outlier Firms were removed from the matrix.

• 4.16% of the known Payroll values were randomly deleted and “put back” for each NN execution,
using the Fig.4.5 algorithm. With balanced random deletion across all UKSIC segments.

Table 6.9 - Description of TCD imputation evaluation experiment 4 (NN deleting outlier Firms)
 Imputation of SME Payroll values using 50 executions of the NN algorithm

EXPERIMENTAL QUESTION

How would deleting outlier Firms from the data matrix affect NN imputation of the missing SME Payroll figures?

This experiment was identical to the experiment described in table 6.8, except that all Firms (matrix rows) that contained
any financial variable with a robust Z score of more than ± 4 were deleted from the data matrix. That is, 8251 of the
61389 Firms were deleted from the matrix prior to the first execution of the NN imputation process

- 118 -

6.6 Experimental Results: Estimating Imputation Accuracy

A comprehensive set of experimental results for all 48 experiments is given in Appendix A.

This comprises 13 pages of imputation accuracy statistics. Including two overall results tables

(one for SME Firm imputation and one for LARGE Firm imputation). And twelve associated

pairs of RD histograms and segment analysis tables (one pair for each of the methods shown

in table 6.10, below). This section summarises these statistics and draws conclusions.

6.6.1 Estimating the Accuracy of the Imputed Values

The most accurate imputation method found for each of the twelve sets of four experiments

described in the preceding section is shown in table 6.10, below. These twelve methods are

also highlighted in tables A.1 and A.4 (see Appendix A). The RD histogram and segment

analysis table associated with each of these methods is also given in Appendix A. The bullet

points following the table summarise the conclusions that were drawn.

Table 6.10 - The twelve most accurate imputation methods found for the TCD financial variables

Financial variable imputed
and evaluated

Most accurate imputation found
method for variable

Proportion % of missing
values imputed

SME Firm Sales NN with outlier Firms deleted 96.92

SME Firm Payroll NN with outlier Firms deleted 96.55

SME Firm Depreciation NN with outlier Firms deleted 95.85

SME Firm DirectorPay EM with outlier Firms deleted 97.93

SME Firm NetWorth EM with outlier Firms deleted 99.98

SME Firm PBT EM with outlier Firms deleted 98.81

LARGE Firm Sales NN with outlier Firms deleted 90.24

LARGE Firm Payroll NN with outlier Firms deleted 89.86

LARGE Firm Depreciation EM with outlier Firms deleted 89.90

LARGE Firm DirectorPay EM with outlier Firms deleted 69.59

LARGE Firm NetWorth EM with outlier Firms deleted 99.88

LARGE Firm PBT EM with outlier Firms deleted 97.82

• Deleting outlier Firms from the data matrix produced more accurately imputed values in

22 out of 24 cases (see tables A.1 and A.4). The disadvantage was that the missing

values in the deleted outlier Firms could not be imputed. However, the proportion of

imputed values lost because of this was generally quite small, as table 6.10 shows.

• A single anomalous result occurred for the EM algorithm, in that 26.39% of the LARGE

Firm DirectorPay imputed values were discarded because they were wrongly imputed as

negative numbers. For NN imputation a very small proportion (at most 0.14%) of the

missing values were not imputed for some Firms, because the UKSIC segments these

Firms belonged to had 100% missing values.

- 119 -

• The RD histograms for the twelve most accurate imputation methods (see sections A.2

and A.5) show that at least 5.22% (and in most cases far more) of the deleted values

were “put back” very inaccurately for every experiment. That is, the patterns within the

known values were not strong enough to support the EM and NN imputation methods.

Therefore, the feasibility of using these methods to impute the missing values is

questionable. See sections 1.3.2 and 5.1.4 for detailed discussions of this idea.

• The Sales, Payroll and Depreciation variables were imputed far more accurately than

the other three financial variables for both the SME and LARGE Firm categories. The

NN algorithm produced the most accurate imputed values for these variables for five out

of six of the results shown in table 6.10, above.

• The accuracy of the imputed DirectorPay, NetWorth and PBT values was extremely

poor, with huge MRD values being produced across the board. That is, the patterns

within the known values for these variables were so weak that it is hard to see how the

missing values could be accurately imputed using any imputation method.

• The statistics given in tables A.1 and A.4 show that the changes in the mean and

standard deviation (STD) caused by the imputation process were generally quite large.

That is, the mean and STD were generally reduced by about 20% to 40%, with a few

notable exceptions. The NN algorithm caused smaller changes than the EM algorithm in

almost every case, with the differences being quite marked for some experiments.

6.6.2 Estimating Imputation Accuracy in Data Segments

The proposed imputation evaluation method allows the accuracy of the imputed values in

different data segments to be estimated separately (see sections 4.2.2 and 4.2.3 for full

details). This allows the imputation accuracy statistics produced for each segment to be

analysed and compared. The procedure used to calculate these statistics is given in Fig. 4.5.

The execution of this procedure proved to be quite useful for the TCD dataset, for the reasons

given below.

The screenshot below shows how the segment analysis functionality has been implemented

within the software. The imputation accuracy statistics shown in the grid were aggregated

over 50 executions of the NN algorithm when imputing the missing LARGE Firm Payroll

values. The statistics shown in the screenshot are also given in table A.4.2 in section A.6. The

segment analysis results tables for the other eleven most accurate methods (see table 6.10,

above) are given in sections A.3 and A.6.

- 120 -

Fig 6.4 - Implementation of the data segment analysis graphical user interface

The leftmost column shows the UKSIC segment being evaluated - with segmentation at

UKSIC level one (see table 6.5, above). Column two shows the proportion of the total

number of missing values (across the entire dataset) in each segment - i.e. the values given in

column two sum to 100%. The four rightmost columns show the imputation accuracy

statistics produced for each segment (using equations (4.8) and (4.9), given in chapter four).

The grid rows are sorted by MRD descending - i.e. the segment with the least accurate

imputed values is shown in the top row of the grid.

The screenshot shows that segment 9 (which contains all Firms in the “Other Community,

Social and Personal Service Activities” UKSIC categories) has the least accurate imputed

values. This type of information would be useful to TBR when they were compiling reports

describing the Firms in one or more UKSIC categories. For example, it would be known that

the imputed values in some UKSIC categories were more accurate than in others, and

therefore TBR might decide not to impute the missing values in the least accurate categories

under any circumstances. This approach is unique to the imputation evaluation method

described in this dissertation and it is one of the strongest features of that method.

The values shown in these columns are
given by equation (4.8) - see section 4.2.3

These options toggle the grid column
values between equations (4.8) and (4.9)

- 121 -

The proposed method also allows the accuracy of the imputed values in different missingness

patterns to be estimated separately. For example, the tables given in sections A.3 and A.6

show that the missingness patterns containing the smallest number of known values imputed

with the least accuracy in most cases, as one might expect. In particular, the missing values

within the pattern with no known financial values were imputed very inaccurately across the

board. Unfortunately, this pattern contained most of the missing values in the TCD dataset, so

discarding the imputed values in this pattern would mean that very few missing values would

be imputed for any TCD variable.

However, the histogram given in section 6.2.2 shows that the missingness patterns within the

TCD dataset were extremely unbalanced. Consequently, the advantages of comparing

imputation accuracy across missingness patterns were reduced for the TCD. Nevertheless, the

missingness pattern comparison process has significant benefits for the evaluation of

regression based imputation methods (such as the EM algorithm), because it allows users to

see which missingness patterns produce the best and worst regression equations for any

particular dataset.

6.6.3 TCD Imputation Conclusions

The feasibility of imputing the missing TCD financial values is questionable, because the

accuracy of the imputed values has been shown to be very poor across the board. The reasons

for this are summarised below.

• The large proportions of missing financial values (see section 6.2.1).

• The unbalanced financial variable missingness patterns (see section 6.2.2).

• Some UKSIC categories have much larger proportions of missing data than others.

• Some of the Firms in the TCD have been placed in the wrong UKSIC categories.

• The patterns within the known financial values are generally very weak.

• The financial variables all have small proportions of extreme outlier values.

These problems are embedded within the data itself, and so it is hard to see how they could be

solved using any imputation method. However, it is important to emphasise that the final

decision regarding the feasibility of imputing the missing financial values can only be taken

by the staff at TBR. Consequently, it is argued that there is no substitute for human judgment

when considering these matters, and that the proposed imputation evaluation method can only

facilitate the decision making process by automating the calculation and display of various

imputation accuracy statistics.

- 122 -

6.7 Summary

This chapter has described how the proposed imputation evaluation method was used to

address the collaborating company’s (TBR’s) missing data problem. That is, to discover

whether imputation of the missing values in TBR’s database (the TCD) was feasible, given

the overall poor quality of the data.

The variables in the TCD dataset have been described and a detailed description of TBR’s

missing data problem has been given. An explanation of how the problems caused by the

extreme outlier values in the TCD dataset were addressed has been provided. A description of

how the EM and NN algorithms (described in chapters two and three) were customised to suit

the TCD dataset has been given. A description of the experiments that were performed in

order to find the most accurate methods of imputing the missing TCD values has been

provided. And finally, the experimental results have been summarised and conclusions have

been drawn.

The following chapter summarises the thesis, draws conclusions and describes how the work

described in chapters one to six could be continued.

- 123 -

Chapter Seven

Conclusions and Further Work

- 124 -

7. Conclusions and Further Work

This thesis has described a novel imputation evaluation method and has shown how this

method can be used to estimate the accuracy of the imputed values generated by any

imputation technique. The work was funded by the EPSRC under the CASE scheme and the

resulting collaboration with the partner company led to the formulation of the project

objectives, which are described in section 1.1.2. These objectives were achieved and the

contributions to knowledge made by this work were;

1. The new imputation evaluation method described in chapter four. The equations and

procedures described in this chapter are novel and the method used to compare the

accuracy of imputed values in different data segments is also original.

2. The description and experimental evaluation of a novel general purpose NN imputation

algorithm given in chapter three.

These contributions are also described in the two published papers given in Appendix E.

The following sections summarise the thesis chapters and discuss the conclusions that were

drawn for each chapter.

7.1 Theory and Implementation of Imputation Methods

Chapter two summary

Chapter two explained the fundamental concepts underpinning the implementation of MLE

based imputation via the EM algorithm and showed how this approach could be used to

impute missing values in numeric datasets with multivariate missingness patterns. The history

and utility of the EM algorithm was discussed and the type of datasets that can be processed

by the EM algorithm were described. A description of how the author has implemented the

EM algorithm as a software application was given.

