
Richardson, Andrew Grant (2010) Truth to Material: Moving from Software to
Programming Code as a New Material for Digital Design Practice. Doctoral
thesis, University of Sunderland.

Downloaded from: http://sure.sunderland.ac.uk/3311/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively
contact sure@sunderland.ac.uk.

Truth to Material: Moving from Software to

Programming Code as a New Material for

Digital Design Practice.

Andrew Grant Richardson

This thesis is submitted in partial fulfilment of the

requirements of the University of Sunderland for the

degree of Doctor of Philosophy.

December 2010

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 2

Abstract

This practice-led research project investigates the key characteristics of the

use and process of programming code when applied to a creative design

environment. The research is motivated by personal practice and a desire to

move beyond the boundaries of software, and is set against a contemporary

background of designers exploring code as a key part of their creative work.

The initial contextual study considers design practice in the context of

contemporary digital technology, and identifies computational design as a

distinct area, apart from software-centred design. Although not a formal term

or grouping, the thesis highlights 'computational design' as an area of

practice which has emerged out of dissatisfaction with the 'limitations' of

software tools. The research establishes links between a range of

contemporary design practitioners, whose work is motivated by a desire to

understand and engage directly with the process and the 'material' of the

computational environment. Using the Arts and Crafts movement as a case

study, the contextual review discusses the ethos, process and material of

software-centred and computational design alongside those of traditional

design values. The research identifies the process and usage of computation

as a distinct area of study for creative design which applies a traditional

concern for the material and process of 'making' within the immaterial

environment of the digital arena.

The identification of computation as a type of raw ‘material’ for creative

practice provides the focus for the rest of the research. Based on the

findings of the contextual review, the practice explores the detail of the

process of ‘making’ using code, by creating two major pieces of

computationally generated work, based on the botanical, decorative

aesthetic of William Morris wallpaper prints. Each key stage of the work is

outlined using the headings 'code', 'visuals' and 'process', providing a

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 3

detailed account of the developing process and relationship between the

designer and the computational material. The study reveals that key to the

use of computation is an understanding and development of structural and

visual flexibility, which is inbuilt into the architecture of the work as part of the

design process. The research identifies three core phases, or ‘layers’ within

the process: ‘concept’, ‘data structure’ and ‘data detail’, each of which

contribute important elements to the flexibility and fluidity of the structure and

visuals. The research adds to the understanding of the process and practice

of computational work within a creative context, increasing knowledge

regarding the use and application of the formal elements of code within a

creative design workflow.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 4

Acknowledgments

I would like to thank my supervisors Professor Beryl Graham, Professor

John Tait and Neil Ewins for their ongoing advice and support.

I would also like to thank the Arts Design and Media faculty at the University

of Sunderland for their financial support. I would also like to express my

gratitude to the staff in the Design department at the University of

Sunderland, in particular Shirley Wheeler and Gurpreet Singh for actively

supporting me through this process.

FInal thanks go to my family, especially my wife and son, for the enormous

amount of patience, forbearance and encouragement shown to me every

step of the way.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 5

TABLE OF CONTENTS

1 Introduction 15

1.1 Overview 15

1.1.1 Research Question 15

1.1.2 Aims and Objectives 15

1.1.3 Background 17

1.1.4 Why is the Research Relevant? 17

1.2 Methodology 19

1.2.1 Practice-based Research 19

1.2.2 Features of this Methodology 19

1.2.3 Contextual Review 20

1.2.4 Practice 21

1.3 Definitions and Scope 23

1.3.1 Scope 23

1.3.2 Defining Terms 29

1.4 Dissertation Outline 31

2 Contextual Review 33

2.1 Software-centred, Digital Design 36

2.1.1 Introduction 36

2.1.2 Ethos 37

2.1.3 Materials and Technologies 38

2.1.4 Process and Skill 40

2.1.5 Object and Artefact 43

2.1.6 Summary 46

2.2 Computational Material: Computational Design 46

2.2.1 Ethos 49

2.2.2 Materials and Technologies 54

2.2.3 Process and Skill 59

2.2.4 Object and Artefacts 63

2.2.5 Summary 66

2.3 Traditional Material: The Arts and Crafts Movement 67

2.3.1 Ethos 69

2.3.2 Material and Technologies 70

2.3.3 Process and Skill 72

2.3.4 Object and Artefact 75

2.3.5 Summary 76

2.4 Summary of Contextual Study 77

2.4.1 Computation as Craft? 80

2.4.2 Contextual Review in Relation to Practical Project 84

3 Colorcalm Project 88

3.1 Initial Line Drawings 91

3.1.1 Code 91

3.1.2 Visuals 92

3.1.3 Process (manipulation / control / skill) 94

3.2 Developing More Lines (branches) 96

3.2.1 Code 96

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 6

3.2.2 Visuals 98

3.2.3 Process / Manipulation 99

3.3 Variance and Difference: Inheritance 100

3.3.1 Code 101

3.3.2 Visuals 103

3.3.3 Process / Manipulation 104

3.4 Colour, Shape and Form 105

3.4.1 Code 105

3.4.2 Visuals 111

3.4.3 Process / Manipulation 112

3.5 Petals and Flowers 113

3.5.1 Code 114

3.5.2 Visuals 118

3.5.3 Process / Manipulation 119

3.6 Leaf Class and Final Pieces 121

3.6.1 Code 121

3.6.2 Visuals 122

3.6.3 Manipulation 124

3.7 Summary of Colorcalm: Dialogue between Form and Function 125

4 Moving Wallpaper Project 131

4.1 The Concept Stage 137

4.1.1 The Concept Stage: Code 137

4.1.2 The Concept Stage: Visuals 140

4.1.3 The Concept Stage: Process 141

4.2 The Branching Structure 142

4.2.1 The Branching Structure: Code 143

4.2.2 The Branching Structure: Visuals 145

4.2.3 The Branching Structure: Process 146

4.3 Visual and Behavioural Experimentation 147

4.3.1 Visual and Behavioural Experimentation: Code 147

4.3.2 Visual and Behavioural Experimentation: Visuals 149

4.3.3 Visual and Behavioural Experimentation: Process 153

4.4 Extending the Vocabulary 154

4.4.1 Extending the Vocabulary: Code 154

4.4.2 Extending the Vocabulary: Visuals 160

4.4.3 Extending the Vocabulary: Process 161

4.5 Translation and Rotation: Adding 3D Elements 163

4.5.1 Translation and Rotation: Code 164

4.5.2 Translation and Rotation: Visuals 166

4.5.3 Translation and Rotation: Process 167

4.6 Final Development and Variations 168

4.6.1 Final Development and Variations: Code 168

4.6.2 Final Development and Variations: Visuals 171

4.6.3 Final Development Stage: Process 174

4.6.4 Summary 175

5 Overview and Analysis 178

5.1 Introduction 178

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 7

5.2 Computational Process: A Unique Workflow 178

5.3 Computational Process: Detail 185

5.3.1 Concept: Constructing the Material 185

5.3.2 Data Structure: Broad Architecture of the Work 188

5.3.3 Data Detail 192

5.3.4 Summary 196

5.4 Visuals 198

5.4.1 Colorcalm Visuals 199

5.4.2 Moving Wallpaper 201

6 Conclusions 208

6.1 Characteristics of Context: Computation in the Design Landscape 209

6.2 Characteristics of Process 211

6.2.1 A Creative Process of Making: Similar to Traditional Craft 211

6.2.2 A Distinct Workflow: Unlike Traditional Craft 214

6.3 Characteristics of Material 218

6.3.1 Concept 219

6.3.2 Data Structure 220

6.3.3 Data Detail 222

6.4 Visuals in Relation to Data Structure 226

6.5 Reflections on Methodology 227

6.6 Future Research 229

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 8

List of Figures

Figure 2.1 Screenshot of 'Anemone' by Ben Fry accessed from:

http://www.benfry.com/anemone/ ...64

Figure 2.2 Screenshot of 'Flowers' by Daniel Brown accessed from:

http://www.play-create.com/..65

Figure 2.3 Screenshot of 'Oval x3' by Yugop Nakamura accessed from:

http://www.yugop.com ..65

Figure 2.4 Screenshot of 'ps3_1_praystation' by Joshua Davis accessed

from: http://www.praystation.com/...66

Figure 2.5 Willam Morris' 'Willow' wallpaper design.....................................86

Figure 2.6 William Morris' 'Jasmine' wallpaper design86

Figure 3.1 An overview diagram of the Colorcalm project available at:

http://www.random10.com/colorcalm_research/90

Figure 3.2 Screenshot from ‘lineDrawingSimple2’ (2006) accessed from:
http://www.random10.com/colorcalm_research/2setting_parameters/app

lets/lineDrawingSimple2 ...93

Figure 3.3 Screenshot from ‘lineDrawingSimple3’ (2006) accessed from:
http://www.random10.com/colorcalm_research/2setting_parameters/app

lets/lineDrawingSimple3 ...93

Figure 3.4 Screenshot from 'lineDrawingSimple3c' (2006) accessed from:
http://www.random10.com/colorcalm_research/2setting_parameters/app

lets/lineDrawingSimple3c..93

Figure 3.5 Screenshot from 'lineDrawingSimple3f' (2006) accessed from:
http://www.random10.com/colorcalm_research/2setting_parameters/app

lets/lineDrawingSimple3f...94

Figure 3.6 Screenshot from 'lineDrawingSimple3fOOP3' (2006) from:
http://www.random10.com/colorcalm_research/3oop_simple/applets/line

DrawingSimple3fOOP3...98

Figure 3.7 Screenshot from 'lineDrawingSimpleInhertance1' (2006) accessed

from:
http://www.random10.com/colorcalm_research/4inheritance/applets/line

DrawingSimpleInhertance1...103

Figure 3.8 Screenshot from 'lineDrawingSimpleInhertance2' (2006) accessed
from:
http://www.random10.com/colorcalm_research/4inheritance/applets/line

DrawingSimpleInhertance2...103

Figure 3.9 Screenshot from 'lineDrawingSimpleInhertance2' (2006) accessed
from:
http://www.random10.com/colorcalm_research/4inheritance/applets/line

DrawingSimpleInhertance2b...104

Figure 3.10 Screenshot from 'lineDrawingSimpleInhertance2c' (2006)
accessed from:
http://www.random10.com/colorcalm_research/4inheritance/applets/line

DrawingSimpleInhertance2c ...104

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 9

Figure 3.11 Screenshot from 'cc1' (2006) accessed from:
http://www.random10.com/colorcalm_research/5cc1_cc2/applets/cc1

..106

Figure 3.12 Screenshot from 'cc2a' (2006) accessed from:
http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applet

s/cc2a/ ..108

Figure 3.13 Screenshot from 'cc3' (2006) accessed from:
http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applet

s/cc3/ ..108

Figure 3.14 Screenshot from 'cc4' (2006) accessed from:
http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applet

s/cc4/ ..109

Figure 3.15 Screenshot from 'cc5c' (2006) accessed from:
http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applet

s/cc5c/ ..109

Figure 3.16 Screenshot from 'cc6b' (2006) accessed from:
http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applet

s/cc6b/ ..109

Figure 3.17 Screenshot from 'cc_basicVersion' (2006) accessed from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_basicVersion..110

Figure 3.18 Screenshot from 'cc_basicVersion2' (2006) accessed from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_basicVersion2..111

Figure 3.19 Screenshot from 'cc_march_03' (2006) accessed from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_march_03 ..111

Figure 3.20 Screenshot from 'cc_march_04' (2006) accessed from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_march_03 ..114

Figure 3.21 Screenshot from 'cc_march_05' (2006) accessed from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_march_03 ..114

Figure 3.22 Screenshot of initial flower tests from 'cc_march_05_flower2b'
(2006) accessed from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_march_03 ..115

Figure 3.23 Screenshot from 'cc_march_05_flower3' (2006) from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_march_03 ..115

Figure 3.24 Screenshot from 'cc_march05_flower3b' (2006) from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_march_03 ..117

Figure 3.25 Screenshot from 'cc_aprilTest2' (2006) accessed from:
http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/

cc_march_03 ..118

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 10

Figure 3.26 Screenshot from 'cc_aprilTest5a' (2006) accessed from:
http://www.random10.com/colorcalm_research/9ccApril_leafclass/applet

s/cc_aprilTest5a..123

Figure 3.27 Screenshot from 'cc_aprilTest5b' (2006) accessed from:
http://www.random10.com/colorcalm_research/9ccApril_leafclass/applet

s/cc_aprilTest5b..123

Figure 3.28 Screenshots of final variations of Colorcalm work (2006)

accessed from: http://www.random10.com/colorcalm_research/........123

Figure 4.1 An overview diagram of the Moving Wallpaper project available at

http://www.random10.com/movingwallpaper_research/136

Figure 4.2 An illustration of the relationship between the Line and Ball

classes..138

Figure 4.3 A diagram illustrating the function of the Spring class in the.....139

Figure 4.4 Screenshot from 'Jan08_plotpoints3' (2008) accessed from:
http://www.random10.com/movingwallpaper_research/applets/1_concep

t/jan08/..140

Figure 4.5 Screenshot from 'Jan08_plotpoints3_spring' (2008) accessed
from:
http://www.random10.com/movingwallpaper_research/applets/1_concep

t/jan08spring/ ..141

Figure 4.6 A diagram illustrating the relationship between the Target and the

Line objects in the Moving Wallpaper project......................................143

Figure 4.7 Screenshot from 'LinkingLinesTest2' (2008) accessed from:
http://www.random10.com/movingwallpaper_research/applets/2_branch

es/linkingLinesTest ...145

Figure 4.8 A diagram illustrating the movement of the line away from the

cursor in the Moving Wallpaper project...149

Figure 4.9 Screenshot from 'LinkingLinesTest3' (2008) accessed from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/linkingLinesTest3..151

Figure 4.10 Screenshot from 'LinkingLinesTest3_outlines' (2008) from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/LinkingLinesTest3_outlines ..151

Figure 4.11 Screenshot from 'Line_Forces_Test_LRG' (2008) from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/Lines_Forces_Test_LRG ...151

Figure 4.12 Screenshot from 'Line_Forces_27Feb' (2008) accessed from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/Lines_Forces_27Feb..151

Figure 4.13 screenshot from 'Line_Forces_27Feb_new' (2008) from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/Lines_Forces_27Feb_new ...152

Figure 4.14 Screenshot from 'MovingWallpaper_March1_ b' (2008) from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/MovingWallpaper_March1_b..152

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 11

Figure 4.15 Screenshot from 'MovingWallpaper_March1B' (2008) from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/MovingWallpaper_March1B ...152

Figure 4.16 Screenshot from 'MovingWallpaper_March1E' (2008) from:
http://www.random10.com/movingwallpaper_research/applets/3_visualE

xperiments/MovingWallpaper_March1E ...152

Figure 4.17 Screenshots from 'MovingWallpaper_March12_BASIC' (2008)
accessed from:
http://www.random10.com/movingwallpaper_research/applets/4_Extend

ingVocab/March12_Basic ...160

Figure 4.18 Screenshots from 'MovingWallpaper_April1_C' (2008) accessed
from:
http://www.random10.com/movingwallpaper_research/applets/4_Extend

ingVocab/aprilc/ ..161

Figure 4.19 Screenshots from 'MovingWallpaper_March19b' (2008)
accessed from:
http://www.random10.com/movingwallpaper_research/applets/4_Extend

ingVocab/March19b..161

Figure 4.20 Screenshot from 'translateExample12C' (2008) accessed from:
http://www.random10.com/movingwallpaper_research/applets/5_Transl

ation/translateExample12c..166

Figure 4.21 screenshot from 'Moving Wallpaper_June13_LRG2Color' (2008)
accessed from:
http://www.random10.com/movingwallpaper_research/applets/5_Transl

ation/MW_June13_LRG2color..167

Figure 4.22 Screenshots from 'Moving Wallpaper_June23_unfurl_shape3'
(2008) accessed from:
http://www.random10.com/movingwallpaper_research/applets/5_Transl

ation/MW_June23_unfurl_shape3 ..167

Figure 4.23 Screenshots from ‘MW_June27_PlantTypes' (2008) accessed
from:
http://www.random10.com/movingwallpaper_research/applets/6_FinalD

evelopStages/MW_June27_PlantTypes ...171

Figure 4.24 Screenshots from ‘MW_July1_PlantShapes2’ (2008) accessed
from:
http://www.random10.com/movingwallpaper_research/applets/6_FinalD

evelopStages/MW_July1_PlantShapes2 ..172

Figure 4.25 Screenshots from ‘MW_July2' (2008) accessed from:
http://random10.com/movingwallpaper_research/applets/6_FinalDevelo

pStages/MW_July2...172

Figure 4.26 Researcher's own plant and flower photographs used as visual

reference...173

Figure 4.27 Screenshots of the final variations of Moving Wallpaper work

accessed from: http://random10.com/movingwallpaper_research174

Figure 5.1 A workflow diagram illustrating the network flow between different

pieces of software...179

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 12

Figure 5.2 A workflow diagram illustrating the feedback loop of the craft-

centred design process...180

Figure 5.3 A diagram illustrating the computational design workflow.........182

Figure 5.4 An illustration of the concept element of the Colorcalm project 186

Figure 5.5 An illustration of concepts informing the Moving Wallpaper project

..187

Figure 5.6 An illustration of the data structure of the Colorcalm project, and

the relationship between classes. ...189

Figure 5.7 An illustration of the data structure of the Moving Wallpaper

project, and the network of inter-related classes.................................191

Figure 5.8 An illustration of the ‘flow’ of data between classes in the

Colorcalm project..193

Figure 5.9 An illustration of the ‘flow’ of data between classes in the Moving

Wallpaper project..195

Figure 5.10 A visual comparison of stages of development from the

Colorcalm project..200

Figure 5.11 A comparison between Moving Wallpaper visual and William
Morris's Willow pattern image from:

http://www.williammorristile.com/small_images/black_willow_sm.jpg.202

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 13

List of Tables

Table 2:1 A table outlining where computational design intersects with Arts

and Crafts and software centred design. ..78

Table 3:1 A list of key variables and functions from the initial line drawing

stage: Colorcalm...92

Table 3:2 A list of calculations which alter line shape: Colorcalm94

Table 3:3 A list of functions from the Line class: Colorcalm.........................97

Table 3:4 Examples of conditional statements used to alter the branching

structure: Colorcalm..99

Table 3:5 Overview of Line class as the parent class: Colorcalm101

Table 3:6 Overview of the Mainline class which extends the Line class:

Colorcalm..102

Table 3:7 Overview of the Branchline class which extends Line class:

Colorcalm..102

Table 3:8 A list and description of new variables added to the Branchline

class: Colorcalm ...107

Table 3:9 Overview of the Flower class: Colorcalm114

Table 3:10 Description of visual attributes of the Flower class: Colorcalm 116

Table 3:11 Core variables of the Flower class: Colorcalm116

Table 3:12 Description of variables added to control branching structure:

Colorcalm..118

Table 3:13 Description of the key variables: Colorcalm122

Table 4:1 Overview of the Ball class: Moving Wallpaper138

Table 4:2 Overview of the Line class: Moving Wallpaper...........................139

Table 4:3 Overview of the Spring class: Moving Wallpaper140

Table 4:4 Summary of initial classes: Moving Wallpaper141

Table 4:5 Summary of characters allocated to affect growth and structure:

Moving Wallpaper ...144

Table 4:6 Example Strings and description of associated visual effect:

Moving Wallpaper. ..144

Table 4:7 Overview of the relationship between visual elements and

individual classes: Moving Wallpaper. ..145

Table 4:8 Overview of sine wave affecting shape: Moving Wallpaper.148

Table 4:9 Overview of visual changes affected by individual elements of

code: Moving Wallpaper ...150

Table 4:10 Overview of new characters used in Engine class: Moving

Wallpaper..156

Table 4:11 Key variables of Attributes class: Moving Wallpaper................157

Table 4:12 Example of Attributes, Flower: Moving Wallpaper....................157

Table 4:13 Example of Attributes, Branch: Moving Wallpaper157

Table 4:14 Example of how 'sub' Attributes can be created: Moving

Wallpaper..158

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 14

Table 4:15 Overview of variables used for 3D rotation of line: Moving

Wallpaper..164

Table 4:16 Additional variables added to control visuals: Moving Wallpaper

..169

Table 4:17 Overview of Plant class variables: Moving Wallpaper..............170

Table 5:1 Summary of difference in code structure between Moving

Wallpaper and Colorcalm projects ..196

Table 5:2 Overall summary of visual and structural differences between

Moving Wallpaper and Colorcalm projects..203

Table 6:1 Key mathematical functions used to manipulate variables.........222

Table 6:2 Summary of the layers of code, associated flexibility and effect on

the visual element of work. ...224

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 15

1 Introduction

1.1 Overview

This research project is a practice based study into the use of programming,

using Processing as the basis of work, to create and develop screen-based

designs. The research will focus on the use of computation from the

perspective of a designer, trying to establish a context and understanding of

computation within the framework of creative, visual practice. This is not a

technical, cultural or historical study of code, but a consideration of the

formal aspects of code and programming language for creative practice.

1.1.1 Research Question

The overarching question which this research aims to answer is: what are

the particular characteristics of the practice of computer programming when

used in the context of creative design? In identifying these characteristics

from the point of view of a designer, moving from the use of software into

programming, the research aims to be of use and of interest to other

practitioners and researchers in a similar position. The intended audience for

the research is therefore designers who use, or wish to use, and understand

computation, its role and practice in the context of creative work.

1.1.2 Aims and Objectives

The aim of the project is to look at the usage and practice of programming

code, in order to identify key features and characteristics when applied to a

creative design process.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 16

It is the researcher’s experience that the nature and usage of programming

code in design offers a distinctive environment for creative design practice; a

new form of design practice and a new material of expression. In order to

gain a full understanding of the character and distinctness of programming

for design, the research will consider programming code in relation to wider

contexts. This will include a consideration of the following:

• The wider design tradition. i.e. the relationship between the

computation for design and other modes of design practice.

• The features of the process and the workflow of the practice:

i.e. the relationship between the maker and material.

• The specific syntax and detail of the programming language

itself: i.e. the detail of the material.

This can be summarised as consideration of the context, the process and

the material of programming for design. These three areas of concern can

be summarized into the following questions / objectives:

• Where does creative-computation fit within the context of

traditional and digital design landscape?

• What are the key features in the process, i.e. how can the

relationship between the maker and the computational

material be characterised?

• What are the key features of the material? How can the

relationship between the material and the visuals be

characterised?

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 17

1.1.3 Background

The researcher's background is in multimedia practice and this research has

emerged from a professional interest in and use of code as part of creative

practice which has developed over the past few years. Interest into

multimedia and programming was instigated by experience of design-based

multimedia software, e.g. Director, mTropolis, and Authorware. Subsequent

growth in the use and capability of software such as Director and Flash, and

their associated programming languages, lingo and actionScript, alongside

the affordability and growth in multimedia technology, encouraged the

researcher to explore more deeply into the understanding and application of

basic programming elements for creative practice.

The researcher's progression in software usage reflects the wider

development and growth of the multimedia design industry during the 1990s,

as increased use and affordability of digital technologies heralded the

digitization of the design process, and brought computer and design together

into a single arena (Manovich, 2008, p.13).

1.1.4 Why is the Research Relevant?

The expansion of digital technology and increased proximity to programming

within design makes this research both important and relevant to current

practitioners. The development of digital design tools, and related

programming languages as part of design, means that a greater

understanding of, and critical enquiry into, programming as means of

creating work is important.

Digital technology in the form of software has become a common part of

design, however, the author's experience suggests that the practice of

writing programming code as a design activity engenders a process and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 18

experience unlike the that of working within the framework of software. As

such, programming warrants individual attention and discussion regarding its

role and place within the wider context of design. There is, therefore a

requirement to take a broader perspective when considering the use of

computation for design, to take a closer look at the approach, motivation and

application of programming for design, which represents a growing means of

creative design practice, and to investigate the use of code as the sole

means and material for creating work.

Whilst there are other areas of research which do look at associations

between computation and creative practice, for example: generative art; the

cultural impact of code; software art; and the crossover between craft and

digital software, specific investigation into the formal use of programming

code for design is not widely documented by academic research. The formal

use of computation in a design context is a subject around which there is

very little previous critical research, evaluation or discussion. There is

therefore a gap in research relating to the use of code within design practice.

This research aims to fill this gap and provide a starting point for the

discussion of the creative process of programming in design.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 19

1.2 Methodology

1.2.1 Practice-based Research

This research concerns the practice and process of programming and so a

practice-based research methodology was selected. A key feature of

practice-based art and design research is that each project develops its own

methodology, centred around the specific requirements and questions of the

investigation. Unlike other areas of research, 'set models' and specific

methods for art and design practice have not been defined. There are,

however, some general characteristics of practice-based methodology that

define overarching characteristics which are central to the use of practice as

research.

A central characteristic to a practice-based methodology is the idea of

reflective practice (Gray & Malins, 2004) a process defined by a cycle of

evolving practice informed by analytical and reflective work. This process of

informed, reflective work as defined by the cycle of working and reflecting

(Shaw, 2007, p.161) can also be summarized as the "reflective" or the

"engaged practitioner" (Marshall, 2008), in which the research is conducted

as part of an ongoing engagement with programming as part of practice: a

self-critical model of inquiry in which the investigation feeds into and

develops a practical understanding of the subject.

1.2.2 Features of this Methodology

Using the idea of the ‘reflective practitioner’, the methodology is

characterized as an exploratory model of practice-based research, in which

the process of using code is examined by practical investigation,

underpinned by an initial contextual examination into the role of

programming within a design context.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 20

The initial contextual review provides a theoretical framework from which the

practice can be explored, and the specific scope and the goals of the

practice can be defined. Issues and themes developed from the initial

contextual review illuminate, inform and direct the aesthetic aims and focus

for the practice. The contextual review therefore provides a framework to

inform the discussion relating to the ideas and practice of programming, and

provides a platform for the interrogation of the practice-based elements of

the work. The practice is instigated by a central theoretical discussion, which

frames the specific nature of the practice and forms a key foundation to the

rest of the work, generating a project which is informed by the interaction

between theory and practice (Shaw, 2007, p.44).

1.2.3 Contextual Review

Unlike other established modes of design work, the history and context of

design using programming has not been established. There is, therefore a

need to establish a context for the practice, to understand how far the use of

programming can be considered to be part of contemporary, software-driven

digital design practice, and how much it connects with traditional elements of

design. The aim of the review is to contextualize the work of programming as

a means of 'making' within the landscape of design practice, bringing into

focus key themes which relate to the broader relationship between the

designer and the material for design. This is done in order to establish

similarities and differences with programming when considered alongside

both traditional and digital approaches to design.

Throughout the history of design, technological advancement and

development have altered the outlook, the process, the material and the

objects of design. Each development, from the printing press, through to

modern digital techniques have brought new challenges, processes, and

materials for the designer to work with. The key themes defining the ongoing

changing relationship between the designer and his / her material therefore

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 21

reflect the challenges that each new development brings to the outlook

(ethos), material, process and object of design. The research will use these

headings of ‘ethos’ ‘material’ ‘process’ and ‘object’ to structure the contextual

study, and in order to make direct comparisons between computational,

traditional and software-driven design. The contextual review will focus upon

the design philosophy and approach of the Arts and Crafts movement,

contemporary software-driven design and computational design in order to

identify the characteristics of other design practices. These areas have been

selected because they highlight the issues of material, process, object and

ethos which are key to understanding the context of computational design.

The contextual review will therefore aim to situate programming for design

against the landscape of traditional and digital design, placing it within the

context of a wider discussion of making i.e. in relation to materials, ethos,

process and object. This discussion will be used to frame, and define the

direction of the practice.

1.2.4 Practice

A central aim of the research is to investigate the process of using

programming code to identify key characteristics of process and therefore to

examine the code as the material from which the digital object arises. The

practice of using code is therefore a highly important element of the

research. Using the contextual review as a framework for investigation the

practical work will closely examine the detailed usage of programming

language as a process, and as a material in order to establish the

characteristics of making with code. The research will look at the detail of the

formal aspects and instructions of code and associated visual output,

considering the detail of the code (language and structure), the process and

visuals.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 22

Although artistic method can include an emphasis on chaos as a core

element in artistic experimentation (Gray & Pirie, 1995) as a means of

inquiry, the nature of programming, being a structured, systematic

environment, together with the requirement to outline the details of the

process, demands a considered, systematic mode of practice-led inquiry.

Rather than employing an open-ended method of inquiry (e.g. one led by

experimentation alone), the practice methodology for this project will be one

which operates within set parameters and boundaries towards a specific

aesthetic objective. The specific details of the aesthetic boundaries will be

defined as a result of findings from the contextual review.

Hand-written code is used to develop 'experiments' and 'sketches'; a series

of artworks, each building on the last providing a means to compare

processes. Practice is characterized as a structured, methodological and

reflective study into creative practice of code as a formalistic rather than

cultural construct (Cramer, 2002). Concentrated attention is therefore be

paid to the structural elements of the code: i.e. details of language,

instructions, vocabulary and algorithm as a means of producing types of

lines, shapes and forms with specific characteristics and behaviours. Each

stage of the process is documented to reveal the stages of the practice and

to show the relationship between the code and the visuals at each stage of

the work. Documentation and observation of the detail for each stage form a

core part of the method and will be recorded in the form of an online digital

‘sketchbook’; a reflective digital journal of Processing ‘sketches’ (Gray, 2004,

p.59 & p.113), building up to give a detailed visual account of the project

work. Documenting and commenting upon these elements in this way

enables a detailed picture of the usage and process to emerge, allowing

observation, description and reflection of the dialogue between maker and

material, code and visuals, to take place.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 23

The decision to take a formal, structured approach and to use only hand-

written code may seem to set unnecessary boundaries and limitations upon

the artistic direction of the work. However these boundaries offer a degree of

control which allows a close and considered look at the detail of the work

and the process; providing a firm focus and framework from which the details

of the process can be considered. This approach which is distinctive from

the use of software, forms an important aspect of the research method

allowing a close and considered systematic look at the formal aspects of the

process of code. The overall emphasis of the research practice is therefore

on process rather than on the innovation of the final object itself. The final

object of the practice is significant as being part of the process, and part of

the "interrogation of practice" (Shaw, 2007 p.166) within the context of using

code. The new knowledge of this research will not be embodied by the final

piece of work but "clustered around it" as a broader set of outcomes (Shaw,

2007, p.166).

1.3 Definitions and Scope

1.3.1 Scope

The emphasis of this project is on the investigation of the formal aspects of

programming and specifically an investigation into the material, the process,

and the context of code within the sphere of creative design practice.

Although use of computation within art stretches back a long way (Gere,

2002), a wider commercial interest in, and use of, digital technology only

relatively recently generated the means and motivation for a design-led

usage of interaction technology. Exploration of new expressions of screen-

based design, afforded by the growth and accessibility of computer

technology (particularly the Apple Mac) and associated software,

encouraged designers to explore the creative potential of the new media

environment and to push the boundaries of digital design.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 24

The boundaries of design sometimes cross into art: The 'Web Wizards'

exhibition at the Design Museum (Nov 2001 - April 2002) provided a

valuable insight into the experimental, exploratory nature of new designers

working at the forefront of new media design during that time. The exhibition

included work from prominent 'design stars' such as Joshua Davies, Yugop

Nakamura, and Daniel Brown, and was promoted as follows:

As digital and interaction design evolve, a new generation of

design stars is emerging. These are the designers who are

not only mastering new technologies in their ongoing

experiments, but whose innovations are inspiring other

designers and setting the benchmark for design excellence

on the web and other media.

(Design Museum, 2002)

The experimental nature of digital and interaction design blurred the

boundaries between new digital design and art. The 'design' label used in

the subtitle of the Web Wizards show is questioned:

The most remarkable aspect of Web Wizards is that despite

being sub-titled ‘Designers Who Define The Web’ the only

design project on show is Tomato’s Connected Identity for

Sony. The rest of the work is art…

(Macdonald, 2002)

Although the abstractions of Joshua Davis’ Flash experimentation may have

visual resonance with abstract art (Manovich, 2002a), it is important to note

that the practitioners firmly root their work within the context of new media

design. Notable computation designers including Daniel Brown and Yugo

Nakamura for example site themselves and their practice within the context

of design practice (Design Museum, 2006). This thesis acknowledges that

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 25

the discussion to the validity of work as art or design is complex and one

which is bound to continue. It is not the role of this thesis to make judgments

about this, it is enough to recognize that this usage of Flash programming to

create new media work was cited as being design work by the practioneres

themselves.

The use of computation within creative practice is not exclusive to the realm

of design. Computation is used in different contexts across a range of

creative digital practices including art and animation. It is necessary to clarify

the scope of the project; to define and discuss areas of overlap and

difference between areas of related creative practice, and to define the

specific design-centred focus of this project. Specific attention will be paid to

digital art, and animation. Each area will be briefly outlined and areas of

similarity and difference highlighted, in order to provide a clearer

understanding and definition of each, establishing and defining the scope of

the research.

Artistic practice has often been at the forefront of experimentation with new

types of media and technology, and the introduction of computational

technology has encouraged a whole new sphere of artistic engagement with

programming which is known as 'software art'. Software art is an umbrella

term covering a wide range of creative activity centred around an artistic

approach towards software, which recognizes its "aesthetics, poetics, and

politics" (Goriunova, 2007). Software art is therefore not limited to a single

specific practice, and can include artistic interaction with software either as a

cultural construct or as a formalistic set of instructions (e.g. a programming

language). Florian Cramer (2002) identifies these two aspects of software art

labelling them "software formalism" and "software culturalism". Cramer

suggests, however, that a definition of software art which is exclusively

focused upon on the formal detail of the programming language limits its

practice and understanding into an unnecessarily rigid set of parameters,

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 26

which exclude a range of concerns, themes and approaches regarding the

cultural, social and political elements of software culturalism. This idea is

continued by Lev Manovich (2003). In an essay relating to the 2003 Ars

Electronica festival, he dismisses the idea that a systematic concern with the

formal elements of code should be considered as art at all. He argues that a

pre-occupation with the material and formal uses of code (e.g. the structure

and syntax) limits the understanding of software art to process rather than

true artistic concepts and "strategies". (Manovich, 2003).