Chapter two conclusions

Techniques for decreasing the execution time of imputation algorithms have received very

little attention in the literature. The experiments that evaluate the performance of the author’s

implementation of the EM algorithm address this problem and make some contribution to the

theory of maximum likelihood based imputation. The key findings were as follows;

• It is essential to employ the fastest possible method to generate the regression equations

used to impute the missing values in each missingness pattern. This can be achieved by

using the SWEEP operator, as described in chapter two and in Appendix B.

- 125 -

• EM execution time can be substantially decreased by sorting the data matrix into

missingness pattern order. It is essential this sorting process is performed using an

algorithm which requires no more than (n log n) data matrix row comparisons,

• The fastest possible method of processing the EM sufficient statistics matrix should be

employed. This can be achieved by creating the initial version of this matrix only once,

then storing and reusing it repeatedly, using the approach described in Appendix B.

Chapter three summary

Chapter three explained the ideas underpinning the development of a novel, general purpose

NN imputation algorithm and showed how these ideas could be used to reduce the execution

time of the NN imputation process. A description of the experiments that evaluated the

performance of the new algorithm was given, and the experimental results were presented,

analysed and discussed. The ideas and the experimental results presented in this chapter form

part of the contribution to knowledge made by this dissertation.

Chapter three conclusions

As the proportion of missing values in the data matrix increases the execution time of NN

imputation algorithms can be decreased by a corresponding proportion. The principle

underlying this idea is that the number of row comparisons required to find any particular

nearest neighbour can be reduced by utilising the information content within the missingness

patterns in the dataset. The algorithm described in chapter three implements this principle and

the experimental results show that this approach decreased the execution time of the NN

imputation process for both simulated and real datasets. The algorithm’s execution time was

found to steadily decrease as the proportion of missing values in the dataset was increased.

- 126 -

7.2 The Proposed Imputation Evaluation Method

Chapter four summary

Chapter four described the proposed imputation evaluation method and showed how this

method could be used to estimate the accuracy of the imputed values generated by any

imputation technique. A functional overview of the method was given and the equations and

procedures which form the basis of the method were described. The proposed method was

compared with the most similar methods found within the literature and it was shown that the

method builds on the ideas underpinning these methods, but differs from them in several

important respects. This ideas presented in this chapter form the principal contribution to

knowledge made by this dissertation.

Chapter four conclusions

The general idea of evaluating imputation methods by measuring how accurately a set of

deleted values have been “put back” has been frequently employed by other researchers.

However, these approaches differ from the proposed method in several important respects.

Firstly, they are usually applied to simulated, rather than real, datasets. Secondly, they are not

devised to be general purpose imputation evaluation techniques - i.e. they are usually

designed for a specific purpose (as an incidental part of a larger project), or to be applied to a

specific type of dataset. Thirdly, the idea of measuring imputation accuracy using the

statistics generated via a repetitive stochastic algorithm is not used. (see section 4.3.5 for

further details). Finally, the idea of comparing the accuracy of the imputed values in different

data segments is not used.

The most similar methods found within the literature were uncertainty estimation methods.

These methods are similar because they execute the imputation method being evaluated

repeatedly against the missing value dataset, then go on to use the parameters that describe

the resulting set of unique imputed datasets to evaluate the imputation process (see Fig. 4.9

for a diagrammatic representation of this process).

However, the proposed method differs from uncertainty estimation methods by estimating the

accuracy of the imputed values, rather than estimating the uncertainty inherent within those

values - i.e. uncertainty estimation methods do not record deleted values and then measure

how accurately they have been “put back” by the imputation process. In addition, uncertainty

estimation methods are not generally used to compare the uncertainty within imputed values

in different data segments, although there seems to be no reason why they could not be

adapted for this purpose.

- 127 -

Chapter five summary

Chapter five explained how the reliability and validity of the proposed method was

experimentally evaluated. A description of the software that implements the method was

given, including some screenshots of the graphical user interface that showed how the

software can be used in practice. An explanation of how the parameters that control the

execution of the method can be chosen was given. Finally, a description of how the method

can be used to compare the effectiveness of candidate imputation methods was provided.

Chapter five conclusions

The experimental results given in chapter five show that the method produces reliable and

valid estimates of imputation accuracy when it is used to evaluate the imputed values

generated by the EM and NN imputation techniques. However, the final decision regarding

the feasibility of the imputation process can only be taken by the owner of the missing value

dataset, and the proposed method can only facilitate the decision making process by

automating the calculation and display of various imputation accuracy statistics.

Chapter six summary

Chapter six described how the method was used to discover whether imputation of the

missing values in TBR’s database (the TCD) was feasible. The variables in the TCD dataset

were described and a detailed description of TBR’s missing data problem was given. A

description of the experiments that were performed in order to find the most accurate

methods of imputing the missing TCD values was given. Finally, the experimental results

(given in Appendix A) were summarised and conclusions were drawn.

Chapter six conclusions

The feasibility of imputing the missing values in the TCD dataset is questionable, because the

accuracy of the imputed values was shown to be very poor across the board. This occurred

because of the extremely poor quality of the dataset. That is, the problems that caused the

poor imputation accuracy are embedded within the data itself, so it is hard to see how they

could be solved using any imputation method. However, it is important to emphasise that the

final decision regarding the feasibility of imputing the missing TCD values can only be taken

by the staff at TBR.

- 128 -

7.3 Overall Conclusions and Further Work

All imputation methods have the same basic objective. That is, they try to make the best

possible use of the information content (the patterns and so on) within the known values in a

particular dataset, to generate the best possible estimates for the missing values in that

dataset. And of course, this is the only possible approach, since the information content

within the known values is the only thing we have to “go on”. It follows that imputation

evaluation methods should also make the best possible use of the information content within

the known values, and the method proposed in this thesis does just this.

The idea of evaluating imputation techniques by measuring how accurately they can “put

back” a set of deleted values is a simple and intuitive approach to imputation evaluation,

which can be easily understood by the owner of any missing value dataset. And it is difficult

to discount the results produced by this method, since it would be very hard to deny the

success of any imputation technique which can be shown to have repeatedly “put back” a set

of randomly deleted values with a high degree of accuracy.

Despite these (seemingly obvious) conclusions, this dissertation describes the first attempt

to develop the “delete and put back” approach into a general purpose imputation

evaluation method. However, the implementation of the method described here could be

developed further, as follows,

• The method could be tested against many different types of dataset and conclusions

regarding its utility for those types of dataset could be drawn. It is important to

emphasise the idea of dataset types in this respect, because every missing value dataset

will be unique in some respects and consequently every missing data problem will also

be unique. Therefore, the only way to properly evaluate the utility of the proposed

method for any particular dataset is to execute it against that dataset and then consider

the imputation accuracy statistics that are produced.

• Chambers (2001) lists five criteria that can be used to evaluate the performance of any

imputation technique (see chapter one). The “delete and put back” method described in

this thesis evaluates performance using the first of these criteria (predictive accuracy),

but it could be adapted to evaluate performance using the other four. This could be

achieved by comparing the properties of the deleted (known) values and the values that

are “put back” (the imputed values) using techniques that have not been applied in this

thesis. For example, the correlations between these two sets of variables could be

measured, or their distributions could be compared (using line charts or numerical

methods), or any other required numerical or visual technique could be used measure

and compare their attributes.

- 129 -

• The proposed method has been used to estimate the accuracy of the imputed values

generated by the EM and NN imputation techniques in this thesis. However, the method

could be used to estimate the accuracy of the imputed values generated by any other

imputation technique, so that the effectiveness of these techniques could be compared.

In particular, the method could be adapted to estimate the accuracy of the imputed values

generated by multiple imputation techniques, which are generally recognised as being

the most effective imputation methods.

• The imputation evaluation statistics produced by the proposed method could be

compared with the statistics produced by other imputation evaluation methods. This

would be best achieved by implementing several evaluation methods alongside one

another in a single integrated software application. In particular, the results produced by

the proposed approach could be compared with the results produced by uncertainty

estimation methods, which have some similarity with the proposed approach.

- 130 -

REFERENCES

Aguirre, F. and Sun, T., (2003), SSC Case Study 2002 - Handling Missing Data in the 1994

National Population Health Survey, SSC Annual Meeting, May 2002, Proceedings of the

Survey Methods Section.

Aho, A.V., Hopcroft, J.E. and Ullman, J.D., (1983), Data Structures and Algorithms,

Addison Wesley, MA.

Allison, P. D., (2001), Missing Data (Quantitative Applications in the Social Sciences, series

no. 07-136), Sage Publications, California.

Allison, P.D., (2000), Multiple Imputation for Missing Data: A Cautionary Tale, Sociological

Methods and Research, 28(3), pp. 301-309.

Barnard, J., and Meng, X. L. (1999), Applications of Multiple Imputation in Medical Studies:

From AIDS to NHANES, Statistical Methods in Medical Research, 8, pp. 17-36.

Beale, E. M. L. and Little, R.J.A., (1975), Missing Values in Multivariate Analysis, Journal of

the Royal Statistical Society. Series B (Methodological), 37 (1), pp. 129-145.

Beaton, A. E. (1964), The Use of Special Matrix Operations in Statistical Calculus,

Educational Testing Service Research Bulletin, RB-64-51.

Bello, A.L., (1995), Imputation Techniques in Regression Analysis: Looking Closely at Their

Implementation, Computational Statistics & Data Analysis, 20, pp. 45-57.

Bernier, J., Haziza, D., Nobrega, K. and Whitridge, P., (2002), Statistical Society of

Canada: Handling Missing Data Case Study, Available at;

http://www.ssc.ca/documents/case_studies/2002/missing_e.html Accessed 17th July 2007.

Berson, A. and Smith, S. J., (1997), Data Warehousing, Data Mining, and OLAP, McGraw-

Hill, New York, USA.

Binder, D.A., (1996), On Variance Estimation with Imputed Survey Data: Comment, Journal

of the American Statistical Association, Vol. 91 (434), pp. 510-512.

- 131 -

Binder, D. A. and Sun, W., (1996), Frequency Valid Multiple Imputation for Surveys with a

Complex Design, Proceedings of the section on survey research methods, American

Statistical Association, pp. 281-286.

Box, G.E.P. and Cox, D.R., (1964), An Analysis of Transformations, Journal of the Royal

Statistical Society, Series B, 26, pp 211-243.

Buck, S. F., (1960), A Method of Estimation of Missing Values in Multivariate Data Suitable

For Use With an Electronic Computer. Journal of the Royal Statistical Society, Series B

(Methodological), 22, (2), pp. 302-306.

Chambers, R., (2001), Evaluation Criteria for Statistical Editing and Imputation, National

Statistics Methodological Series No. 28, Office for National Statistics, Also available from

http://www.cs.york.ac.uk/euredit/ as EUREDIT Project deliverable D3.3, Accessed 2nd June

2007.

Chen, J. and Shao, J., (2000), Nearest neighbour Imputation for Survey Data, Journal of

Official Statistics, 16 (2), pp. 113-131.

Chen, J. and Shao, J., (2001), Jackknife Variance Estimation for Nearest-Neighbour

Imputation, Journal of the American Statistical Association, Vol. 96, (453), pp. 260-269.

Coleman, C., (2004), A Fast, High-Precision Implementation of the Univariate One-

Parameter Box-Cox Transformation Using the Golden Section Search in SAS/IML®,

NESUG 2004, Baltimore, USA, Proceedings of the Statistics and Pharmacokinetics Section.

Dear, R.E., (1959), A Principal-Component Missing Data Method for Multiple Regression

Models, Report SP-86, System Development corporation, Santa Monica, CA.

Dempster, A. P., (1969), Elements of Continuous Multivariate Analysis, Addison Wesley,

MA.

Dempster, A.P., Laird, N.M. and Rubin, D.B., (1977), Maximum Likelihood from Incomplete

Data Via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 39, pp 1-38.

Dixon, J. K., (1979), Pattern Recognition With Partly Missing Data, IEEE Transactions on

Systems, Man, and Cybernetics, Vol. SMC-9 (10), pp.617-621.

- 132 -

Dunham, M. H., (2003), Data Mining Introductory and Advanced Topics, Prentice-Hall,

New Jersey.

Durrant, G. B., (2005), Imputation Methods for Handling Item-Nonresponse in the Social

Sciences: A Methodological Review, ESRC National Centre for Research Methods: Methods

Review Working Paper. Also available at; http://www.ncrm.ac.uk/publications/index.php

Accessed 4th March 2007.

Efron, B., (1994), Missing Data, Imputation, and the Bootstrap, Journal of the American

Statistical Association, Vol. 89 (426), pp. 463-47.

Eltinge, J.L., (1996), On Variance Estimation with Imputed Survey Data: Comment, Journal

of the American Statistical Association, Vol. 91 (434), pp. 513-515.

Ester, M., Kriegel, H., Sander, J. and Xu, X., (1996), A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise, In Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland,

USA, pp. 226-231.

Ezzati-Rice, T.M., Johnson, W., Khare, M., Little, R.J.A., Rubin, D.B. and Schafer, J.L.,

(1995), A Simulation Study to Evaluate the Performance of Multiple Imputations in NCHS

Health Examination Survey, Proceedings of the Bureau of the Census, Eleventh Annual

Research Conference, pp. 257-266.

Fay, R. E., (1991), A Design Based Perspective on Missing Data Variance, Proceedings of

the 1991 Annual Research Conference, Washington DC, U.S. Bureau of the Census, pp.

429-440.

Fay, R. E., (1992), When are Inferences from Multiple Imputation Valid?, Proceedings of the

Survey Research Methods Section, American Statistical Association, pp. 227-232.

Fay, R. E., (1996a), Alternative Paradigms for the Analysis of Imputed Survey Data, Journal

of the American Statistical Association, Vol. 91 (434), pp. 490-498.

Fay, R. E., (1996b), On Variance Estimation with Imputed Survey Data: Rejoinder, Journal

of the American Statistical Association, Vol. 91 (434), pp. 517-519.

- 133 -

Fay, R. E., (1999), Theory and Applications of Nearest Neighbor Imputation in Census 2000,

Proceedings of the section on survey research methods, American Statistical Association

1999, pp. 112-121.

Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P., (1996), From Data Mining to

Knowledge Discovery: An Overview, Advances in Knowledge Discovery and Data Mining

(Eds., Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. and Uthursamy, R.), pp. 1–30, AAAI

Press, Menlo Park, CA.

Feynman, R. P., (2001), The Pleasure of Finding Things Out: The Best Short Works of

Richard P. Feynman, (Editor; Robbins, J, Foreword; Dyson, F.), Penguin Books (Science),

London.

Gilks, W.R., Richardson, S. and Spiegelhalter, D.J., (Eds.) (1995), Markov Chain Monte

Carlo in Practice, Chapman and Hall, London.

Goodnight, J. H., (1979), A Tutorial on the SWEEP Operator, American Statistician 33(3), pp

149-158. Also available from http://support.sas.com/documentation/onlinedoc/trindex.html

(accessed 1st June 2007) as SAS Technical Report R-106, The Sweep Operator: Its

Importance in Statistical Computing

Graham, J. W., Hofer, S. M. and Piccinin, A. M., (1994), Analysis With Missing Data in

Drug Prevention Research, Advances in Data Analysis for Prevention Intervention Research,

NIDA Research Monograph 142 (Eds. Collins, L.M., Seitz, L. A.), pp. 13-63, National

Institute on Drug Abuse, Washington, DC.

Hartley, H.O., (1958), Maximum Likelihood Estimation from Incomplete Data, Biometrics,

14, pp. 174-194.

Hejlsberg, A., Wiltamuth, S. and Golde, P., (2004), The C# Programming Language,

Addison-Wesley, Boston.

Horton N. J. and Lipsitz, S. R., (2001), Multiple Imputation in Practice: Comparison of

Software Packages for Regression Models With Missing Variables, American Statistician

55(3), pp. 244-254.

Huang, X. and Zhu, Q., (2002), A Pseudo-nearest-neighbor Approach for Missing Data

Recovery on Gaussian Random Data Sets, Pattern Recognition Letters, 23 (13), pp. 1613-

1622.

- 134 -

Iglewicz, B. and Hoaglin, D., C., (1993), How to Detect and Handle Outliers (ASQC Basic

References in Quality Control, Vol. 16), American Society for Quality Control

(ASQC/Quality Press), Milwaukee, WI.

Judkins, D.R., (1996), On Variance Estimation with Imputed Survey Data: Comment,

Journal of the American Statistical Association, Vol. 91 (434), pp. 507-510.

Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M., (2004), Methods

for Imputation of Missing Values in Air Quality Data Sets, Atmospheric Environment, Vol.

38, pp. 2895-2907.

Kalton, G., (1982), Compensating for Missing Survey Data. Ann Arbor, MI: Survey Research

Center, University of Michigan.

Kalton, G., (1983), Introduction to Survey Sampling (Quantitative Applications in the Social

Sciences, series no. 07-35), Sage Publications, California.

Knuth, D. E., (1997), The Art of Computer Programming: Vol. 1 Fundamental Algorithms,

Third Revised Ed. Edition, Addison Wesley, MA.

Krzanowski, W.J., (1988). Missing Value Imputation in Multivariate Data Using the Singular

Value Decomposition of a Matrix, Biometrical Letters 25(1,2), pp. 31-39

Lavori, P., Dawson, R. and Shera, D., (1995), A Multiple Imputation Strategy for Clinical

Trials with Truncation of Patient Data, Statistics in Medicine (14), pp. 1913-1925.

Lazzeroni, L.C., Schenker, N. and Taylor, J.M.G., (1990), Robustness of Multiple-imputation

Techniques to Model Misspecification, Proceedings of the Survey Research Methods

Section, American Statistical Association 1990, pp. 260-265.

Lee, H., Rancourt, E. and Sarndal, C.E, (2002), Variance Estimation from Survey Data under

Single Imputation, Chapter 21, in Survey Nonresponse (Eds., Groves, R.M., Dillman, D.A.,

Eltinge, J.L. and Little, R.J.A), Wiley, New York.

Lee, C.H. and Shin, D.G., (1999), Using Hellinger Distance in a Nearest neighbour

Classifier for Relational Databases, Knowledge-Based Systems, 12 (7), pp. 363-370.

Little, R.J.A. and Rubin, D.B., (2002), Statistical Analysis with Missing Data – Second

Edition, Wiley, New York.

- 135 -

Mahalanobis, P.C., (1936), On the Generalised Distance in Statistics, Proceedings of the

National Institute of Science of India, pp. 49-55.

Manly, B.F.J., (1986), Multivariate Statistical Methods: A Primer, Chapman and Hall, New

York.

McKendrick, A. G., (1926), Applications of Mathematics to Medical Problems, Proceedings

of the Edinburgh Mathematical Society, Vol. 44, pp. 98-130.

McLachlan, G. J. and Krishnan, T., (1996), The EM Algorithm and Extensions, Wiley Series

in Probability and Statistics: Applied Section, Wiley, New York.

Meng X. L., and Pellow S, (1992), EM: A Bibliographic Review with Missing Articles,

Statistical Computing Section, Proceedings of the American Statistical Assoc., pp. 244-247.

Meng, X. L., (1990), Towards Complete Results for Some Incomplete-data Problems, PhD

dissertation, Department of Statistics, Harvard University, Ann Arbor, MI.

Meng, X. L., (1994), On the Rate of Convergence of the ECM Algorithm. The Annals of

Statistics, Vol. 22, (1), pp. 326-339.

Nie, N.H., Hull, C.H., Jenkins, J.G., Steinbrenner K. and Bent, D.H, (1975), SPSS. Statistical

Package for the Social Sciences (Second Edition), McGraw-Hill, New York.

Ogwang, T. and Rao, U.L.G., (1997), A Simple Algorithm for Estimating Box-Cox Models,

The Statistician, 46, pp 399-409.

Orchard, T. and Woodbury, M.A., (1972), A Missing Information Principle: Theory and

Applications, Proceedings of the Sixth Berkeley Symposium on Mathematics, Statistics, and

Probability, Vol. 1, pp. 697-715.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., (1992), Numerical

Recipes in C: The Art of Scientific Computing, Second Edition, Cambridge University Press,

New York.

Pyle, D., (1999), Data Preparation for Data Mining, (The Morgan Kaufmann Series in Data

Management Systems), Morgan Kaufmann, San Francisco.

- 136 -

Rancourt, E., Sarndal, C.E. and Lee H., (1994), Estimation of the Variance in the Presence of

Nearest Neighbor Imputation, Proceedings of the section on survey research methods,

American Statistical Association 1994, pp. 883-893.

Rao, J.N.K., (1996a), On Variance Estimation with Imputed Survey Data, Journal of the

American Statistical Association, Vol. 91 (434), pp. 499-506.

Rao, J.N.K., (1996b), On Variance Estimation with Imputed Survey Data: Rejoinder,

Journal of the American Statistical Association, Vol. 91 (434), pp. 519-520.

Rousseeuw, P.J. and Leroy, A.M., (1987), Robust Regression and Outlier Detection, John

Wiley & Sons, New York.

Rubin, D.B., (1976), Inference and Missing Data, Biometrika, 63, pp. 581-592.