Both of these theorists emphasize the idea that whilst a formalistic study of

code may form some part of the practice and approach of software art, the

true nature of software art practice must be inclusive of the broader cultural

and political aspects of code, reflecting wider artistic concerns. Therefore

whist some overlap between areas of this research and software art can be

identified, the specific focus of the research into the formal elements of code

are too limiting to include the broader political, cultural and artistic concerns

of software art. This research will therefore not include a discussion of

software art, being more specifically focused on a design-centred formalistic

review of the material qualities of code.

A second area of potential overlap concerns digital animation. Animation is

traditionally described as the "process of creating a moving images by

moving rapidly from one still image to the next" (Austin & Doust, 2007,

p.180) However, despite the traditional emphasis on a sequence of still

images, the development of digital animation tools and environments has

meant that areas of crossover between animation and programming are

growing. Computation has become an increasingly important part of digital

modelling and animation software and is often used to simulate physical

movement and environments, for example the movement of particles, wind,

water, smoke, etc. (Austin & Doust, 2007 p.120). The role between creator

and director of animation becomes blurred: computational parameters are

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 27

created, run through the computer, and the 'animator', acting as director and

editor, lets the computer calculate the movement until the desired result is

achieved. Lev Manovich (2008, p.182) describes this type of use of

computer programming to create physical movement as a "hybrid between

animation and computer simulation".

Despite areas of commonality between the use of computation and digital

animation, there are key differences which distinguish creative computational

work from animation. The final outcome of an animated piece of work

(whether created via traditional, or digital processes) is a single, final

rendered piece. Any code that may have been used as part of the process is

no longer required after the final render. Computational work however, is not

rendered into a single final finished animation. The code remains at the heart

of the final piece of work and in fact the code is the final piece of work, which

is run and viewed. Maintaining code as the focus, the central element of the

work, means that the work is generative; it may look animated, i.e. time-

based and moving but each rendering of the work produces different

sequences and changes as the code renders different outputs, "like a

computer graphic animation, except without a predetermined beginning or

end" (Maeda, 1995).

Computation therefore may be used as a part of an animation, but has a

different use and relationship with the final piece when used as the core

element of the work. Direct emphasis on code as the sole generator and

artefact of computational work alters the relationship with the core process

and final object of the creative process, distinguishing it from that of the

animated piece of work. So whilst areas of crossover and overlap between

computation and animation can be identified, the nature and emphasis of

programming as a practice is sufficiently different to that of animation to

warrant being the specific focus of this study. Investigation into the

relationship between programming and animation is a credible area of focus

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 28

for a different piece of research but will not be considered during this study,

requiring, as it does, a different approach.

A final brief mention needs to be made to a third possible area of overlap

which concerns the relationship between digital tools in the process of

making physically ‘crafted’ objects. This is an area of discussion which is a

frequent topic of debate, especially in the context of contemporary craft, as

evidenced by the themes of some recent craft conferences, for example,

New Craft-Future Voices' International Conference (Dundee University,

2007) and Challenging Craft (Gray’s School of Art, 2004). However although

some of the themes of this research, regarding the idea of crafting the digital

object intersect with the themes of contemporary craft, the core focus of this

project is upon the usage of computation, rather than other digital software

tools, as the sole means of creative activity. Rather than taking a broad look

at digital tools, including software, 3D modelling, etc. as the process of

making, the specific focus of this project is that of using computation as part

of the design process, and the creation of work via the act of writing

computational code.

In summary, although the subject of this research will naturally overlap with

themes, ideas or materials which relate to other creative fields of study (in

particular art, animation and contemporary digital craft) none of these areas

will be the focus for this research project. This research will instead focus

upon an investigation into the formal elements of the material and process of

computation within the context and tradition of design. The aim, therefore, is

to create work which expresses an understanding of the formal elements of

programming code, and which links it with an understanding and

acknowledgement of a wider design tradition. The research intends to build

upon a formalistic design approach, rather than a conceptual art-centred

tradition, for the creation of computational graphics. In terms of defining the

nature and type of computational work, John Maeda’s (1995) identification of

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 29

time based or "reactive" graphics provides an interesting touchstone for the

beginning of this work (i.e. screen based graphical work which has a

generative time-based and / or ‘reactive’ quality to it, graphics which contain

a kind of kinetic movement, and generative quality). The idea of time based

graphics helps to establish a type of computational piece of design which is

situated away from that of art or animation, and is a distinct type of

generative, computational design.

1.3.2 Defining Terms

Some ‘technical’ vocabulary relating to the terms of the research needs

clarification.

Computation: Computation in this instance refers to the creation and use of

algorithms within a high-level programming language, used to generate

logical instructions to be compiled and output as screen-based graphics. The

level of programming in this research refers to that which is typically used by

graphic designers or artists, and systems widely adopted within the creative

community. The specific programme language used throughout this work is

Processing (http://processing.org), a Java-based language, designed to

allow artists and designers to programme images, animation and

interactions.

Generative: Generative work involves the use of computation to create and

run ever changing and evolving graphics. A computer programme is written

and set running; as it runs shapes are generated and changed according to

the data and code of the programme. The programmer has control over the

programme, defining the overall structure and writing the initial code.

However, the computer runs the code producing random, sometimes

unexpected results from a set of variables which 'evolve' over time, as they

are read to, and change each other. Unlike animation, which runs and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 30

produces the same results each time, generative work changes each time it

is run, as the data of the work is updated in 'real-time'. Cox, et al (2001),

states that:

Crucial to generative media is that data is actually changed

as the code runs... the power of code allows this [calculation]

to happen in 'real-time', and the effects are largely unknown

until execution.

Generative work is therefore an automated art process in which computer

code is usually used as the means by which the automation is defined and

controlled. Although generative work does not always involve machine or

computer programmes to generate the piece, and can involve other sets of

"natural language rules ... or other procedural inventions" (Galanter, 2005),

in the context of this study the term will be used with specific reference to the

use of computer code.

Object Orientated Programming: Object Orientated Programming (OOP)

is a way of structuring code as a collection of individual objects which work

together, send messages between each other and act upon each other, and

is a common way of structuring code. Operations which manipulate the data

of the object are stored as 'methods' inside a 'class' rather then being

separated as they would be in procedural processes; a 'class' therefore

defines the characteristics of an object (Crutzen & Kotkamp, 2006). Defining

objects with their own behaviours which can act upon and interact with other

objects is a core way of creating and thinking about the programming

structure, and offers important and influential ways of thinking about and

structuring code. Malcolm McCullough (2008, p.98) observes that:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 31

Object-orientation is at the very root of one of the biggest

advantages of digital media, namely the ability to operate on

abstractions as if they were things.

Open Source: ‘Open source’ software allows the free viewing and

modification of source code and is motivated by a philosophy and approach

to the development of software which encourages a community approach to

software development. The philosophy of open source towards to the

development of code encourages a community of programmers to share use

and view source code, believing that source code is improved by the process

of shared development (Krysa & Sedek, 2006).

Software-Centred Design: The term software-centred design is used in this

research as a short-hand way of defining contemporary digital design

practice which uses software as its primary means of production. The term is

applied to creative visual design production methods which employ point-

and-click digital software and used as a means to distinguish this from

design which uses hand-written programming code as its primary means of

creation ('computational design').

1.4 Dissertation Outline

The research document has the following structure: Chapter 2 discusses the

contextual review element of the research used to establish the foundation

and direction for the practical projects, looking in turn at the three main areas

of design for review, comparison and discussion, i.e. digital, software-driven

design (2.1), computational design (2.2) and traditional design (2.3). The

final section of chapter 2 summarizes the comparison of these areas and

identifies areas of connection and commonality between computation design

and other realms of design practice.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 32

Having established the direction and context for the computational practice,

chapters 3 and 4 outline the specific processes of the two major projects,

outlining and documenting each stage of the process to reveal the details of

each project, the use of code, the nature of the visuals and the nature of the

process. A comparison between both pieces of work, comparing overall

processes is conducted in chapter 5, and summaries and conclusions are

outlined in chapter 6.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 33

2 Contextual Review

The contextual review forms an important foundation for the practical

element of the research, which aims to situate computational design practice

within the broader landscape of traditional and digital processes of design.

Before discussing in detail the place of computational design in relation to its

broader design context, it is first necessary to sketch out the current

landscape within which this research is being undertaken.

In terms of related doctoral research, the specific focus of this thesis (the use

and process of programming as part of creative design practice) is one

which has largely been overlooked. Searching online databases of doctoral

work (i.e. theses.com, eThos.bl.uk, ARTbibliographies Modern) targeting and

searching specific institutions (e.g. MIT.library.edu) and searching related

fields of research via conferences, conference papers and journals, revealed

some doctoral research which relates to broader areas including the use of

digital technology or software as part of creative design and craft-based work

(e.g. Marshall, 2008), but no doctoral thesis which specifically matched this

area of study. The closest completed work was the Masters thesis of Joanna

Berzowska (1998), which is cited elsewhere in this document. In the wider

field of academic grey literature, individual conference papers and academic

journal articles discuss and examine ideas and examples of code usage as

part of artistic, creative practice, and are cited in relevant sections of this

document (e.g. Maeda, 1995 and Cramer, 2002). The fact that the specific

focus of this study has largely been overlooked for doctoral work further

strengthens the case for the originality of the thesis.

Despite the lack of formal doctoral academic research in this area, the use of

programming as part of creative design practice and its relationship with

software-generated design has been part of an ongoing discussion which

has been explored through the work of a number of design practitioners.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 34

Reviews and articles in professional design journals (e.g. Creative Review,

Computer Arts) as well as individual design projects have highlighted an

ongoing debate into the role, status and position of code as a legitimate

means of digital design. This debate questions the perceived 'limitations' of

software as a design tool, and highlights a shift in attitude away from

software driven design, towards a design approach which encompasses

traditional design values. Significant art and design exhibitions have recently

raised the profile of this subject, most notably Decode: Digital Design

Sensations at the Victoria and Albert Museum (2010) and Code:Craft (2010),

part of the Lovebytes festival. Both of these shows brought into prominence

the wider discussion regarding the legitimate use of code as part of art and

design practice: exploring the nature of the relationship of code as part of

creative work; outlining its uneasy relationship with software-driven design;

and hinting at links between programming code and traditional design

practice. The emergence, motivation and timing of these exhibitions reflects

the current growth in interest and relevance of this subject and the broader

discussion relating to the status of creating within the digital environment. It

is against this backdrop that this research has been conducted.

This overview of the professional, contemporary backdrop against which this

research has been conducted, serves to highlight the way in which, although

ignored by formal doctoral research, the debate surrounding the use of code

in a practice-based design context has been developing over a period of

time. It also highlights the uneasy relationship between code and software-

centred design, as artists and designers using code seek to 'free' themselves

from the 'limitations' of the software environment, and make connections with

forms of traditional design. This chapter will therefore discuss in more detail

the relationship between software-centred and code-based design, as well

as considering computational design within the context of traditional design

practice. In order to reflect this wider perspective on the discussion, the

ideals and approaches of traditional design, as typified by the Arts and Crafts

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 35

movement, will be introduced, allowing the research to make comparisons in

relation to the context and understanding of traditional design practice.

Although this is not an art history thesis, and the Arts and Crafts movement

represents only one moment in the traditional design landscape, it is

important for the contextual review to consider the Arts and Crafts

movement, as it provides a valuable means of encapsulating and articulating

core values and ideals of traditional design practice. As well as providing a

point of conceptual reference, the Arts and Crafts movement also provides a

valuable focus for the practice based element of the research. The themes

and aesthetics of the movement provide visual and conceptual direction for

the practical project, inspiring both conceptual approach and organic

aesthetic of the work. The contextual review will therefore introduce the Arts

and Crafts movement as its particular 'case-study' for comparison,

considering it alongside a discussion of software-centred and computational

design. Each element of design: software-centred, computational and

traditional design, will be discussed using the headings of 'ethos', 'material',

'process' and 'object'. These headings cover core elements regarding the

relationship between maker and material, and are important in gaining an

understanding of computational design as an engaged, creative process.

The first area for discussion is software-centred, digital design.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 36

2.1 Software-centred, Digital Design

Digital technologies have "an unassailable place in

postmodern culture as the principle media of the post-

industrial age"

(Crowley & Jobling, 1996. p.286)

2.1.1 Introduction

Central to this discussion is the idea regarding the nature of the relationship

between designer and material, the relationship between designer and

technology. Being a commercially led industry the nature of design has

always had a close link with technology. Advancement in production

methods and technology have had a direct effect on the nature of industry;

as processes and materials have changed, so have the processes

production and visual style of design. Graphic design therefore has natural,

and close links with technology, and as such is a "key indicator" of

technological advancement (Olding-Smee, 2002, p.7).

This section will discuss the ethos, material and technology of software-

centred, digital design, outlining the landscape and use of computer software

in relation to the field of design practice. The discussion will subsequently

move on to focus on the specific, distinctive use of computation as part of

design practice in the next section.

Although a theoretical discussion of, and approach to, graphic design is a

relatively new area of study, and can therefore be problematic (Lupton,

1997, p.113), it is necessary to sketch an outline of the prevailing landscape

of contemporary software-centred digital graphic design in order to allow

identification of the key characteristics of digital design.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 37

2.1.2 Ethos

Although not driven by a unifying conceptual or moral aim, the era of digital

design was uniformly dominated, and unified, by the rise of software

technology. The increased use and affordability of digital technology during

the 1980s and 1990s had a profound, and lasting influence on the landscape

process, environment and distribution of design: the Graphical User Interface

(GUI) gave designers the ability to edit objects on screen, using direct point-

and-click manipulation, affording a wider means of distribution, a digitized

'mass production', of the digitally designed object. Heralded as a "major

revolution in graphic arts" (Heller, 2002, p.4), the digital revolution therefore

marked a shift from the "tangible solid material" of ink, pen and paper, to the

"intangible, 'floating world' material of the digital (ones and zeros)" (Betsky,

2000 cited by Poynor, 2003, p.113-114). The use and rise of "cultural

software" (Manovich, 2008, p.11) i.e. software programmes for the creation

and accessibility of media objects and environments, meant that software

moved to the heart of all cultural and creative production:

During one decade a computer moved from being a culturally

invisible technology to being the new engine of culture.

(Manovich, 2008, p10)

Software therefore unified the creative landscape, becoming the centre of

creative practice and “the new engine of culture”. Manovich (2008) neatly

sums up the situation: media became "software-ized" (p.36). The

development of software as a core part of creative and cultural practice

within a single computing environment dominated and unified the approach

and process across the creative spectrum, and brought about massive

changes to the field of design. Although not universally liked, the influence

and ubiquity of shift towards "cultural software" cannot be underestimated,

and the impact of software on culture in general and on graphic design in

particular cannot be overemphasized.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 38

2.1.3 Materials and Technologies

The digital revolution of modern computing transformed the material of

contemporary graphic design into a ‘de-material’ of conceptual space. The

tools of design practice switched from being physical to digital, from tangible

solid materials to the virtual "metamaterial" (Manovich, 2008) of pixels on a

screen (Betsky, 2000 cited by Poynor 2003, p.113-114). The digital

computer material as a 'metamaterial' unified all the design tools, as

individual pieces of software, into a single digital universe.

In the process of the translation from physical and electronic

media technologies to software, all individual techniques and

tools that were previously unique to different media “met”

within the same software environment

(Manovich, 2008, p.24)

Traditional media boundaries and specialisms were destroyed as the

computer material consumed the all areas of creative design practice.

Crowley & Jobling (1996, p.286) describe how the "dramatic effect" of

computer technology was felt "not only on the formal languages of graphic

design" but also "on the technocratic specialisms that define professional

activity". Martin (1990 cited by Poynor 2003, p.108) agrees:

Perhaps the most profound implication for the future is that

digital technology collapses all media into a single desktop tool

speaking one digital language.

Designer April Greiman described the digital media as being a "new

paradigm, a conceptual magic slate" (Poynor 2003, p.96), but how new is the

new material? In many ways, the 'new' media of digital design can be seen

as a reflection, a "remediation" (Bolter & Grusin, 2000), of the old media, re-

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 39

presenting the attributes of old media in a digitized format (e.g. the ‘digital

darkroom’), however, even if some of the 'surface' values of the objects,

digital photographs and videos may have the same look as 'old' media,

Manovich (2008, p.59) argues that by becoming part of the digital

environment the underlying ‘DNA’ of the media is changed. Old, physical,

media elements are transformed by the digitization process, to become part

of an environment which is never finally defined, in a state of "permanent

extendibility". In ‘The Language of New Media’, Manovich (2002b) outlines

what he sees as the key characteristics of new media and outlines them as:

Numerical Representation, Modularity, Automation, Variability and

Transcoding.

This list highlights the way in which the process of digitization reduces the

physical, cultural object into a set of data which can be reproduced, repeated

and changed. In this way Manovich details what he sees as the core

attributes of the new media. He outlines the way in which the media, reduced

to algorithm, is subject to the computational process: modularity, automation

and variability to create a new object with new meaning (transcoding).

Transforming objects from the physical to the digital material therefore is a

process of reduction, and variability in which all objects are represented as

individual pieces of data within the same shared data environment.

Graphical assets, text, video, images are reduced to a computational,

numeric, representation, a piece of data or algorithm within a single data

structure (Manovich, 2002b, p.196). In this way, every media object

becomes simplified into a single digital ‘unit’ which can be altered and

transformed via software manipulation. Graphical objects can be combined,

copied, repeated, transformed, scaled and edited to form endless varieties of

image and form. It is a flexible material: a digital universe in a state of

'permanent extendibility', with the potential to be transformed and changed

into endless varieties of form.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 40

2.1.4 Process and Skill

The digitization of all media objects (graphics, text, video, etc.) into a single

digital universe of multiple software tools and operations had a profound

impact on both the process and the skill-set of design. Specialist operations,

and processes were merged into a single computer environment, and

previous hard lines and physical barriers between different types of media

production were eradicated. Creative media designers, previously separated

by a range of specialist operations and activities all operate within the same

digital environment in which the same design tools and software operations

are common across design areas "contemporary designers use the same

small set of software tools to design just about everything" (Manovich, 2008,

p.141).

Compatibility between software, and the increasing ability to share individual

graphics as data files across software, generated an increasing 'hybridity' of

process and aesthetics. The same software "techniques and strategies"

were used across the digital universe (Manovich, 2008) and design

operations became limited to a narrow pool of software tools and a similar

set of software operations. The shared digital environment encouraged a

‘modular’ design workflow, giving rise to the power of the ubiquitous 'import'

and 'export' commands as a key part of the design workflow (Manovich,

2006). The ability to move graphics between software, to mix and match,

image, text, and video; to position, reuse, combine and transform media

within the same digital universe encouraged a culture of 'remix' to dominate

the process and aesthetic of the digital work.

Software production environment allows designers to remix

not only the content of different media, but also their

fundamental techniques, working methods, and ways of

representation and expression.

(Manovich, 2008, p.25)

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 41

Instead of working 'from scratch', the digital ‘metamaterial’ encouraged the

designer to work as editor rather than as creator: reassembling, re-working

and re-mixing existing visual elements into a collage of visual assets; a

"remix" (Poynor, 2003) culture of copy-and-paste, in which "authentic

creation" is replaced by selection from a menu (Manovich, 2002, p.120). The

facility to copy-and-paste did not of course remove the ability to create from

scratch, however dominance of the remix approach made this approach

'natural'; it ‘legitimized’ what Manovich (2002b, p.125) calls the "logic of

selection", in which:

Pulling elements from databases and libraries becomes the

default; creating them from scratch becomes an exception.

In addition to encouraging a copy-and-paste approach, the nature of the

digital, 'no-rules' environment (Betsky, 2000, cited by Poynor 2003, p.114)

encouraged an instant approach to the process of design. After the

restrictions of the "straightjacket" of earlier design formalism, (King &

Küsters, 2001, p.7) the ‘no rules’ digital world developed an environment

which encouraged spontaneity and an intuitive approach to work, without the

requirement for a pre-set grid. (Burns, 1992 p.39). Without the physical

restraints, and grids of old processes, the new design machine encouraged

the multi-layered aesthetics of deconstruction, a visual "spiral of excess"

which "degenerated" into a "visual free-for-all" (King & Küsters, 2001, p.7).

This shift in emphasis from hand-generated techniques to the instant copy-

and-paste culture of digital processes changed the process of design and

challenged traditional ideas of skill and creativity within the design

community. Despite the creative freedom afforded by the new software tools,

eliminating need for laborious tasks, the ease and speed of digital processes

were not always lauded as a positive influence.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 42

The use of computers has rapidly become widespread across

almost all professions and, in graphic design, all but eliminated

the role of craft as a practical element of the production

process.

(Olding-Smee, 2002, p.7)

Detractors claimed that digital software development and usage had a

negative impact upon design: overemphasising technology for its own sake,

focusing on the surface qualities of work, a "style over substance" approach

to design (Crowley & Jobling, 1996, p.278). It was argued that the new

technology undermined previously held notions of skill, reducing the role of

designer to a technician selecting design from a menu of "set recipes"

(Olding-Smee, 2002, p.7) of a "limited repertoire of fashionable [design]

styles" (Aydin & Budak, 2005). In this way design skill and creativity was

seen to be superseded by the technology itself: "any creativity is down to the

software programmer" (Olding-Smee, 2002, p.7).

The dominance of software tools replacing the physical process of design

can therefore be seen to challenge the status of 'skill'. Emphasis on skill

(time, effort plus talent) can be seen to have been replaced by the techno-

centric, point-and-click selection process of the GUI software interface. John

Maeda (1999, pp.19-20), expresses this idea as follows:

Computers as they are used today have nothing to do with

design skill... [the] form of disciplined approach toward

understanding one’s medium is what we traditionally

associate with skill... due to the advent of the computer,

mechanical skills have taken secondary importance to the

skills required to use complex software tools.

It is interesting to note that designers have responded to these criticisms

regarding the perceived shortcomings of the digital design environment in

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 43

opposite ways: some designers have reacted by encouraging a return to

handmade processes and whilst other have attempted to re-apply skill and

rules to the digital world via the use of computation and code (King &

Küsters, 2001). It is this second response which forms the focus of this

research.

2.1.5 Object and Artefact

As both the material and process of design shifted into the digital realm of

the free floating metamaterial, so the aesthetic and nature of digital design

object changed. Before considering the aesthetics of digital graphic design, it

is useful to sketch out the wider cultural landscape into which the digital

design process was born; a landscape dominated by the legacy and

influence of postmodern thinking. Whilst it is not within the scope of this

thesis to give a full and detailed account or discussion of postmodernism in

all its facets, it is however enough to say that postmodernism, being

characterized by diversity and reproduction (Crimp, 1990, p.53), and as an

environment in which previously held certain, absolutist (‘modernist’) ideals

are replaced with a culture of uncertainty and multiplicity (Watson, 1998),

can be seen to go hand-in-hand with the digital object, and the digital

aesthetic of this period. What was previously solid, certain and physical

(modernist) was replaced by a process and style of design which reflected

some of the key ideas and attitudes of 'postmodern' culture: the flexible,

changeable, uncertainty of the digital design environment reflected the

uncertainly and multiplicity of the postmodern culture into which it was

developed.

The copy-and-paste, approach together with the ability of the metamedium

to combine many different visual elements, encouraged the construction of

images through the collection and combination of images and styles from a

wide variety of sources. During the 1980s, groups of graphic designers,

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 44

including Katherine McCoy, April Greiman, Wolfgang Weingart, etc (King &

Küsters, 2001) took the opportunity afforded by the new technology to

experiment and explore a multi-layered aesthetic, to develop a 'digital' style.

From this experimentation, a digital postmodern aesthetic emerged: A "free-

for-all" (King & Küsters, 2001) of visual deconstruction and excess (Lupton,

1997) in which a risk-taking, experimental process of layering image and text

(Heller, 2002) tested and stretched legibility to its limit (Kirschenbaum,

2005).

During the 1990s the "me too" generation of designers (Heller, 2002)

continued to indulge in self-referential, layered, re-mixed visual

experimentation. Visual parody, pastiche and quotation from a range of

visual and cultural sources, e.g. Japanese popular culture, or science-fiction,

were employed as playful visual devices. Newness was formed, not from

creating but from "resampling and remixing" already existing styles (Poynor,

2003). Styles and genres were remixed recreated in amusing, playful or

trivial ways as the aesthetic landscape of style over substance reflected the

"flattening of values" of the postmodern culture (Jobling, 1996, p.276). Just

how far graphic design was truly part of postmodernist theory is certainly a

debatable point: Lupton (1997) suggests that the idea of deconstruction

within graphic design is more about the style than a design 'movement', and

Crowley & Jobling (1996) suggest that the links between postmodernism

theory and graphic design are over-played; emphasising the fact that the link

with postmodernism arises from natural characteristics of graphic design

itself (e.g. an inherent emphasis on the reproducible image, and an aesthetic

which naturally operates between 'high' and 'low' culture). However, whether

or not graphic design can truly be aligned with postmodern theory, the digital

aesthetic, and technology characteristic of graphic design during this era can

be seen to reflect the ideas of visual deconstruction which coincide with the

postmodern culture. Aydin and Budak (2005) describe the link between

postmodernism and the digital design aesthetic as follows:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 45

Digital technologies are a product of our Postmodern culture

that produces styles automatically and juxtaposes most

diverse fragments in its creations.

Whether truly postmodern or not, the digital universe, which provides the

ability to combine, import and export different media, has made a large

impact on the aesthetics. Where aesthetic distinctions between different

areas of design were kept separate, each having its own aesthetic

(animation, graphic, design, films, etc.), the shared nature of the computer

environment encouraged the "aesthetics of hybridity" (Manovich, 2008) in

which aesthetic styles between film, animation, graphics are shared and

swapped until visual distinctions are no longer apparent.

When you look at pages featuring the works of a particular

designer or a design studio, in most cases its impossible to

identify the origins of the images unless you read the captions.

Only then do you find that which image is a poster, which one

is a still from a music video, and which one is magazine

editorial.

(Manovich, 2008, p.140)

As well as changes in the aesthetics of the design object. The metamaterial

of the digital environment also changed the nature of the digital object itself.

As has been previously discussed, the digital environment allows objects to

be represented in many different forms and single objects are not restricted

to a single format. The graphical object as a piece of data can be reused and

re-represented upon multiple platforms and in multiple ways. Digital objects

are therefore characterized by the notion of multiplicity; an object which

exists within and as part of the digital realm is therefore able to be used, re-

used, re-applied and distributed in a range of different ways.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 46

2.1.6 Summary

The work and environment of software-centred design is not focused around

a moral ethical understanding of design but by the commercial development

and use of design software packages.

The digital realm replaced the solid material of previous eras of design,

changing it from the physical to the intangible. Software equivalents of real

design environments (e.g. darkroom or printing press) altered the material

from the solidity of ink on paper to the cut-and-paste world of pixels on a

screen. The transition of design into a software driven environment altered

both its process and the aesthetic. Previously well established boundaries

between design disciplines were lost as all creative activity 'collapsed' into

the single digital environment. Individual skills and processes were

amalgamated into the point-and-click skill set of digital software and drop-

down menus. The ability to copy and move graphical elements across the

digital environment changed the process into a modular network of related

software elements. The process and culture of selection, edit and remix

replaced that of 'making from scratch' and this is reflected in the layered,

aesthetic of digital graphics.

2.2 Computational Material: Computational Design

Graphic work ... rarely exceeds the mannerisms of its software

environment.

(Reinfurt, 2005, p.7)

The introduction and use of computer technology altered the landscape of

design. The rise of digital technology as a process and tool for digital design

meant that software became the dominant tool for digital design, altering its

process and aesthetics. A number of designers, however, questioned the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 47

authority and dominance of the new digital tools and their impact upon

creative expression. Marius Watz (2003), for example, expressed the view

that "designers have become dependent on software, tools ... forcing the

designer to adapt her work to the decisions and metaphors chosen by the

programmer". Consequently a form of design practice developed which

actively questioned the role of computer software in process and practice of

graphic design, pushing the boundaries of design and technology,

encouraging designers to become increasingly involved with the material of

the computer. The desire to engage with, and develop a critical approach to

the computer encouraged the development of a "new breed of graphic

designer" keen to "crack open commercial software" (Womack, 2006). These

designers actively involved themselves directly with the nature and material

of digital technology by using programming as part of their practice;

"confronting the computer on its own terms and in its own language"

(Reinfurt, 2005, p.3). In his article ‘Generation Flash’, Lev Manovich (2002a)

outlines the situation:

After GUI-based applications ... became commonplace, many

computer artists continued to do their own programming ... it

was taken for granted that even in the age of GUI-based

applications a really serious artistic engagement with

computers requires getting one's hands dirty in code.

This 'new breed' of designer represented a new mode of design inquiry

which will be referred to within this discussion as 'computational design'.

Computational design is typified by a hybrid practice and approach towards

computer-based design, a creative melting pot in which the boundaries and

definitions between design, art and programming become blurred. A practice

which extends the role of design practitioner into the realm of technologist

and programmer; combining a technical understanding of programming with

a visual critical and experimental approach in "an attempt to provide

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 48

designers and artists with a new literacy in digital media". (Watz, 2003).

Marius Watz (2005) summarizes this as follows:

Computational design is the discipline of applying computational

approaches to design problems, whether related to presentation,

analysis or aesthetic expressions.

The term computational design is not a formally recognized term or

grouping; it is, however, a useful term used to encompass a range of new

media designers, keen to explore the use of code as a means of design, as

an alternative to the use of pre-written software. The term will be used in this

study as short-hand for those interactive media designers who actively

engage with programming as part of their own work and as the key element

of their creative practice. Practitioners within the umbrella term of

computational design cover a wide range of practice and types of design and

artwork. Some practitioners use code to make their own software tools, (Van

Rossum & Van Blokland, 2003), or to comment on, or parody, existing ones,

for example ‘Auto-Illustrator’ by Ade Ward (2003). Other designers seek to

explore new kinds of code-based visuals and aesthetics or use code as a

means of generating illustration or design art making for example Joshua

Davis (2009), Eric Natzche (2007). Some develop new forms and

expressions of typography (Small, 2009) or interactive work for performance

(Levin, 2009). The diversity and range of labels to describe practitioners (e.g.

"digital designer and artist" (Nakamura, 2004), "information designer"

(Wattenberg, 2004), "artist and technologist" (Davis, 2004) reflect the hybrid,

experimental nature of the work, as well as a practice and involvement with

computation which spans a wide range of visual art and design disciplines,

e.g. typography, graphic design and drawing. Distinctions between art or

design are not considered important, or even considered irrelevant by

designers, who are rarely dogmatic about such labels: it is enough to

recognize that this work naturally sits somewhere between the two. As

Nakamura has said:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 49

Whether or not something is viewed as design or art is just a

result, so I’m not really concerned with it... its category doesn’t

matter... I think art and design are melding.

(Nakamura & Fitzpatrick, 2008, p.48)

Despite the diversity of practice, and although 'computational design' is not a

formally recognized or unified group, the aim here is to highlight that there

are common themes between this group of designers. Computational

designers can be seen to share a common sense of ethos, based around a

concern to use and write code as a central part of their practice.

2.2.1 Ethos

John Maeda has written extensively about the use of computer code in

design, and the rationale and ethos behind it; his work and writing provide an

important and influential point of reference in this study. As a researcher and

educator, Maeda's thoughts and ideas have permeated through this genre of

design, both via educational programmes at MIT (which has produced many

graduates now eminent in this area: Golan Levin, Ben Fry, etc.) and from a

wide sphere of influence as a designer. In this way Maeda provides an

important touchstone from which many of these ideas have emerged and

generated authority. Yugop Nakamura, for example, cites Maeda's ideas as

a key influence for his work, and Maeda's writings provide an important

starting point for the consideration of the ideas and ethos of computational

design (Nakamura & Fitzpatrick, 2008).

The research will discuss three key themes relevant to the ethos of

computation design: recognition of the distinctness and uniqueness of the

medium; freedom of work; and the 'handmade' approach which embodies

the core attribute of the 'computational' ethos.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 50

i. Distinctness / uniqueness of medium

A fundamental point which provides a central pillar in Maeda's rationale is a

recognition of the distinctness and the uniqueness of the computer

environment as a distinct, reactive, medium, and the subsequent desire to

design in a way which understands and harnesses the potential of the

medium. Maeda, and others, questioned "software dependency" (Watz,

2003) and the "unquestioned hegemony" (Fiell, 2003, p.352) of pre-written

software tools to replicate 'old' media in a new environment, in favour of

engaging directly with the computer as programmable, reactive medium, with

its own set of unique set potential capabilities. Maeda (2000) expressed the

idea that the natural means of doing this is to work with programming code:

... when moving on to the world of digital expression,

however, the most natural means is not pencil or paper, but,

rather computation.

Maeda therefore emphasized a requirement for digital designers to use code

as a fundamental means of working with the computer medium, as a way of

encouraging a freedom of expression, unhindered by the deterministic ways

of thinking set by ready made software tools. Computational designers

therefore highlighted the necessity of programming as a means by which the

true potential of the computer as a medium of expression could be realized,

seeing it as a means to "reclaim computation as a personal medium of

expression" (Fiell, 2003, p.352).

If the computer was a new, reactive medium for Maeda and others, code

was the most direct way of working with and thinking about this new

medium. In this way the decision to use code when working with the

computer became an almost ethical or moral decision:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 51

I do think it's essential that an artist-of-the-computer-medium

be able to program in some way... it is the only way in which

new computer experiences can be made.