Rubin, D.B., (1978), Multiple Imputations in Sample Surveys - A Phenomenological

Bayesian Approach to Nonresponse, Proceedings of the Survey Research Methods Section,

American Statistical Association 1978, pp. 20-34.

Rubin, D.B., (1987), Multiple Imputation for Nonresponse in Surveys, Wiley, New York.

Rubin, D.B., (1996a), Multiple Imputation After 18+ years, Journal of the American

Statistical Association, Vol. 91 (434), pp. 473-489.

Rubin, D.B., (1996b), On Variance Estimation with Imputed Survey Data: Rejoinder,

Journal of the American Statistical Association, Vol. 91 (434), pp. 515-517.

Rubin, D.B. and Schenker, N., (1986), Multiple Imputation for Interval Estimation From

Simple Random Samples With Ignorable Nonresponse, Journal of the American Statistical

Association, 81, pp. 366-374.

RSC Analytical Methods Committee, (2001), Robust Statistics: A Method of Coping with

Outliers, Royal Society of Chemistry (RSC, London, UK), AMC Technical Brief No. 6., Apr

2001, Available at; http://www.rsc.org/images/brief6_tcm18-25948.pdf Accessed 14th

August 2007.

Ryan, B.F., and Joiner, B.L., (1994), Minitab Handbook - Third Edition, Wadsworth,

Belmont, CA.

- 137 -

Schafer, J.L., (1997), Analysis of Incomplete Multivariate Data, Chapman and Hall,

London.

Shao, J., (2002), Replication Methods for Variance Estimation in Complex Surveys with

Imputed Data, Chapter 20, in Survey Nonresponse (Eds., Groves, R.M., Dillman, D.A.,

Eltinge, J.L. and Little, R.J.A), Wiley, New York.

Shao, J. and Sitter, R.R., (1996), Bootstrap for Imputed Survey Data, Journal of the American

Statistical Association, Vol. 91 (435), pp. 1278-1288.

Simonoff, J.S., (1988), Regression Diagnostics to Detect Nonrandom Missingness in Linear

Regression, Technometrics, Vol. 30 (2), pp 205-214.

Solomon, N., Oatley, G. and McGarry, K, (2007a), A Dynamic Method for the Evaluation

and Comparison of Imputation Techniques, In: Proceedings of the World Congress on

Engineering 2007 (International Conference of Computational Statistics and Data

Engineering), ISBN: 978-988-98671-2-6, pp. 974-982, Newswood Limited, International

Association of Engineers, Hong Kong.

Solomon, N., Oatley, G. and McGarry, K, (2007b), A Fast Multivariate Nearest Neighbour

Imputation Algorithm, In: Proceedings of the World Congress on Engineering 2007

(International Conference of Computational Statistics and Data Engineering), ISBN: 978-

988-98671-2-6, pp. 940-947, Newswood Limited, International Association of Engineers,

Hong Kong.

Stage, A.R. and Crookston, N.L., (2002), Measuring Similarity in Nearest-neighbor

Imputation: Some New Alternatives, In: Proceedings of the Symposium on Statistics and

Information Technology in Forestry, Blacksburg, Virginia, pp. 91-96

Starick, R. and Watson, N., (2006), Evaluation of Alternative Income Imputation Methods:

the HILDA Experience, Methodology of Longitudinal Surveys International Conference,

University of Essex, Colchester, UK.

Tabachnick, B.G, and Fidell, L.S., (2000), Using Multivariate Statistics, Allyn & Bacon,

MA, USA.

Tanner, M. A. and Wong, W. H., (1987), The Calculation of Posterior Distributions by Data

Augmentation, Journal of the American Statistical Association, Vol. 82 (398), pp. 528-540.

- 138 -

Tanner, M. A., (2005), Tools for Statistical Inference: Methods for the Exploration of

Posterior Distributions and Likelihood Functions Third Edition (Springer Series in

Statistics), Springer-Verlag, New York.

Toutenburg, H. and Fieger, A., (2000), Using Diagnostic Measures to Detect Non-MCAR

Processes in Linear Regression Models With Missing Covariates, Collaborative Research

Center 386, Discussion Paper 204, Also available from Electronic Publications of the

University of Munich at; http://epub.ub.uni-muenchen.de/archive/00001594/ Accessed 16th

June 2007.

Tseng, S., Wang, K. and Lee, C., (2003), A Pre-processing Method to Deal With Missing

Values by Integrating Clustering and Regression Techniques, Applied Artificial Intelligence,

17 (5/6), pp. 535-544.

Vieira, R., (2003), Professional SQL Server 2000 Programming (Programmer to

Programmer Series), Wiley, Indianapolis.

Wang, X., and Hamilton, H.J., (2003), DBRS: A Density-Based Spatial Clustering Method

with Random Sampling, Tech. Report CS-2003-13, University of Regina, Canada, ISBN 0-

7731-0465-8.e

Wasito, I. and Mirkin, B., (2005), Nearest Neighbour Approach in the Least Squares Data

Imputation Algorithms, Information Sciences, 169 (1), pp. 1-25.

Wasito, I. and Mirkin, B., (2006), Nearest Neighbours in Least-Squares Data Imputation

Algorithms With Different Missing Patterns, Computational Statistics & Data Analysis, 50

(4), pp. 926-949.

- 139 -

APPENDICES

A TCD Imputation Experimental Results
Tables of experimental results for the case study given in chapter six.

B Complete EM Algorithm Pseudo-code
Gives a complete pseudo-code version of the EM imputation algorithm.

C Software and Hardware Platform Used
Describes the computer platform used to do all of the work described in this thesis.

D Notation and Terminology Used in This Thesis
Describes the mathematical notation and the associated nomenclature used in this thesis.

E Thesis Publications
Details of the two published papers resulting from the work described in this thesis.

- 140 -

A TCD Imputation Experimental Results

This appendix presents the imputation accuracy statistics that were generated during the

experimental imputation of the financial variables in the collaborating company’s database.

The contents are referenced extensively from within chapter six. The sub-sections on the

following pages contain two sets of associated tables and histograms, as follows;

SME Firm financial variable imputation experiments

A.1 - Table showing imputation accuracy statistics for all 24 imputation experiments.

A.2 - Histograms showing accuracy variance for the 6 most accurate imputation methods.

A.3 - Tables showing segmented accuracy for the 6 most accurate imputation methods.

LARGE Firm financial variable imputation experiments

A.4 - Table showing imputation accuracy statistics for all 24 imputation experiments.

A.5 - Histograms showing accuracy variance for the six most accurate imputation methods.

A.6 - Tables showing segmented accuracy for the six most accurate imputation methods.

- 141 -

Table A.1
Imputation accuracy statistics for SME Firm financial variables - Using 50 executions of the EM and NN algorithms with and without outlier Firms

The highlighted rows show the most accurate method for each variable - Variable reference numbers (e.g. A.1.1 Sales) refer to the charts and tables which follow

MRD SRD MRZ % CHANGE in Mean % CHANGE in STD Firm variable
imputed and

evaluated

Imputation method used
for the experiment

(50 executions per row) µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ % Outliers µ̂ σ̂ µ̂ σ̂

EM with outlier Firms 54.58 66.54 1,298.61 1,912.29 18.58 8.34 0.32 -42.68 0.19 -38.14 0.93

EM deleting outlier Firms 48.03 55.40 1,092.29 1,583.56 16.68 8.25 0.41 -27.43 0.11 -46.15 0.04

NN with outlier Firms 30.92 27.16 833.36 954.06 20.39 9.85 0.26 -29.85 0.89 -28.38 6.08
A.1.1
Sales

NN deleting outlier Firms 15.38 15.97 358.84 450.20 17.10 8.72 0.45 -22.32 0.27 -11.51 0.34

EM with outlier Firms 5.51 3.71 76.96 96.97 12.75 7.01 0.66 -30.42 0.30 -40.22 0.04

EM deleting outlier Firms 6.38 3.45 83.16 93.29 11.97 5.78 0.65 -20.15 0.08 -35.13 0.05

NN with outlier Firms 4.66 4.62 85.13 147.84 13.44 6.81 0.52 -16.98 0.55 -8.31 3.96
A.1.2
Payroll

NN deleting outlier Firms 3.52 2.68 54.31 73.02 14.88 8.08 0.51 -14.95 0.24 -1.65 0.33

EM with outlier Firms 33.78 57.39 900.30 1,622.68 17.27 9.86 0.52 -45.97 0.23 -38.55 0.83

EM deleting outlier Firms 28.23 44.16 718.86 1,229.59 16.19 9.57 0.54 -29.92 0.09 -41.40 0.03

NN with outlier Firms 37.65 127.41 1,222.04 4,653.49 18.01 10.14 0.38 -23.94 0.77 -17.09 2.28
A.1.3
Depreciation

NN deleting outlier Firms 16.24 25.31 381.64 655.77 15.20 8.76 0.53 -18.58 0.43 -7.74 0.68

EM with outlier Firms 16,211.46 7,032.13 58,958.34 208,060.42 5.80 6.04 0.13 -46.81 0.12 -37.15 0.23

EM deleting outlier Firms 11,574.16 779.77 21,909.73 1,196.48 4.50 0.37 1.14 -50.62 0.13 -35.67 0.02

NN with outlier Firms 44,708.42 5,306.07 198,334.78 68,299.78 6.29 1.35 1.54 -22.38 0.56 -31.36 6.13
A.1.4
DirectorPay

NN deleting outlier Firms 25,852.51 2,863.12 87,034.84 7,965.85 4.80 0.21 2.84 -22.96 0.32 -7.54 0.28

EM with outlier Firms 148,532.24 27,323.87 753,671.86 89,631.70 5.44 0.33 2.71 -15.60 0.25 -23.65 0.00

EM deleting outlier Firms 33,729.05 5,671.18 140,904.07 13,559.47 4.94 0.30 3.10 -4.70 0.03 -27.60 0.01

NN with outlier Firms 235,595.16 213,992.19 3,892,032.86 4,940,644.72 12.98 6.33 0.60 -21.81 1.05 -22.35 1.96
A.1.5
NetWorth

NN deleting outlier Firms 39,572.53 9,986.93 256,427.87 52,331.23 6.67 0.73 1.79 -1.40 0.33 -0.86 0.19

EM with outlier Firms 5,392.76 8,595.93 93,017.92 242,404.33 12.38 4.09 0.67 9.87 4.02 -36.44 0.02

EM deleting outlier Firms 1,208.20 419.79 12,039.58 2,788.43 9.93 2.17 0.98 -21.63 0.19 -42.29 0.02

NN with outlier Firms 6,077.73 6,430.00 125,461.32 184,234.01 15.22 5.66 0.39 -0.68 5.39 -34.51 1.43
A.1.6
PBT