(Levin et al, 2001, p.174)

Programming therefore represented a means which allows "direct

manipulation" of the "true potential" (Maeda, 1999, p.21) of the computer

media, tapping into the essence of the computer medium:

Programming puts you in touch with what software is really

made of. That's the computer medium, not Photoshop files or

raytraced animations, in my opinion.

 (Levin, 2000)

ii. Freedom

The second feature of the computational ethos relates to the idea of

freedom. The idea of using code, to 'speak the language' of the computer is

seen to represent a kind creative and conceptual "liberation" (Levin, 2006)

from the constrains of the medium, breaking the boundaries of commercial

software (Simon, 2004) allowing designers to re-think their relationship with

the computer. This idea of creative and conceptual freedom is fundamental

to computational design, and distinguishes the use of code from a software-

driven means of computer design. It is an idea which is central to Maeda's

work and remains an important ideological rationale for computational

designers which is reflected by the work and attitude of current

computational designers. Jürg Lehni (2007) creator of Scriptographer

describes "the ability to write programs ... as a freedom in the way

computers are used", whilst designers of the LettError project describe the

creative freedom enabled by writing code rather to move beyond the "tool

horizon" (Middendorp, 2000) of pre-written software. There is, therefore, a

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 52

strong sense of the creative freedom associated with the process of

designers writing their own code: "creative power comes from writing the

code ... not from using it" (Crow, 2008).

Writing your own tools makes the ideas direct the

development of software, rather than the other way round.

(Blokland, 2007, p.170)

iii. Making (handmaking and experimenting)

The third feature of the computational ethos relates to the way in which

computational design embodies a fundamentally different ethos, or 'spirit' of

engagement with the computer. Rather than think of themselves as users of

the computer tools, computational designers emphasize their role as

creators of the digital media; stressing the process of making and creating

rather than editing and re-mixing. Computational design therefore represents

a move from computer user to maker.

Computers are capable of a far greater number of things

than any specific piece of software might lead us to believe...

I'd like to offer a glimpse of what can be achieved when

artists step away from Photoshop altogether and make their

own software tools - with code.

(Levin, 2001, p.66)

This fundamental change of perspective changes interaction with the

computer from tool to medium, and informs a culture of experimentation and

making. The ethos of making, of manipulating the digital material, is reflected

in attitudes towards the process of using programming: i.e. recognizing the

value of working with programming to create work from scratch. Jared

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 53

Tarbell (Brown University, 2008) describes being intrigued by the idea of

making from scratch:

... with software anything that can be imagined can be built...

Programming truly is a process of creating something from

nothing.

(Tarbell, 2007, p.158)

It is also reflected in the value placed on the final piece of work and the

ability of programming to create individual, unique pieces of work which

express the singular vision of the creator.

An important dimension is the quality and degree of craft that

is applied to the creation of the work ... we’d like to believe

that nobody else could have created it with the particular

character and texture we did.

(Levin, 2007 p.512)

Interviews with, and the work of, computational designers re-iterates the idea

of creating, the joy of discovering, pushing boundaries, creating from

nothing, linking concept and practice. This ethos embodies an enthusiastic

joy of the process of exploring, of crafting, the computational material.

This act of code writing itself is very important, regardless of

what this code actually does at the end.

(Manovich, 2002a)

The use of programming becomes a way of hand-making, from scratch,

unique objects, expressing the capabilities and the material, of the reactive

environment. This is a type of honesty, embodying what Yugop Nakamura

(2008) describes as the 'spirit of craft'.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 54

2.2.2 Materials and Technologies

To talk about 'material' in this context, applying reference of a physical,

traditional presence to the symbolic, abstract realm of computing is not,

perhaps, an obvious step to take. The idea of applying terminology which

reflects the traditional physical process to the abstract de-material of the

computer is not, however, without its precedence. Malcolm McCullough's

'Abstracting Craft' (1998) is a study of how ideas of craftsmanship apply to

making in the digital realm, and offers a broader view of computer practice

within a craft ethos. This craft-centered understanding of computer practice

provides an important point of reference for this discussion. McCullough

sheds light on the wider practice of engaging with the computer on a craft-

like level, and draws attention to the idea that the lack of physicality of the

computer need not prevent notions of it having a 'material quality' being

considered. He argues that the computer can be seen as a type of medium,

i.e. something which mediates engagement and action for personal

expression and form, and which therefore providing a range of means and

tools for active, creative engagement and mental flow (McCullough, 1998,

p.198) of craft-like work.

It is important to note that McCullough's definition of the computer as

medium is wide ranging, and accounts for an entire class of 'affordances'

which include tools and raw materials. Within the realm of computer material,

McCullough defines software as a tool within the 'class' of the computer

medium (McCullough, 1998). If the computer is a medium, a broad class,

which includes software as the tools (a sub class), in light of the fact that this

discussion concerns the specific use of code as a particular means of

engaging with the computer medium, we therefore need to consider the

status which can be applied to code. Code must be considered as a special

case, different from software.

As has been discussed, practitioners of code-centred design make a clear

distinction between the use of software, with its pre-written forms, and the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 55

'directness' and 'freedom' afforded by the use of code. Directness of

manipulation, directness of understanding of the computer are ideas which

are seen as defining code as a different mode of working to that of software.

In this way code may be thought of less as a tool and more as a raw material

of the computer medium: i.e. something which begins in an unformed, 'raw',

state, rather than a tool which has an in-built mental model, a specific means

of engagement. For computational designers, code takes on the nature of a

material which can be sculpted into forms which are more directly related to

the thoughts and wishes of the maker, rather than being forced into modes

of work ‘dictated’ to by the software tool. This idea is one which is certainly

supported by practitioners of art and design-centred programmers.

It can be useful to think of each programming language as a

material with unique affordances and constraints... in the

same way that the different woods Pine and Oak “feel” and

“look” different.

(Reas, 2003, p.175)

The term 'material' which conjures up notions of physicality to describe non-

physical use of code, is one which may seem forced, but taking

McCullough's view that virtuality may not be an obstacle to thinking in this

way allows us to take a broader view of the subject and bring into

consideration mental engagement and use of the code material. Discussing

the use of the computer environment as a material for creative engagement,

McCullough stresses the importance of mental models and mental

engagement with the material. The idea of 'willing suspension of disbelief' is

one which McCullough applies to the active engagement of computer tools in

a craft-like creative practice.

This is a concept which could equally be applied to the idea of engaging with

code as a raw material. The nature of the computer medium means that

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 56

notions of 'tool' and of 'materiality' are largely dependant upon the mental

models constructed by the user (maker). When considering the idea of non

physical code as kind of abstract, conceptual material for the computer

environment, it is therefore important to consider the 'mental' attitudes of

those designers who practice the use of computation "consider the computer

as a medium of expression just as you would canvas or clay" (Flake,1998,

p.11).

If code, its structure and syntax, can be considered to be a kind of

computational material, having the ability to be manipulated and crafted by

designers and artists into computational forms, then what are the

characteristics of this material?

Code as Language

Computer code by its nature is a structured, rule-based, command-driven

language, and forms the mechanism by which computational artefacts are

created. As the language which commands and controls the 'machine' of the

computer, programming code operates as a medium between human and

computer, and functions in a way which reflects the 'mechanics' of the

computer itself.

At its core a programme is a set of instructions that tells the

computer precisely what to do... It is a sequence of formatted

words and symbols that encodes ideas into a structure that

can be interpreted by a machine. Every programming

language is a collection of words and symbols (syntax) with a

set of rules defining their use. Each language allows people

to convert their ideas into code in different ways.

(Reas, 2004, p.44)

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 57

Programming code is the written notation from which work is generated. The

language of code is the means by which concepts, as human instructions,

are translated into machine commands to be executed by the computer. The

language is abstract and conceptual, used to describe and define the detail

of the data structure and logic.

Code is a notation of an internal structure that the computer

is executing, expressing ideas, logic and decisions that

operate as an extension of the author’s intentions.

(Cox, et al., 2001)

The formal aspects of the language are governed by rules which determine

the parameters within which the designer must operate, understand and

work. The rules of syntax, commands and language can be self-generated or

in-built into the system.

Abstract Language

At its heart, the expression of digital visual artefacts comes from the

computational and conceptual description of the visuals. Visuals are

'described' via the commands and codes of the programming language. The

language is not fluent in its description of objects and ideas, it is a functional

language. The medium of computation is autographic, it can be read and

written, whereas the GUI, point-and-click experience creates computer

‘users’. The use of code allows people to become computer makers,

(Cramer, 2003, p.100) with the ability to read and write the computational

environment.

The ability to "read" a medium means you can access

materials and tools created by others. The ability to "write" in

a medium means you can generate materials and tools for

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 58

others. You must have both to be literate. In computer writing

the tools you generate are processes... These processes

that simulate and decide are the essence of software and

they can only be fully understood through constructing them.

(Kay, 1989, cited by Reas, 2003, p.179)

In this way the use of language becomes a way of structuring and thinking

about the computational material. "Beyond being a 'tool' merely 'involved' in

shaping thoughts, computer language becomes a way of thinking" (Cramer,

2003, p.103).

The language is used to describe the mathematical logic of a process. An

abstract language, code is a notation rather like a musical score, which

remains a distinct entity from the artefact itself.

Logical / Numeric Language

A programming language reflects elements of the nature of the computer

itself. The computer is a data processing machine and operates on the basis

of logic and structure. The programming language describes, assigns and

allocates the structure and movement of data within the framework of

computer logic. The computational machine is essentially a numeric one,

capable of vast calculations at enormous speeds. Computation and

computing are therefore largely concerned with the input and output of

number and data processing.

Computation operates on numbers, strings, and symbols by

manipulating them at discrete time steps... each model has a

well defined “program”, “input” and “output”.

(Flake, 1998, p 27)

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 59

Visual representation on screen is therefore a representation of numeric

data. Descriptions of shapes, curves, colours, images and entire computer-

generated scenes are fundamentally generated as sequences and patterns

of numbers. The simple act of making a 'mark' is the product of data, used to

set the line’s location, colour values, width, etc. There is therefore a natural

and close association between numeric data and graphical on-screen

representations of images. Physical properties and behaviours are defined

as algorithmic sequences and calculations. Detailed mathematical studies

regarding number patterns and behaviours extend from geometric

descriptions of shapes and lines into physics, biology (e.g. particle physics,

rules of behaviour, rules of magnetism, fractals, etc.) and emergent

behaviour (Flake, 1998). These areas of study provide the source of

inspiration for numerous artistic works, in which behaviours and rules are

mapped into the computer environment to create unique pieces of work.

Each of these rules is a landscape in itself which commands a vast vista for

learning.

2.2.3 Process and Skill

Working with code is therefore a process of understanding and writing the

language and notation of the computer program. The practice of

programming necessarily requires an engagement with the formal syntax

and structure of the programming and is traditionally associated as technical

practice; a process summed up by the title 'software engineering'. However

the attitude of the designer who uses programming as material imbues the

use of code with the status of creative activity which changes its status from

engineering to making. The process of working with code as a creative

practice is therefore a reflection of the ethos towards code which

emphasizes the ideas of computation as the material of the computer

environment. The process of computation therefore becomes an outworking

of the attitudes and ideas of the material, a creative, experimental, process

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 60

of hand-making computational objects. This idea of treating technical

abstract code as a creative material is evidenced by the language used to

describe the process of working with code in this context. Data is described

as something which can be "resculpted" (Gerhardt, & Jarman, 2007, p.392),

and numeric algorithms, structures of the language are described as having

physical properties: "Manipulating numbers is much like sculpting in clay or

mixing paints" (Maeda, 1999, p.69).

Creating with code can be like working with a material, albeit a

constantly morphing one. Algorithms have their own material

qualities, one might feel liquid, another rigid... you can almost

physically sense the dynamic qualities of an algorithm.

(Watz, 2006)

The process of programming therefore becomes an important way of

thinking about, understanding, and using the digital material: concepts and

ideas are developed through 'sketching' out programmes to explore creative

possibilities. The process of coding combines technical and creative

practice, generating a dialogue between the language, structure, limitations

and rules of code, and the visuals from which an understanding is

developed, as both the visual and programming 'rules' are learnt and

practised. It is a process of exploring the limitations of the material, through

which the computer may be said to reveal itself (McCullough, 1998), i.e. to

be understood, both technically and creatively.

When I create art, I feel like I am in a conversation with the

artwork... When I write programs, I have the opposite feeling

that I am talking with a sympathetic and brilliant partner who

helps me organize my thoughts and points out connections I

hadn't seen myself.

(Wattenburg, 2007, p.162)

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 61

This process reflects a range of creative engagement with the material.

Whilst some designers describe "finely crafting the semantics of each

program" (Epilog Laser, 2009), others follow a practice of experimentation,

exploration and uncertainty in which code is manipulated, pushed and pulled

to breaking point as the designers explore the visual, creative, possibilities,

looking for "interesting exceptions to the rules" (Simon, 2004, p.46) or

unexpected results from randomness or "happy surprises" (Burton, 2007,

p.263).

It's only in breaking things - in the anomalies - that I find the

accidents that in the end become techniques.

(Davis, 2002, p.7)

The practice of programming becomes a valuable part of the creative

process; an "aesthetic experience" (Knuth, cited in Krysa & Sedek, 2006,

p.239) of working with, understanding and thinking about the material of

code and the medium of the computer. "I tend to be more interested in

process than product..." (Burton, 2007, p.263).

The practice of programming, in this context, takes on a more important role

than as a means-to-an-end towards the finished piece. Instead it becomes

the way in which a better and deeper understanding of the material is

developed, and ideas formed. The act of programming is a means of

manipulation, understanding and thinking.

A programming language is for thinking of programs, not for

expressing programs you've already thought of. It should be

a pencil, not a pen.

(Graham, 2003)

Using code becomes a way in which structure is created, limitations are

understood and a means of developing an understanding within which the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 62

creative practice can take place. The process of exploring the creative

potential of the medium via the 'archaic' notational language of the material

of code becomes key to the creative practice of computational design. The

practice of coding is a process of understanding the computer material;

understanding through doing.

The practice of code as a process of exploration and a means of developing

understanding is part of a shared tradition of exploration and development.

The newness of the new media has encouraged a community of designers

to develop engage and learn through shared practice. A community of

designers has developed that expresses, within its practice, an eagerness to

share and develop fundamental theories of programming. Theoretical and

practical understanding has been underpinned by an 'open source' ideology

(Krysa & Sedek, 2006), a desire to encourage the development of code

writing through openly sharing ideas and source code. Key figures in the

development of the shared tradition of code for creative work include John

Maeda, Joshua Davies, Ben Fry and Casey Reas. As an educator and

designer John Maeda forged much of the initial exploration and

experimentation between graphics and code. His early Design By Numbers

(DBN) language was an initial attempt to bridge the gap between design and

programming, which outlined an elegant description of the concepts of code

as a graphical work centred around a functional programming language

created especially for the design community. This early project inspired the

continuation of this research via the Computation Aesthetics Group at MIT,

where two students (Ben Fry and Casey Reas) developed the DBN idea into

the Processing language. The Processing environment exists as a 'free to

use' open source environment for 'computational designers' and fosters a

lively community of artists designers and programmers (Fry & Reas, 2009).

Many other designers and design communities foster the shared experience

of learning and developing work: Jared Tarbell (www.levitated.net) and

Joshua Davies (www.praystation.com) for example readily share ideas and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 63

source code of much of their work, encouraging a shared knowledge and

understanding of their code.

2.2.4 Object and Artefacts

The computational object is a dynamic visualization of its programming

structure and data. It is therefore a fluid object, subject to the changes in

data; either generated internally, or generated via external data or user input.

The object is a dynamic visualization of the programming structure.

When computer programs execute, they are dynamic

processes rather than static texts on the screen.

(Reas, 2003, p.176)

Joanna Berzowska describes the characteristics of the computational line

and identifies key characteristics as "algorithmic appearance, dynamic

change, and behaviour", (Berzowska, 1998, p.9). These characteristics can

be summarized as 'algorithm', 'data' and 'behaviour' and mark out the key

difference between the static, ‘traditional’ and the digital, computational

object or line. Casey Reas (2003) outlines more specific characteristics of

the computational form, and summarizes them as: dynamic form, gesture,

behaviour, simulation, self-organization and adaption. All of these categories

reinforce the idea of computational object as a dynamic data-based

behaviour which is time-based and reactive. Although computational

structures are linguistically and logically rigid, unlike traditional media, the

computational form is fluid and changeable, and unlike time-based media,

(e.g. animation) the forms are not predictable and endlessly repeatable.

Computational forms are reactive, behavioural and fluid. Programming

algorithms provide the structure and the parameters, defining the data

structure for the fluid, computational object to emerge.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 64

Computational forms are therefore highly influenced by natural, biological

references, both in terms of behaviour and aesthetic. There is a natural link

between physical, botanical properties and computational objects and

behaviours. Computation and biological behaviour are closely linked (Flake,

1998), and so biology and organicness therefore influence the work of a

great many computational designers. Organic concepts and behaviour (e.g.

randomness, repetition pattern, dynamic form) are often used to link with

natural forms and life with the computational object.

Flash artists are big on biological references. Abstract plants,

minimalist creatures, or simply clouds of pixels dance in

patterns which to a human eye signal "life".

(Manovich, 2002a)

Work produced by computational designers and artists reflect the concern

with organic behaviour (Hodgin, 2010), data visualizations (fig. 2.1), and

natural forms (fig. 2.2).

Figure 2.1 Screenshot of 'Anemone' by Ben Fry accessed from:
http://www.benfry.com/anemone/

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 65

Figure 2.2 Screenshot of 'Flowers' by Daniel Brown accessed from: http://www.play-
create.com/

Emphasis on the behaviour of the object leads to a simplification and

abstraction of the aesthetic; shapes and forms are fluid, organic, and

behavioural - they are often abstract, and visually 'light'. The examples of

work by Yugo Nakamura (fig. 2.3) and Joshua Davis (fig. 2.4) typify this

abstract 'light' aesthetic.

Figure 2.3 Screenshot of 'Oval x3' by Yugop Nakamura accessed from:
http://www.yugop.com

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 66

Figure 2.4 Screenshot of 'ps3_1_praystation' by Joshua Davis accessed from:
http://www.praystation.com/

Lev Manovich (2004) draws comparisons between the abstract, geometrical

aesthetic of some programmed forms created by Flash artists with a

modernist aesthetic, calling it a type of "soft modernism" (Manovich, 2002a).

2.2.5 Summary

This section of the work has provided a useful outline of some of the key

features of computational design; identifying characteristics of ethos,

material, process and object. The research has identified computational

designers as a 'new breed' of designer, keen to explore the creative potential

of code within the ethos of computational design the particular

characteristics of ‘distinctness’, ‘freedom’ and ‘making’ have been identified.

Although not a formal grouping, computational designers share an ethos

which recognizes the uniqueness of the computation as a means of

engaging the computer as a expressive medium, away from the limitations of

pre-written software. Highlighting a sense of creative freedom offered by the

process of making work 'from scratch', computational designers describe the

process of writing and creating with code as others may with traditional,

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 67

physical material. The creative approach to the abstract, logical, rule-based

language of code challenges traditional notions of the process of working

with code as software 'engineering', suggesting an alternative view of the

process as 'making'. The object of computational design, a visualization of its

underlying data structure, is differentiated from other design work by its

dynamic, generative and reactive nature. Computation objects possess a

fluidity and behavioural quality often associated with natural organic

environments and which contrast with the rule-based, logical structure from

which they are created. Computational design can therefore be identified as

an area which encompasses a distinct group of designers keen to challenge

the 'limitations' of software, who are motivated by ideas which reflect the

values of traditional design practice in the use and exploration of

computation as a kind of material.

2.3 Traditional Material: The Arts and Crafts Movement

Having identified the ethos and approach of computational designers

towards the process of using code as a kind of material, it is now necessary

to include a detailed look at traditional design processes, using the Arts and

Crafts movement as a particular case-study. The Arts and Crafts movement

has been chosen because it encapsulates core values of traditional design.

By considering the ethos, material, process and artefact of the Arts and

Crafts processes, a broader perspective upon the discussion can be taken,

allowing comparisons between traditional, digital and computational design

work.

The Arts and Crafts movement of the late nineteenth century had at its heart

the relationship between maker, designer and material. Characterized by

strong moral views and strict adherence to a 'right' and 'wrong' idea of

beauty, the Arts and Crafts movement made important contributions towards

the understanding of design and craft. The main emphasis of the Arts and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 68

Crafts movement centred around a resurgence of a craft-like sensibility, and

the thoughts and ideals of this movement fed into the wider discussion

relating to material and practice, which are important for this research. This

section will begin with a general introduction to craft practice.

At the heart of a definition of any craft practice lies the idea of the applied,

skilled understanding and mastery of material (McCullough, 1998, p.22).

Regardless of medium, the craftsperson must demonstrate an

understanding, a mastery, of their will upon their chosen material. The

musician, painter, sculptor or writer must, in order to communicate

effectively, understand the essence of their material, its structure, its

parameters, its pliability. It is the demonstration of this understanding which

has traditionally been equated as the great skill of the craftsman.

McCullough (1998, p.201) outlines the idea of craft as personal knowledge

plus practical intent: "where the medium is the basis for mastery: there we

find craft".

The implication here is that this mastery is gained from a theoretical

understanding ('textbook' knowledge), plus practical experience ('tactile'

knowledge). The practice of craft is, therefore, not an entirely physical

process, but encompasses both the physical and thought process of the

creator upon material (McCullough, 1998, p.29). The practice of craft unifies

head and hand, thought and action. Manipulating, ‘crafting’, the material is a

balance between the physical forces of hand-work and invisible forces of

intellect and understanding. To craft a material is to be involved in a

reflective, thoughtful process, a constant dialogue between artist and

material. This idea of craft being a balance between the visible and invisible

forces, a unity between the material, environment and creator, is one which

was central to the Arts and Crafts movement. The movement provides a

valuable context for the evaluation of the relationship between designer,

material and artefact. This discussion will not give full consideration to the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 69

whole of the social and political elements of the movement, however, key

ideas relevant to this discussion will be outlined and discussed.

2.3.1 Ethos

The Arts and Crafts movement was not only characterized by the style of the

objects it designed and made, but also by the guiding principles which drove

the movement and its members. Founded as a reaction against the

industrialization of creative practice, the movement was driven forward by

ideological principles which informed the nature and style of the work. Ideals

and principles, particularly associated with John Ruskin and William Morris,

were at the very heart of the practical work. Key to the principles of the

movement was the idea of unity (Cumming, 1991, p.7). Unity between the

human, environmental and material forces, between material, process and

object was the foundation stone upon which the movement stood. This idea

became influential in the wider development and understanding of the

process of craft.

For Ruskin and Morris, the crafted object was never considered in isolation,

its wider significance and value was calculated in terms of the surrounding

forces that helped shape it. In this way, the process of craft transcended

physical work and became an invisible moral and intellectual engagement

with the material. The significance of craft had as much to do with the

invisible approaches and attitudes of the craftsman as the beauty of the

finished piece itself (Boe, 1977, p.107). As well as valuing aesthetics, the

movement emphatically positioned the value of a piece of design according

to its expression of underlying, 'invisible', forces involved in its creation. i.e.

how it was created, by whom, for what purpose, and under what

circumstances. For Ruskin and Morris, the objective of value was to strive for

completeness, unity and harmony, within the work (Cumming, 1991, p.6).

The views, and ideology of the Arts and Crafts movement are therefore

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 70

reflected in their attitude towards the process the material and the artefact of

their work.

2.3.2 Material and Technologies

The use, choice, understanding and relationship with material is a central

issue to an understanding of craft, an "act of appreciation" of the material

(McCullough, 2008, p.203). The process and notion of craft can therefore be

defined as a dialogue between the creator and material, this idea was a

central theme of the works and writings of the Arts and Crafts movement.

Using ‘nature’ and ‘history’ as key foundation stones, the Arts and Crafts

movement, typified by a desire to use and honour traditional approaches of

design, involved themselves in traditional practices, working with the solid,

stable, traditional material of craftsmen and artisans. The work therefore

reflected an embracing of traditional craft practice, as an ideological stance

against the machine and industrial process and practice. The selection and

use of material was not neutral; the choice and use of material was highly

significant, more than just an aesthetic selection, and a great amount of

emphasis was placed on understanding, seeing and 'honouring' the intrinsic

characteristics of the material. The writings of Morris in particular,

emphasized the idea of the primacy of material.

Try to get the most out of your material, but always in such a

way as honours it most. Not only should it be obvious what

your material is, but something should be done with it which

is specially natural to it, some thing that could not be done

with any other.

(Morris,1881, cited by Boe, 1977, p.69)

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 71

As a way of expressing the unity of the relationship between maker and

material, each type of material had to be used in an appropriate fashion, so

that the final piece of work would reflect the specific qualities of the material.

Morris stressed this notion of unity saying that the inherent value of the

material must be expressed in the piece of work. There must be unity

between the object and its material.

You may conquer the obstinacy of your material and make it

obey you as far as the needs of beauty go, ... be pleased

with the victory of your skill, ... and you will know that your

victory has been no barren one, but has produced a beautiful

thing, which nothing but your struggle with difficulties could

have brought forth.

(Morris, 1884)

Acknowledgement of the limitations of each type of material were seen as

opportunities for the craftsman to demonstrate understanding of, and unity

with, his material. Indeed the physical and structural limitations of the

material were readily acknowledged, serving as rigid boundaries within

which the artist was to work. 'Making the best of' or 'working with' the rules

and constraints served as a test of the true craftsman.

As to the limitations that arise from the material we may be

working in, we must remember that all material offers certain

difficulties to be overcome, and certain facilities to be made

the most of.

(Morris, 1882)

The maker was, therefore, never to disregard, break or bend, the rules of the

structure of the material so as to make something 'unnatural'. The maker

was, instead encouraged to work with and 'in sympathy' to, the nature and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 72

character of the material. Caution was advised not to make too much of the

skill of the craftsman over and above the characteristics of the material itself:

You must be the master of your material, but you must never

be so much the master as to turn it surly, so to say...you are

no longer an artist, but a juggler.

(Morris, 1882)

The choice of material was also considered important as a reflection of the

natural world and the surrounding environment. Material chosen for work

had to be appropriate to the surrounding landscape. In this way, use and

understanding material became aligned with 'moral' values of goodness,

beauty and truth and, impacted upon the value of the work.

2.3.3 Process and Skill

The Arts and Crafts movement, rather than looking toward the future for

advancement of 'industrial design' was highly interested in the practitioners

of traditional processes. Just as the material reflected the ideals of traditional

crafts, so also the processes reflected those of traditional hand

craftsmanship. History and tradition formed a strong ideological foundation

for the use and understanding of craft processes. The strong sense of

tradition and history which pervaded the Arts and Crafts movement

encouraged notions of ‘correct’ practice, i.e. that the methods, and practices

of manipulating any material was not left to individual decisions, but based

on the unchanged, processes, practiced developed via the tradition of craft

over generations. Morris spent a lot of time and detail outlining specific

processes and how they should be applied to each specific material: there

was little room for experimentation, clear judgements about correct and

incorrect methods were outlined. Seeing the process as a part of this wider

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 73

historic tradition emphasises the ideas of learnt, and practiced skill and

control, for the correct uses of material.

The special limitations of the material should be a pleasure

to you, not a hindrance... it is the pleasure in understanding

the capabilities of a special material, and using them for

suggesting (not imitating) natural beauty and incident, that

gives the raison d'être of decorative art.

(Morris, 1893)

Craft process was therefore to demonstrate practiced skill and

understanding of material. As we have already discussed, the Arts and

Crafts movement placed importance upon the mental attitude of the designer

towards the material, (Boe, 1977, p.107), as one of the invisible forces of the

practice. The skilled artist or craftsmen was to understand and to use the

material in its appropriate fashion, and this understanding was to be

practically demonstrated in the skilled mastery of material.

Emphasis on understanding the limitations and affordances of material, the

Arts and Crafts movement therefore uses the process as a means of

learning and exhibiting control over the material; a means by which both the

skill of the artist and the intrinsic values, limitations and characteristics of the

medium are exhibited. The process itself therefore becomes an important

part of the development of understanding, moving from theoretical

knowledge to practiced, skilled understanding. Each material has its own

processes which must be employed to make the 'best kind' of form for each

type of work. In this way the process is a practical outworking of the

theoretical understanding; a unity between head and hand with a strong

emphasis on skill and control. The notion of 'correct’ practice was not,

therefore, limited to correct methods of physically manipulating a material,

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 74

but extended to the correct ethos surrounding the practice: a morality which

included the process as moral fulfilment of the practice itself.

Demonstrating a holistic, moral, approach to the processes and practice of

craft, Morris therefore rejected the mechanical, 'dehumanizing', processes of

industrial design in favour of human-centred processes and practices of

traditional craft. Key to this were ideas of humanity and joy, and whereas the

industrial model enforced a division of labour, in which workers were

involved only in a single part of the process, part of the 'machine', the craft-

centred process extolled ideas of individuality, wholeness, humanity and joy,

in which the worker was involved in the entire process. 'Humanity' was

expressed as joy in making, William Morris (1882) stated that the process

and practice of craft should be "a joy for the maker and the user", a moral

dimension of work which provides "happiness to both maker and user" (Boe,

1977, citing Morris, 1879, p.116). The processes and practices of industrial

design were therefore rejected by the followers of the Arts and Crafts

movement not only from an aesthetic standpoint, i.e. rejecting the quality of

the resultant object, but also from a moral standpoint. Process and

'workmanship' for Morris was not merely a way of creating products but an

end in itself. The human experience of joy and honour from labour was

something which was lost by industrialised mechanical processes, and

which, it was argued, could only be gained from traditional craft practice.

Morris emphasised the idea that the process of work should reflect individual

human endeavour and imperfection, rather than 'mechanical perfection'. The

humanity of the object, i.e. what it represented in terms of human endeavour,

and labour, became bound up with the moral and aesthetic value of a piece

of work. Absolute geometrical perfection was dismissed and mistrusted in

favour of the imperfection of the handmade object (Cumming, 1991, citing

Ruskin, 1849, p.12). Perfection, said Ruskin, was the reserve of God alone

(Cumming, 1991, p.14). The practice of craft can therefore be seen as a

unification of the head and hand, the thought and actions of the creator upon

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 75

a given material (McCullough, 1998, p.29). The final object thus gained

significance as a manifestation of the mental and physical engagement of

the craftsman, a visualization of the balance between the three core themes

of the movement: material, humanity and environment.

2.3.4 Object and Artefact

The resultant object of the Arts and Craft movement highlighted attitudes

promoting the traditional, ‘human’ process and emphasis on the importance,

choice and use of material. The designed object was more than the final

piece of work and instead stood as a symbol of the wider social,

environmental and moral forces that formed it; expressing the beauty of

natural form, honour to material and reflecting the process and workmanship

of artist. For Ruskin and Morris the crafted object was never to be

considered in isolation, its wider significance and value was calculated in

terms of the surrounding forces that helped shape it. The value of the crafted

artefact had as much to do with the invisible approaches and attitudes of the

craftsman as the beauty of the finished piece itself (Boe, 1977, p.107). The

final object thus gained significance as a manifestation of the mental and

physical engagement of the craftsman; a product of the balance between the

three key themes of material, humanity and environment.

The finished crafted object bears the visible hand marks of the craft process

and the less explicit ‘marks’ of the mental process of its creator, thus

becoming a unification of the physical and mental processes that formed it: a

result of both the physical (visible) and 'mental' (invisible) forces acting upon

the unformed material. Through seeing and touching, the viewer may be

able to glimpse the practiced mental and physical skill involved in its

creation, and the skilled understanding of the artist. The crafted artefact

reflected ideas of pleasure; pleasure from work and pleasure from use:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 76

"Sound ornament was, for both [Ruskin and Morris] ... the sign and

guarantee of the spiritual dimension of human work" (Fuller, 1988, p.127).

Another facet of the Arts and Crafts movement ethos was its environmental

concern, which expressed itself in use of material which has 'sympathy' for

its surroundings, as well as an emphasis placed on nature as inspiration for

work. The Arts and Crafts movement emphasised the idea that the final

object should demonstrate links with environment both in terms of the

material and form of the object. Ruskin gives clear examples of the

importance of unity between object and environment. In the ‘Nature of the

Gothic’, Ruskin (1977 [1853], p.11) speaks of the "brotherhood between

cathedral and Alp". Ruskin's emphasis on the natural form is highlighted by

Boe (1979, citing Ruskin, 1849, p.88) in which Ruskin is quoted to espouse

the 'nobility' of natural form, even to the point that "forms which are not taken

from natural objects must be ugly".

2.3.5 Summary

Informed by a strong moral and ethical approach to craft and traditional

practice; the Arts and Crafts movement can be summarized by ideas which

highlight the unity within the process, the primacy of material and the value

of workmanship, reacting against the ‘mechanical perfection’ seen to be at

odds with nature. The movement placed significance on the process of

making as a highly valued expression of unity between worker, material and

environment. Placing emphasis on the skilled understanding and use of

material, the movement encouraged an approach to practice in which the

maker was to 'honour' his material; i.e. to create work which makes the best

expression of the chosen material without 'twisting' it beyond its natural

means. Importance was placed on the final designed artefact, not as an

object considered in isolation, but as an expression of true workmanship.

Although, on reflection, the movement can be criticised for its dogmatic

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 77

moral and absolutist approach to ‘good’ and ‘bad’ design, i.e. design that

expressed aesthetic and moral values, the Arts and Crafts movement has

become an important foundation for later design movements, and an

important case-study for this thesis. The approach towards design which

emphasises the importance of the process, skilled use and understanding of

the material, and unity between process, material and object are all core

elements of the Arts and Crafts movement which form its design legacy and

influence.

2.4 Summary of Contextual Study

Having highlighted the different approaches, and processes including both

digital and traditional design, the research is now able to consider where

computational design 'sits' with reference to the ethos, materials, processes

and objects of both digital and arts and crafts design. By taking an

overarching view of the contextual study, key themes can be seen to emerge

which highlight areas of overlap between computation and the areas of

digital and traditional design.

The shared digital environment which both software-based design and

computational design inhabit, give these areas some natural and obvious

areas of commonality. Closer examination, however, of the 'invisible' ideas,

attitudes, motivations and approaches towards the process and material of

design reveal areas of commonality between computation and craft; a

commonality of ethos which influences and directs subsequent approaches

towards the process and material of work. The following diagram offers a

summary of the shared themes of each element of design which have

emerged from this section of the study. The lighter shaded areas highlight

the key distinctive elements of each area, whilst areas of commonality

between computation, arts and crafts and digital design are darkly shaded.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 78

Arts and Crafts > < Computation > < Software-

centred

traditional material

physical process

primacy of material

handmade ethos

culture of making

original object

uncertainty and

randomness

logical rule syntax

digital environment

fluid object

no clear ethos

technology driven

re-mix aesthetic

import/ export

process

Table 2:1 A table outlining where computational design intersects with Arts and Crafts and
software centred design.

The table highlights some key areas of commonality and difference in

relation to computational and software-driven design, and offers some

notable intersections between the Arts and Crafts movement and

computational areas. Whilst both software-centred and computational design

share characteristics which reflect the common characteristics of the virtual

digital universe, the logic and syntax of the rule-based structure of the

computational environment marks an area of clear distinction from the

processes and ideals of the re-mix world of software-driven design.

Despite obvious differences between the material and physical process of

the Arts and Crafts movement and computational design, the diagram

highlights interesting thematic intersections between these two areas. A

common ethos based on the primacy of material, the value of 'hand-making',

and a emphasis on uncertainty within the process gives rise to a shared set

of values which informs both processes and transcends physical differences

between these areas.

Core attitudes and ideas of the Arts and Crafts movement which place great

emphasis on the significance and importance of the material and the process

of work are reflected by the mental engagement of computational designers,

and their keenness to use, understand and be 'true' to their computational

material. The desire to move beyond the perceived limitations and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 79

boundaries of point-and-click software, towards a process of handmade,

individual tools is driven by the idea of the potential of the computer as an

new medium in its own right. Dissatisfaction with the limitations of digital

media can be seen to echo the reactionary attitude of William Morris against

mechanization. David Reinfurt (2005, p.2) observes that Muriel Cooper's

"critical relationship" towards the tools and materials and the expression of

her desire to confront the "mundanity" of software tools "sounds as if it were

written by William Morris in 1872". In the introduction to Design By Numbers

(Maeda 1999) a similar connection is made toward the rigorous approach of

John Maeda his work.

The most important part of Maeda’s production ... is not the

final object, but rather the process. In his work, the process is

the core that informs the final outcome. Maeda’s

fundamental idea is that to successfully design with a

computer, one has to design, or at least understand, the

program one uses.

(Antonelli, 1999, p.10)

Computational designers highlight a desire to use, understand and explore

the potential of the computer; to hack, play and experiment with code to

generate individual, 'handmade', pieces of work, emphasizing an ethos in

which the process of creating forms a vital part of understanding and

bending the rules of code. The process of working with code can therefore

be seen as a means of understanding and 'mastering' the computer as a

medium. Just as the ethos of the Arts and Crafts movement informed their

work, so the recognition that the computer can be approached as a kind of

material reflects and informs the process and approach of computational

designers work. Attitudes expressed explicitly and implicitly through the work

of computational designers such as Marius Watz, Daniel Brown and Casey

Reas emphasise the formal aspects of code as a type of material, and their

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 80

need to master the medium in order to be fluent and expressive with it.

Computational design can therefore be seen to represent an interesting

combination of attitudes from Arts and Crafts and digital design.

The inter-relationship of computational design, digital design and Arts and

Crafts highlights the way in which, despite the shared environment of

software and computation, the approach and attitude of computational

design towards the process, practice and material of computing 'as material'

highlights important linkages with the those of the Arts and Crafts movement.

Although computational and digital design share a common environment in

which digital objects are produced, the core ideas of skill, process, practice,

understanding and 'hand making' are characteristics which underpin and

motivate computational work, and distinguish it from software-centred

design.

2.4.1 Computation as Craft?

The consideration of computation in the light of the Arts and Crafts

movement opens up interesting potential new ways of understanding the

computational environment. Do the links with ideas regarding the approach

ethos to the traditional approach of the Arts and Crafts mean that practice of

computation can be considered more broadly alongside traditional craft

practice? Does the practice of computation place emphasize the process of

engaging with material in a way in which is not reflected by software-centred

design practice? The lack of the physical or tactile elements of computational

work presents some obvious problems to this idea, however in recent times,

and in the light of new technologies, the literature of traditional craft has

been extended to include non-physical, digital objects and processes.

In her PhD research, Jane Harris (2000) explores the use of digital

technology in relation to practice of textile design. Her thesis explores the

linkages between digital environment and traditional making, establishing

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 81

links which move the idea of craft into the digital arena, challenging tradition

roles of craft 'making'. Links are made between the digital and physical

process which emphasize the ideas of craft as process of challenging and

"understanding the strengths and weakness of material" (p.66), whether

digital or physical and extending the process of craft as a sense of "enquiry

into the potential of chosen media" (p.73). Her work highlights the close

mental approaches between digital and traditional processes.

The two processes are “physically” very different experiences,

but mentally there are similarities.

 (Harris, 2000, p.85)

Similarly Hillary Carlisle (2007) explores the practice of programming as craft

within context of textile design, specifically the use of C++ programming to

create non repeating patterns and exploring the use of code as a "new craft

practice".

The examination of craft within the broader context of digital technology is

also the subject of broad debate and discussion within the craft community.

The Challenging Craft (2004) conference run by Gray’s School of Art

presented a number of papers were which proposed conceptual notions of

craft when applied to the digital realm. An example being Gilbert

Riedelbauch 'Craft and New Technologies' (2004), a paper which explores

the creative integration of rapid-prototyping into the realm of craft practice.

Although the focus of this study is on the specific use of computation, rather

than other digital software processes, viewing craft within this broader

context provides a useful background to the discussion regarding the use of

computation in relationship with creative craft practice. Being able to take a

more conceptual view of craft introduces a broader dimension to the

discussion, enabling the process of computation to be more firmly linked with

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 82

craft, allowing ideas of craftsmanship to be applied to the process of

computation.

Using an understanding of craft which emphasises a practiced investigation,

skilled understanding and mental engagement of a material whether physical

or digital (Harris, 2000) brings computation more clearly in line with craft,

allowing greater comparisons between computation and craft to be made.

The emphasis on process, material, understanding and handmade objects of

the computational design can therefore be aligned to a broader, conceptual

understanding of craft practice. An overlap becomes identifiable between the

ideas of computational designers who take a real interest in their medium,

with the practiced investigation of material of the craft process. This is a

strong theme which runs through the work and ideas of computational

design and designers. Several designers make these connections clear

when commenting upon their work. David Crow (2008) outlines a 'new'

interest in craft highlighted by the exploratory nature of designers within the

realm of new digital material. The designer Yugop Nakamura outlines the

influence of traditional craft upon his own work using code highlighting ideas

of the ‘spirit of craft’ in the work (Nakamura and Fitzpatrick, 2008). Whilst

Marius Watz reinforces the craft approach natural to the computational

process:

... I think many artists (and designers) who work with digital

media are rediscovering the issue of craft, both in terms of

attention to detail and as a way to get closer to the medium.

That is certainly true for artists working with computational

media

(Watz, 2006)

Jared Tarbell outlines his own engagement with the process of programming

as a creative and conceptual "deep trance" (Tarbell, 2007, p.158), which

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 83

engenders the concept of 'flow' cited by McCullough (1998, p.198) as a craft-

like engagement with a material which offers a "sense of continuum of

possibilities". This idea of engagement with the process of computation as

‘flow’ is reinforced by McLean and Wiggins’ (2010, p.9) own observations:

"Speaking anecdotally, programmers report losing hours as they get 'in the

flow' when writing software".

The idea of computation as craft has also recently found expression via a

number of high-profile curated exhibitions most notably the British Council’s

My World: New Subjectivity in Design (2006), the Lovebytes 'Code:Craft'

show (2010), and the Victoria and Albert exhibition Decode: Digital Design

Sensations (2010). Each of these shows make and explore links between

the ideas of materials and making in the context of digital and computational

work, featuring the work of well established names from the computational

design arena: Daniel Brown, Golan Levin, Casey Reas. The following text

taken from the My World exhibition features the work of Daniel Brown and

makes the link between his digital, computational work and craft:

Digital technology is one of the most intriguing and

unexplained places we find a new kind of craft. It is clear that

craft in many senses – ingenuity, brilliant technical

manipulation, deliberate and unique personal expression –

does exist. The practitioners that manipulate pixels with the

most affecting results the are the ones that have craft.

(British Council Arts, 2005)

The idea of, and attitude towards, material is clearly important to both craft

and computational design, and provides the foundational corner stone which

both practices share, namely the key themes of making, skill, mastery,

understanding of material and the 'handmade'. The computational ideas of

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 84

'handmade' play, process and understanding can therefore be seen to reflect

the ideals of craft.

2.4.2 Contextual Review in Relation to Practical Project

The focus of this research is on the investigation of the practice of using

code as part of creative design, viewed from the perspective of a practitioner

moving into the realm of computation for the first time. The focus and

investigation of the work therefore centres around the process and

development of practical work. Although the linear nature of this research

document suggests otherwise, the development of practice was not started

directly after the contextual review, but was begun and developed alongside.

Computational sketches, tests and experiments were developed during the

contextual study and research phase. Developed understanding and ideas

from the contextual review therefore gradually informed the development of

initial tests and experiments as the practice was begun. Initial phases of the

first project (the Colorcam work, chapter 3) reflect initial attempts at use and

understanding of programming. This early stage of work was influenced by

early work and research reflected by the contextual study, and in particular

the work of John Maeda, and a visual aesthetic of computational drawing

based on ideas of recursion. As the contextual review developed more

shape and form, clearer links and ideas, which related the practice of

computation in relation to the Arts and Crafts movement emerged. This

linkage was developed during contextual work, and focused the early simple

line drawing experiments towards a defined goal, which connected the

practice and contextual research.

The inclusion of the Arts and Crafts movement as a specific 'case study' in

the contextual review provides a wider lens through which the context of

computational design can be more clearly seen. Links and comparisons

between computational and traditional design provide both an important

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 85

basis for the practical element of the project, and an aesthetic and

conceptual focus for the work. The thematic overlap between traditional and

computational design practice highlights commonality between ideas which

emphasize the significance of material and value of process. Both traditional

and computational design practice can be seen to place significance upon

the primacy of 'material', either as tangible, physical material, or as the

computational 'material' of code. Core values of traditional Arts and Crafts

design is reflected by computational designers expressing a keenness to

understand, use and be 'true' to their computational material. This

intersection between traditional and computational design, the shared

emphasis on the value of process and respect for material, therefore

provides important conceptual direction for the practice. Conceptual

inspiration and direction for the practical project comes from a personal

desire to use and understand the 'essence' of the computational material, to

move beyond the software short-cuts and 'effects' and apply an Arts and

Crafts attitude which emphasizes the importance of process and material

within the work.

The practical project work will therefore be created by direct use and

manipulation of code, removing the 'layers' of software usually encountered

between the user and the material. Starting with the unformed raw material

of code, shapes, objects, lines, forms and colours will be sculpted and

generated via individual algorithms and instructions written to shape and

sculpt the on-screen visuals. All visual elements will therefore be created

'from scratch' by handwriting the code. 'Processing' will be used as the

computational environment for creating the work: a language specifically

designed to allow for direct manipulation of code for generating graphics.

The requirement to 'hand make' each visual element of the work underlines

the idea of working to attain a fundamental understanding of the 'essence',

the core characteristics, of the code. The simplicity and directness of the

process highlights both the concept at the heart of the practical work and the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 86

value of process as a means of using and understanding the 'material'.

Emphasis on understanding through making reinforces the conceptual focus

of the work, linking it conceptually and aesthetically with values of traditional

design, embodied in the Arts and Crafts movement.

Aesthetically, the decorative, botanically inspired work of the Arts and Crafts

movement, and in particular the repeating, organic, flowing shape and

pattern of Morris' wallpaper design, also provides an important reference and

influence for the computational shape form and pattern.

Figure 2.5 Willam Morris' 'Willow' wallpaper design

Figure 2.6 William Morris' 'Jasmine' wallpaper design

The flowing organic lines, leaves, flowers and stems of Morris' 'Willow' (fig.

2.5) and 'Jasmine' (fig. 2.6) wallpaper designs, in particular, provide a key

visual reference for the computational work, as it explores conceptual and

practical links with traditional practice. Taking visual influence from William

Morris' wallpaper design and applying it to computational work, the practical

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 87

project work is summarized by the title 'computational wallpaper'; a title

which highlights the overall focus of the practice i.e. one in which organic,

fluid lines, shapes and forms of stem, leaf and flower are created as a series

of computationally generated pieces of work. The intention of the

computational wallpaper work is therefore to re-apply elements of the Arts

and Crafts aesthetic, and specifically Morris' 'Jasmine' and 'Willow' designs,

into the computational environment. The development of computationally

generated, botanical shapes and forms will be used as a means of

investigating and understanding the formal aspects of programming code, its

syntax and structure.

The computational wallpaper project work is therefore a series of

computationally generated, screen-based digital decorative shapes and

forms. Hand-written programming code is used as the single source

'material' and means for creating the digitally generative pieces. The

application of the Morris wallpaper aesthetic into the computational

environment; combining the computational hand-made ethos and process of

programming with the aesthetic of the Arts and Crafts wallpaper, provides a

way in which resonance between code and making can be developed and

explored, both conceptually and visually. The computational wallpaper

element of the research is divided into two core projects: the 'Colorcalm' and

the 'Moving Wallpaper' project. These projects are unified by the same

'computational wallpaper' idea, and provide a framework from which a broad

comparison of computational processes can be made. The stages of

development for both pieces of project work are mapped out by project

diagrams (fig. 3.1 and fig. 4.1) which give an overview of each project. The

structure of these diagrams illustrate the way in which projects move from

experiments towards final pieces of work.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 88

3 Colorcalm Project

As has been outlined in the previous chapter (2.4.2) the overall intention of

the practical project is to create computationally generated shapes and

forms, conceptually and aesthetically inspired by the wallpaper design of

William Morris. The Colorcalm project represents the first body of work

developed as a computationally creative project and is followed by the

Moving Wallpaper work, which builds on and develops the work of the

Colorcalm project.

The Colorcalm project is defined and unified by the idea of 'computational

wallpaper', a concept which runs through both projects, creating work which

explores core values of the computational environment, and which seeks to

reflect the concept and the aesthetic of the Arts and Crafts movement.

Emphasizing the importance of process and material, flowing botanical

shapes and forms, inspired by Morris' 'Willow' pattern and 'Jasmine' designs,

are 'crafted' from hand-written code as a process of gaining personal

understanding of the computational material. The intention of the Colorcalm

work is to reflect the importance of material and process in creating

computationally 'crafted' work. This project therefore explores the

fundamental elements, the building blocks, of programming code, which

define the basic abstract logical structure of the computational material.

Individual algorithms, variables and mathematical functions are used as a

means of creating and sculpting a computational system to generate shapes,

curves and flowing botanical forms which resonate with the shape and

pattern of the William Morris aesthetic. Each step of the process is

documented to show clear development and thinking, as the impact of each

element of computational material is examined and considered at each

stage. The systematic nature of the documentation emphasizes the

significance and importance of process to the project, as the work explores

and expresses core values of computation as material.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 89

Figure 3.1 (next page) shows a visual overview of the development of the

Colorcalm project in the form of a screenshot from the web page, available

at http://www.random10.com/colorcalm_research. The page provides

examples and source code of each piece of work when individual thumbnails

are clicked. The web site and source documents are also available on the

CD included as appendix 4. The performance of these java applets the will

vary according to the browser and operating system upon which they are

run. Outlines of the key elements of source code for each of the stages of

the work are available in appendix 1.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 90

Figure 3.1 An overview diagram of the Colorcalm project available at:

http://www.random10.com/colorcalm_research/

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 91

3.1 Initial Line Drawings

The first phase of the Colorcalm project can be characterized as the initial

'mark making' exercise. It is the phase in which the first lines are created

determining and defining, in computational terms, the fundamental

conceptual foundation of the project. Before a line can be created initial

decisions have to be made regarding the nature and the concept of a 'line'.

Key questions have to be answered which establish the scope and the

direction of the work; how the line will be drawn, what key data elements will

define the nature and type of line. This phase is therefore the first attempt at

answering these questions in order to establish a direction and context for

the rest of the work. It is a key phase in which basic material properties are

explored and expressed.

3.1.1 Code

The computational set up which creates the marks is defined as being an

iterative process of a moving single mark across the page. A single line is

plotted at a point on the screen and its position is then re-calculated using a

simple algorithm and re-plotted. As the object moves across the screen so it

leaves behind a trail giving the illusion of a continuous line being drawn.

Simple numeric variables are used to control the direction of each small

point which affects the overall shape of the line, its width and its length. The

key data elements in this piece of work are the timer, angle, radius, x

and y variables. Each of these variables form direct associations between

the computational concept and the visuals. The core variables, and their

impact on the visuals of the line can be summarized as follows:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 92

Variables Description

x, y the location of the line on the screen. Values for x and y are the result

of calculations using the other variables (width, radius etc.). The values

are 'reset' when a 'new' line begins drawing.

timer a timer variable is used to allow control of the intervals at which the line

is drawn. It is a incremented value which marks the passing frames,

and used to dictate the speed of the drawing machine. The timer is also

used, in some initial tests in the calculation which re-positions the point.

angle

a variable which is used to recalculate the next position of the line, the

manipulation of this value is key to altering he shape of the line.

radius a variable to determine the distance moved by the line in each frame,

which affects the speed of growth: A large radius value will re-draw a

large section of the line each frame and give the impression of a fast

drawing.

w a value to set the width of the line for each frame. Altering this value

during the drawing allows the line to get thicker.

inc a value to determine the amount by which the angle value is to be re-

calculated (incremented).

Functions

lineDraw () a function which contains the algorithm to calculate, plot, and re-draw

the line.

reset () a function to reset all the variable values to begin redrawing the line.

Table 3:1 A list of key variables and functions from the initial line drawing stage: Colorcalm

3.1.2 Visuals

The work at this stage is characterized visually as very simple repetitive

marks and lines on a page. A small line moves across the screen leaving

behind a 'trail' which forms the entire line (fig. 3.2). This process is repeated

to create a number of different lines (fig. 3.3). The effect of the line-trail,

combined with intermittently layering of a transparent colour over the top of

the screen allows the movement of a single object to give the impression of

many lines being drawn on top of one another giving a multi-layered

appearance to the work (fig. 3.4). Once the piece is set up and running,

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 93

there is little variation in the 'quality' of the lines. Variations of this work

develop and explore some of the basic visual qualities of the line such as

width, shape, and growth speed of the repeated line (fig. 3.5). Lines look

simple and 'mechanical', reflecting the simple computational system which

created them.

Figure 3.2 Screenshot from ‘lineDrawingSimple2’ (2006) accessed from:

http://www.random10.com/colorcalm_research/2setting_parameters/applets/lineDrawingSim

ple2

Figure 3.3 Screenshot from ‘lineDrawingSimple3’ (2006) accessed from:

http://www.random10.com/colorcalm_research/2setting_parameters/applets/lineDrawingSim

ple3

Figure 3.4 Screenshot from 'lineDrawingSimple3c' (2006) accessed from:

http://www.random10.com/colorcalm_research/2setting_parameters/applets/lineDrawingSim

ple3c

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 94

Figure 3.5 Screenshot from 'lineDrawingSimple3f' (2006) accessed from:

http://www.random10.com/colorcalm_research/2setting_parameters/applets/lineDrawingSim

ple3f

3.1.3 Process (manipulation / control / skill)

The structure of the code allows the shape, width, length and speed of the

line to be modified within the limited parameters of the programme. Direct

manipulation of the key characteristics of a basic line is afforded via the

allocation of individual variable values. Manipulating simple aspects of the

number values (e.g. angle or inc) alters the qualities of the line. Changes

within the lineDraw() function, relating to the way the angle is

recalculated, allows simple basic connections between numeric manipulation

and visual output to be made. Different calculations of the angle increment

value (inc) yield different line shapes and alter the quality of the line:

Changes to 'inc' value Type of line

inc= inc + 1; curve.

inc= random (-1, 1) ; random jaggy line.

inc += random (-1, 1); line with random curves.

inc = sine (angle) * 4; flowing sine wave.

Table 3:2 A list of calculations which alter line shape: Colorcalm

Line weight is manipulated by setting the initial width of the line and altering

the amount by which the width is decreased. Larger values of decrement

yield shorter lines. For example:

w = w - 0.4;

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 95

Line speed is controlled by frequency of the call of the lineDraw() method.

For example the following code from the 'lineDrawSimple1' sketch calls the

function to draw the line every two frames.

if (timer % 2 == 0) { lineDraw ()} timer ++:

Simple associations between logical comparisons and numeric values are

made to affect the nature and type of work. For example the following code

makes a decision regarding the minimum width of the line.

if (w < 2) { reset () }

In addition to the way in which altering main variables makes changes to the

nature of the line drawing, there is also an inter-connectedness of visual

elements which may not seem to be otherwise connected. For example the

structure of the code means that the width of the line helps to determine the

line length: i.e. the line continues to be drawn and gets longer, until its width

reaches a minimum value. Line speed can also be affected by the radius

value which determines the size of each line 'segment'. Drawing large

segments during each frame gives the appearance of a faster moving line.

These basic associations between number and visuals establish an

immediacy and directness in the development and use of computational

material. Changes are easily made as the number values are altered

allowing simple visual qualities to be explored. There is a simple directness

between the code and the visuals allowing easy experimentation with

individual number values which affect the visual qualities of the line. The

limited parameters established at this point, however limit the visual range

and expression of the work.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 96

3.2 Developing More Lines (branches)

The next phase of the Colorcalm work alters and develops the computational

system and structure in order to accommodate a greater number and variety

of lines, expanding the visual range and 'vocabulary' of the work. A core

element of the project is to create work which is visually rich and expressive,

allowing the material the ability to generate a wide range of shape and

forms. The capability of the material for visual expressiveness and a greater

range of visual work therefore begins to be explored.

The main change in this stage relates to the introduction of an object-

orientated (OO) structure into the code. The idea is that the object orientated

structure can be used to create a robust, generic line 'class' which can

accommodate a greater range of visual vocabulary and expression for the

rest of the work. The concept of a single line is 'abstracted' into a Line

'class'1 which enables a greater number and variety of lines to be created.

The Line forms the conceptual and visual foundation for the rest of the

development of the project, defining the key parameters and characteristics

for all subsequent lines and determining the key elements and principles to

be developed.

3.2.1 Code

The use and abstraction of the line into a Line class is an important

conceptual step which establishes the fundamental properties of a 'line', and

which is used as the basis for all other lines (see appendix 1.2). The main

functions of the Line are summarized as follows:

1
 A 'class' can be described as the computational concept for an element in the programme - a computational

template from which many similar objects can be created.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 97

Line Class

Function Description

Line () a constructor function to set up the variables - the basic

properties of each individual line.

init () a method to (re)initialize variables, to restart the line.

run () the main method keeps drawing the line or resets the line

to start again, by calling either plotpoint () or init ()

functions.

plotpoint() translates the stage to position xpos, ypos / calculates

new xpos, ypos (based on angle and radius), draws a

rectangle at point (0, 0).

incrementShape () a calculation to change the x, y, width and angle of the

piece. The angle is recalculated according to a sine wave

- make the line more link a wave.

Table 3:3 A list of functions from the Line class: Colorcalm

The core variables which allow the shape of each individual line to be

manipulated remain the same as those outlined in stage one (table 3.1).

Additional variables are included into the Line to control some of the

structural and logical elements of the new data structure and to help develop

the branching structure.

New branches are added via the addition of a 'recursive' element defined

within the body of the line class. Recursion is a way in which a computational

object creates a new instance of itself by a self-generating function. In this

case the Line contains a recursive function which generates a new Line

(as a 'branch'). The recursive function is called and branches are generated

by a conditional statement which checks the number of segments which

have been created. New variables are added to count the total number of

segments for a line (segNum) and the current number of segments drawn by

the line (segCount) and used to trigger the recursion:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 98

 if (segNum - segCount == 60) {

 // new Line ()

 }

The nature of this recursive process means that every line therefore inherits

the same branching structure. Each line contains the functionality to add new

lines (branches), and does so in the same way each time. This means that

all the lines have the same structure and appearance.

3.2.2 Visuals

The visuals at this stage in the process have developed only a little from the

previous stage. In terms of visual quality, each individual line maintains the

same visual attributes as the previous examples. The key visual

development is that of the branching structure which is a reflection of the

changes made to include recursive functionality. The branching structure

allows more lines to be drawn and affords the possibility of lines to generate

other lines, however the range of visual expression is limited; most of the

lines drawn are essentially the same. There are more lines generated,

however more lines generate an increasing amount of similarity rather than

difference (fig. 3.6); individual branches repeat the same quality and curve of

line. Although the visuals are beginning to show some basic plant-like

branching structure, they are still rather mechanical and lack the subtle

variance and organic 'randomness' of botanical forms, which give Morris'

'Jasmine' and 'Willow' designs their visual liveliness.

Figure 3.6 Screenshot from 'lineDrawingSimple3fOOP3' (2006) from:
http://www.random10.com/colorcalm_research/3oop_simple/applets/lineDrawingSimple3fO
OP3

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 99

3.2.3 Process / Manipulation

Manipulating the form of each individual line remains fundamentally the

same as in the previous stage; the core attributes of width, angle, x, y and

radius remain unchanged, and the 'quality' of each individual line is

manipulated by altering the algorithm to re-calculate the angle.

In addition to the ability to manipulate individual lines, the addition of the

recursive functionality extends the possibility of altering and manipulating the

overall 'structure' of the plant shape. Manipulating structure means finding

and changing the conditional statement used to govern when new branches

are added, which is determined according to how many 'segments' have

been drawn. Altering the conditional statement causes branching to occur at

different times:

Conditional statement Branch frequency

if (segCount == 40) branch after 40 segments.

if (segCount % 10 == 0) branch every 10 segments.

if (segCount == segNum) branch at the end of the line.

if (segCount == segNum - 20) branch 20 segments from the end of the line.

Table 3:4 Examples of conditional statements used to alter the branching structure:

Colorcalm

The number and angle of new branches can be changed and the plant

structure, generated by inter-related lines, is starting to take shape. Although

the manipulation of each single line shape remains the same, greater ability

to manipulate the structure has been developed.

The development of the OOP structure means that the initial concept

defining the key characteristics of a single line has become more firmly

established, applying as it does to all of the lines and branches that are

created. Having established the initial concept, the Line class begins to

'solidify' as the parameters and rules governing the material of the code start

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 100

to be put into place. The concept of the class forms the bedrock for the

project as the rest of the work follows the path set by these initial conceptual

and structural decisions. The specific range of visual vocabulary is now more

clearly set and the core material qualities of the work is becoming well

defined. The OOP structure has added an extra layer to the computational

material of the work which allows the manipulation of the overall structure as

well as individual visual elements within the work. However, although more

lines can now be produced, the rules that govern each of the lines remain

essentially static; more lines can be created but are created with more

repetition and similarity. A greater degree of organic flexibility needs to be

created within the material of the work and the visual vocabulary needs to be

widened.

3.3 Variance and Difference: Inheritance

A key focus for this project is to generate computational work which reflects

the concept and the aesthetic of the Arts and Crafts movement. The idea of

the computational wallpaper is to generate work which uses the flowing

botanic shapes and forms of William Morris' wallpaper design (e.g. 'Jasmine'

and ‘Willow’ patterns) and re-apply them within the computational

environment. The visual liveliness of these botanical patterns form the

inspiration for the visual development of the Colorcalm project, as it seeks to

computationally generate a range of moving stem, branch and leaf shapes.

The need to develop a broad 'visual vocabulary' of line (which includes

change, variation and randomness) is a key idea, affecting both the visual

and computational, 'structural' element of work. The ability to introduce

'flexibility' into the project applies to both the visuals and the data structure

from which the visuals are generated. The requirement to create a

controlled, functional computational structure, which contains enough

flexibility to generate work and which possesses a visual fluidity

('organicness'), is therefore key consideration for this entire project. 'Rigid'

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 101

stable programming structures which define the attributes of a line need to

be set against the requirements which allow each line to have its own set of

qualities and attributes. Flexibility, variance and difference therefore become

key considerations for this stage of the work. Having already created a

structured drawing programme, greater consideration of the visual quality

and range of lines is required. This next phase of the project develops the

basic class structure in order to accommodate a greater degree of variance

and 'flexibility' into the structure, whilst maintaining the core essence of the

line and the ability to control and differentiate between different types of

lines.

3.3.1 Code

The basic line drawing programme is extended to allow similarity and

variance by use of OOP based 'inheritance'. The Line class, is extended,

creating new 'child' classes which inherit the core attributes of the line, whilst

adding their own unique attributes. A summary of the class and inheritance

structure is outlined in the following tables.The Line class is the 'parent'

class, used as a template for other sub-classes.

Table 3:5 Overview of Line class as the parent class: Colorcalm

Line Class: (Parent Class)

Variables Description

x x location of line.

y y location of line.

ang angle of line (direction).

r radius: distance between points on line.

w width of line.

Functions

run () keeps drawing or resets the line.

plotpoint() draws a single point of the line in its new position.

incrementShape () re-position the location of the point.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 102

The Mainline class extends Line, but includes its some of its own

methods:

Mainline extends Line

Functions Description

init () resets variables to begin drawing Line again.

run () adds a call to init () and calls makeBranch ().

makeBranch() begins a new Line object.

incrementShape () extends parent function by including specific re-

calculations for the shape (angle) of this line.

Table 3:6 Overview of the Mainline class which extends the Line class: Colorcalm

The Branchline class extends the Line and adds the following:

Branchline extends Line

Variables Description

distort a number to specify the direction of the branch (+1 or -1).

go a setting to make sure the branch does not start re-

drawing.

leafLength a variable to control length of leaf shape.

leafAngle a variable to control angle of leaf segments.

Functions

plotpoint() new variables and calculations added to allow the ability

to draw 'leaf' shapes after a given number of segments.

incrementShape() extends parent function by including specific re-

calculations for the shape (angle) of this line.

Table 3:7 Overview of the Branchline class which extends Line class: Colorcalm

The Line class describes the basic structure of the work, i.e. the

plotPoint() and incrementShape() methods. Each of the subsequent

class (i.e. Mainline and BranchLine) inherit the basic structure of the line

class and add more specific elements and characteristics. Each type of line

is therefore fundamentally the same but can differ in some key points. The

Mainline includes a method to create continuous branching lines, whilst

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 103

the BranchLine contains an algorithm to create a different kind of curve and

also creates other sub lines as ‘leaves’. Subsequent sketches develop this

central structure which remains a fixed element as more experimentation

with the detail of the work (e.g. colour, shape, leaf structure) takes place.

3.3.2 Visuals

The branch lines are now computationally separate from the main line, each

can have its own behaviour and characteristics and simple changes can be

made. Branches can have their own shape, width and length. Early

experiments at adding a 'leaf' structure is included. Visually the work begins

to look a little more organic: a greater range of flowing lines are starting to

emerge that have the potential to be developed into a wider range of organic

shapes and forms. Development of the data structure has added a greater

visual range and flexibility to the work. The material is beginning to show the

capacity to develop a wider range of visuals.

Figure 3.7 Screenshot from 'lineDrawingSimpleInhertance1' (2006) accessed from:

http://www.random10.com/colorcalm_research/4inheritance/applets/lineDrawingSimpleInher

tance1

Figure 3.8 Screenshot from 'lineDrawingSimpleInhertance2' (2006) accessed from:

http://www.random10.com/colorcalm_research/4inheritance/applets/lineDrawingSimpleInher

tance2

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 104

Figure 3.9 Screenshot from 'lineDrawingSimpleInhertance2' (2006) accessed from:

http://www.random10.com/colorcalm_research/4inheritance/applets/lineDrawingSimpleInher

tance2b

Figure 3.10 Screenshot from 'lineDrawingSimpleInhertance2c' (2006) accessed from:

http://www.random10.com/colorcalm_research/4inheritance/applets/lineDrawingSimpleInher

tance2c

3.3.3 Process / Manipulation

This stage in the process is one of structural and data development in which

the computational concept begins to widen to allow a greater degree of

visual exploration and experimentation. Although detail of how each

individual line shape is defined remains unchanged from the earliest

experiments (using the same basic numeric manipulation), the development

of the inheritance structure extends the amount by which the code and the

branching structure can be manipulated. Manipulating and changing the

visual structure involves altering the logic regarding the frequency of

branches. Details of the shape and form of each line is changed from within

the incrementShape() method of each class. The fact that each

Branchline and Mainline contains its own versions of the

incrementShape() method makes the process of change a little more

complex. The core characteristics of the material are essentially the same as

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 105

those of the initial pieces of work. However structural change has added a

further 'layer' of complexity to the computational material, not only providing

greater opportunities to develop individual elements of the work, but also

creating a more complex material structure. The addition of inter-related

classes and variables begins to firmly define the data and material structure

around which the rest of the project will be built. The inter-relationships

between individual variable elements become increasingly involved, and the

structure more 'rigidly' defined. As the variety of form grows, so the ability to

directly manipulate key elements of the work becomes less direct.