NN deleting outlier Firms 2,221.97 1,168.25 35,719.64 17,026.37 13.50 3.71 0.45 -17.64 0.78 -9.12 0.33

- 142 -

A.2 Most Accurate Imputation Methods for SME Firms

0

5

10

15

20

25

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
38

87
3.7

6

Relative difference between true and imputed Sales value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

0

5

10

15

20

25

30

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
10

82
5

Relative difference between true and imputed Payroll value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.1.1 SME Firm Sales imputation

Using 50 executions of the NN algorithm with outlier Firms deleted
Imputation accuracy for 47,261 imputed values

Proportion within 100% of true value = 83.02%
 Proportion > 380% of true value = 5.51%

A.1.2 SME Firm Payroll imputation

Using 50 executions of the NN algorithm with outlier Firms deleted
Imputation accuracy for 47,117 imputed values

Proportion within 100% of true value = 86.82%
 Proportion > 380% of true value = 5.22%

- 143 -

0

2

4

6

8

10

12

14

16

18

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
52

45
4

Relative difference between true and imputed Depreciation value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.1.3 SME Firm Depreciation imputation

Using 50 executions of the NN algorithm with outlier Firms deleted
Imputation accuracy for 47,913 imputed values

Proportion within 100% of true value = 75.97%
 Proportion > 380% of true value = 8.05%

0

5

10

15

20

25

30

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
29

74
58

Relative difference between true and imputed DirectorPay value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.1.4 SME Firm DirectorPay imputation

Using 50 executions of the EM algorithm with outlier Firms deleted
Imputation accuracy for 44,900 imputed values

Proportion within 100% of true value = 72.01%
 Proportion > 380% of true value = 26.00%

- 144 -

0

5

10

15

20

25

30

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
97

51
46

Relative difference between true and imputed NetWorth value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.1.5 SME Firm NetWorth imputation

Using 50 executions of the EM algorithm with outlier Firms deleted
Imputation accuracy for 31,350 imputed values

Proportion within 100% of true value = 54.76%
 Proportion > 380% of true value = 29.42%

0

2

4

6

8

10

12

14

16

18

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
47

90
09

Relative difference between true and imputed PBT value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.1.6 SME Firm PBT imputation

Using 50 executions of the EM algorithm with outlier Firms deleted
Imputation accuracy for 44,500 imputed values

Proportion within 100% of true value = 57.37%
 Proportion > 380% of true value = 14.51%

- 145 -

A.3 Most Accurate Imputation Method Segments for SME Firms

Table A.1.1 - SME Sales imputation - 50 executions of NN with outlier Firms deleted
Accuracy of imputed values in UKSIC categories - With Firms segmented at UKSIC level 1

UKSIC
Category
Level 1

% missing
Sales
values

MRD SRD MRZ
% of RD
outlier
rows

4 5.26 89.91 702.02 7.51 1.74

6 8.65 27.04 232.82 7.18 1.93

7 21.03 19.83 231.60 10.33 1.06

9 5.16 6.40 32.36 5.66 2.74

1 3.40 6.13 31.55 5.67 3.04

5 22.79 5.15 53.46 10.14 1.12

8 21.18 4.36 22.47 6.52 2.27

0 0.76 3.71 9.37 1.80 4.66

2 9.48 2.28 15.99 9.19 1.19

3 3.23 1.59 8.37 6.73 1.92

Table A.1.2 - SME Payroll imputation - 50 executions of NN with outlier Firms deleted
Accuracy of imputed values in UKSIC categories - With Firms segmented at UKSIC level 1

UKSIC
Category
Level 1

% missing
Payroll
values

MRD SRD MRZ
% of RD
outlier
rows

9 5.63 13.27 66.64 4.88 3.49

6 9.04 8.36 60.76 7.41 1.84

7 22.63 6.21 56.53 8.24 1.49

4 4.49 3.81 22.29 6.81 2.22

8 21.66 3.09 12.59 5.42 2.78

0 0.70 1.90 3.54 1.91 4.46

2 7.77 1.50 10.81 9.32 1.27

5 22.39 1.26 7.09 8.35 1.56

1 3.01 1.26 4.66 5.92 2.36

3 2.62 0.95 3.70 6.22 2.44

Table A.1.3 - SME Depreciation imputation - 50 executions of NN with outlier Firms deleted
Accuracy of imputed values in UKSIC categories - With Firms segmented at UKSIC level 1

UKSIC
Category
Level 1

% missing
Depreciation

values
MRD SRD MRZ

% of RD
outlier
rows

4 4.53 126.37 1042.74 6.97 2.04

2 7.87 15.29 194.02 8.25 1.41

6 9.19 5.53 30.33 6.29 2.35

1 3.00 4.93 26.56 6.54 2.26

7 22.57 4.66 25.92 8.69 1.41

9 5.59 4.45 16.32 4.83 3.20

8 21.60 3.65 16.38 5.42 2.86

5 22.82 2.66 17.42 9.98 1.10

3 2.64 2.50 11.76 7.22 1.86

0 0.69 1.65 3.17 1.85 4.31

- 146 -

Table A.1.4 - SME DirectorPay imputation - 50 executions of EM with outlier Firms deleted
Accuracy of imputed values in missingness patterns - With DirectorPay in pattern position 4

DirectorPay
Missingness

Pattern

% missing
DirectorPay

values
MRD SRD MRZ

% of RD
outlier
rows

0000101 28.32 12,662.65 26,139.14 4.13 2.55

0010111 0.01 11,543.89 0.00 0.00 0.00

0000111 0.34 11,337.58 14,771.77 0.00 0.00

0000001 69.93 11,176.79 19,491.34 0.00 0.00

1000111 1.36 10,433.19 25,239.07 1.95 4.46

1010111 0.02 6,593.23 0.00 0.00 0.00

1000101 0.01 5,328.30 0.00 0.00 0.00

Table A.1.5 - SME NetWorth imputation - 50 executions of EM with outlier Firms deleted
Accuracy of imputed values in missingness patterns - With NetWorth in pattern position 5

NetWorth
Missingness

Pattern

% missing
NetWorth

values
MRD SRD MRZ

% of RD
outlier
rows

0000001 99.98 33,836.98 141,116.31 4.93 3.10

0011001 0.01 1.47 0.00 0.00 0.00

0111001 0.01 1.46 0.00 0.00 0.00

Table A.1.6 - SME PBT imputation - 50 executions of EM with outlier Firms deleted
Accuracy of imputed values in missingness patterns - With PBT in pattern position 6

PBT
Missingness

Pattern

% missing
PBT

values
MRD SRD MRZ

% of RD
outlier
rows

0000001 70.78 1,377.02 12,660.87 10.23 1.08

0000101 28.66 840.25 8,202.69 11.00 0.96

0001101 0.30 661.97 935.06 0.00 0.00

0101101 0.01 53.58 0.00 0.00 0.00

1101101 0.04 22.10 0.00 0.00 0.00

1111101 0.02 6.20 0.00 0.00 0.00

1000101 0.01 4.07 0.00 0.00 0.00

0111001 0.01 2.27 0.00 0.00 0.00

0011001 0.01 2.15 0.00 0.00 0.00

1001101 0.01 2.01 0.00 0.00 0.00

0111101 0.01 1.96 0.00 0.00 0.00

1011101 0.01 1.67 0.00 0.00 0.00

- 147 -

Table A.4
Imputation accuracy statistics for LARGE Firm financial variables - Using 50 executions of the EM and NN algorithms with and without outlier Firms

The highlighted rows show the most accurate method for each variable - Variable reference numbers (e.g. A.4.1 Sales) refer to the charts and tables which follow

MRD SRD MRZ % CHANGE in Mean % CHANGE in STD Firm variable
imputed and

evaluated

Imputation method used
for the experiment

(50 executions per row) µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ % Outliers µ̂ σ̂ µ̂ σ̂

EM with outlier Firms 698.32 1,999.09 10,391.28 30,862.94 11.64 3.43 0.81 -30.33 2.21 35.37 25.20

EM deleting outlier Firms 246.96 541.35 3,277.08 7,629.30 11.40 3.34 0.86 -29.16 0.11 -32.70 0.04

NN with outlier Firms 424.82 1,527.01 7,343.15 27,368.50 13.21 4.32 0.64 -25.42 0.76 -18.03 0.72
A.4.1
Sales

NN deleting outlier Firms 69.18 69.89 747.65 736.47 11.08 3.44 0.90 -21.36 0.76 -10.48 0.54

EM with outlier Firms 18.67 36.17 228.85 558.89 10.61 3.70 0.98 -43.78 0.33 -32.54 0.14

EM deleting outlier Firms 12.75 22.90 138.81 332.99 9.46 3.59 1.22 -24.38 0.12 -32.53 0.05

NN with outlier Firms 7.93 7.08 79.67 102.00 10.63 4.07 0.94 -19.83 1.27 -4.09 2.61
A.4.2
Payroll

NN deleting outlier Firms 5.14 4.90 48.23 72.07 9.49 3.31 1.12 -16.20 0.62 -2.84 0.55

EM with outlier Firms 11.16 7.78 93.11 109.20 9.37 3.15 1.15 -50.48 0.29 -33.74 0.12

EM deleting outlier Firms 9.23 5.06 67.48 60.92 9.44 3.50 1.21 -36.65 0.12 -34.89 0.03

NN with outlier Firms 14.98 10.62 167.25 166.00 11.69 3.72 0.76 -34.34 1.60 -29.17 2.68
A.4.3
Depreciation

NN deleting outlier Firms 20.45 21.10 246.21 293.60 11.22 3.57 0.83 -19.79 1.54 -7.23 0.46

EM with outlier Firms 18,311.84 3,158.18 38,139.02 27,944.88 4.49 4.55 0.36 -41.12 0.06 -25.62 0.24

EM deleting outlier Firms 9,415.28 1,552.82 19,302.37 4,440.20 5.47 2.21 1.50 -50.56 0.09 -23.64 0.03

NN with outlier Firms 117,380.58 21,445.38 419,769.60 110,591.52 6.26 2.08 1.94 -15.39 1.15 -12.33 5.31
A.4.4
DirectorPay

NN deleting outlier Firms 67,941.77 11,573.54 189,884.37 24,061.41 4.55 0.57 2.86 -21.82 0.58 -8.41 0.31

EM with outlier Firms 2,690,235.09 1,490,351.67 13,362,848.25 5,740,207.98 6.26 1.54 2.39 -11.41 0.10 -14.71 0.00

EM deleting outlier Firms 217,467.93 58,376.49 777,225.19 134,158.24 4.41 0.47 3.94 -3.37 0.03 -19.41 0.00

NN with outlier Firms 1,918,119.56 5,161,620.72 23,868,083.51 76,975,512.57 9.78 2.97 1.08 -5.84 1.31 7.71 2.97
A.4.5
NetWorth

NN deleting outlier Firms 276,864.10 111,033.05 1,568,598.11 529,779.65 6.56 1.27 2.03 2.06 3.45 0.78 1.63

EM with outlier Firms 167,159.25 112,553.11 1,514,183.24 834,385.60 10.10 2.94 1.08 -6.81 2.07 -24.88 0.04

EM deleting outlier Firms 12,136.88 7,499.75 95,026.91 53,176.02 8.44 2.53 1.51 -15.08 0.21 -32.13 0.02

NN with outlier Firms 88,376.40 98,270.00 1,135,090.68 1,170,841.87 13.32 3.53 0.60 -25.15 5.47 -11.70 1.09
A.4.6
PBT

NN deleting outlier Firms 21,820.40 19,409.05 242,274.70 202,342.06 11.50 2.84 0.76 -11.67 2.39 -8.10 0.81

- 148 -

A.5 Most Accurate Imputation Methods for LARGE Firms

0

5

10

15

20

25

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
42

74
.49

Relative difference between true and imputed Payroll value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

0

5

10

15

20

25

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
34

74
1.9

5

Relative difference between true and imputed Sales value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.4.1 LARGE Firm Sales imputation

Using 50 executions of the NN algorithm with outlier Firms deleted
Imputation accuracy for 12,474 imputed values

Proportion within 100% of true value = 79.63%
 Proportion > 380% of true value = 8.26%

A.4.2 LARGE Firm Payroll imputation

Using 50 executions of the NN algorithm with outlier Firms deleted
Imputation accuracy for 12,722 imputed values

Proportion within 100% of true value = 82.25%
 Proportion > 380% of true value = 7.59%

- 149 -

0

2

4

6

8

10

12

14

16

18

20

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
52

95
.24

Relative difference between true and imputed Depreciation value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.4.3 LARGE Firm Depreciation imputation

Using 50 executions of the EM algorithm with outlier Firms deleted
Imputation accuracy for 12,100 imputed values

Proportion within 100% of true value = 76.31%
 Proportion > 380% of true value = 13.99%

0

5

10

15

20

25

30

35

40

45

50

55

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
45

30
35

Relative difference between true and imputed DirectorPay value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.4.4 LARGE Firm DirectorPay imputation

Using 50 executions of the EM algorithm with outlier Firms deleted
Imputation accuracy for 10,200 imputed values

Proportion within 100% of true value = 66.27%
 Proportion > 380% of true value = 33.07%

- 150 -

0

5

10

15

20

25

30

35

40

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
46

20
64

9

Relative difference between true and imputed NetWorth value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.4.5 LARGE Firm NetWorth imputation

Using 50 executions of the EM algorithm with outlier Firms deleted
Imputation accuracy for 6,400 imputed values

Proportion within 100% of true value = 46.62%
 Proportion > 380% of true value = 36.78%

0

5

10

15

20

0 t
o 0

.2

> 0
.2

to
0.4

> 0
.4

to
0.6

> 0
.6

to
0.8

> 0
.8

to
1

> 1
 to

 1.
2

> 1
.2

to
1.4

> 1
.4

to
1.6

> 1
.6

to
1.8

> 1
.8

to
2

> 2
 to

 2.
2

> 2
.2

to
2.4

> 2
.4

to
2.6

> 2
.6

to
2.8

> 2
.8

to
3

> 3
 to

 3.
2

> 3
.2

to
3.4

> 3
.4

to
3.6

> 3
.6

to
3.8

> 3
.8

to
33

64
13

4

Relative difference between true and imputed PBT value

Pe
rc

en
ta

ge
 o

f i
m

pu
te

d
va

lu
es

A.4.6 LARGE Firm PBT imputation

Using 50 executions of the EM algorithm with outlier Firms deleted
Imputation accuracy for 10,250 imputed values

Proportion within 100% of true value = 52.20%
 Proportion > 380% of true value = 19.85%

- 151 -

A.6 Most Accurate Imputation Method Segments for LARGE Firms

Table A.4.1 - LARGE Firm Sales imputation - 50 executions of NN with outlier Firms deleted
Accuracy of imputed values in UKSIC categories - With Firms segmented at UKSIC level 1

UKSIC
Category
Level 1

% missing
Sales
values

MRD SRD MRZ
% of RD
outlier
rows

9 4.08 452.57 1,434.67 2.49 6.33

8 13.82 272.73 720.57 0.00 0.00

6 10.58 85.17 405.84 4.30 3.81

1 4.25 84.02 388.09 4.57 3.62

2 8.51 56.38 358.04 5.64 2.45

5 18.23 40.38 228.35 5.47 3.06

7 33.49 18.52 119.76 6.48 2.23

0 0.51 6.68 10.56 0.00 0.00

4 3.18 3.97 9.09 1.32 3.82

3 3.32 1.69 4.99 3.67 3.67

Table A.4.2 - LARGE Firm Payroll imputation - 50 executions of NN with outlier Firms deleted
Accuracy of imputed values in UKSIC categories - With Firms segmented at UKSIC level 1

UKSIC
Category
Level 1

% missing
Payroll
values

MRD SRD MRZ
% of RD
outlier
rows

9 4.40 32.86 103.30 2.36 6.16

0 0.54 12.54 21.13 0.00 0.00

4 3.29 8.12 21.25 0.00 0.00

6 11.30 7.53 22.26 4.13 4.56

7 33.44 6.52 34.86 6.28 2.41

1 4.11 2.48 8.96 4.20 3.55

3 3.23 1.76 5.03 4.10 3.76

8 13.68 1.32 2.31 0.00 0.00

5 17.74 1.25 3.82 4.75 2.95

2 8.26 0.91 2.09 5.11 3.11

- 152 -

Table A.4.3 - LARGE Firm Depreciation imputation - 50 executions EM with outlier Firms deleted
Accuracy of imputed values in missingness patterns - With Depreciation in pattern position 3

Depreciation
Missingness

Pattern

% missing
Depreciation

values
MRD SRD MRZ

% of RD
outlier
rows

0000111 0.52 18.06 16.65 0.00 0.00

0000001 53.80 11.60 75.44 8.45 1.47

0001001 0.02 10.49 0.00 0.00 0.00

0000101 29.36 8.89 44.61 6.46 2.35

0001101 0.61 8.29 7.61 0.00 0.00

0001111 5.53 3.67 8.01 1.87 4.31

1000111 2.51 3.03 4.52 0.00 0.00

0101111 0.60 2.35 1.70 0.00 0.00

0101001 0.02 2.22 0.00 0.00 0.00

1001111 3.58 1.99 3.52 0.00 0.00

0101101 0.01 1.80 0.00 0.00 0.00

1001101 0.12 1.52 0.00 0.00 0.00

1000101 0.02 1.46 0.00 0.00 0.00

1101101 0.09 1.44 0.00 0.00 0.00

1101111 3.17 1.29 1.78 0.00 0.00

Table A.4.4 - LARGE Firm DirectorPay imputation - 50 executions of EM with outlier Firms deleted
Accuracy of imputed values in missingness patterns - With DirectorPay in pattern position 4

DirectorPay
Missingness

Pattern

% missing
DirectorPay

values
MRD SRD MRZ

% of RD
outlier
rows

1010111 0.09 13,980.01 0.00 0.00 0.00

1000101 0.02 13,005.70 0.00 0.00 0.00

0000111 0.61 11,135.54 9,421.53 0.00 0.00

1000111 2.90 11,085.65 20,296.14 0.00 0.00

0000101 34.02 10,142.37 20,777.49 4.47 2.52

0000001 62.35 8,840.99 15,339.61 2.24 1.52

Table A.4.5 - LARGE Firm NetWorth imputation - 50 executions of EM with outlier Firms deleted
Accuracy of imputed values in missingness patterns - With NetWorth in pattern position 5

NetWorth
Missingness

Pattern

% missing
NetWorth

values
MRD SRD MRZ

% of RD
outlier
rows

0000001 99.86 222,440.15 785,472.93 4.39 3.98

0001001 0.04 30,868.23 0.00 0.00 0.00

0111001 0.06 5.35 0.00 0.00 0.00

0101001 0.04 2.31 0.00 0.00 0.00

- 153 -

Table A.4.6 - LARGE Firm PBT imputation - 50 executions of EM with outlier Firms deleted
Accuracy of imputed values in missingness patterns - With PBT in pattern position 6

PBT
Missingness

Pattern

% missing
PBT

values
MRD SRD MRZ

% of RD
outlier
rows

0000001 63.92 14,295.15 95,696.56 7.70 1.98

0000101 34.88 10,135.42 67,981.28 7.10 2.06

0001101 0.73 856.74 855.99 0.00 0.00

1000101 0.02 40.86 0.00 0.00 0.00

1101101 0.11 29.86 0.00 0.00 0.00

0001001 0.02 16.42 0.00 0.00 0.00

1001101 0.14 5.39 0.00 0.00 0.00

0101001 0.02 4.99 0.00 0.00 0.00

0111101 0.05 3.35 0.00 0.00 0.00

0101101 0.01 2.93 0.00 0.00 0.00

1111101 0.04 2.78 0.00 0.00 0.00

0111001 0.04 2.16 0.00 0.00 0.00

- 154 -

B Complete EM Algorithm Pseudo-code

The following set of pseudo-code listings and explanations give a complete algorithmic

description of the EM algorithm for numeric multivariate imputation. The pseudo-code

should allow programmers to implement the algorithm as a software application using any

programming language. Particular attention is paid to the use of implementation techniques

which decrease algorithm execution time, as explained in chapter 2.

Complete pseudo-code listings for all functions called from within the main algorithm follow,

including detailed descriptions of the purpose, creation and processing of every data structure

needed to support the implementation. Note that the pseudo-code uses operators such as +=

and ++ etc. These operators are commonly used in object oriented programming languages

such as Java and C#. See the standard texts on these languages for more details.

The following notations are used within the algorithm

 M (r) Refers to a particular row r in the matrix M.

ijM Refers to the element at row i and column j in matrix M.

jV Refers to element j in vector V, where jV can be a number or a matrix.

matrix M = 0 Removes all rows from matrix M.

vector V = 0 Removes all elements from vector V.

for int Vj ∈ Where j is an integer loop variable which takes every value in the vector V.

The following simple functions are called from within the algorithm.