3.4 Colour, Shape and Form

Having developed the OOP inheritance structure which defines the key

concepts of the programme, the next stage of development focuses on the

parameters which have already been created, exploring the visual

vocabulary of the current system. The project moves from creating the

material structure to manipulating the material structure. Having developed a

framework which allows for a variety of shapes and forms, this phase

attempts to manipulate the detail of the material to express a wider variety of

organic, botanical elements. Manipulation of specific data within the structure

allows visual details i.e. the colour, shape and form to be altered.

3.4.1 Code

Computational developments relating to this stage of the work concern the

inclusion of a greater number of variables together with the manipulation of

existing variables and algorithms which modify three key visual parameters

of the work: colour, leaf shape and line form.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 106

Colour

Control over the colour values is afforded by the introduction and use of

variables to set and change the red, green and blue values. Variables are

initially used to set the fill, background and line colour but once set, the

values remain unchanged (fig. 3.11).

Figure 3.11 Screenshot from 'cc1' (2006) accessed from:

http://www.random10.com/colorcalm_research/5cc1_cc2/applets/cc1

During the later sketches colour values are modified so that the colour of

each line changes during the lifecycle of the drawing. Individual red, green

and blue values are allocated to the Line class; the variables are declared

and initialized in the Line() 'constructor' method, or at the beginning of the

sketch, and allocated as the stroke colour for each line as it is drawn.

tr = 95 ; // red

tg = 133; // green

tb = 44 ; // blue

stroke (tr, tg, tb);

As values are incremented, within the incrementShape() method, the

amount of red and green of each line segment is constantly altered as the

sketch is run. The following examples alter the amount of green (tg) and red

(tr) by a randomly generated value between -20 and 20.

tg-= int (random (-20, 20));

tr += int (random (-20, 20));

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 107

Limitations are put on the number values to prevent them going too far off

the scale. Logical 'if' statements used to control the minimum and maximum

values of green and red are added.

if (tg < -200) { tg =-200;}

if (tr < -200) { tr =-200;}

if (tg >456) { tg=456;}

if (tr>456) {tr=456;}

Leaf Shapes

A leaf shape is generated by modification to the width of the end part of a

branch line, using a sine wave calculation to alter its width and give it the

recognizable curvature of a leaf form. Modifications to the

Branchline.plotPoint() method includes an algorithm to generate a

'leaf shape' to the end segments of the branch line. A new leafSegment()

method is included within the Branchline class. New variables are added

within Branchline to accommodate this extra calculation.

Variables Description

leafLength max length of leaf segment.

leafAngle angle of leaf from branch.

xEnd x endpoint of leaf.

yEnd y endpoint of leaf.

Table 3:8 A list and description of new variables added to the Branchline class: Colorcalm

Along each segment of the branch a series of lines are drawn to create the

leaf shape. The length of each of the lines is determined by a sine curve

calculation, in which the width of the branch line is used to determine the

size of the leaf.

float lineLength = sin (radians (counter))*w*8:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 108

This lineLength value is used to calculate a point at a set angle from the

branch:

xEnd = cos (radians (leafAngle)) * lineLength/n+ xPoint;

yEnd = sin (radians (leafAngle)) * lineLength/n+ yPoint;

The width of each leaf is kept relative to the width of the branch line it is

attached to, so as the width of the line gradually peters out so does the leaf

shape. The mathematical sine curve calculation ensures that each leaf

maintains an even, constant shape. Variations in the amount and type of

lines created to form the overall leaf shape yield a variety of results:

Figure 3.12 Screenshot from 'cc2a' (2006) accessed from:

http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applets/cc2a/

Figure 3.13 Screenshot from 'cc3' (2006) accessed from:

http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applets/cc3/

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 109

Figure 3.14 Screenshot from 'cc4' (2006) accessed from:

http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applets/cc4/

Figure 3.15 Screenshot from 'cc5c' (2006) accessed from:

http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applets/cc5c/

Figure 3.16 Screenshot from 'cc6b' (2006) accessed from:

http://www.random10.com/colorcalm_research/6cc2_cc7_leaves/applets/cc6b/

Line Form

The shape of each Branchline and Mainline is controlled within the

incrementShape() method, using the same re-calculation of angle as

established from the initial stages of development: sine wave, random and

increment calculations (table 3.2). However, the addition of new variables

used to modify the details of the sine wave calculation produce a different

kind of looping line:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 110

if (ratio < 80) { inc = 1; }; // minimum ratio

if (ratio > 220) { inc = -1 ; } //maximum ratio

ratio += inc;

frequency = 0.05;

magnitude = frequency * ratio;

timer += frequency;

angle += sin (timer)*magnitude;

The key factor here is that the magnitude value used to create the sine

curve is altered to a changing value rather than a static one; sliding between

a minimum and maximum value. As the value of magnitude gets 'bounced'

between a minimum and maximum value, so the shape and curvature of the

curve alters. Generating the code for this simple looking line proved to be

more complex than had been first imagined. In addition, a ratio value is

made into a variable value which is randomized and used to give each new

line its own curvature setting, producing shallow or tight loops.

Manipulation of numbers via mathematical calculation is the means by which

the essence of the shape and the aesthetic of the line is controlled.

Changing the detail of the sine curve calculation and manipulating the

magnitude and ratio values alters the shape, form and quality of the line.

Figure 3.17 Screenshot from 'cc_basicVersion' (2006) accessed from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_basicVersion

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 111

Figure 3.18 Screenshot from 'cc_basicVersion2' (2006) accessed from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_basicVersion2

Figure 3.19 Screenshot from 'cc_march_03' (2006) accessed from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_march_03

3.4.2 Visuals

This stage of the process is characterized by visual experimentation and

development. Details of the code are manipulated to change the visual

elements of the line; colour, leaf shape and line form. The computational

ability to control the details of line shape, colour, leaf shape and branching

structure make these later pieces of work develop visual complexity, whilst

remaining clearly linked to the conceptual core established at the start of the

work. The structure has added more details which can change and control

the visual pattern of the work. It is noticeable however that whilst

development of the visuals reflects the development of detail within the

computational structure, the overall combination of all the changes together

does not necessarily make for a coherent or visually successful piece of

work. There is no immediate correlation between the 'success' of the work

with regard to computational functionality and its visual success. An example

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 112

of this may be seen in the use of colour. The introduction of variables within

the structure allows colour elements to be changed and manipulated,

however the changes to red and green values are made in a rather

overstated and visually crude manner.

The work at this point therefore reflects the added complexity and

functionality within the computational structure, but careful selection of these

functions has not necessarily been used. This may be due to the fact that the

work is being judged and assessed from a programming standpoint, and its

success is bound up in the pleasure of 'getting the script to work'. The work

is still attempting to include all functions possible which may be used with

greater effect later on. Although some experimentation with form and visuals

is being made, judgments regarding the 'structural' and functional aspects of

the work are uppermost.

3.4.3 Process / Manipulation

This stage of the Colorcalm work is characterized by mathematical

manipulation of the detail of the visuals. Colours, shapes and forms are

represented by numeric values and algorithms within the line and branch

drawing system. Calculations using sine, random and incrementation are

used as the means by which these values are altered and changed. Key to

developing the shape of the curve is the manipulation of the sine curve

calculation. Rather than using a consistent sine calculation to re-calculate

the angle, which would yield a regular unchanging curved line, the

calculation was changed so that the magnitude setting was altered giving

less consistent results, creating a curved line that changed and contained

variance (e.g. fig. 3.19). Using the same sine curve and altering the

magnitude calculation also produces different 'types' of leaf shapes (e.g.

example see fig. 3.12, fig. 3.13, and fig. 3.14).

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 113

Much of the Colorcalm work involves allocation of numeric variable values to

specific line attributes and the subsequent manipulation of these values

through simple mathematical calculations. Combinations of algorithms, e.g.

randomness, incrementation or other simple numeric transformations, are

used to change the specific visual attributes. Although the computational

structure has been developed throughout the process, the work remains true

to the core computational ideas developed in the initial line drawing sketches

i.e. assigning number values to represent line position, width and colour. The

intrinsic 'values' of the computational material remain the same.

This stage of the work emphasizes the manipulation rather than the creation

of the computational structure. The introduction of variables and individual

data elements allows a direct means of experimentation with core elements

of the programme which directly affect the aesthetics. The mathematical

modification of individual values alters the way or rate of change and directly

affects the on-screen visuals. Even sight changes can significantly affect the

colour, shape, speed and type of movement. This represents an

experimental part of the process which introduces a more 'playful' element to

the work.

3.5 Petals and Flowers

Having defined the structural detail of the work and having created the ability

to generate and manipulate line shape, colour and the branching properties

of the drawing, this phase of the work attempts to expand the visual

vocabulary of the lines by adding leaf and petal shapes. This is done in order

to develop visuals which have a closer resonance with the organic, flowing,

patterns Morris used in his wallpaper design. The aim is to begin to move the

work closer towards the aesthetic pattern of the Arts and Crafts movement

and in particular to reflect the elegant complexity and 'depth' of the leaf and

branching structure of the 'Jasmine' and ‘Willow’ pattern designs.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 114

Figure 3.20 Screenshot from 'cc_march_04' (2006) accessed from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_march_03

Figure 3.21 Screenshot from 'cc_march_05' (2006) accessed from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_march_03

3.5.1 Code

To accommodate the idea of the flowers and petals a new Flower class is

added to the project. The Flower class, is similar to Line and Mainline

and is essentially another 'line drawing' class which has its own

characteristics.

Flower Class

Functions Description

Flower (x, y, radius, angle) constructor method of the flower class.

drawLine () a function used to draw a set number

of lines, one after the other, each with

its own length and angle. The line

length and angle is incremented very

slightly each time and so the overall

result is of a single 'petal' shape.

Table 3:9 Overview of the Flower class: Colorcalm

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 115

For each single petal a series of seventy lines are drawn one next to the

other. Each line is given a new angle and line length. The angle is

incremented slightly, and the line length is calculated using a sine curve to

create the petal shape:

angle += radians (60);

drawAngle += radians (30);

radius = sin (radians (5*angle/2))* fSize;

The number of lines, the incrementation of angle and the calculation for the

length of each line determines the shape of the petal:

Figure 3.22 Screenshot of initial flower tests from 'cc_march_05_flower2b' (2006) accessed

from: http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_march_03

After creating a single petal the next step generates a complete flower by

repeating the petals a number of times. The flower concept is constructed

around the concept of simple use of computational logic: a 'for loop'. A for

loop is used to draw a number of petals at the same time, the completed

flower is therefore drawn in one go.

Figure 3.23 Screenshot from 'cc_march_05_flower3' (2006) from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_march_03

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 116

Core visual elements of the Flower are outlined as follows

Attributes of

Flower

Description

Shape

The for loop creates the flower all in one go.

Colour Colour of the flower is dictated by the (universal) changes in

colour values affecting the rest of the sketch (tr, tg, tb).

Appearance A number of flowers are drawn over the top of one another, to

give each flower a different size, and different visual quality.

Transparency applied to the flowers to give a softness.

Table 3:10 Description of visual attributes of the Flower class: Colorcalm

Specific variables which define attributes of the Flower are outlined as

follows:

Variables Description

fSizeMin starting size of flower - this is incremented to re-draw the

flower until reaches fSize.

fSize overall (max) size of flower.

radius length of petal.

More variables added later (cc_aprilTest2)

petalCount number of petals on flower.

rotation amount of rotation between each line.

increaseAngle amount of rotation between each petal.

Table 3:11 Core variables of the Flower class: Colorcalm

Once the core functionality of the Flower is established additional variables

are used to generate more variance and randomness between each flower.

Random numbers and sizes of petals are added to the branch by assigning

a random value to a new petalCount variable.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 117

for (int i=0; i<=int (random (1, 5)); i++) {

 petalCount++;

 myPetal [petalCount] = new Petal (xpos, ypos, x, 72*i+1);

 }

Figure 3.24 Screenshot from 'cc_march05_flower3b' (2006) from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_march_03

In addition to flowers and petals, further complexity is added by developing

the detail of the branching structure, i.e. branches with sub-branches. This is

done to create a greater number of ‘levels’ within the structure, to develop

the growth of the computational plant and to bring closer to the organic

structures of Morris' 'Jasmine' and 'Willow' pattern designs. In order to

achieve greater 'depth' the to branching structure, the makeBranch()

method is given additional parameters ('arguments'). The Branch()

constructor method extends the number of variables to accommodate the

possibility of more detail: providing the ability to manipulate its curvature and

branching frequency. For example a branch frequency (bf) variable is added

to control the how often branches occur:

if (segCount % bf == 0) { makeBranch () }

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 118

New variables which control the branching structure.

Variable: Description

distort controlling direction of the branch (+1 or -1).

depth a number to control the level of recursion for sub-branches.

ratio number used in the calculation of the curve.

bf branch frequency a number to allocate the occurrence of new

branches.

Table 3:12 Description of variables added to control branching structure: Colorcalm

The constructor methods for mainLine and branchLine are also

developed to accommodate new variables.

Mainline (x, y, ang, r , w, bf)

BranchLine (x, y, ang, r, w, distort, depth, ratio, bf) ;

Figure 3.25 Screenshot from 'cc_aprilTest2' (2006) accessed from:

http://www.random10.com/colorcalm_research/7ccMarch_loops/applets/cc_march_03

3.5.2 Visuals

Visually the work at this stage continues to explore the parameters of the

branch system already created. The work still lacks the subtlety, especially in

terms of colour, as the usage of red, green and blue often clash producing

garish results. There is a more visual organic variance of the shapes and

patterns of the forms but this is very controlled.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 119

There is a visual and computational 'simplicity' about the work; flowers,

leaves and lines all apply the same basic concepts of programming (numeric

variables, loops, iteration) and mathematics (sine and trigonometry) to

produce the visual results. Although the structure is becoming more

complex, the work represents an exploration of the basic 'building blocks' of

computational material, specifically the relationship between number and

visual, in an effort to understand and apply the basic rules of computation

and calculation towards an elegant, visual outcome.

3.5.3 Process / Manipulation

The class structure of the line drawing system is now coming up against its

limits. The structural qualities of the original work are proving to be

increasingly difficult to manipulate as a wider range of forms are developed

within the set parameters and limitations of the computational structure.

Adding a greater number of variables allows closer control over the types

and the structure of the forms which can be created, however it also adds

another layer of complexity. As the structure becomes increasingly complex

so does the ability to make real and direct changes. The simplicity and

directness of the early sketches is starting to get lost as the data and the

structure becomes more layered. The core line-drawing data structure works

for simple shapes and marks but is struggling to be extended into other

shapes and forms (i.e. petals, flowers, and leaves). The amount of lines

required for the drawing to create a complete petal or flower shape makes

the processing speed of the program slow, especially when lots of petals are

drawn altogether. The initial concept of iterative line drawings is being

stretched almost to breaking point. Conceptually the structure struggles to

accommodate the drawing of petals and flowers. Petals are conceived and

drawn as a series of individual lines and not as a unified flower shape. The

work is visually unified but is structurally disconnected, there is little

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 120

structural linking of lines and elements, even thought this is what appears to

be happening on the screen. The petal and flower ideas are removed and

discontinued from the work.

It is important to note that the petal and flower ideas are discontinued for

computational rather than aesthetic reasons. The petals and flowers do not

work well within the computational concept and structure which has already

been established, and prove to be too far removed from the original idea. In

this way it is possible to see how the computational material determines the

type of work produced, influencing the nature and direction of the project.

The work is being produced in a way which is 'true' to its material, and the

intrinsic computational 'honesty' is maintained. Work that is computationally

inappropriate is discontinued. Judgments about the suitability of an idea are

not based solely on aesthetic reasons but are also based around how it

works alongside the materiality of the code.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 121

3.6 Leaf Class and Final Pieces

In the final stage of the work the material structure of the code employs the

initial core line drawing concept but does so as part of a computational

structure which is growing increasingly rigid, almost immovable. Having

developed and added classes and structural elements throughout the

process right from the initial line drawings, scope for developing the structure

at this stage of the work is limited. Although a final Leaf class is added to

develop and define the leaf-like structures and forms, much of the rest of the

work takes the form of exploring and manipulating numerical details of the

structure in order to arrive at final pieces which create the best possible

decorative wallpaper-like shapes and forms.

3.6.1 Code

A Leaf class is added alongside the MainLine and the Branchline as

yet a further extrapolation of the Line class. Many of the same variables

and functions used in the Mainline and Branchline classes are used

again, allowing for individual changes which create the distinctions between

the different types of lines.

New variables have also been added to the main project replacing 'hard

coded' numbers with the intention of allowing greater access to, and control

of, more of the visual details of the sketch. The final pieces of work use a

range and combination of a wide range of simple variables, created and

added over the course of the project to define and control the all the key

visual elements and attributes of the programme. A summary of the key

variables is listed as follows:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 122

Variable Description

count counter used as timer.

branchNum number of branches created in the plant.

petalCount number of petals.

values affecting colour
redFraction amount by which red is adjusted.

blueFraction amount by which blue is adjusted.

greenLine amount by which green is adjusted.

redLine amount of red in line colour.

blueLine amount of blue in line colour.

bgColour background colour.

values affecting the branch properties
b_mr = 20; branchMin ratio.

b_mxr = 200; branchMax ratio.

b_bf branchFrequency for sub branches.

b_len branch length.

b_ang branch angle.

values affecting the leaf properties
l_f = 20 leaf frequency.

l_srt leaf start - when leaves begin on the branch.

l_w leaf width.

l_s leaf size.

l_len leaf length: amount by which the length is multiplied.

Table 3:13 Description of the key variables: Colorcalm

3.6.2 Visuals

Closer attention to the detail of variable values yields results which display

more subtly within the work as the visuals begin to reflect the 'Arts and

Crafts' aesthetic of the Morris wallpaper more clearly.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 123

Figure 3.26 Screenshot from 'cc_aprilTest5a' (2006) accessed from:

http://www.random10.com/colorcalm_research/9ccApril_leafclass/applets/cc_aprilTest5a

Figure 3.27 Screenshot from 'cc_aprilTest5b' (2006) accessed from:

http://www.random10.com/colorcalm_research/9ccApril_leafclass/applets/cc_aprilTest5b

Final variations of the Colorcalm work:

cc_May4b cc_May5 cc_May7

cc_May7b cc_May8 cc_May8b

Figure 3.28 Screenshots of final variations of Colorcalm work (2006) accessed from:

http://www.random10.com/colorcalm_research/

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 124

3.6.3 Manipulation

Having created and established the structure, which is now almost

immovable, close attention is paid to the specific number values of the

variables. Which value, for example, works best as the ratio value, which

colour values and combinations work more successfully and more

'harmoniously' together etc. More attention is also paid to the parameters of

the variable values, i.e. understanding the upper and lower-most values

pertaining to colour, angle, number of branches and leaves. Attention is paid

to specific variable values in order to hone the control of the visuals to

achieve results which reflect those intended. Slight tweaks or changes to a

single numeric value, or algorithm alters the overall visual flow of the work. A

long, iterative process of change and testing is employed as aesthetic

decisions about each detail of the work are made, and several variations of

the work are produced. Greater number of variables also, however, leads to

greater number of problems when it comes to trying to change or alter

individual visual elements, especially when the structure is becoming

increasingly complex with lots of similar-yet-different classes. This stage of

the process is reaching the point in which the structure ‘creaks and wobbles’,

it becomes almost unmanageable: finding single values can be difficult and

one value may have a complex knock-on effect with unexpected results.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 125

3.7 Summary of Colorcalm: Dialogue between Form and

Function

The Colorcalm work represents the researcher's first attempts at using

programming code to produce creative, visual work and therefore reflects an

initial ‘learning curve’ of understanding. It is the initial attempt to apply some

of the Arts and Crafts values and aesthetics to the work, emphasizing the

hand-written process of programming as a direct means of testing and

exploring the basic 'material' qualities of computation. Initiated by the desire

to create work using only simple, 'hand-written' code, in an environment

stripped of software menu options and short cuts. The idea of 'remaining

true' and honest to the material is something which remains a clear

motivation throughout the work, informing the choice and direction of the

project throughout the development process. Even as the computational

material grows, changes and becomes more 'rigid', the desire to 'remain true'

to the material structure, not twist or stretch it into forms to which it is not

suited, is something which informs the work throughout.

Emphasis placed upon 'handwriting' code as process places a requirement

on the researcher to learn and apply the technically correct syntactical and

grammatical aspects of the programming language - the core 'values' of the

material. A trial-and-error learning process defined much of the early

engagement with the 'material', providing a valuable means of understanding

its core characteristics and values, laying an important foundation for later

development and experimentation. Although physical manipulation of

computational material is not possible, direct manipulation of code is

achieved by 'manipulation' of individual data elements within the

computational structure. Experimentation with simple variable, numeric,

logical and structural elements of the programming environment is used to

gain an understanding of the basic materiality of the computational

environment. Control of the material is therefore achieved by numeric

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 126

manipulation of variables and algorithms which define specific visual

attributes of the work.

The overall process shows development from a simple to a more complex

structure, as the desire to create a material environment which is both

computationally sound and which contains enough 'flexibility' to generate a

wide variety of visual shapes and forms becomes increasingly important. As

the project progresses, the focus moves from understanding the core

technical qualities and requirements of the material, towards developing an

aesthetic understanding of the material. By concentrating on reproducing a

computational version of the flowing lines and forms, inspired by Morris

wallpaper pattern design, the work moves from the development of the

computational material towards the manipulation of the computational

material. Interplay between the structure of code and its aesthetics, between

the technical ('rigid') rules of the code and the fluidity of the visuals forms a

core part in the formation and development of the work. This reflects the

wider dialogue of the traditional design environment, a dialogue in which the

key elements of code visual and process become intertwined, and in which

understanding of the values of the material are displayed and applied. This

dialogue between maker and computational material reflects the values of

William Morris whereby the material values and limitations are to be

understood and worked with. The following offers a summary of the

Colorcalm project work using the headings of 'code', 'visuals' and 'process'

as outline headings for further discussion.

i. Code

Immediate attention is placed on the direct connection between the use of

simple variable values and the visual development of the line. Initial tests

and experiments centre around simple ‘mark-making’, testing and

establishing connections between both variables and algorithms with line

quality, shape colour and width, etc. Experiments with simple computational

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 127

ideas, particularly recursion are undertaken to explore the structural and

generative nature of the material. Ideas and tests with object oriented

principles using simple classes are developed in an attempt to widen the

visual and structural scope of the work.

As the structure becomes increasingly complex, so development of the work

becomes increasingly reliant upon development of the detail of the work, i.e.

the individual variables, properties and shape algorithms. An increasing

number of variables are added to manipulate specific elements for each of

the different line types (colour, speed, number or leaves, shape of leaves,

frequency of leaves, shape, etc.).

ii. Process

During early developmental stages of the work, the general dynamic

between form and function remains relatively fluid: the functional elements

are established, and aesthetic elements can easily be experimented with

and explored. The overall structure is easily manipulated and individual

properties modified and altered. As the work progresses however, and the

data structure is more rigorously defined, the relationship between structure

and individual parameters becomes increasingly rigid. Increased

computational complexity, the addition of more functions and classes, etc.

develop an increasingly 'solidified' structure. Computational rules dominate

the work as greater amounts of data are added. More lines and leaves are

produced, but the rules that govern each of the lines become increasingly

specific and complex. Manipulation and change of the data becomes

increasingly difficult as the material becomes more defined.

By the end of the work the shape and format, the material, of the code feels

almost solid; the structure is set, and altering the direction of the work is

almost impossible without beginning again. Individual variables and functions

enable lines to be changed and manipulated but the data structure is so rigid

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 128

and unwieldy that making real changes to the work, to develop it functionally

or aesthetically, is increasingly difficult. This relationship between the

functional and aesthetic elements changes over time as the function

becomes more established and the opportunities for flexible development of

the work become less and less. As complexity of the visuals increases, the

fluidity and flexibility of the work gradually decreases. This is perhaps most

evident in the attempt to include flower and petal forms into the work.

Although these shapes started to 'work' on a visual level, the lack of real

connection with the underlying data structure means that creating these

flower forms is achieved against the structure of the rest of the line drawing

application. The material of the data structure is judged to have been

stretched too far in creating the flower shapes and they are not used. Adding

more elements into the data concept involves 'pushing' and 'pulling' the

structure beyond the realms for which it was originally designed; the addition

of visual complexity also adds structural complexity and instability. The

programmed material i.e. the structure, is not robust or flexible enough to

accommodate greater demands of more a more complex form and the

elegance of the visuals is not reflected in the cumbersome structure of the

code. Development of work here is not just a matter of getting good visual

outputs, there is an equally strong emphasis placed on creating work which

is successful on a structural basis, work which has both visual and structural

integrity. Attaining the balance between mastery and twisting of a material

(Morris, 1882) is a fine one. Developing the data structure almost has a

feeling of developing the fabric, and the structure of the material itself (Watz,

2006).

iii. Visuals

The Colorcalm project demonstrates a connection between the nature of the

data structure and of the visuals, and shows a clear connection between the

way in which simple number values can be used to represent visual

attributes of a piece of work. The simple development change and growth of

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 129

the lines and forms reflects a craft-like simplicity to the aesthetic of the work

which in turn reflects a simple and direct connection between individual

variable values and the work on screen. The shapes and forms are not

overly complex and are direct and simple manifestations of the 'material', i.e.

the numeric values from which they are created. Data values define a limited

range of visual elements: shape, width and colour; the simplicity of these

may be seen are directly represented by the simplicity of the aesthetics.

The code connects with the visuals not just on the 'low' level in which a

variable represents a single visual attribute of the shape (e.g. width of line or

colour) but on a higher level in which the entire data structure, the

application of objects, classes and methods and the interplay between them,

impacts upon the quality and direction of the work itself. Increased structural

complexity and ‘rigidity’ is reflected by the visual development of the work:

although the individual shapes and forms maintain some degree of elegance

and simplicity, the work culminates in a series of pieces which are visually

‘rigid’. The leaf and plant shapes are generated by a generative

computational process but have the appearance of work which may be

animated along more traditional lines. The on screen shapes and forms are

‘static’ and demonstrate little of the dynamic, or behavioural qualities of the

computational environment, a reflection of the increased complexity and

rigidity of the data structure.

iv. Conclusion

The Colorcalm project can be defined as an interplay between the conflicting

opposites of 'function' and 'aesthetics'; the functionality of code and the

aesthetics of the visuals. The project highlights how important it is to view

the process of creating work as an ongoing dialogue between contrasting

elements of the computational environment; a harmonious interplay between

the structural, functional concerns of the material and the visual, aesthetic

qualities of the work. The emphasis here is not purely on form or function, on

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 130

knowledge or feeling but a dialogue and harmony between the two.

Experience of undertaking the Colorcalm project suggests that successful

work which demonstrates elegance and subtlety in its sympathetic use of the

material is more likely to arise out of the development of a useable elegant,

flexible structure around which the detail of a project can be developed.

Craft-like programming work arises not only from gaining an understanding

for the detailed elements (numbers and variables) of a project, but from

establishing an elegant structure which allows work to develop in a fluid and

flexible manner. Elegance of programming can therefore be revealed

through the elegance and fluidity of the structure which allows for greater

harmony between form and function of the work. Overarching systems and

concepts (e.g. data structure) must be applied to the particulars and details

(e.g. data detail and variables) of the work. The next project will pay more

attention to these over-arching data structures.

The ongoing tension between function and form provides a framework

thorough which many other 'conflicts' of the process may be viewed. The

relationship between these contrasting aspects of the process reflects other

tensions between opposing viewpoints. Each aspect of the process

represents a series of related, wider concerns, and the discourse reflects

wider tensions within the process. Issues of control and randomness,

elegance of form and of structure, value judgments of success, form and

function, humanity and automation, technology and craft are all reflected by

the broad dialogue encompassed by machine and material. The culture and

climate of creative-programming is therefore typified by the conflict between

each opposing ethos. Viewing the process in terms of a dialogue between

opposites helps the understanding of the tensions related to all these other

similar issues.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 131

4 Moving Wallpaper Project

The overall aims of the computational wallpaper project, outlined in detail at

the beginning of chapter 3, define the overarching parameters, ideas and

intent for both the Colorcalm and the Moving Wallpaper projects. These can

be summarized as the intention to re-apply concepts and aesthetics inspired

by traditional design values, and more particularly the Arts and Crafts

movement, into the computational environment. Emphasis on understanding

the intrinsic material values of computation, and applying them to the

creation of botanically inspired organic forms, provides the context and

motivation for both projects which resonate with the values and aesthetics of

the Arts and Crafts movement. Elements of the Arts and Crafts aesthetic,

specifically William Morris' 'Jasmine' and 'Willow' designs, have therefore

been used to provide specific aesthetic direction for the work, and used as a

basis for understanding and documenting the formal, material aspects of

programming code, syntax and structure.

The Colorcalm project has outlined the first attempt at producing

computationally generated, Morris-inspired lines, forms, shapes and

patterns, and marked the first stage of research as a designer moving into

programming. The work explored and investigated the fundamental qualities

of the computational material, using basic programming details (e.g.

variables, logic and algorithms) to set and generate flowing organic plant

shapes and forms. The project therefore demonstrated how the application

and manipulation of individual numeric details can be used to set and

generate paths of movement and colour, shape and form.

Although the Colorcalm project work has successfully created a range of

computationally generated botanical shapes and forms, highlighting the

value of numeric detail as a key part of computational work, the conceptual

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 132

and aesthetic attributes of the project still require further consideration and

development. The final pieces of the Colorcalm work lack the visual and

structural 'flexibility'; a key attribute of the fluid, reactive computational

environment. Plants and shapes grow across the screen as the programme

generates and draws them, but once created, they act as 'static' visuals

without any reactive or behavioural qualities which allow them to move,

develop or change. The Colorcalm work creates a series of patterns which

lack integrity with reactive characteristics of computational material, and as

such miss a key conceptual element of the traditional design values which

inspire the project.

The idea that drawings on screen posses a kind of reactive organic

potentiality is an important consideration for the project. Maeda's term

'reactive' graphics i.e. graphics which have the ability to be changed or to

move, is key. One of the fundamental features of computational, screen-

based objects is that they are not static, fixed in time like traditional media,

nor are they linear and animated like 'traditional' time-based media, but

possess behavioural, reactive qualities. As has been discussed (2.2.4) the

computational object is algorithmic and behavioural, subject to the

generative changes of the code from which it is created. The potential

always exists to change or modify the computational image according to

input elements or internal / external data. The 'behavioural' element is a key,

distinct aspect of computational, screen-based work. It is important

therefore, that the line is not a static mark on the screen, but that it

expresses the reactive element of the computational (screen) environment.

A lack of this behavioural quality in the Colorcalm work therefore means that

its conceptual integrity to the reactive, computational material is undermined

and the work lacks 'truth' to its reactive, behavioural material.

Lack of behavioural fluidity is also mirrored by a lack of visual variance,

randomness and the limited types of plant forms that the Colorcalm project

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 133

can produce. The aesthetic aim of the work is to generate visuals which

reflect conceptual links with traditional design, and create visual links with

the organic qualities of structure and form of Morris' wallpaper work.

Although the Colorcalm pieces allow colour and shape to be modified, the

facility for developing a wide visual vocabulary of plant shape and form has

not been fully realized. The final visuals of the Colorcalm work offer a limited

range of branch structures and leaf shapes, with little variation of colour

within each plant, and no facility for generating petal or flower shapes. The

lack of both visual and 'behavioural' fluidity within the work is a product of its

underlying rigid computational structure. Emphasis on creating and

manipulating numeric detail within the project resulted in a material which

became increasingly complex and rigid, making visual and behavioural

variance difficult. The Colorcalm structure lacks the flexibility to reflect the

reactive behavioural attributes of the computational environment or the

organic visual variety of the leaf, flower and branching structure of the Morris

aesthetic.

Having explored the basic numerical detail of the material with limited

conceptual and aesthetic success, the next phase of the project, the Moving

Wallpaper work, intends to reflect more clearly an understanding of, and

'truth' towards, the behavioural and flexible elements of the computational

environment and aesthetic. The aim of the Moving Wallpaper work is

therefore to create pieces which are both behaviourally and aesthetically

flexible; which can move and react to the user, allowing a greater more

varied range of plant leaf and flower forms to be created. The visual concept

of the project has moved from the idea of a line as being a straightforward

visualization of simple numeric data (variable values) towards the concept of

the idea of the computational line as a generative, organic, line with

behavioural and "reactive" (Maeda, 1995) qualities. Greater structural and

visual flexibility will therefore be developed via a new data structure which

affords a greater degree of fluidity, creating a wider range of visual outcomes

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 134

each which have the potential to be more ‘reactive’, i.e. have the potential to

be manipulated, by external forces (e.g. mouse cursor). The work aims to

develop a closer understanding and greater use of the core concepts of the

reactive computational design material, demonstrating a wider visual

vocabulary to reflect the organic variance of Morris's wallpaper aesthetic.

Both aesthetic and behavioural elements of the work will try to more

accurately reflect a greater range of organic plant, leaf and flower forms,

using direct observation from nature as inspiration. By creating greater visual

and structural flexibility, (concentrating on the naturalistic, behavioural

elements of the line) this project aims to produce work which expresses

'truth' to the behavioural qualities of the 'reactive' computational material

developing closer conceptual links with the ideas and aesthetics of the Arts

and Crafts movement. Developing an organic, behavioural quality to the

lines, shapes and forms also helps to reinforce the ideals of the work and

ideas of the Arts and Crafts movement which cited nature as the ultimate

inspiration and model for creative activity (2.3.4) against which all design

work should be judged.

It is worth noting here that although the work seeks to develop a behavioural

element of the line which 'reacts' to the viewer, interaction as a subject is not

something which is within the scope of the research and will not be explored

in-depth as part of this thesis.