The pseudo-code for these functions is not given here, since the first three should be included

as part of the built in functionality in most modern programming languages, and the final two

can be easily written by any experienced programmer. See the following sections for full and

detailed descriptions of the more complex functions called.

num_rows_in (X) Returns the number of rows in matrix or vector X.

num_columns_in (X) Returns the number of columns in matrix or vector X.

remove_matrix_row (X (r)) Removes row r from matrix X. All rows below then move up so
that row r + 1 becomes row r etc. and the matrix becomes
compacted.

missingness_pattern_in (X (r)) Returns a binary vector V representing row r in matrix X where,
 jV = 1 if rjX is present or jV = 0 if rjX is missing - e.g.
 V = { 1, 0, 1 } indicates that the values in elements 1rX and

3rX are present in row r of X, and that the value in element
2rX is missing.

num_missing_values_in (X (r)) Returns the number of missing values found in row r of matrix X

- 155 -

The following parameters are passed to the top level EM algorithm, as given below

1. Y is a data matrix with one or more missing values in one or more of its columns. The

estimates for the missing values in Y are imputed just before the algorithm terminates.

2. m is the maximum number of iterations that can be performed before the convergence

loop terminates. This parameter should be passed as a suitably large number (such as

500 or above).

3. e is the oldnew θθ − difference used to terminate the algorithm’s convergence loop.

This parameter should be passed as a suitably small value (such as 0.0001) to ensure

close convergence.

function matrix EM_algorithm_for_missing_data_imputation (matrix Y, int m, double e)
 Y = pattern_ordered_matrix (Y)
 int n = 0, int s = 0, int f = 0, matrix R = 0, vector Z = 0
 while (num_rows_in (Y) > 0)
 s ++
 R (s) = missingness_pattern_in (Y (1))
 int i = 0, matrix X = 0
 while (R (s) = = missingness_pattern_in (Y (1)))
 i ++
 X (i) = Y (1)
 remove_matrix_row (Y (1))
 end while
 if (num_missing_values_in (R (s)) = = num_columns_in (R))
 remove_matrix_row (R (s))
 s - -
 else
 if (num_missing_values_in (R (s)) = = 0)
 f = s
 end if
 sZ = X
 n += i
 end if
 end while
 matrix newθ = initial_parameter_estimate (Z, f)
 matrix obsT = observed_data_sufficient_statistics (Z, R)
 int 0=t
 repeat
 matrix obsTT =
 matrix newθθ =
 for int s = 1 to num_rows_in (R)
 int a = 0, int b = 0, vector o = 0, vector m = 0
 for int j = 1 to num_columns_in (R)
 if sjR(= = 1)

- 156 -

 a ++ : joa =
 else
 b ++ : jmb =
 end if
 if sjR(= = 1 && jjθ > 0)
 θ = sweep_matrix_on),(θj
 end if
 if sjR(= = 0 && jjθ < 0)
 θ = reverse_sweep_matrix_on),(θj
 end if
 next j
 matrix X = sZ
 for int i = 1 to num_rows_in (X)
 vector c = 0
 for int mj ∈
 jjc 0θ=
 for int ok ∈
 jc += ikkj Xθ
 next k
 next j
 for int mj ∈
 jj cT =+0
 jj TT 00 =
 for int ok ∈
 kjT += ikj Xc
 kjjk TT =
 next k
 for int mk ∈ && jk ≥
 kjT += jkkj cc+θ
 kjjk TT =
 next k
 next j
 next i
 next s
 newold θθ =
 newθ = sweep_matrix_on),0(1Tn −
 t ++
 until (em_has_converged(,newθ ,oldθ e) || mt =)
 Z = impute_missing_values (,newθ R , Z)
 return Z
end function

- 157 -

B.1 Missingness Patterns and Associated Data Structures

The most important data structure processed within the main EM pseudo-code algorithm

given above is the Y data matrix, which has one or more missing values in one or more of its

columns. This matrix is passed as a parameter to the algorithm, which estimates the missing

values, then returns a completed version of Y, with the missing values “filled in”. For

example, the Y matrix shown below has n = 6 rows and p = 5 columns. The missing values

are represented by ? symbols, and the present values are represented by – symbols.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−−−
−−−

−−
−−−
−−−

=

??

??
???

??
??

Y

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

11111
01100
11001
10101

R

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

4

3

2

1

X
X
X
X

Z

Rows 1 and 4 of Y both have the same missingness pattern, where missing values occur in

columns 2Y and 4Y , but this pattern does not occur in any other rows of Y. Notice that rows

2 and 6 have the same missingness pattern, and that rows 3 and 5 both have unique patterns.

These four distinct patterns are stored in the R matrix, where 0 represents a missing value and

1 represents a present value. The corresponding elements in the Z vector each contain a

matrix, where each such matrix X(s) contains copies of all the rows in Y that have the pattern

in R(s). For example, we can see that row one of R contains the missingness pattern found in

rows 1 and 4 of Y, and the 1X matrix will contain copies of these two Y rows.

A new pair of temporary workspace matrices o and m are also generated, then discarded,

for each iteration of the algorithm’s repeat.…..until loop. These matrices are used to

facilitate processing by storing the column numbers corresponding to the observed and

missing elements of each missingness pattern in R. For example, row 1 of R has observed

values in columns 1, 3 and 5, and has missing values in columns 2 and 4. The corresponding

o and m matrices store these values, as shown below.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

11111
01100
11001
10101

R

[]
[]
[]
[]5,4,3,2,1

4,3
5,4,1
5,3,1

=
=
=
=

o
o
o
o

[]
[]
[]
[]=

=
=
=

m
m
m
m

5,2,1
3,2
4,2

To facilitate the creation of the R and Z matrices, the rows in Y must first be sorted into

missingness pattern blocks, where each such block contains all of the rows in Y that have the

same missingness pattern. It is absolutely crucial for fast algorithm performance that this

- 158 -

sorting of the rows in Y is achieved using an algorithm which requires no more than (n log n)

row comparisons, where n is the number of rows in Y.

B.2 Overview of Pseudo-code Functionality

The R matrix and the set of X matrices contained in the Z vector are created at the start of

the algorithm using the two nested while.…..end while loops shown at the top of the

pseudo-code. When this process is complete each X matrix in the Z vector will contain a

different set of rows - where each such set corresponds to a unique missingness pattern. This

process improves algorithm performance by removing the need to repeatedly search Y for the

rows corresponding to each missingness pattern. After each Y row has been copied into an X

matrix it is immediately deleted from Y, using the function call remove_matrix_row (Y(1)).

This is essential, since keeping two copies of each Y row would be very wasteful of RAM,

particularly in cases where the number of rows in Y was large. Note that the data for the set of

Y rows which have missing values in all elements are excluded from both the R matrix and

the Z vector, since these rows contribute nothing to the EM process, and they can cause

significant deterioration in algorithm performance.

Each missingness pattern in the R matrix is processed separately within the algorithm’s

repeat.…..until loop, using the nested for loops contained within the for int s = 1 to

num_rows_in (R) loop. The processing of each missingness pattern - which is stored in a

separate X matrix - is outlined below.

1. The coefficients of the regression equation used to estimate the missing values in each

row of the X matrix are created and stored in the θ matrix. This is achieved by

repeatedly “sweeping” θ using the pattern specified in R(s). Note that the same

regression equation is used to estimate the missing values in every row of X.

2. The missing values in each row of X are estimated by summing the products of the

observed values in each row and the regression equation coefficients contained within

the swept version of θ . Note that each row in X is processed separately within the loop

for int i = 1 to num_rows_in (X) and that the estimated values for each X row are

stored in the c vector, which is a temporary workspace.

3. The estimated values in the c vector are added to the appropriate elements within the T

matrix using a set of nested for loops. This completes the processing for the current

missingness pattern. The process now repeats from step 1, and continues until every

missingness in R has been processed.

- 159 -

When the above three step iteration has completed the estimates for every missing value in Y

will be fully accumulated into T. The completed T matrix is then used to recalculate newθ

ready for the start of the next iteration, using the pseudo-code function call newθ =

sweep_matrix_on),0(1Tn − .

The repeat…...until loop stop condition (em_has_converged(,newθ ,oldθ e) || mt =)

compares each corresponding pair of elements in newθ and oldθ using the function below.

The e parameter should be passed to the EM algorithm as a small value (such as 0.0001) to

ensure close convergence. The t = m test is included in the stop condition to ensure that the

algorithm always terminates after a maximum of m iterations (where m is passed to the

EM algorithm as a parameter). This will be important when θ convergence is slow.

function boolean em_has_converged(,newθ ,oldθ e)
 int p = num_columns_in (newθ)
 for int i = 0 to p
 for int j = i to p
 if)(),(),(),(jinewjioldjinew e θθθ >−
 return false
 next j
 next i
 return true
end function

B.3 Complex Functions Called From Within the Algorithm

At the start of the EM pseudo-code function the Y matrix is partitioned into a related set of X

matrices, where each X matrix represents a particular missingness pattern in Y, as described

in the previous section. However, for conceptual simplicity the sections that follow will refer

to the Y matrix itself, rather than to the equivalent set of X matrices in Z.

impute_missing_values (matrix ,θ matrix R, vector Z)

This function is called at the end of the main algorithm’s repeat…...until loop, just after

EM convergence is achieved. The function imputes the missing values in the set of X

matrices contained within the passed Z vector using; (1) The passed θ parameter, which

contains the final value of the augmented covariance matrix, as generated within the

algorithms convergence loop, and (2) The passed R parameter, which contains a list of each

unique missingness pattern found in the Y matrix.

- 160 -

This function can be called from any procedure that generates a maximum likelihood estimate

for the covariance matrix θ , since creation of the other parameters passed to the function is

simple. Notice in particular the sweep_matrix_on),(θj and reverse_sweep_matrix_on

),(θj sub-function calls, which transform the θ matrix into the state required to impute the

missing values for the current missingness pattern, which is in turn retrieved from the R

matrix for the current iteration of the outer loop for int s = 1 to num_rows_in (R)

Finally, the missing values in every row of the X matrix (which is retrieved from the Z vector

for the current missingness pattern) are imputed using the command cX ij = . Where c is

computed by summing the products of the observed values in the current row of X and the

regression equation coefficients contained within the swept version of θ .

function matrix impute_missing_values (matrix θ , matrix R, vector Z)
 for int s = 1 to num_rows_in (R)
 int a = 0, int b = 0, vector o = 0, vector m = 0
 for int j = 1 to num_columns_in (R)
 if sjR(= = 1)
 a ++ : jo a =
 else
 b ++ : jmb =
 end if
 if sjR(= = 1 && jjθ > 0)
 θ = sweep_matrix_on),(θj
 end if
 if sjR(= = 0 && jjθ < 0)
 θ = reverse_sweep_matrix_on),(θj
 end if
 next j
 matrix X = sZ
 for int i = 1 to num_rows_in (X)
 double c = 0
 for int mj ∈
 jc 0θ=
 for int ok ∈
 c += ikkj Xθ
 next k
 cX ij =
 next j
 next i
 next s
 return Z
end function

- 161 -

initial_parameter_estimate (vector Z, int f)

The EM process requires that the initial value of the),(Σ= µθ parameter, which describes

the distribution of the complete dataset in the Y matrix, must be estimated before the

algorithm’s convergence loop is started. The pseudo-code given below returns θ as a (p + 1)

x (p + 1) augmented covariance matrix, where p is the number of columns in Y. For

implementation simplicity, the rows and columns of the calculated matrix T are indexed

from 0 to p, rather than from 1 to (p + 1).

function matrix initial_parameter_estimate (vector Z, int f)
 matrix X = fZ
 int n = num_rows_in (X)
 int p = num_columns_in (X)
 if)(pn ≤
 θ = alternative_parameter_estimate (Z)
 return θ
 end if
 matrix T = new matrix (p + 1, p + 1)
 =00T n
 for int i = 1 to n
 for int c = 1 to p
 cT0 += icX
 0cT = cT0
 for int j = c to p
 cjT += ijic XX
 jcT = cjT
 next j
 next c
 next i
 n

TT =
 θ = sweep_matrix_on (0, T)
 return θ
end function

It is important to note that the function above estimates the starting value of),(Σ= µθ by

performing calculations based only on the complete data rows in the Y matrix (i.e. those

rows with no missing values), and this method can be used in most cases. However, notice

that the function given above exits (near the top of the pseudo-code) when the number of

complete rows is less than or equal to the number of columns in Y, which should rarely occur

in practice. When this does occur an alternative method of estimating the initial value of θ

should be used, depending on the nature of the distribution in Y, as described by Schafer

- 162 -

(1997). For example, the means and covariances could be calculated using only the observed

data values. Little and Rubin (2002) explain that caution should be exercised in cases where

difficulty arises in estimating the starting value of θ . In these cases the Y dataset may not be

amenable to the EM process, and it could be sensible to simply terminate the algorithm by

displaying a warning message to the user, explaining that the Y dataset should be examined

further before proceeding with the imputation process.

observed_data_sufficient_statistics (vector Z, matrix R)

This function returns the obsT matrix, which is created only once (at the start of algorithm)

then stored and used repeatedly. The structure of the T(s) and)(sTobs matrices, and the

methods for calculating their elements are given below.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΣΣΣΣ

ΣΣΣΣ
ΣΣΣΣ
ΣΣΣ

=

2
21

2
2
2212

121
2
11

21

)(

ipipiipiip

ipiiiii

ipiiiii

ipiis

yyyyyy

yyyyyy
yyyyyy

yyyn

sT

L

MOMMM

L

L

L

 and ∑
=

=
S

s
sTT

1
)(

Where the sums in each individual T(s) element (such as 1iyΣ etc.) are taken over the

subset of rows in Y that have the same missingness pattern (as stored in the corresponding

R(s) row) and where sn gives the total number of rows in Y that have that particular

missingness pattern. The matrix T contains the sum of all such T(s) matrices, where each

element stores the calculated sums for both the observed and the missing elements of the

rows in Y. However, the obsT matrix we require should contain only the calculated sums for

the observed elements in Y. Despite this difference, the required obsT matrix can be

calculated in a very similar way to T, the only difference being that the elements in the rows

and columns that correspond to missing values in Y are set equal to zero. For example,

consider a Y matrix that has four columns labelled 1Y to 4Y , where the data for a particular

missingness pattern s is present for columns 1Y , 3Y and 4Y , but is missing for column 2Y .

In this case obsT can be calculated as shown below (notice that the elements in)(sTobs are

the same as those in T(s), except for the row and column corresponding to 2Y).

- 163 -

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΣΣΣΣ
ΣΣΣΣ

ΣΣΣΣ
ΣΣΣ

=

2
443414

43
2
3313

4131
2
11

431

0
0

00000
0
0

)(

iiiiii

iiiiii

iiiiii

iiis

obs

yyyyyy
yyyyyy

yyyyyy
yyyn

sT
 and ∑

=

=
S

s
obsobs sTT

1

)(

Where the elements in each)(sTobs contain the calculated sums for a particular missingness

pattern s. However, we require the matrix obsT which contains the sum of all such matrices,

where s = 1 to S and S gives the total number of unique missingness patterns present in Y.

The pseudo-code function below calculates and returns obsT using the method shown above.

For implementation simplicity, the rows and columns in the passed parameters Z and R,

and in the matrix X, are indexed starting at 1, whereas the rows and columns in the

augmented matrices obsT and T are indexed from 0 to p.

function matrix observed_data_sufficient_statistics (vector Z, matrix R)
 int n = num_rows_in (R)
 int p = num_columns_in (R)
 matrix obsT = new matrix (p + 1, p + 1)
 for int s = 1 to n
 matrix)(sTobs = 0
 matrix X = sZ
 int r = num_rows_in (X)
 00)(sTobs = r
 for int i = 1 to r
 for int c = 1 to p
 cobs sT 0)(+= scic RX
 0)(cobs sT = cobs sT 0)(
 for int j = c to p
 cjobs sT)(+= sjijscic RXRX
 jcobs sT)(= cjobs sT)(
 next j
 next c
 next i
 obsT +=)(sTobs
 next s
 return obsT
end function

- 164 -

The use of the obsT matrix within the EM algorithm, and its relationship to the T and

newθ matrices, is outlined below (refer to the main EM pseudo-code listing for further

clarification).

1. The T matrix is set equal to obsT at the start of the algorithm’s repeat.…..until loop. At

this stage of the processing T will contain only the data for the observed values in Y.

2. The missing values in Y are estimated using the current value of the θ parameter, then

accumulated into T using the nested for…. next loops contained within the overall

repeat.…..until code structure.

3. Just before the current iteration of the repeat.…..until loop ends the T matrix is used to

recalculate newθ using the function call newθ = sweep_matrix_on),0(1Tn −

4. The process begins again at step 1. Note that the obsT matrix does not need to be

recalculated at this stage, since it has already been stored in RAM by the above function

(as previously explained).

This processing method is very performance efficient because it allows newθ to be

recalculated at the end of each EM iteration using a single call of the sweep function. The

alternative method of recalculating newθ would require accessing and processing every row in

the Y matrix, which would take much longer, particularly if the number of rows in Y was

large. This efficient procedure is perhaps the most procedurally elegant aspect of the EM

algorithm. It also explains why the estimated values are accumulated into the T matrix, rather

than being imputed directly into Y, during each iteration of the algorithm. Another important

performance benefit of the above process is that the missing values in the elements of the Y

matrix need only be imputed once – just before the algorithm terminates.

- 165 -

C Software and Hardware Platform Used

All of the software development and all of the experimentation described in this thesis were

carried out in the period between October 2004 and July 2007. The following computer

platform was used to develop the software, and to perform the experiments.

• All software was developed using the Microsoft C# programming language (Hejlsberg

et al, 2004) within the Microsoft .NET 2003 software development environment

(Version 7.1.3088 utilising the .NET Framework, Version 1.1.4322 SP1).

• The Microsoft Windows XP Professional® operating system Version 2002 was used.

No other applications were running while any of the experiments were being performed.

• A Dell Dimension® 8400 desktop personal computer (PC) with an Intel Pentium® 4

CPU running at 3GHz was used. This computer had 3 gigabytes of RAM.

- 166 -

D Notation and Terminology Used in This Thesis

This appendix describes the mathematical notation and the associated nomenclature used in

this thesis. In a sense, this section defines the central problem addressed within the thesis,

in that the proposed imputation evaluation method has been devised to assess the feasibility

of imputing missing values in numeric data matrices such as the one shown below.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11001
11111
10101
01100
11001
10101

The matrix rows are indexed as i = 1 to n
The matrix columns are indexed as j = 1 to p
Matrix elements are referenced using ijY

Known values are represented by a value of 1

Missing values are represented by a value of 0

e.g. rows 1 and 4 have “missingness pattern” 10101

Fig D.1 – Matrix notation used to represent missing value datasets in this thesis

The matrix notation shown in Fig. D.1 is used across the entire thesis. Each column in the

matrix stores the values taken by a particular numeric variable. And each row in the matrix

stores the values of a set of related variables - such as a statistical observation or a set of

values describing the attributes of a particular object. It is important to note that the actual

values stored in the matrix elements are not shown in the matrix above. Instead, the state of

“missingness” for each value is shown - in such a way that the “missingness pattern” for each

row in the matrix can be seen. These missingness patterns are referred to throughout the

thesis using the notation given in Fig. D.1. Exceptions to this notation are clearly stated

where they are used.

However, the nomenclature used to describe rectangular datasets with missing values differs

depending on the discipline that refers to them, and the problem of missing data is common to

many of these disciplines. For example, in statistics the dataset with missing values is

generally referred to as a sample, the rows in the dataset are referred to as observations and

the columns as variables. In survey sampling, the dataset is also referred to as a sample, but

the rows are called respondents and the columns are known as responses. To further confuse

i = 1
 2
 3
 4
 5
 6

= Y

j = 1 2 3 4 5

- 167 -

matters, disciplines such as the study of relational databases and data mining theory use their

own distinctive terminology to describe rectangular datasets.

To avoid confusion this thesis generally refers to the dataset as a “matrix” which contains

“rows” and “columns”. Although matrix rows are occasionally be referred to as

“observations” and matrix columns are sometimes be referred to as “variables”, where this is

required to clarify the meaning of the explanations given (depending on context).

- 168 -

E Thesis Publications

This appendix contains copies of the two published papers that were written by the author as

the work described in this thesis progressed. The first paper discusses the ideas that led to the

development of the imputation evaluation method described in chapter four. The second

paper discusses the work described in chapter three. Full publication details are given below.

Solomon, N., Oatley, G. and McGarry, K, (2007a), A Dynamic Method for the Evaluation

and Comparison of Imputation Techniques, In: Proceedings of the World Congress on

Engineering 2007 (International Conference of Computational Statistics and Data

Engineering), ISBN: 978-988-98671-2-6, pp. 974-982, Newswood Limited, International

Association of Engineers, Hong Kong.

Solomon, N., Oatley, G. and McGarry, K, (2007b), A Fast Multivariate Nearest Neighbour

Imputation Algorithm, In: Proceedings of the World Congress on Engineering 2007

(International Conference of Computational Statistics and Data Engineering), ISBN: 978-

988-98671-2-6, pp. 940-947, Newswood Limited, International Association of Engineers,

Hong Kong.