The following chapter provides an outline of the development of the Moving

Wallpaper project. The project is divided into six main stages of

development, from concept to the final visuals and variations. The

descriptions include references to the online example files for each stage of

the work. Figure 4.1 (next page) shows a visual overview of the project

which is included on the CD in appendix 4 and online as a web page

available at http://www.random10.com/movingwallpaper_research. The

performance of these java applets will vary according to the browser and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 135

operating system upon which they are run. The CD also contains the Moving

Wallpaper project work as a series of Macintosh formatted 'stand-alone'

applications these have been included due to inconsistencies with the pieces

when viewed in a browser. Outline elements of code for each stage of the

work is available in appendix 2.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 136

Figure 4.1 An overview diagram of the Moving Wallpaper project available at

http://www.random10.com/movingwallpaper_research/

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 137

4.1 The Concept Stage

The first stage of the Moving Wallpaper work defines and establishes the

core structural elements and concepts of the project. As with the Colorcalm

work, a concept has to be established which determines how a line is

created and drawn. Whereas the previous piece of work defines a line

according to the movement of a single object leaving a trail across a screen,

the concept for this work is centred around the idea of the computational line

as a "reactive" (Maeda, 1995) line; an object which 'exists' on screen, and

can move, react and interact. Just as the line is 'conceived' in a different way

to that of the Colorcalm project, it is also defined in a different way, as a

series of individual objects generated as the mouse moves across the

screen.

4.1.1 The Concept Stage: Code

The Moving Wallpaper project takes a strongly Object Orientated (OOP)

approach to the work and this is reflected by the concept of a line as a series

of separate, but connected, individual behaviours and functions. Rather than

attempting to create and manage the entire functionality and behavioural

qualities of the line as a single class, the work abstracts different facets of

the line into a series of separate building blocks of 'classes'. The basic line is

defined by combining two classes, Line and Ball. The Line class creates

holds and manages a group of Ball objects together, allowing functions to

be applied to an entire group of balls. The Ball class manages each

specific single ball as an individual object, defining the detail, e.g. the

location and functionality, for each.

As the mouse moves across the screen a trail of individual balls is created,

which are managed by an array within the Line class.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 138

Figure 4.2 An illustration of the relationship between the Line and Ball classes

in the Moving Wallpaper project.

This differentiation between the whole (Line) and the individual elements

(Ball) immediately establishes a flexible way of thinking about and operating

upon a single line. The following tables summarize each of the basic

classes.

Ball Class

Variables Description

loc location of ball.

vel velocity of ball.

w width.

Functions

setLoc() calculate location of ball.

drawBall() draw ball at set location.

drawLine() draw line between current and previous ball.

Table 4:1 Overview of the Ball class: Moving Wallpaper

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 139

Line Class

Variables Description

ballCount number of balls created in the line.

ballArray a list of all balls in the line.

Functions

updateTarget () updates the position of the target which the line follows

(e.g. the mouse).

drawBalls () draw all of the balls in the line.

addBalls () create new balls as the line lengthens.

makeSpringy () apply tension and spring between balls.

Table 4:2 Overview of the Line class: Moving Wallpaper

A Spring class is added to the Line and Ball class system to add to the

visual and behavioural dynamic of the line. The Spring class calculates the

tension, friction and 'springiness' between any two given objects, updating

their location according to the values of stiffness, damping and mass

variables.

Figure 4.3 A diagram illustrating the function of the Spring class in the

Moving Wallpaper project.

A new function, makeAllBallsSpringy(), is added to the Line class to

allow a Spring behaviour to be introduced to each of the balls.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 140

Table 4:3 Overview of the Spring class: Moving Wallpaper

4.1.2 The Concept Stage: Visuals

The visuals at this stage of the work are functional and basic. However it is

not the visual but the behavioural qualities of this simple 'chain of balls'

which are most interesting. The addition of the Spring class and

functionality adds a behavioural quality reflecting the idea of the

computational line as a 'living', 'reactive' organic, object. The addition of this

'fluid' visual quality adds an extra, almost tactile, quality to the line.

Figure 4.4 Screenshot from 'Jan08_plotpoints3' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/1_concept/jan08/

Spring Class

Variables Description

stiffness a value which sets the tightness of the spring.

mass a value which affects amount of spring.

damping rate of slowdown.

springLength distance of spring.

Functions

updateSpring () a function which applies the spring functionality.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 141

Figure 4.5 Screenshot from 'Jan08_plotpoints3_spring' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/1_concept/jan08spring/

4.1.3 The Concept Stage: Process

A key point in the creation and manipulation of this work is the inter-

relationship between classes and the 'flow' of data between them. Each

class encapsulates an individual concept of the line, which can be

summarized as follows:

Class Name Description

Ball individual unit of a line.

Line whole line, a collection of ball objects.

Spring force acting between each line segment.

Table 4:4 Summary of initial classes: Moving Wallpaper

When each of these elements is put in relationship they all contribute to the

overall definition of the line. The 'flow' of data between each of these

separate classes begins to create a flexible and strong structure providing

the ability to identify and make specific changes to individual elements and

characteristics of the line. Once the basic line-drawing trail is created, the

addition of extra behavioural qualities, (e.g. dragMe() and

makeAllBallsSpringy() functions) can be added relatively simply.

Developing a structure for the line, based around separate individual classes

of behaviour and functionality (Line, Ball, Spring), opens up the idea that

the line can be based on much broader computational concepts which

includes the possibility of adding more behavioural qualities.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 142

4.2 The Branching Structure

The basic structural building blocks (Line, Ball, Spring) have been put in

place. This stage of the project expands the idea from the single line towards

a self-generating, plant-like, branching structure of Morris wallpaper pattern.

This includes the development of two new elements of the project:

• A behaviour to replace the use of the mouse as the means by which

the lines are drawn and created.

• An extension to the logic of the structure to allow new lines and new

branches to be created as off-shoots of the main lines.

The first of these elements is solved by the introduction of a new (Target)

object whose movement replaces that of the mouse (see appendix 2.2). The

second issue of the branching structure requires wider research and

development. One of the most difficult elements encountered in the

Colorcalm work was that of creating and handling the branching structure

and growth. Different types of organic elements (e.g. branch, leaf or stem)

were developed via a series of rather mechanical, difficult to manipulate,

logical conditional statements. For example:

if (timer % 50 == 0) { // draw branch }

Research into computational systems of organic behaviour, growth and

regeneration uncovered the concept of the L-system (Flake, 1998, p.77).

The concept of the L-system is one which closely matches the requirement

for computational simplicity, flexibility and integrity in this project.

There is not enough space here to give a detailed explanation of the L-

System, but the core concept is one which encompasses a neat, flexible,

simple, computationally organic concept. The L-system is a rule based

system in which individual letters (or 'characters') are made to represent a

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 143

single specific function defined as part of the system. As the programme is

run each character is read, interpreted, and used to trigger its associated

function. A series of individual characters (or a 'string') can therefore be used

to encapsulate an entire sequence of instructions. In this way the logic of a

branching structure is represented not by a list of conditional statements but

by a set of data strings. This represents a more concise and elegant solution

using a minimum amount of data for maximum value.

4.2.1 The Branching Structure: Code

Mouse movement previously used to control the line drawing is replaced by

a new class, the Target class. The Target object is a single moving object

whose path and movement are dictated by simple iterative calculations of

angle and position based on a sine curve, in a similar way to the Colorcalm

project. The movement and the path of the Target object replaces mouse

movement in leading the Line and defining its path, shape, direction, and

growth. The 'length' of the Target, i.e. how long it is on the screen, and its

movement therefore define the length, shape and form of the Line.

Figure 4.6 A diagram illustrating the relationship between the Target and the Line objects in

the Moving Wallpaper project.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 144

Whilst the path and shape of the Target class are handled by its own

internal function and variables, the logic of the branching system is

controlled by string data. Each Target contains a string, i.e. a set of

characters, or letters put together. Each letter in the string is accessed one

at a time and interpreted to influence the Target object. Each character in

the string represents a specific function which is defined and set within the

new Engine class. This rule based system allows branching structures to be

created and is based on the concept of the L-system, as outlined previously.

Each time the system encounters a 'B' character as part of the string, a new

branch is formed. The individual functionality of each specific letter

('characters') defined within the Engine class, used to affect the growth

structure of the work, is outlined here:

Character Description of Function Engine Class code

F adds more to the timer of the Target (grow

more).

t.timer += 100;

B creates a new Target instance (branch). t.branch ()

> returns back to the start of the String (loop). t.timer = 0;

* stops growth (end and remove the Target). t.remove ()

Table 4:5 Summary of characters allocated to affect growth and structure: Moving Wallpaper

The result is that different strings are able to describe different

characteristics of the line and different types of branching structure. For

example:

Example String Description of Line

"FFFFBFFFF" a long line, lots of growth with one branch.

"FBFBFBFBF" shorter line with 4 branches set at equal intervals.

"FFFFFBFFFBFFBFB" long line with 3 branches set at different intervals.

Table 4:6 Example Strings and description of associated visual effect: Moving Wallpaper.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 145

4.2.2 The Branching Structure: Visuals

The line structure is now one of inter-connected branches. Each line is

rendered as a chain of interconnected balls. At this stage, the emphasis is

on the behaviour of the line, the development of the branching structure and

the ability to maintain inter-connectedness between the lines and 'branch'

lines; rather than on the aesthetic qualities of the line.

Figure 4.7 Screenshot from 'LinkingLinesTest2' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/2_branches/linkingLinesTest

There is already a clear connection between the key elements of the visuals,

(its shape, structure and behaviour) and the class structure. The relationship

between the class and the visual attributes of the lines can be summarized

as follows:

Visual Element Class Description

Shape Target Defined by movement of Target object.

Structure

(branches)

Engine Handled by Engine, interpretation of String data.

Behaviour Spring Forces controlled by Spring class.

Table 4:7 Overview of the relationship between visual elements and individual classes:

Moving Wallpaper.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 146

4.2.3 The Branching Structure: Process

The development of the class structure and addition of the Target and

Engine classes, continues to broaden the overall structure and the concept

of the work. Maintaining a focus on the use and flow of data and the inter-

connectedness of separate classes allows a fluid, flexible type of material

and structure to develop. The use of string data to encapsulate branching

structure logic is one which supports a flexible system in which complex logic

can be simply described. The use of characters to describe the structure of

the line adds an interesting element of grammar to the work, which can be

literally used to describe the nature of the structure.

Important themes for this work are starting to emerge. Notions of simplicity

(finding the simplest, most elegant solution), integrity (creating a solution

which works 'in harmony' with the rest of the data elements) and flexibility,

(broadening and extending the concept and data structure in order to create

the widest range of visual outcomes) are all key to the development of this

project. A core aim and intention for this piece of work is emerging: to

develop a computationally elegant, flexible and fluid structure, one which is

able to create a wide variety of organic forms within the parameters of its

data structure.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 147

4.3 Visual and Behavioural Experimentation

Having established the foundational elements of the concept, data structure

and behaviour, the next stage of the work continues to explore visual and

behavioural qualities of individual lines and the overall growth and structure

of the work.

4.3.1 Visual and Behavioural Experimentation: Code

No new classes are added during this phase of work, functionality is

developed within the existing classes, and emphasis is placed upon

exploring the potential of the current structure. Initial experiments develop

the shape and width of the line. A calcBallWidth() method is added to

the Line class and sine calculations are used to calculate the width of each

ball within the line in order to generate soft gentle forms for the overall line

shape.

width = 180 / ballcount;

key variables : ballcount and magnitude

Subsequent adjustments to the calcBallWidth() calculation alters the

nature and the quality of each line. Altering the core sine calculation

produces a range of visual results. For example, the difference between a

180 degree sine curve and 90 degree sine curve can be clearly illustrated:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 148

Code Shape

width = 360 / ballCount

width = 180 / ballCount

width = 90 / ballCount

Table 4:8 Overview of sine wave affecting shape: Moving Wallpaper.

Setting and changing the magnitude (maxWidth) value within the body of

the sine calculation alters the maximum breadth of the line.

Changing the width value, or the sine curve ending value is a simple way to

alter the visual quality of all lines when the programme is run. Creating

variety within the same system, (i.e. defining and controlling specific lines

with their own width of sine value) is, however, more difficult and requires

changes and additions to the computational logic. Conditional statements

are used to create difference and variety between 'branch' and 'stem' lines.

Differentiation between lines (i.e. establishing whether it is a 'stem' or a

'branch') is created by comparing the parentLinePos value of the each

new Line:

if (parentLinePos == 0) {

 maxWidth = 2 // the line is a 'stem'

}

Conditional statements are also used to control and determine the growth of

new, 'stem', lines which generate entire new 'plants'. In order to allow the

drawing programme to continue generating new plants, a new method,

newLine() is added to the Line class. A conditional statement is added in

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 149

to the class to control the timing of the new line when an internal timer

reaches a given number:

if (time == 100) { addLine () }

As well as altering the visual appearance of the line additional methods are

included to the Line class as ways to alter the behavioural elements of the

line. A calcForces() method is created to re-calculate the position of each

Ball in relation to its proximity to the mouse. This method is used to

calculate the distance and angle between each ball and the cursor on

screen: It uses these values to repel each the ball away from the mouse,

giving the line a 'reactive' quality. This can be illustrated as follows:

Figure 4.8 A diagram illustrating the movement of the line away from the cursor in the

Moving Wallpaper project.

4.3.2 Visual and Behavioural Experimentation: Visuals

Emphasis during this stage of the project is on visual and behavioural

experimentation; modifying the existing data structure in order to sculpt

change, add nuance and develop the controlled randomness of the line. The

visual aspect of the work begins to take shape as basic organic forms,

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 150

shapes and curves are created. The ability to change single variable values

is the first means of adding variation and control to the lines shape and

width, and produces pleasing results as the sine curve is used to generate

smooth elegant shapes and lines. The scope for modifying the specific

attributes of the lines can be summarized as follows:

Visual Change Description of Code

change ending of line modify the calcBallWidth ()

formula

 (change 180 to 90).

adding growth and

decay

modify calcBallWidth ()

method.

infinite growth calll newLine ()

based on timer or lineWidth.

define widths of lines

(leaves or stems)

use parentLinePos variable to

distinguish between different types of

lines.

Table 4:9 Overview of visual changes affected by individual elements of code: Moving

Wallpaper

The behavioural development of the work adds a simple 'reactive' quality to

the lines. In keeping with the notion of the 'living line' theme, each line reacts

to the movement of the mouse, creating an effect in which the lines (stems,

branches and leaves) appear to sway as the mouse moves over them. The

addition of this simple, subtle interaction, together with the tension between

each Ball, generates a springy, reactive behaviour and a more visually fluid

piece of work. The overall effect is therefore that of a 'reactive', living, flexible

line; a concept which works in harmony with the overall theme and structure

of the work.

The following are examples of experiments with different renderings of the

reactive lines:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 151

Figure 4.9 Screenshot from 'LinkingLinesTest3' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/linkingLi

nesTest3

Figure 4.10 Screenshot from 'LinkingLinesTest3_outlines' (2008) from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/LinkingL

inesTest3_outlines

Figure 4.11 Screenshot from 'Line_Forces_Test_LRG' (2008) from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/Lines_F

orces_Test_LRG

Figure 4.12 Screenshot from 'Line_Forces_27Feb' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/Lines_F

orces_27Feb

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 152

Figure 4.13 screenshot from 'Line_Forces_27Feb_new' (2008) from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/Lines_F

orces_27Feb_new

Figure 4.14 Screenshot from 'MovingWallpaper_March1_ b' (2008) from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/Moving

Wallpaper_March1_b

Figure 4.15 Screenshot from 'MovingWallpaper_March1B' (2008) from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/Moving

Wallpaper_March1B

Figure 4.16 Screenshot from 'MovingWallpaper_March1E' (2008) from:

http://www.random10.com/movingwallpaper_research/applets/3_visualExperiments/Moving

Wallpaper_March1E

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 153

The mouse as trigger for movement may in future versions of the work be

substituted for other means of interaction e.g. the movement of a figure

moving past the work. The application the class-based system means that

the core functionality is created and can be extended to include other

elements and items.

4.3.3 Visual and Behavioural Experimentation: Process

Changing and modifying individual variables within the structure affects the

detail and the fine tuning of the work. Single variables are created to

represent a specific visual aspect of the line (e.g. maxWidth). There is a

direct correlation between the value of the variable and the specific detail of

the visual. Modifications made to the value of the variable naturally affect

elements of the line. Assigning one variable to one visual element creates a

clear, simple and easily identifiable connection. Variables define the

properties of individual visual details, their affect can be easily seen and

understood. There are, however, issues and problems relating to the use of

single variables. Access to variables is difficult as they are often 'buried'

within the code. Clarity of what the variables do is often obscured, thus

making change or building elements to change these data elements tricky.

Calculations and variables, which affect the shape and form of individual

lines of the Moving Wallpaper piece of work, are very similar to those used in

the Colorcalm project. Both use similar sine-based calculations to describe

shapes. The significant difference between the projects is the conceptual,

structural and data elements of the work. Seeing the similarities between the

projects allows the significance of the differences to be observed. The

impact of the changes in structure and data may be observed.

The use of conditional statements to add variation to the work, (e.g. for

determining the timings of new plants, as well as the widths of leaves and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 154

branches) offer a limited means for adding variance and nuance. The use of

the conditional statements to control line width, for example, offer a choice

with little scope for subtlety and nuance, and makes accommodating other

types of lines difficult. The condition, which defines the line width according

to the value of an 'obscure' parentWidth variable, is not logical and has

little consistency with the core data system. Similarly, the conditional

statements which control the re-generative nature of the work, offer only

limited control of this element of the code, making clumsy associations

between the width of the line and the growth of a new plant. Reliance on

timers, internal clocks and counters is a rather unsubtle, ‘mechanical’

solution which lacks nuance and flexibility.

4.4 Extending the Vocabulary

A fundamental concern of the work is its ability to express and create a wide

range of decorative, organically inspired, shapes and forms. However having

developed core elements of behaviour and structure, the project at this stage

only allows for the creation of a narrow range of plant shapes and forms.

This phase of the project, therefore, aims to develop the visual vocabulary of

the work. Detailed examples of code for this section can be found in

appendix 2.4

4.4.1 Extending the Vocabulary: Code

Differentiating between the visual properties of each line, a problem for the

Colorcalm system, is handled by the introduction of a new class. The

Attribute class is created to group lots of key data elements, i.e.

properties containing details of the visible attributes of a line, e.g. colour,

width, string data, into a single set of 'attributes'. This a class with virtually no

functionality and is used primarily as a container; a means of 'data storage',

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 155

providing the ability to condense lots of different data variables into a single

instance. Each new Attribute instance is given a name which describes

the type of line it is to represent e.g. 'Stem', 'Flower' 'Branch'.

Attribute = new Attribute (width, string) ;

Branch = new Attributes (5, branchString);

Stem = new Attributes (1, plantString);

Flower = new Attributes (10, flowerString);

In this way a unique set of attributes can be assigned to 'branch', stem and

leaf lines. An Attributes object is included in each new Target object

and is included in the Target() constructor method:

Target (atts, loc, angle, parent, depth)

When a new line is created, a specific set of Attributes are attributed to it.

addBranch (Attributes a) { }

The Engine and the Target.addBranch() methods are altered to

incorporate the name of the Attribute to be added to the new line.

B = t.addBranch (Branch);

f = t.addBranch (Flower);

L = t.addBranch (Leaf);

Assigning individual letters to represent specific functions and instructions is

another concise way of formatting sequences of rules and conditions which

may otherwise be difficult to express. The concept of the L-system in which

single characters represent functions and rules defined within the

programme, has to this point been used to accommodate only a narrow

range of letters and functions. The ability to extend the range and scope of

the Engine class offers potential to extend the visual and computational

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 156

vocabulary of the work. Many more elements of the line structure (leaf,

branch, stem) can be defined and greater degree of control, flexibility, subtly

and nuance can be introduced to the rule based structure. The Engine

class is extended to accommodate additional vocabulary and functionality.

Additions to this class can be summarized as follows:

Letter Description Sample Code

P create a new Plant t.addPlant ()

+ increment angle t.angle += leafAngle

- decrement angle t.angle -= leafAngle

L add new leaf t.addBranch (Leaf)

f add new flower t.addBranch (Flower)

Table 4:10 Overview of new characters used in Engine class: Moving Wallpaper

In this way a string of otherwise meaningless letters becomes an expression

of the nature and structure of the plant; a succinct set of commands open to

subtle change. The development of the string and the Engine class

generates a more 'fluid' structure than the conditional statements used in the

Colorcalm project, a natural development of the data structure.

Further modifications and additions made to the Attribute class enable

greater visual detail to be included as part of the definition for each line.

Colour data elements are added allowing sets of colour values to be

attributed to each line type.

Attributes = new Attributes (width, String, colour1, colour2);

Branch = new Attributes (5, branchString, color (255, 0, 0),

color (125,10, 12));

Defining two colours rather than one means that each line type is allocated a

colour range. The colorBlend() method is used to pick a colour from

somewhere between two colour values (c1 and c2) and to use this as the

fillColor for the line.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 157

Attributes.colorBlend (c1, c2)

fillColor = (Attributes) lineType.colorBlend (c1, c2);

The Attribute class, at this point, can be summarized as accommodating

the following set of variables:

Attributes:

width

string

colour1

colour2

Table 4:11 Key variables of Attributes class: Moving Wallpaper

Creating an Attribute object with differing values for each variable can be

used to distinguish between types of lines, for example a flower and a

branch:

Attributes: Flower

width 8

string "FF"

colour1 (0, 112, 0)

colour2 (0, 256, 0)

Table 4:12 Example of Attributes, Flower: Moving Wallpaper

Attributes: Branch

width 4

string "FFBFFf"

colour1 (0, 112, 0)

colour2 (0, 256, 0)

Table 4:13 Example of Attributes, Branch: Moving Wallpaper

A new type of Attribute is created; a 'parent' class which allows

collections Attributes to be grouped together, creating another means of

reducing the code, making computational descriptions increasingly concise.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 158

The new parent object is accommodated into to the Attribute class via a

new constructor method which only takes one parameter:

Attribute (string) ; // parent attribute object.

This example demonstrates how the Flower attribute is used as into a

'container' of Petal lines:

Attributes: Flower (f)

width --

string "p-p-p-p-p-p"

colour1 --

colour2 --

Table 4:14 Example of how 'sub' Attributes can be created: Moving Wallpaper

'Parent' attributes are also used to create 'segment' and 'end' attributes,

which group together entire strings in order to represent a complete section

of a line. Thus 'segments' (S) define sections of the main part of a line, and

'ends' (E) define the structure at the end of a line. Segments and ends are

added to more succinctly describe the structure of an entire line. Thus a

branch string which may previously be written as follows:

B = "FFBFFBFFBFFBFFBFFBff"

can be simplified as follows, to become a series of repeating branch

'segments' (S) and a endings (E) as follows:

Attributes: Petal (p)

width 12

string "FF"

colour1 (0, 112, 0)

colour2 (0, 256, 0)

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 159

B = "SSSSSSE"

when:

S = "FFB"

E = "ff"

In this way each 'S' and 'E' is used to summarize a group of letters. This is a

more succinct way of describing a line, allowing greater, easier and more

eloquent control of structure.

The grammar of the line is now simplified; a complex series of branching,

structural decisions are summarized into a set of grammatical instructions

(e.g. "SSSE"). The ability to 'reduce' the definition of a line into few of

'segments' (S) and 'ends' (E) encourages one final development of the code

structure during this phase; replacing the single string with an 'array', a

choice of strings. Replacing a single string with a choice of number of

different strings generates greater variety between each segment and

ending elements of the line. Rather than having the same defined 'segment'

or 'ending', each segment or ending is randomly selected from a list of

different segments and endings. The following gives an example of two lists

(or 'arrays') of segments and endings; segArray and endArray:

segArray = {"FF", "FLLF", "FFF"};

endArray = { "FFF", "FLL", "FFff"}

Segment = new Attribute (segArray);

End = new Attribute (endArray);

Each segment (S) and end (E) therefore selects a string from one listed in

the array. The Engine class is modified to include a method which selects

one string from the array: Engine.convertString(). This is called from

the Target constructor:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 160

s (String) = e.covertString (atts.s);

This concept is extended as arrays of strings are used for other types of

lines. For example a leafArray ("F", "FF") is added to randomize the

size of leaves. The idea of allowing difference and variation within the

branching structure of the line is important and one which came from

studying the work of botanical forms used by William Morris, in whose work

the controlled variety of organic shapes form a key element of the design.

4.4.2 Extending the Vocabulary: Visuals

The process of developing and extending the vocabulary of the work yields

important changes in the visual aspects of the project. The beginning of the

ability to differentiate between different elements of the visuals allows the

development of a wider range of shapes and forms. The botanical structure

of the work is developed to include combinations of leaf, flower, branch, sub-

branches and stems:

Figure 4.17 Screenshots from 'MovingWallpaper_March12_BASIC' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/4_ExtendingVocab/March12_

Basic

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 161

Figure 4.18 Screenshots from 'MovingWallpaper_April1_C' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/4_ExtendingVocab/aprilc/

Figure 4.19 Screenshots from 'MovingWallpaper_March19b' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/4_ExtendingVocab/March19b

4.4.3 Extending the Vocabulary: Process

The combined effect of extending the vocabulary and choice of strings,

together with the introduction of the Attributes class provides a

computational data system which can be used and extended to create a

greater range of shapes, forms and lines. It is a computationally concise,

flexible and elegant system for describing and defining lines and their

structures.

The system is concise:

The Attributes class encapsulates core data about a line. Each letter of a

string (F, B, f, etc.) represents a single function. A string of characters

therefore concisely encapsulate a 'stream' of logical commands and

functions. Lines are described by a series of strings. A "FFFB" line (some

growth plus a single branch) would therefore have a different structure to a

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 162

"FBFBFBFff" line (three branches at regular intervals, ending with a single

flower). The addition of the 'parent' Attribute classes adds an extra

degree of concision, allowing a greater level of detail to be expressed even

more succinctly. A flower, for example is expressed more eloquently as "f"

rather than as a string of petals; "pppppppp". The use of specific names,

'Stem', 'Leaf', 'Branch') to describe each of the Attributes instances

creates an important natural-language link between the abstract data and

the type of the visual aspect of the line described. This use of language

makes the passing data more obvious, accessible and 'natural'.

The system is flexible:

The concise nature of the vocabulary based system means that any slight

change to a string will modify and add nuance, to the structure of a line.

Simple adjustments to the string of a Plant or the 'rules' of the Engine

allow a greater range of lines to be produced. The programme is therefore

able to create a variety of lines and define new types of line by extending

these rules. Once the basic Attributes class is established new 'types' of

lines can easily be described and defined as with their own data types;

Leaves, Flowers Branches, etc; each can be defined with their own set of

properties. The use of lists of string arrays adds additional nuance and

subtlety to the work, resulting in different combinations of line 'segments' and

line ‘ends’, further developing the idea of controlled variety. The flexibility

and pliability of the work in allowing specific details for each type of line to be

created, and the ability to define a wide variety of lines, is an extension of the

original OOP class-based structure.

The system is computational (abstract, data based, rule based):

This project shows a greater use of and understanding for the core elements

of computation, allowing the broader concepts of programming to be used

effectively. The use of strings (i.e. within the rules of the L-system) and

classes (OOP) to define the visual structure and parameters of the line

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 163

generates a more computational and abstract solution. Combinations of data

created using strings and classes define large elements of the work. The

broader use of data elements allows a broader and more abstract definition

of objects which includes a greater degree of complexity and detail. The

work therefore reflects an increased ability to understand, use and work with

the creation, definition and flow of data and abstract computational concepts.

Unlike the previous project, the system has computational integrity; the

structure is developed with the core concepts of the programming data

structure.

The system is elegant:

The flexible, concise computational description of lines maintains a degree of

integrity and elegance. The ability to change, modify, add subtlety and

nuance to the description of structures and visuals provides a greater degree

of visual and computational elegance.

4.5 Translation and Rotation: Adding 3D Elements

By drawing reference to traditional ideals of beauty and form, the visual and

aesthetic direction of the project has been concerned with creating an

environment which allows the simplicity, and beauty of plant and flower

patterns to grow, form and develop across the screen. The emphasis on

organic structure and growth has been reflected in the development of the

code. A flexible data structure has been developed to allow a broad range of

elements (leaves, branches, flowers, etc.) to be defined and randomized,

within a tightly defined data structure, enhancing the core ideals of beauty

and structure. String data defines the structure of the work to allow digital

plants to grow, develop, react and fade. This phase of the work begins to

add visual detail and beauty within the set structural parameters of the

project: Elements of 'growth' and 'decay' are added to the line, as an 'unfurl'

element is included to enhance the naturalistic movement and form of the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 164

plants and flowers. Detailed examples of code for this section can be found

in appendix 2.5.

4.5.1 Translation and Rotation: Code

The code developed for this phase of the project focuses upon the

relationship between each of the balls which constitute each segment of a

single line. Creating a calculation to rotate each ball through the z-axis, the

flat, two-dimensional line is transformed into a line which begins to show

attributes and movement in three-dimensions. A 'translation' calculation is

developed, as a separate sketch, to calculate the movement and rotation of

points around each other. The rotation amount around each point is

calculated according to sine calculations on each of the x, y and z axes. The

translation calculation is added into the body of the Moving Wallpaper

project, as an unfurl() method. The calculation uses a set of variables

which determine the amount of rotation or ‘spin’ around each segment as

well as the 'target' rotation value towards which the line moves:

Variable Description

spin The initial rotation of the line (angle of the petal)

spinInc The subsequent rotation for each point of the line

This affects how curved the leaf / petal is

unfurlTarget The final rotation for the entire line

 For example:

-16 = a fully opened petal

12 = closed petals (rotate in towards centre)

Table 4:15 Overview of variables used for 3D rotation of line: Moving Wallpaper

The unfurl() method continually re-calculates the amount of rotation

needed until the line reaches its target rotation.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 165

void unfurl () {

 float spinIncDiff = unfurlTarget - spinInc;

 spinInc += spinIncDiff *0.008;

}

Setting the amount of 'spin' and ‘spinInc' determines the amount by

which each flower and petal is unfurled.

Line () {

float spin; (initial rotation value)

float spinInc; // how much each segment is incremented (to get

a curve)

float unfurlTarget = 2;

Initially the unfurl() method is applied only to the petal lines allowing the

flower to open and 'bloom':

void fineParents () {

...

 if (lineType.type == "petal") {

 spinInc = 20;

 spin = 60;

 }

 else {

 spinInc = 0;

 spin = 90;// random (40, 100);

 }

}

void run () {

..

 if (lineType.type == "petal") {

 unfurl (); // rotate line around it's axis

 }

}

void unfurl () {

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 166

 float spinIncDiff = unfurlTarget - spinInc;

 spinInc += spinIncDiff *0.008;

} } }

4.5.2 Translation and Rotation: Visuals

The introduction and use of the unfurl() method re-emphasizes the

organic fluidity of the visuals and the structure; providing an extra dimension

to the work which is in-keeping with the organic growth and data flow of the

project. The addition of the rotation and translation detail gives each of the

lines a greater feeling of growth and decay; emphasizing the organic

movement and 'evolution' of the plants. Initial visuals were experimental,

technical tests of the ‘unfurl’ idea:

Figure 4.20 Screenshot from 'translateExample12C' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/5_Translation/translateExam

ple12c

Functional elements from the test pieces were added into the main body of

work to produce visuals which begin to show more organic attributes of

growth and decay as the petals smoothly open and close.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 167

 Figure 4.21 screenshot from 'Moving Wallpaper_June13_LRG2Color' (2008) accessed

from:

http://www.random10.com/movingwallpaper_research/applets/5_Translation/MW_June13_L

RG2color

Figure 4.22 Screenshots from 'Moving Wallpaper_June23_unfurl_shape3' (2008) accessed

from:

http://www.random10.com/movingwallpaper_research/applets/5_Translation/MW_June23_u

nfurl_shape3

4.5.3 Translation and Rotation: Process

The simple visual fluidity and elegance added to the work by the rotation of

the petal lines adds an interesting aspect to the work. Generating the

calculation however proved to be a little tricky and relied upon the

understanding and use of calculating the position of objects in 3D space.

Using a separate sketch to create the calculation was useful. The translation

calculation was easily incorporated to the Line class, but required a number

of extra variables to control the movement. Use of single variables and

conditional statements adds some complexity to the line class, the unfurl

movement is controlled by the combination of a number of different variables

and conditional statements. The visual effect is good, adding a degree of

visual subtlety to the work.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 168

4.6 Final Development and Variations

A key element of this project is the concept of visual and computational

flexibility used for creating organic, variable growth. During the evolution of

the project, decisions regarding the concept and structure of the programme

have been made in order to accommodate flexibility and fluidity as part of the

data structure. The Attributes class groups many individual variables

representing the visual properties of a line into a single, definable set, or

‘instance’, providing a way in which the properties and attributes of each new

line can be easily defined, accessed and managed. Similarly the use of

string data to encapsulate and condense the otherwise complex logic of

conditional statements into a single set of characters creates a flexible,

accessible structure which allows for change, nuance and subtle alteration.

This final phase of work continues to test and stretch the system in terms of

its flexibility and variability, adding a further layer to the data structure in an

attempt to extend the amount and the variety of visible attributes which can

be produced. A new class, the Plant class, is created into which groups of

data are collated e.g. Attribute instances and other single numeric

variables. A Plant object is therefore defined as the collection of lots of

different types of data and line attributes: a means of combining branch,

flower, petal and stem attributes together into a single group. This therefore

introduces a whole new series of data elements and details which are able to

add subtle difference variation and greater flexibility into the structure.

4.6.1 Final Development and Variations: Code

The Plant class is defined along the same lines as the Attributes class;

the class is has no real functionality other than its main purpose of grouping

sets of data together. The initial version of the plant class is used to group

together a set of Attributes which constitute all the different lines within a

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 169

Plant structure (i.e. Stem, Leaf, Branch and Flower). The basic

Plant constructor function is written as follows:

Plant (Stem, Branch, Leaf, Flower, Petal)

The Plant class therefore becomes a container for a group of specific line

Attributes. Additional variables are subsequently included to control and

define other visual elements of the plant structure:

Variable Description

lo_ & hi_ controls the minimum and maximum sine curve values

and the shape of the plant lines.

petalCount controls the amount of petals of a flower.

Table 4:16 Additional variables added to control visuals: Moving Wallpaper

Subsequent versions of the Plant class add an increasing amount of detail.

A second Plant constructor is created to accommodate the added variable

elements:

Plant (Stem, Branch, Leaf, Flower, Petal, lo, hi, petalCount)

An added level of the data structure is developed and the Plant class is

used to define an increasingly huge variety of attributes and variables which

control and define many different attributes of a 'plant'. The following table

outlines the core set of variables included in the Plant class and which are

used to define specific elements of each plant.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 170

Plant Class

Variable Initial Value Description

decayRate 0.3; controls the minimum and

maximum sine curve values and

the shape of the plant lines.

refurlRate 0.02 controls the amount of petals of a

flower.

blurRate 0.05 controls speed of blur, if used.

decay false determines whether flowers 'die'

and decay.

flowerBlur false defines whether blur effect is

applied to flowers.

leafBlur false defines whether blur effect is

applied to leaves.

drawLines false defines whether outline strokes

are used.

blurAmount 10 defines amount of blur.

blurAlphaFraction 0.2; defines percentage amount of blur

transparency.

blurNum 1 defines the 'amount' of blur.

leafFollowParentColor true defines whether all leaves are

same colour.

flowerFollowParentColor true defines if all petals on flower are

same colour.

leafGrowth 0.95; how much leaves grow.

leafStart 2.0f starting size of leaf.

flowerGrowth 0.7; how much subsequent flowers

grow.

flowerStart 1.0f starting size of flower.

flowerDev { -4, 15 } min and max amounts flower can

deviate.

Table 4:17 Overview of Plant class variables: Moving Wallpaper

The use of the Plant class as an over-arching container for all the attributes

and properties of each plant structure is a convenient and easily changeable

means of setting and defining lots of visual properties which can be applied

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 171

to each new output of the programme. The structure of the code is now

established; the rest of the work is concerned with experimenting and

manipulating the functions and data structure to see how much visual variety

can be created.

4.6.2 Final Development and Variations: Visuals

Up until this point, the structure and parameters of the visual elements of the

work have been created but the full range and visual potentiality of the

structure has not been fully explored. A large amount of emphasis has been

placed on developing and defining a flexible, usable data structure which can

produce the widest possible variety of visual forms. Having reached a stage

with the work which most fully expresses the level of visual detail and

behaviour possible, the visual expression and variety of the project is

explored in a much fuller and wider way. Initial experiments begin to test the

potential for generating a range of shapes and forms:

Figure 4.23 Screenshots from ‘MW_June27_PlantTypes' (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/6_FinalDevelopStages/MW_J

une27_PlantTypes

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 172

Figure 4.24 Screenshots from ‘MW_July1_PlantShapes2’ (2008) accessed from:

http://www.random10.com/movingwallpaper_research/applets/6_FinalDevelopStages/MW_J

uly1_PlantShapes2

Figure 4.25 Screenshots from ‘MW_July2' (2008) accessed from:

http://random10.com/movingwallpaper_research/applets/6_FinalDevelopStages/MW_July2

Following these experiments a further, wider range of work exploring the

visual possibilities was produced.

Botanical structure and form remained a strong influence for the visual

development of the work throughout the project, reflecting the emphasis that

the Arts and Crafts movement placed upon natural forms in their design.

William Morris stressed the importance of knowing and observing natural

form before 'conventionalizing' it into ornamental pattern or design (Morris,

1882). The emphasis that Morris placed on the observation of natural form is

applied here to the computational environment. The following photographic

images illustrate the observations and references made to a variety of plant

and flower shapes, in developing a range of visual form for the Moving

Wallpaper project.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 173

Figure 4.26 Researcher's own plant and flower photographs used as visual reference.

Using these observations and photographs as source material and giving

close consideration to the shape, colour, and variety of each form, the

Moving Wallpaper project then attempted to abstract ('conventionalize') the

plant shapes into a range of computational designs. The process of

generating these computation forms can be seen as a type of what Morris

described as decorative conventionalization. The shapes and forms are

simplified to their essential structure and then abstracted into individual

configurations of data detail. Each plant shape is converted into a data string

which determines branch, leaf and flowers properties; adjusting individual

variables to add nuance of shape and levels of variation. The colours,

structure, shape and form of plants, observed and photographically

recorded, were used as visual reference for creating and extending the

visual range of the work. The following page (fig. 4.27) shows the variations

produced. Comparison between the photographs (fig. 4.26) and the

computational versions (fig. 4.27) illustrates the way in which the original

forms and shapes are abstracted and simplified into the computational

structure.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 174

Figure 4.27 Screenshots of the final variations of Moving Wallpaper work accessed from:

http://random10.com/movingwallpaper_research

4.6.3 Final Development Stage: Process

Moving Wallpaper_LeafOnly1

Moving Wallpaper_LeafOnly3

Moving
Wallpaper_honeySuckle

Moving Wallpaper_LeafOnly4

Moving Wallpaper_LillyLeaf

Moving

Wallpaper_PinkFlowers

Moving Wallpaper_LeafOnly6

Moving Wallpaper_redround

Moving

Wallpaper_willowPattern1

Moving

Wallpaper_willowPattern2

Moving Wallpaper_redround2

wallpaper1

wallpaper2

wallpaper3

wallpaper1.1

wallpaper4

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 175

Having set and established the core structure of the work, this final stage

places emphasis on manipulating variable values, string data, etc. to set and

achieve different types and shapes of plant. Usage of the Plant class and

the Attributes class, together with the usage of string data all combine to

define the individual shape, form, colour, structure and general attributes of

each element, allowing a greater level of control over the detail of the work.

Setting individual attributes is easier than in the Colorcalm system, however

there are still many details to be set and used to control and define each

visual element of the work. The final structure is one in which all the visual

details of the work can be set and changed. This not only includes the broad

elements regarding number of leaves and flowers but also the detail, for

example, the amount of 'randomness' in the line to control leaf curls, and the

speed at which plants grow or decay. The system is one of 'controlled

variety', in which each element of work can be 'randomized', but done so

within a set of defined parameters. Every type of line, leaf, stem branch petal

and flower is assigned variations which define its growth, speed, form, shape

size, etc. within set parameters, which define its 'randomness'. The amount

of detail in the system affords a great deal of control over the element of the

work. The process during this final phase is therefore one of experimentation

and 'play' with the data and variable values. This can be a detailed and time

consuming process. However, given that the structure is less cumbersome

than that of the Colorcalm work, making changes and defining details of the

work is less difficult, allocating and finding specific data to define specific

details is more easily done.

4.6.4 Summary

The Moving Wallpaper project represents the second phase in the

researcher's movement towards the use of programming code as a means of

creative design. In comparison to the initial Colorcalm project, it highlights

improvement and development regarding the use and understanding of the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 176

computational material, reflected by more fluid and flexible structures and

visuals.

i. Code

The project represents a piece of work which is based more firmly around

broader computational concepts and structures than was the case with the

Colorcalm project. The approach to the project, right from the initial phase,

emphasizes a way of working with code which reflects a clearer

understanding of computation as an abstract data structure. Rather than

being initially concerned with the visual details of the work, the Moving

Wallpaper project begins by considering the computational, conceptual and

behavioural elements of the line, i.e. how it is structured, how it may behave,

grow and develop. The project abstracts the concept of the line into a broad

structure of inter-connected classes (Ball, Line, Spring, Target)

which represent individual conceptual and behavioural elements of the

project. This class structure represents a clearer abstraction of the work into

related concepts which provide the ability to add and develop the

functionality of the work. The strong, flexible, modular structure defines the

allocation and flow of data and represents the function structure and

behaviour of the work, rather than just its visual properties.

ii. Process

Recognition of the importance of data allocation and flow in this project is

illustrated by the use of string data, summarizing and condensing the

complexities of an organic branching structure into a series of individual

characters, each representing a visual element of the plant growth. The

ability, for example, to use "FFBFBFf" as a means of describing a plant with

two branches (B) and a flower (f) highlights the developed flexible

vocabulary of the system. The flexible computational structure of the Moving

Wallpaper work is therefore one in which data is described concisely and is

allowed to flow freely through the system. The work is both structurally and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 177

visually much more flexible that that of the Colorcalm work; elements of

variance, randomness and visual nuance are able to be added to the code

and to the visuals of the work.

The structure affords a greater range of visual expression and development;

details of each element of the work can be accessed and changed more

easily. For example, simple changes to the string data or to elements of the

Plant class can easily alter the visual detail of the work. Describing a wide

variety of shapes and plant structures is therefore easier, and visual nuance

and subtlety can be added to specific leaf, branch, petal or flower elements

of the work. The process of the work is generally more intuitive and flexible

than that of the Colorcalm work.

iii. Visuals

Visual fluidity and flexibility is evidenced by the 'reactive' nature of the work.

The behavioural organic structure of the line with its naturalistic movement,

growth and decay is defined and supported by the data structure which

allows for development of the work. External input (e.g. mouse movement)

can be used as a means of making the visuals move and react. Overall, the

work represents the development of a flexible data structure which is

computationally and visually more fluid affording greater access to the

process of visual and structural development and experimentation.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 178

5 Overview and Analysis

5.1 Introduction

The contextual review (chapter 2) considered the similarities and differences

between traditional, software-centred and computational design, looking

specifically at the ethos, material, process and object. The review highlighted

the idea that whilst both software and computation share a common digital

environment, the ethos and approach toward process and material reveal

key areas of crossover between traditional and computational work. It was

suggested that the process of computational work is informed and motivated

by ideas and approaches which link it to ideas and motivations of the Arts

and Crafts movement. Using the initial review as the context for practical

work, the research then considered the computational process in more

depth: looking specifically at the development and use of code as a material

for creating visual design work. This chapter will therefore provide an

overview and analysis of the practical project work considering both the

Colorcalm and Moving Wallpaper projects highlighting key elements of the

computational process for each piece of work. Although both projects

produced a range of visual work, this chapter does not attempt to make an

evaluation of the aesthetic success of each project; the visual outcomes of

each project when considered are done so in the context of, and in relation

to, the overall process and workflow.

5.2 Computational Process: A Unique Workflow

At the heart of this discussion is the desire to understand the process of

using computation as part of creative practice. Having completed both

pieces of work, conclusions can begin to be made about the overall process

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 179

for the project work and the generic workflow of each. Consideration of

practice during the development of each project has highlighted similarities

in the broad approaches to the computational process, but differences in

emphasis and development of each of the pieces of work. Reflection of the

Colorcalm work during its lifecycle informed the approach and development

of the subsequent Moving Wallpaper work. This chapter will begin by making

comparisons with both traditional and software-driven design, highlighting

ways in which computational design can be seen to have its own unique

workflow and design process.

The process of contemporary software-centred, digital design has been

outlined in this research (2.1.4) as a cut-and-paste, re-mix and re-edit

approach to creating work; a process defined by the movement and

combination of image data (text, graphics, sounds, etc.); a loose process of

"import and export" (Manovich, 2006) in which design elements are moved

and shared as data objects between a network of software packages. This

import / export network association between different software packages is

illustrated as follows:

Figure 5.1 A workflow diagram illustrating the network flow

between different pieces of software

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 180

In contrast to the copy-and-paste approach of software-driven design, the

research (2.3.3) has also highlighted how the process of traditional design

practice can be characterized as a formal, skilled process of interaction

between maker material. The traditional process of design can be defined as

a variation of the design cycle, a process of design, creation and evaluation

in which work is developed by a 'feedback' process during which making is

informed and generated by the process itself. Ideas about the traditional

processes of design, informed by the influential approach of Morris and the

Arts and Crafts movement, have been referred to as a process of applied

skill and understanding, in which the maker seeks to use, understand and

‘honour' the structure and parameters of the material. The process of applied

understanding is therefore a way in which the details of the material are

generated and understood; an ongoing dialogue whereby the will of the artist

or designer is expressed through the parameters and properties of the

material. This idea can be visualized as a simple 'feedback loop' between

the object and material, an iterative process in which one side informs the

other, illustrated as follows:

Figure 5.2 A workflow diagram illustrating the feedback loop of

the craft-centred design process

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 181

The idea of 'dialogue' is something which also has resonance with the

creative practice and use of code. Computational design work operates in

tension between two separate elements; the work is both abstract and

visual, conceptual and aesthetic. It must function correctly as code ('obey the

laws' of the syntax and logic) as well as being successful as an aesthetic

piece of work. It is possible, therefore, to align the dialogue of craft, between

material and maker, to a computational dialogue between visual and

technical parameters. However, the process of creating both pieces of

project work, demonstrates that the dialogue of computation is more

complex than a simple push and pull between material and aesthetics. The

model of the traditional design cycle is one which cannot be directly

transposed onto the process and workflow of the computational design

process.

The non-physical, abstract, nature of computation means that the structure

of code has to be created as part of the design process. Unlike traditional

material, computational material is not in a pre-determined state ready to be

manipulated; before being constructed into a specific structure, the code

exists only as generic 'rules' of number, logic, data and concept (2.2.2).

These rules form the 'layers' of work which are developed and manipulated

throughout the design cycle of both the Colorcalm and Moving Wallpaper

work. The computational workflow therefore defines, constructs and

manipulates the material, and the data structure, as the project moves from

abstract concept through to the final visuals. This process is reflected by a

computational cycle in which the work moves from concept to the data

structure and data detail, a process during which the structure is given form.

This computational workflow may be illustrated as follows

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 182

Figure 5.3 A diagram illustrating the computational design

workflow

The specific phases of the project workflow can be summarized as follows:

Concept: In which the overarching concept is developed and where

the core concepts and ideas for the project are established.

Data Structure: In which the visual structure and behaviour of the

work is developed. Moving the concept into a more defined set of

classes, functions and behaviours. The broad architecture of work.

Data Detail: Adding and manipulating the data detail of the work:

specific variables and algorithms.

Each project undergoes a similar series of iterations from which the material

of code is developed. Moving from initial concept, development of data

structure and manipulation of data detail, the process is one in which the

material of code is conceptualized and constructed. The overall process

gradually moves from a 'broad' cycle of engagement during the early phases

of work down to a narrower cycle of work during the latter stages of the

project. The cycle of the process operates and evolves as a continual

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 183

alternation (‘flow’) between conceptual development and manipulation of the

data detail. Each cycle of work generates the detail and parameters of the

project.

As the process moves through its phases, the addition of computational

detail (e.g. functions, classes, data, variables, methods etc.) add form and

structure to the previously unformed computational environment. The loose

conceptual data structures become more detailed and well defined, and

movement within the workflow becomes increasingly difficult. As the abstract

concepts gradually gain more solidity, the material moves from being a

completely ‘fluid’, conceptual amalgamation of computational conceptual

possibilities to a very specific structured set of classes, functions and

variables. Opportunities for making significant changes to the nature and

character of the work decrease, and a greater amount of focus is placed on

changing or adding nuance and subtle variation to the detail of the work. The

process can therefore be summarized as a journey from fluidity to rigidity.

The computational material begins formless as a concept, into a more

defined set of classes functions and algorithms; the work moves from a

loose fluid concept to well defined rigid detailed structure.

The generic computational cycle outlined by both of the projects, therefore

represents an ongoing process of development during which the concept,

data structure and data details are developed, processed and constructed.

The computational work begins as a formless, open-ended set of concepts

and possibilities which, during the course of the work, move towards an

increasingly solid computational structure defining a specific range of digital

artefacts and visuals. Unlike software-driven or traditional craft-like work, the

final solution is not fixed to a single design or visual artefact but is a piece of

work which embodies a range of possibilities.

The cyclical, iterative workflow, and the nature of the computational

language emphasizes the importance of structured learning, understanding

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 184

and development as part of the computational process. The required skill-set

of programming, centred around a non-intuitive understanding of the rules

and syntax of code, means that a developed understanding of the syntax

and structure of code becomes part of the computational workflow. Iteration

through the workflow of the computational process builds up knowledge and

understanding of each individual data structure. The development and

construction of the computational material, moving from an unformed, open-

ended, range of possibilities to a defined data structure, therefore

characterizes the process as a conceptual workflow of understanding; a

process of engagement with the material during which concepts, material

and visuals emerge.

Whilst both computational and software-centred design share similar

abstract digital environments in which work is created by the movement or

manipulation of digital data, the approach reflected by the workflow of the

computational design process highlights key differences. The ordered

logical, iterative process of understanding and development contrasts with

the import / export network model of software-centred design. Whereas

software design is about moving data between different software

environments, computational design, as its workflow suggests, is centred

around creating and manipulating data elements through an ongoing

dialogue of structural development and manipulation. The structured iterative

workflow of computation, therefore, represents a means of thinking,

understanding and manipulating the 'material' of code which resonates with

that of the iterative cycle of the traditional craft practice of ‘making’.

The workflow of computational design can therefore be seen as an

interesting intersection between digital and traditional processes; a workflow

which takes the ethos of traditional design and applies an ethos of making to

the digital data-based environment of the digital universe.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 185

5.3 Computational Process: Detail

Having considered a generic computational workflow, through which both

projects move, it is now necessary to compare the detailed structure and

usage of code for each piece of work. Each phase of the workflow (concept,

data structure and data detail) offers differing abilities to develop, change

and manipulate the material of the project using different amounts of

'flexibility'. The differences between the Colorcalm and Moving Wallpaper

project are highlighted by their approach to, and use of, the detailed phases

('layers') of the computational process. Each of these phases will now be

discussed in turn with specific reference to each project.

5.3.1 Concept: Constructing the Material

The work begins as a computational concept; before any work can be

created, or manipulated, key concepts which establish the foundational

elements of the work have to be put into place. Drawing upon a range of

abstract computational ideas (recursion, iteration, randomness) initial

decisions are made which lay the foundation for the nature of the

computational material. This initial abstraction of the work defines the

parameters and direction of the work. The conceptual 'layer' of the code is

therefore the phase in which initial decisions are made regarding how the

ideas for the work are to be abstracted into a computational structure. For

both pieces of project work, the key conceptual decision regards the

'computational' definition of the line. There are significant differences

between the conceptual set-up of each project.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 186

Colorcalm

The Colorcalm project is based upon a simple literal, visual definition and

understanding of a line. The project attempts to translate a traditional

concept of drawing marks on paper into a screen-based computational

environment. This literal approach is reflected in the initial set up of the work,

in which each object leaves behind a trail, rather like plotting the arc of a pen

tracing a path across paper.

Figure 5.4 An illustration of the concept element of the

Colorcalm project

This simple, core concept informs the development of the rest of the project.

The fundamental idea of the line defined as the trail of an object moving

across the screen informs all elements of the work, and is repeated for all

visual elements of the drawing; stems, leaves, branches and flowers. The

simple, literal nature of the concept of the line, abstracted as a single class,

allows little room for development or expansion. Subsequent development of

functions and classes continue to lay emphasis on the initial idea, expanding

the individual visual qualities of the lines without developing the concept.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 187

Moving Wallpaper

In contrast to this, the Moving Wallpaper project takes a broader, more

abstract, ‘computational’ approach to the idea of the line. Ideas which define

each line in the Moving Wallpaper project are based on a broader

understanding and application of computational concepts. The line is not

thought of as the movement, the path of a single object, but as a series of

separate, yet interconnected, data elements. In this way the single line

becomes defined as a trail of individual data elements which, whilst being

connected as a single 'line', also maintain their own functionality and identity,

being subject to individual manipulation from internal and external sources.

Increasing emphasis a line as a data-based, computational, object is

reflected by a greater emphasis placed on the behavioural, rather than the

visual, qualities of the line. The diagram, below, illustrates the key concepts

which constitute the core concept of the Moving Wallpaper line:

Figure 5.5 An illustration of concepts informing the Moving

Wallpaper project

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 188

Emphasizing the line as a computational-based, behavioural object, rather

than as a screen-based version of the paper-based line, (i.e. as the

movement of a single pen on paper) gives the line a wider conceptual base

to work from, and encourages a more fluid development of the code. The

concept of the line is not fixed by a narrow definition based around the

traditional line, but is defined as a computational entity which has freedom to

grow and develop. The line, as a collection of combined forces impacting

upon a series of individual data elements, affords greater room for fluid

development and allows shapes to be more easily changed and moved. The

broader concept of the Moving Wallpaper project therefore emphasizes the

computational ‘fluidity’ of the line.

5.3.2 Data Structure: Broad Architecture of the Work

The second phase, or ‘layer’ in the workflow deals with the data structure of

the work. The data structure defines the 'architecture' of the project,

establishing the core classes, methods and functions through which the

detail of the individual variable data will flow. The data structure flows from

the concept, and is the means by which the initial idea is abstracted into a

computational structure. The data structure 'layer' therefore provides the

structure within which the individual data elements (variables, etc.) can ‘flow’,

and therefore forms an important link between the concept and the detail of

the individual data elements. The initial concept of each project is therefore

developed into an appropriate data structure which handles, defines and

controls each of the visual parameters and functions of the work. Both

projects develop their data structure from the foundations laid by the

conceptual framework by applying an Object Orientated Programming

(OOP) approach to the structuring and handling of the data elements of the

code. Differences in concept are reflected by the creation of the different

data structures which define the parameters of the project. The following is a

comparative discussion of each data structure.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 189

Colorcalm

The Colorcalm data structure is borne from the literal, narrow definition of the

line outlined by the concept phase, and its use of data is a reflection of this.

The following diagram gives an overview of the structure of the Colorcalm

project. Each of the circles (below) represents a core class within the

Colorcalm project.

Figure 5.6 An illustration of the data structure of the Colorcalm

project, and the relationship between classes.

The Line class defines the initial line, and remains the same throughout the

lifespan of the project, forming the foundation for the rest of the work. This

class is developed by means of an 'inheritance' structure in which the core

elements of the line are repeated with some minor changes to define

different types of lines. Each new class is based upon the generic Line

class which is used to define each new specific line type i.e. ‘Branch’,

‘Leaf’ and ‘Stem’. Names of the classes reflect the literal allocation of the

OOP structure into individual types of lines. Each new class is therefore an

amended duplication of the 'core' line class. As the diagram illustrates, the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 190

data structure is narrowly defined and developed, limited to the core concept

of the single line class. The data structure does not develop the concept,

rather it adds layers of similarity within an already limited and narrowly

defined structure, allowing only limited movement and flexibility between

each of the classes.

Moving Wallpaper

In contrast to the narrow and rigid structure of the Colorcalm project, the

data structure of the Moving Wallpaper project provides a broader and more

conceptual data structure which reflects the broader nature of the concept.

The core concept of the line is represented by a number of separate classes,

and data entities, defining the line as a collection of interconnected data

elements.

Having initially divided the line object into a couple of different classes (Ball

and Line) the Moving Wallpaper data structure continues to develop a

broad, abstract class structure for development and growth of the lines. The

addition of new classes introduce new visual and behavioural attributes to

the visuals. The nature and functionality of the line therefore continues to

grow and develop, reflecting the computational concept of the line which is

not fixed to a narrow single idea and definition. The abstract interpretation of

the line is reflected by its data structure: rather than creating a single class to

define each line, the concept of the line is defined by a number of different

classes.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 191

Figure 5.7 An illustration of the data structure of the Moving

Wallpaper project, and the network of inter-related classes.

As the diagram illustrates, the Moving Wallpaper data structure places its

emphasis upon the use and application of inter-related objects and classes,

which allows for greater flexibility in creating and manipulating lines.

Unlike the previous Colorcalm diagram, (fig. 5.6) in which elements of data

structure are rigidly connected (overlapping), the diagram (above) illustrates

how the relationship between core classes and objects in the Moving

Wallpaper work is based around a more fluid, modular structure in which

bonds between conceptual element of the work can be more easily added or

modified. The way in which the Moving Wallpaper work is developed

reinforces the concept of the line as an abstract computational object,

emphasizing the unique computational qualities and characteristics of the

screen medium (2.2.4). Functions, classes and behaviours are added

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 192

throughout the process to explore and change the movement,

responsiveness and behavioural qualities of the line, generating ‘living’, fluid,

organic lines. Emphasis on data as the core concept and foundation of the

work gives the project a fluid, organic structure which makes a more

considered use of the material of code. The use, understanding and

application of data, ‘classes’, in this way creates a piece of work which

demonstrates computation integrity, work which makes greater use of the

natural use of the core concepts and structural elements of code.

5.3.3 Data Detail

If the data structure provides the architecture through which data 'flows'

throughout the work, then the data detail concerns the allocation, use and

manipulation of the individual data values (number, characters, strings, etc.)

used to define the individual attributes of the work, its look, movement and

behaviour.

A core part of each project is the use of numeric data. Both the Colorcalm

and Moving Wallpaper projects allocate numeric values to each visual

attribute of the work. Within each project, the use of numbers constitutes the

main way in which details are allocated, manipulated and controlled. Simple

mathematical algorithms are used to assign and change the data values

which directly affect the visual details of the work. The flow and movement of

the number data changes, however, for each piece of project work. The

following is a discussion comparing the flow of individual data detail for each

project.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 193

Colorcalm

The usage and allocation of data detail in the Colorcalm project operates

within the narrowly defined data structure, and follows the simple structure of

the data elements. The architecture of the structure follows a linear path in

which data values are passed from line (parent) to mainline, to branch to leaf

in a direct process. The flow of data elements can be summarized as

follows:

Figure 5.8 An illustration of the ‘flow’ of data between classes in

the Colorcalm project

As the project grows, so increasing numbers of individual numeric variables

are assigned to the line class to build up the detail of the work, each

assigned to a specific aspect of branch line, leaf line or main line. The result

is a huge amount of similar variables, each controlling a specific element or

attribute of one type of line (3.6). Variation within the data structure is limited

to the use of individual variables and conditional statements used to control

the 'logical' structure of the work.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 194

The conceptual 'foundation' of the Colorcalm project is literal and narrow,

and as the single idea is extended further and further, more is added on top

of the narrow conceptual, computational base, until the entire structure

begins to ‘creak and wobble’ making it difficult to manage and change. Lots

of individual variables build up the detail of the work, each assigned to one

specific aspect of the visuals, which creates an enormous amount of

individual pieces of data. Reliance upon conditional statements to create

variety of growth, speed of movement, colour, etc. results in a rigid,

‘mechanistic’ system which offers limited scope for control or variation.

Increasing numbers of conditional statements applied to growth, structure,

speed of movement and colour, etc. add to the complexity and rigidity of the

data structure. The result is that the structure quickly becomes rigid and

difficult to manipulate.

Moving Wallpaper

Use and allocation of data detail in the Moving Wallpaper project reflects the

broader modular structure of the architecture, which allows data to be

handled in a more flexible way. The following diagram outlines the

movement of the data within the architecture of the work:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 195

Figure 5.9 An illustration of the ‘flow’ of data between classes in

the Moving Wallpaper project

Data creation, movement and handling is central to the thinking and

structure of the Moving Wallpaper project, creating the ability to easily add

to, allocate, change and manipulate data elements is a central idea which

drives the work, and informs the visuals. This is reflected by the allocation,

use and flow of data thorough the project. A good example of this is the use

of 'string' data as a means of summarizing structural conditions: substituting

a complex and unwieldy set of 'if statements' with a series of characters

which make decisions regarding structure and growth affords a greater

degree of flexibility and nuance, enables easier and more direct manipulation

of the structure to occur (4.4). This more considered, data-centred, approach

to creating the work, affords a greater amount of change, and nuance in the

graphic element of the work, which is reflected by the data architecture and

its usage and manipulation.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 196

5.3.4 Summary

Having considered the use of concept, data structure and data detail in each

of the projects, it is now necessary to summarize the findings and to outline

the differences between the two projects. The difference in emphasis is

summarized in the following table:

Table 5:1 Summary of difference in code structure between Moving Wallpaper and

Colorcalm projects

The Moving Wallpaper project is focused on an understanding of

computation as a data based material; a project in which emphasis is initially

placed on the use of conceptual rather than visual elements of the work and

which demonstrates a broader use, allocation and understanding of data.

Rather than focusing on a narrow concept and use of data as individual

number values to be allocated to specific elements of the line (e.g. colour

width and shape), the Moving Wallpaper project uses collections of data

(e.g. classes and strings) to inform and develop the work. Data detail is not

limited to a list of variables, but given a broader part to play in the

development of the project. Similarly, the modular nature of the class system

reflects a computational concept which recognizes the importance of flexible

data structure to inform the final visual artefact of the project. The Moving

Code ‘Layer’ Colorcalm Project Moving Wallpaper Project

Concept literal

simple

narrow

broad

conceptual

computational

Data Structure simple

linear

modular

abstract

Data Detail

mechanical

repetitive

rigid

fluid

flexible

computational

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 197

Wallpaper project explores the concept of computational line; right from the

beginning of the project, the ideas and behavioural qualities of computational

lines are being explored and developed.

In contrast to this, single numeric values and their use and evaluation, form a

much greater foundation to the Colorcalm project, and are used not only for

each detail of each line, but also extensively to control the overall structure

of each plant, leaf, etc. The Colorcalm project has a narrower computational,

and conceptual basis to work from. It places greater initial emphasis on

visual development of the work and relies more heavily on the use and

manipulation of individual numbers and single variable values. These values

are not integrated into a wider data structure, as they are with the Moving

Wallpaper project. In summary the process and use of code in the Colorcalm

project can be defined as being:

literal: a simple, literal translation of the idea of drawing lines in

screen environment.

visual: definition of structure (line class) and functions to detail and

concentrate on the aesthetic details and development of the line.

simple: a narrow concept defined by an emphasis of drawing, organic

looking lines.

numeric: (mechanical / rigid): a structure which is heavily based

around the modification of numeric data and simple calculation /

evaluations.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 198

Comparatively the Moving Wallpaper’s use of code can be summarized as

being:

conceptual: based on the development of data structures.

computational: (data based): seeing the problem / issue as being a

data based one and recognizing that the visual objects can be defined

by a convergence of different data elements.

organic / fluid: work shows a greater emphasis on the definition and

flow / movement of data / objects, use of natural phenomenal : forces,

growth, etc.

5.4 Visuals

Having considered, summarized and compared how each of the projects

(Moving Wallpaper and Colorcalm) handles the different cycles of the

process and aspects of the code, it is now necessary to compare the outputs

of the coded work, the visual aspects of each project, the ‘artefacts’ of code.

Computational artefacts are the 'flip side' of the code; the computation

structure provides the environment for creating and making the final visual

artefact experienced by the end user. It is impossible to consider the visuals

without reference to the code, the material, which created it. Discussion of

the computational artefacts will therefore be done with reference to the code

structures which created them.

Both projects share common visual intentions and aims i.e. to align the

visuals, shapes and forms created from code with those of traditional

decorative craft. Both pieces of work are particularly inspired by the

decorative shapes and forms of William Morris’ wallpaper. Each piece of

work therefore displays some common visual themes. The slow spread and

growth of the botanic shapes across the screen, gives the visuals of both

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 199

pieces a decorative feel and flavour. The graphics are intentionally simple

and slow, 'quiet' in nature, to allow and encourage a contemplative approach

to the work. A visual style which has more to do with traditional design and

traditional form than with the high-speed, visually excessive nature of screen

based graphics. Discussion of the computationally based objects (2.2.4)

outlines key characteristics of the computational artefact i.e. that they are

visual, time based and behavioural ('reactive'). Reference to these attributes

will inform this discussion.

5.4.1 Colorcalm Visuals

The work of the Colorcalm project reflects the simplicity of the computational

structure from which it is created. A direct line of comparison can be seen

from the initial ‘sketches’ to the final phase of work. The original idea of the

line as a ‘pen' tracing a path across the screen, is reflected in the nature and

type of visuals that are produced, as plants move and grow across the

screen in a simple, yet elegant, manner, and the structures become more

complex a clear association is maintained between the early and the later

pieces of work.

Throughout the work, the visuals maintain simple, organic qualities,

reflecting the structure of the organic plant life by which they are inspired.

Variation of lines and plants is, however, relatively limited, and the nature

and quality of the strokes becomes repetitive. Although the work possesses

some visual elements of organic shape and form, the Colorcalm pieces are

visually flat and unresponsive. As the work evolves over time, visual

variation is limited to colour, branch width, shape and number of leaves.

Each variation of the 'wallpaper pattern' design contains the same, or similar,

branch leaf structures. Visual experimentation with shape, curve and colour

is undertaken (3.5) but at its heart, the work remains fundamentally the same

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 200

as the early line sketches. This is illustrated by the following group of

screenshots which demonstrate the fundamental visual similarities between

the earliest experiments and the latest pieces of work.

Figure 5.10 A visual comparison of stages of development from the Colorcalm project

As has been outlined (2.2.4), a key aspect of the computational object

environment is its dynamic and visual fluidity, generated by the

computational code. The ability to create and use interactive, dynamic

systems enables computational work to develop, change, react or interact.

The final artefacts of the Colorcalm work, however, do not demonstrate this

element of computational 'organicness' inherent to the environment. The

visuals have some decorative elegance but lack a fluid or behavioural

element on screen, and appear as if they have been animated as part of the

traditional linear process. The work does have elements of generative

randomness, a system which creates different shapes and forms each time it

is run, which does express some elements and characteristics of

computational dynamism. However, there is a mechanistic (static and rigid)

feel to the visuals, which lacks substantial organic or behavioural qualities.

The Colorcalm computational artefacts demonstrate little visual variation or

fluidity elements which form core characteristics of the computational

environment.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 201

5.4.2 Moving Wallpaper

Just as the visuals of the Colorcalm work are a reflection upon the concept

and data of the code, so similar comparisons can be drawn between the

code and the visuals of the Moving Wallpaper project. As we have seen, the

computational structure of the Moving Wallpaper project is more broadly

based than that of the Colorcalm work, using a wider, more flexible, data

structure to draw and generate lines. The nature and behaviour of the

resulting visuals reflect the change in approach and concept towards a more

computationally centred piece of work. The fluidity of the data system allows

easier, more flexible access to generating a wide variety of shapes and

forms. The Moving Wallpaper project can be used to generate a greater

range of ‘plant life’ and allows a range in shape colour and size of flowers,

stems leaves and branches to be generated within the same application.

(See figure 4.27 in chapter 4.6.2).

The ability to control and randomize small details with the plants (e.g. leaf

curls and shapes, flower blooms, etc.) gives each plant an organic-random

feel allowing each plant and each leaf to maintain individual qualities of form

and shape within the broader parameters of the plant structure. The visual

value of adding subtle changes to each leaf or petal allows the work to

maintain a look of individuality and has echoes of William Morris prints which

combine repetitive pattern design with a look of organic randomness and

'naturalness'. The combination of 'randomness' entwined within a wider

organized structure is one which resonates the visuals of the wallpaper

design with ideas of generating graphics within a computational structure.

The following images highlight the way in which the Moving Wallpaper

pattern (left) echoes the individual ‘organic randomness’ of the leaf shape,

and visual rhythm of the William Morris pattern (right).

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 202

Figure 5.11 A comparison between Moving Wallpaper visual and William Morris's Willow

pattern image from: http://www.williammorristile.com/small_images/black_willow_sm.jpg

In addition to the range of visual vocabulary afforded by the Moving

Wallpaper project, the work also has the capacity to use and introduce visual

and behavioural fluidity. Unlike the ‘static’ drawn shapes of the Colorcalm

project, the leaves and plant forms of the Moving Wallpaper project are

reactive; once on the screen they can be manipulated ('blown' around) by

mouse movement. The leaves, flowers and branches express the visual and

behavioural fluidity of the computational structure. The Moving Wallpaper

data structure, therefore, generates a wide variety of shapes and forms,

which express visual and behavioural qualities, reflecting some key

attributes of the screen-based, computational environment.

In addition to the differences in ‘fluidity’ and of the ‘reactive’ qualities of the

projects, there are also differences between the final aesthetic 'texture' of

each of the projects. The graphic element of the Moving Wallpaper visuals

have perhaps lost their simplicity. They tend to have a greater computational

aesthetic, being more graphically computational with bolder and larger

forms; an aesthetic which includes some use of the three dimensions of the

screen, making more considered use of the nature and characteristics of the

screen environment. In comparison, the texture of the Colorcalm work

maintains more of a simpler hand-drawn aesthetic. An overall summary of

the differences between the two project is outlined as follows:

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 203

Artefact Colorcalm Moving Wallpaper

Summary of Code

Concept and

Structure.

'Line as a pen' simple, direct

concept and structure

'Line as reactive, behavioural

object'.

computational.

Visuals simple

organic

graphic.

using elements of three

dimensions.

Time-based Evolution

variety limited to colour and

shape

greater sense of growth and

decay.

broader variety of shape,

form and structure.

Behavioural /

‘Reactive’ Qualities

no behavioural qualities

reactive to external and

internal forces.

Table 5:2 Overall summary of visual and structural differences between Moving Wallpaper

and Colorcalm projects

The process of increased understanding, highlighted by the development of

the work from the Colorcalm project to the Moving Wallpaper work is one

which reflects personal development experienced by the researcher.

Beginning the project as a designer with limited experience in the use of

computation, the researcher started with a clear, but limited concept

regarding the use of code to create work. The initial pieces of work centred

around an understanding of computation as a means to manipulate numeric

values associated with visual elements on screen. Assumptions about the

direct and simple association between number and visual were made: it was

thought that if the researcher could 'get the numbers right' then the visuals

would follow. Data structure was assumed to be something which could be

built around the core individual numeric manipulations. The limitations of this

simple idea are witnessed by the limitations of the Colorcalm work and its

unwieldy, number-heavy structure.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 204

Acknowledgement of the limitations of numeric manipulation, together with

the need to develop work to reflect more of the characteristics of the

computational environment, led to a much wider use and understanding of

the computational material. A broad appreciation of data and the recognition

of the intrinsic importance of data structure, helped to develop a view of

computation which encompassed a wider range of data types. The

understanding of computational material as a data structure, which allows

the movement and flow of a variety of data types, is one which began to

develop during the Moving Wallpaper project and is reflected by the nature

of the work. Seeing the computational material as a structure, rather than a

series of numeric values and algorithms, helped to reveal the wider potential

of the material as a conceptual behavioural environment.

Working with computational material has been a difficult but rewarding

process. Inspired by the ideal of sculpting elements of code, the

development of each stage of the project provided a challenge to the

researcher's understanding and application of the rigid rules of programming

structure and syntax. Despite the difficulties, the experience of coding, and

of learning from mistakes, has offered a valuable insight into the intricacies

of the code environment as a 'material'. The process of working on both the

Colorcalm and Moving Wallpaper projects can be seen as a kind of

'apprenticeship' in which active involvement with the syntax, logic and

structure of code generates a clearer vision of the potential of the

environment and a clearer view of the characteristics of the material. This

'apprenticeship' has revealed the significant 'layers' of the computational

material, characterized by the creation and manipulation of numeric detail

and data structure.

A core characteristic of the computational material is its close association

with numeric values. Within each project, number values are associated with

individual visual elements which determine elements of motion, colour, line

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 205

shape, and line width, etc. Connections between number and visual are

interwoven deep into the heart of the material, a key part of the creative and

technical process within both pieces of work. Understanding the relationship

between individual number values, number pattern and visuals therefore

became an important part of understanding the material structure and

character of the code. Creating and manipulating number patterns through

the use of mathematical functions and calculations (e.g. sine waves,

randomness, incrementation, etc.) generated visual change and variance

within the work. Within both the Colorcalm and Moving Wallpaper projects

the process of 'play' and experimentation with variables, used to test and

experiment the inter-relationship of number values, is the means by which

core aesthetic details (line weight, shape and form) are developed. Both

practical projects have shown how, as numeric detail is added, numeric

patterns and values emerge which change the inter-relationships between

individual number values. Subtle variance and change is achieved by

manipulation of individual numbers and algorithms. Changing the rate or

type of calculation adds nuance and change to individual elements of the

visuals. Organic curves and loops were, for example, initially created in the

Colorcalm work by using values generated by a simple 'sine' wave, in which

numbers used to determine the frequency of the wave affected the nature

and 'quality' of the line. As the work developed, the algorithm progressed

and changed to include a greater amount of numeric values around the sine

wave calculation thus changing its attributes and allowing a wider variety of

flowing curves and loop shapes to develop. Similar algorithms were used to

change other visual qualities of the line e.g. colour and angle. Understanding

the flow and change of numeric values and patterns as they shift is more

than a mathematical or 'technical' exercise and becomes a key part of

exploring the material and experimenting with aesthetic subtly and nuance.

The ability to create and change numeric data is therefore a core

characteristic of the computational material, affecting the type and nature of

change as the visuals move and grow across the screen.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 206

Beyond the detail of individual numeric values lies the broader data structure

of the computational material: a further 'level' of the material, revealed

through practice, which defines how numeric data detail is assigned and

flows through the structure of the work. The development of data structure

via the creation of classes and functions constitutes a core element of the

behavioural characteristic of the material. Every function and class within

both the Colorcalm and Moving Wallpaper projects defines behavioural

attributes of the material structure of the work, adds conceptual layers and

extends visual and behavioural characteristics. Each class can be seen as a

conceptual 'building block', defining core characteristics of the material,

which is reflected through the visual and behavioural attributes of the work.

Throughout the project lifecycle, the addition of classes, and the creation of

relationships between them enabled the material to evolve: extending the

detail and the scope of the work, adding new conceptual and behavioural

layers, and creating opportunities to develop the computational material.

The conceptual data structure of the Moving Wallpaper project created a

flexible material which afforded greater manipulation of the core conceptual

elements of the work, allowing greater opportunities to grow and develop a

wider range of visual and behavioural possibilities. The separation of

elements in the Moving Wallpaper work into distinct classes associated with

specific attributes of the work (e.g. line shape, branching structure, etc.)

allowed a loose 'flow' of associations between each element with the

potential to be independently changed and altered. On the other hand,

manipulation of the more tightly defined structure of the Colorcalm project

was much more difficult, its more rigid data structure based on a series of

similar but related sub-classes, offered limited opportunities for development.

Therefore the construction, development and manipulation of the classes

and functions can be seen to define the core characteristics of the material;

each specific element of the data structure defines the specific affordances

of the material structure for each project. Nuance and subtlety within the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 207

work is developed by altering the scope and inter-relationship between

classes and other data elements, which together define the material

structure of the work, its capability and flexibility. Creating 'bonds' between

concepts by integrating classes together, or extending the specific scope of

an individual class, allows the conceptual, behavioural and visual range of

the material to be extended and changed. Although both projects share

common material qualities in terms of basic numeric manipulation, each

project has developed its own material characteristics based on the

computational layers created through the structure and inter-relationship of

core classes and functions.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 208

6 Conclusions

The research question centres around the identification of key features and

characteristics of the practice of computation, when applied to the context of

creative design. In seeking to address the overall aim, the research has

outlined three core objectives which relate to the consideration of the

context, the process and the material of creative computation. These are

expressed as the following questions (1.1.2):

• How does creative computation fit within a broader traditional and

software-centred, digital design landscape?

• What are the key features of the process as a means of making: how

can the relationship between the maker and the computational

material be characterised?

• What are the key features of the material: how can the relationship

between the material and visuals be characterized?

The conclusions will, therefore, summarize findings in relation to these

questions and, as the project aims to be useful to other designers interested

in using code as part of their practice, will reflect upon elements of the

researcher's own experience. The research has addressed the three core

questions relating to the context, process and material of creative

computational design.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 209

6.1 Characteristics of Context: Computation in the Design
Landscape

The research highlighted three key design areas for initial comparison and

discussion: the Arts and Craft movement; digital (software-centred) design;

and computational design. Areas of difference and similarity between these

were investigated and the themes of 'ethos', 'material' 'process' and 'object'

were identified as the research headings for discussion and comparison.

These themes, used to structure the contextual review, enabled the

discussion to move beyond technology or media-led analysis towards a

concentration on the process. Using the themes as structural headings,

areas of commonality between computational work and the other areas of

design (i.e. Arts and Crafts movement and software-centred design) were

identified. The findings are summarized in the table in 2.4.

The non-physical nature of the digital object emphasized areas of

intersection between computational and software-centred design; both being

environments in which object of work is part of the abstract digital

environment. However, investigation into the ethos of computational design

revealed key areas of overlap with attitudes and ideas of the Arts and Crafts

movement. Despite differences in the 'physicality' of material, the

requirement to use, understand and 'honour' the material of design is

identified in both the Arts and Crafts movement and computational design,

revealing interesting areas of overlap regarding the significance of material

and process. A common approach to the material, and process of design,

links attitudes of computational with traditional craft-centred values and

these links inform the basis and direction of the research. The summary in

2.4 details these areas of commonality, highlighting, in particular, the

invisible forces and attitudes which underpin traditional and computational

approaches i.e. how the use of code within a context of ‘making’ may be

seen to reflect the ethos and attitudes of traditional craft in creating

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 210

contemporary digital objects. Taking a broader understanding of 'material' as

central to the understanding of craft, makes it possible to draw comparisons

between the attitude and ethos of traditional and computational design. Even

though the process of making in the computational environment is abstract

and conceptual rather than hands-on and tactile, the mental engagement of

computational designers, their keenness to use, understand, reflect and

'honour' their computational material, reflects the ideals of traditional design

expressed through the ethos of the Arts and Crafts movement.

The research has shown how the process of making using code is a

valuable part of computational design, a means by which the material is

understood, reflecting the concerns, values and attitude of craft. The ideas

and ethos of computational designers whose engagement with, and

workmanship of, the programming environment supports the idea of code as

a type of ‘digital material’. The final pieces of computational work manifest

the skilled understanding of the designer, being the result of both the tactile

(visible) and 'mental' (invisible) forces acting upon the unformed material

whilst enhancing the inherent qualities and characteristics of the material

itself. Usage of code as a means of creating unique pieces of work

emphasizes the distinctness of the computational environment; a freedom

from the limitations of pre-written software and an experimental approach to

creating ‘handmade’ digital forms (2.2.1).

Computational design, therefore, represents an interesting combination of

attitudes taken from craft, and technology. The use of code reflects a desire

to understand and to use the computational medium, providing the ability to

create digital objects by sculpting (crafting) the environment of the computer.

Despite the lack of physical, or tactile engagement with the material, the

computational approach places value on the 'hand-made', individually unique

objects, which express an understanding of the material of code and place

an emphasis on the process of playful experimentation. As such,

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 211

computational design has been seen to mirror some of the core approaches

and the ethos of the Arts and Crafts movement, as well as the 'spirit of craft'

(Nakamura & Fitzpatrick, 2008). It is now possible to consider how this ethos

is translated into the process and material of computation.

6.2 Characteristics of Process

Having considered the context of computation, a review of the themes of the

computational process will be summarized in relation to the Arts and Crafts

movement and software-centred design. The research has shown that each

design process is distinctive, dictated by the individual nature of the material,

and Chapter 2 of the research sketches out some key features and

approaches relevant for each area. The research highlights how the

approach and importance of process of traditional (craft) and computational

work have some striking similarities, and although physically different, the

attitude and approach of the computational design process can be seen to

align it with traditional craft.

6.2.1 A Creative Process of Making: Similar to Traditional Craft

The use of code in a creative design context can be defined as a process of

'engagement' with the material of computation, a means of creatively

engaging with the 'stuff' of the computer environment (2.2.3). This is

reflected by the language used to describe the process of work: code is not

simply written, but is "manipulated" (Maeda, 1999, p.69) or "resculpted"

(Gerhardt & Jarman, 2007, p.392). This re-iterates the idea of the process as

a key part of the creative act, an extension of the idea of code being the

computational material. The process of creating, using code, is therefore an

essential and valued part of the creative design process; a fluid, iterative

dialogue of experimentation, exploration and play, through which limitations

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 212

and possibilities of the material are explored, understanding of the material

developed, and creative accidents and unexpected results are embraced,

(2.2.3). Just as the structure, the solidity and the flexibility of the traditional

craft material is tested and manipulated by physical intervention, so the

computational material is also pushed and pulled, tested and explored,

through the process of development.

Although not a physical process of manipulating or crafting a physical

material, the language-based act of programming embodies a 'closeness'

between the computational material and the maker, which encourages close

understanding of individual objects and an expression of ideas.

Understanding of the computational material informs the design decisions

and concepts of the work, and generates a means of developing a

relationship with the material of code. The process of play and

experimentation, tests and establishes the boundaries of the work, a process

through which a closer understanding of the material is generated.

The process of working with computation is, therefore, a key part of the

creative act and can be seen to be equally important as the final artefact

itself. The importance of process is reflected in comments by computation

designer Ed Burton:

I tend to be more interested in process than product. Rather

than create singular static forms I want to create processes that

may result in countless potential forms emerging overtime.

(Burton, 2007, p.263)

Manipulation of code through experimentation, therefore, plays an important

role in generating a greater technical understanding of the material,

broadening and developing the scope of the work and informing creative

decisions and direction of the work. The emphasis on skilled manipulation of

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 213

code, and understanding of the material, resonates with the ideals of

traditional practice and the Arts and Crafts movement.

The significance of the process as a means of play, experimentation and

understanding has been reinforced by the researcher's own personal

experiences whilst developing the Colorcalm and Moving Wallpaper projects.

From the project based work, I have learnt that the process, and practice of

computation is a highly significant discipline. This has informed my own

understanding of the ‘material’ both technically and creatively, and helped to

develop a broader understanding of the nature and characteristics of the

material.

The technical aspect of developing an understanding of the intricacies of

code proved to be both frustrating and rewarding in equal measure. The very

definite and well defined rigidity pertaining to the rules of computational

syntax and structure provided a constant technical challenge which the

necessity of getting work done made unavoidable. However, the continual

development of knowledge offered a great deal of freedom of thought and

allowed the development of ideas afforded by the understanding of

computation.

The process of working with code not only allowed the development of

increased technical understanding but also provided an important way of

gaining a deeper understanding of the nature of the process and of the

material itself. The workflow of practice and experimentation provided an

environment in which to explore and understand the essence of the material;

establishing what is / is not an appropriate and workable concept and

approach to impose upon the computational environment.

Generating a greater ability to interpret and develop ideas through the lens

of the material of code and seeing the importance of creating ideas in

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 214

harmony with the environment has enabled me to develop the ‘head’

knowledge of how individual elements of code work. This has led to an

understanding of the more important, intangible, knowledge of the ‘feel’ and

characteristics of the material.

6.2.2 A Distinct Workflow: Unlike Traditional Craft

Having considered the process in general through contextual research, the

practical element of the research provided a means to investigate and

understand, in more depth, the specific nature and key features of the

computational process, highlighting unique elements of the computational

process. Although the research has highlighted ways in which the approach

towards material and process of computational design links with the ideas of

Arts and Crafts (and with those of wider traditional craft-practice) there are

clear differences and distinctions between the processes. Craft-centred

making is not characterized as means of manipulating abstract symbols on

screen, as with computation, but through the movement and manipulation of

physical material. The physicality of the traditional material is expressed and

reflected by a process of creative engagement, characterized as a flow

between hand, eye and mind; a process of mental engagement and

understanding between maker and material informed by visual and tactile

feedback; 'tacit knowledge' (Dormer, 1997). Unlike the computational

process in which code has to be written and compiled before the visuals are

seen, feedback within the traditional environment is immediate, there is a

direct flow between the material and visuals which informs the process. In

contrast to the immediate physicality of traditional material, computational

material is created as part of the process via phases of creation,

development and manipulation. Beginning as a purely conceptual 'blank

sheet of paper' the process of writing code literally gives shape and form to

the material of work, moving from initial concept through iterations of data

development, manipulation and experimentation from which the artefact

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 215

emerges. Chapter 5 brings together the ideas and work from the two

practical projects and highlights the distinctions and characteristics of

computational workflow, identifying three key phases or 'layers' of work:

• concept

• data structure

• data detail

Each phase is a necessary part of the cyclical design process and an

important part of the work, allowing the development of different aspects of

the work, from the outline of the concept, to the manipulation of the detail,

and allowing change and development of the work throughout the project.

Movement between each of the cycles of the process is common to both the

Colorcalm and Moving Wallpaper work and constitutes the 'flow' of the

process, allowing the development of a fluid approach to the work. Far from

being a straightforward, mechanical, process from idea to product, the

process of creative computational work is characterized as a evolving

dialogue between the material and visual elements of the work, in which the

growth of the computational structure and of the work is generated. Both the

Moving Wallpaper and Colorcalm projects allow work and ideas to evolve

through several iterative cycles of development and experimentation,

generating a feedback loop of 'play' and development during which the

specific structure and nature of the work is explored.

The nature of computation means that the development of the structure is

inseparable from the development of the artefact. The fact that the final

piece of work must show variety of forms, means that the structure - the

architecture of the work - must also be flexible, providing enough scope to

create a wide variety of shapes and forms. The material must engender

flexibility; the ability to generate a wide variety of ideas, shapes and forms.

Flow and flexibility must be in-built into the structure.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 216

The process of using code can be summarized as a journey from fluidity to

rigidity, an iterative dialogue in which the parameters of the material are

constructed, manipulated and explored. Flow between phases of the work,

layers of the material, allow and encourage the continual development and

evolution of the project. As the work moves from the fluid concept phase

right down to the detail of the data the potential for change becomes

increasingly less.

For the programmer, the 'invisible' structure which creates the visual is the

substance of the work. The process of creating a piece of work is, therefore,

about creating and manipulating these ‘invisible’ structures. The resultant

fluid, dynamic visual computational artefact demonstrates tension between

the abstract, text based nature of the material of code and the organic, fluid,

reactive nature of the artefact. The need to use and generate a flexible,

structure becomes as important as the visuals themselves. Concepts,

structures, abstractions, which are made to form the architecture of the

project, define the direction and visual quality of the project. Each

computational material is a unique construction of data organization, data

structure and data detail. As the material is structured, so therefore the

flexibility and 'flow' are built into the material. Although each project operates

through the same generic phases of work (concept, data structure, detail),

the construction and the fluidity of each project is different. Each structure,

therefore, must embody its own fluidity and flexibility from the process of

structuring and manipulating the material.

What has been highlighted, from both the contextual and practical research

into the process of computation design, is the idea of fluidity and flexibility.

Both the computational structure and the process of building and generating

the structure benefit from a type of computational fluidity in order to develop

an approach which does not become rigid, or a structure which begins to

'creak and wobble' as seen in the Colorcalm project. Both the Colorcalm and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 217

Moving Wallpaper projects set out to achieve broadly the same type of work.

However, the flexibility of structure, code and thinking of the Moving

Wallpaper work is reflected in the final piece, which had a greater degree of

visual and computational fluidity. Brian Smith (2006) defines a way of

problem solving using programming as ‘computational flexibility’, a way of

thinking and designing in the computational environment, in which the design

process is informed by a creative use and understanding of computational

structures and processes. This project has highlighted that computational

flexibility in thought, approach, structure and artefact is key to the use and

practice of computation. This flexibility is only achieved through the

development, exploration and understanding, gained through the process of

making, as a means of understanding specific capabilities of the

computational material. The development of the Moving Wallpaper work

would not be possible without the development of the Colorcalm work, and

the Colorcalm project allowed the possibilities of the medium to be realized

and made visible.

Personal and practical experience of the development of practical work

reinforced and focused these conclusions into practical findings relating to

personal work. The importance of computational flexibility is one which I

discovered to be a key element to the computational process and workflow,

and one which made a vital contribution to the outcome of the work: this is

something which must be founded during the initial stages of the workflow.

Spending the bulk of the initial phases of the project developing a clear and

well structured conceptual element of the project was vital. Developing a

greater number of conceptual prototypes to establish the characteristics and

behaviour of the work, rather than the visuals, was important in establishing

a strong conceptual base for the work.

Both projects undertaken as part of the research had a similar workflow but

each with different emphasis which is reflected in the 'flexibility' of the work.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 218

The Colorcalm project showed less development of the initial conceptual and

behavioural elements of the work moving onto the detail of the data

elements more quickly. In contrast, the Moving Wallpaper allowed the

concept and data structure elements of the work to develop before honing

the individual data details. The greater visual and structural flexibility of the

Moving Wallpaper project reflected these core differences in process and

workflow.

6.3 Characteristics of Material

The previous section has discussed key elements of the computational

process, including the way in which the process is a means by which each

individual computational material is constructed and developed. The idea of

the 'materiality' of code is one which provides a useful way of thinking about

and framing the discussion regarding creative usage of code. The contextual

review (2.2.2) established the idea of computational material, highlighting the

way in which a broader understanding to materiality in the context of creative

practice, is one which is supported both by practitioners (Marius Watz) and

theorists (McCullogh, 1998), providing a useful platform for the discussion of

the rest of the work. Analysis of the practice based research in Chapter 5

has identified that the construction of the computational material is divided

into three phases of work, which constitute the layers of the computational

material. The computational process iterates through each phase of the

work, developing each as a new 'layer' to its overall structure, and

developing the computational material as a layered construction of the

concept, data and numeric elements. These layers, therefore, provide each

project with its specific material qualities as the individual configurations of

concept, data and number (classes, functions and algorithms) provide each

computational structure its own character and affordance. When considering

the material of computation, we must therefore consider the concept, data,

numeric layers of the material and the role and significance of each as a

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 219

means of engendering a fluid, flexible material which embodies the ability to

generate a wide range of visually creative, fluid pieces of work. Each layer of

the material will now be considered in turn.

6.3.1 Concept

The concept is developed over the first phases of the work and forms the

foundation for the development of the rest of the work. Looking at both the

development of both pieces of work, we can see how the definition of the

concept impacts upon both the direction and the flexibility for the rest of the

work. Once established, the central concept (e.g. ideas determining what the

computational lines should be, how it to behave, be created, etc) proves to

be an important and influential foundation stone upon which the rest of the

work is based. Modifications and alterations to the concept have the greatest

impact upon the rest of the work. For both pieces of work, the concept phase

offers the greatest potential for change and flexibility regarding the direction

and nature of the project work. At this point of the project development, ideas

are open to interpretation, experimentation and adjustment.

Comparison of the concept development for each project shows that the

Moving Wallpaper project develops a wider, more broadly computational

approach to the idea of generating organic lines and shapes, and so

provides a wider base upon which to develop the rest of the work. Rather

than being narrowly defined as single shape the Moving Wallpaper work

considers the ‘line’ as a culmination of ideas (forces) which combine to

generate the 'reactive' lines of the Moving Wallpaper project. The conceptual

'flexibility' of the Moving Wallpaper work, in generating a broad concept from

which to develop the work, allows for a broader manifestation of a data

structure, and a greater range of possible visual and structural outcomes.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 220

6.3.2 Data Structure

The data structure allocates and defines specific classes, functions and

methods within the body of the structure, defining the broader nature and

architecture of the work. The data structure therefore defines and controls

the broad set of computational elements (classes) and determines the bonds

and connections (the ‘flow’) between them. The ability to add, define change,

use and modify core data elements within a structure helps define its

flexibility. Each data structure can therefore be viewed as the (unique)

individual structure for a piece of work. Both the Moving Wallpaper and

Colorcalm projects each have quite different means of defining the data

concepts.

The ability afforded by the Moving Wallpaper project by its 'modular'

approach, defining a conceptual, abstract, discrete set of individual data

types (classes), affords more structural fluidity. The computational

architecture of the Moving Wallpaper project, therefore, has a greater ability

to be enhanced, and added to. It also has a (greater) ability to be changed

and altered; it has greater flexibility. 'Flow' between data types and objects is

greatly enhanced in the Moving Wallpaper project; each individual object is

defined by associations and parameters of other objects, allowing a much

greater degree potential for visual flexibility and development.

Flexibility is developed by adding links between objects and by adding

parameters between items (e.g. parameters between plant and line objects).

For example, the Moving Wallpaper line is constructed by its individual

associations with instances of other types of object (Plant, Attribute, etc.)

The structure of the Moving Wallpaper project affords a greater degree of

structural manipulation. The nature and construction (‘architecture’) of the

work is more fluid. New objects and data types can be easily added and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 221

included within the structure. In this way, manipulation, and computational

flexibility occurs through the development of a fluid data structure (adding

more objects and associations to objects). This allows key elements of the

work to be manipulated, changed and added, allowing the work to move in

different conceptual directions.

In contrast to the Moving Wallpaper project, the data structure of the

Colorcalm work is developed in a much more linear fashion. Instead of

seeing and understanding the line as a combined series of objects and

behaviours, the Colorcalm work structured the project in a more literal linear

way, in which a line is defined by a single class in itself. Additions to the

structure, i.e. adding different types of lines are generated by duplicating,

with slight changes, the line class to create similar 'leaf' and 'branch' classes.

Rather than beginning by abstracting the concept of the line, (its movement,

visuals and behaviour into a broad data structure and classes) the Colorcalm

began by putting the visuals and the detail of the line drawing first. The data

structure was secondary to the detail of the individual algorithms and

variables which generated the line type. The narrow, rigid Colorcalm data

structure - based on a few co-dependant classes - began to show its

limitations as the scope of the project grew; development of the visual scope

of the work quickly revealed the limitations of its structure. In order to

accommodate visual development, greater number of variables were added

on top of a limited, narrowly based, data structure which quickly began to

'creak' and 'wobble ' under its weight. Added data detail with the limited

structure made the computational environment increasingly rigid and hard to

manipulate, change or develop. A lack of structural soundness, which put

form before structure; culminated in rigid, 'material' which embodied limited

amount of scope for visual fluidity change or development.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 222

6.3.3 Data Detail

Data details are the individual variable values which are used throughout the

data structure and are used to define specific aspects of each visual,

behavioural or structural element of the work. Assigning and changing

variables values defines the range and detail of the visual and behavioural

element of the work. The ability to assign and manipulate individual data

details defines the flexibility of the computational structure, which affects the

visual details of the computational work. Once the concept and data

structure have been defined and established, the data details control and

manipulate small elements of the work. Experimentation with, and

manipulation of, these data values are used to make creative, aesthetic

decisions about the work. The final phases of both projects focus upon

experimentation, manipulation and allocation of the variable values as the

final aesthetic decisions about the timings, colours and shapes, etc. are

made.

A key element of data detail for any computational project is numeric data.

Each project makes extensive use of individual numeric data as a means of

defining and allocating values to named visual attributes (e.g. angle, width

speed of line, etc.). The values and therefore the visuals, are manipulated

via a combination of key, simple, mathematic and logical functions, some of

which are outlined in the following table:

Mathematical Function Example Code

Incrementation and decrementation x = x+ 1

Random function x = random (100)

Sine calculations x = sine (angle) * magnitude

If / then / else statements and decisions if (x> 100) {

 x = 0:

}

Table 6:1 Key mathematical functions used to manipulate variables

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 223

Algorithmic manipulation is at the heart of all computational work, and in

many instances, manipulation of the visual amounts to manipulation of

individual numeric values. To this end each of these simple functions are

used, either individually or in combination with one another, to develop alter

and change elements of the visual detail for both projects. Although each of

these individual mathematical concepts are simple, combinations are used

over and again to provide a variety of interesting shapes, forms and effects

and afford a greater amount of flexibility. Altering the context or combining

several simple mathematical functions together creates a greater variety of

effects. For example combinations of incrementation, ‘if’ statements and sine

functions were experimented with to produce the looping curves and shapes

used as a core 'stem' shape in both projects.

Whilst both projects make extensive use of individual data (numeric)

elements to set and manipulate visual details of each project, key differences

can be seen in the range and spread (breadth) of data detail used in each

project. Whilst the Colorcalm project relies heavily on lots of numeric data to

control the details and structure of each plant, resulting in a complexity of

individual number values, the Moving Wallpaper project applies a much

broader set of data values. These are encouraged by the wider, more

flexible data structures of the project, making greater use of different types of

data detail (e.g. strings and arrays) to determine the details of the work. The

use, for example, of string data as a means of defining the often complex

growth pattern, structure and development of parts of the work (stem,

branch, leaf, flower petal) provides a greater and more flexible computational

vocabulary with which to subtly change and manipulate the structure and

development of the visual growth of the work. Complex decisions relating to

the organic development and growth are therefore succinctly expressed as

data strings ("FBBFBLBLFff*") the interpretation of which is defined within

the Engine class. This broader use and understanding of data affords a

greater degree of flexibility. Potential for manipulation is made possible by

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 224

the broader use and understanding of computational data applied at each

stage throughout the Moving Wallpaper project. The Moving Wallpaper

project also makes use of classes to combine groups of data elements

together into single Plant and Attribute objects. This allows groups of

data detail to be treated and assigned as individual data objects, and

provides another level of flexibility by which the data details of the Moving

Wallpaper project are handled.

As the project is developed, so the structure and the material of the project is

realized. The specific nature of the data structure determines the overall

flexibility of the material; each layer has its own means of generating and

encouraging the flexibility of the material. The table below is a summary of

the findings of this section, and provides an overview of how flexibility is in-

built into the layers of the work, and the effect this has on the direction.

 Means of

Flexibility

Effect on Work

Concept The ‘flexibility of the

concept is

determined by an

understanding of

computation.

Determines the overall aims

of the work. Manipulates the

direction and scope of the

project.

Data

Structure

Generates fluidity

by creation of a

flexible structural

'bonds' between

classes.

Changes the behaviour,

functionality and timebased

nature of the project. Overall

variety and change.

Data Detail

Fluidity generated

by experimentation

with maths and

logic.

Changes the visual details of

the project.

Table 6:2 Summary of the layers of code, associated flexibility and effect on the visual

element of work.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 225

The work of the Moving Wallpaper and Colorcalm projects provided a useful

environment during which the importance of building in a flexible, malleable

material structure was reinforced in a practical way. Undertaking the

practical elements of the research I have learnt the significance of structural

flexibility, and demonstrated how a broad application of data can enhance

the creative possibilities of the project and develop a flexible, fluid piece of

work. The development of the practice changed my own understanding and

generated ideas about computation from a simple numerical and algorithmic

representation to an appreciation of the importance of a broader

understanding of data and data structures.

When undertaking the Colorcalm work much of the use of code was based

around a simple understanding of variables i.e. a variable as simple number

values that are changed to alter the visuals on the screen. Definition and use

of individual numeric values were seen as the key to manipulating the

visuals of the Colorcalm work this is reflected in the visual and the structure.

The development and use of data in a broader context, which included wider

use of data objects, strings etc. was adopted for the Moving Wallpaper

project. A broader understanding of data thus informed the work and allowed

the development of a computational structure which allows for a greater

degree of manipulation. Development of the work enabled the researcher to

see the importance of building computational flexibility into the material of

the work by making best use of ‘larger’ data structural items (e.g. classes)

and allowing the conceptual element of the project to develop before the

visuals. Greater emphasis on larger data structural items allows for a

computational, more flexible, structure.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 226

6.4 Visuals in Relation to Data Structure

The emphasis of this research is on the process of computational design and

is therefore not an evaluation of the aesthetic success of the work. Although

a significant aspect of each project involves the creation of aesthetic work,

consideration of the visuals is done to inform the understanding of

computational process and structure. It is, however, worth briefly considering

key elements of the visual aspect of the Moving Wallpaper and Colorcalm

projects here.

Based on the organic, botanic aesthetic of the Arts and Crafts work,

specifically the 'Willow' and 'Jasmine' wallpaper design of William Morris, the

core visual inspiration and direction for both projects was informed by

organic lines and forms. Each project tackled the idea of developing a

computational plant-like structure which defined specific elements and

attributes of botanical structures (i.e. stems, leaves, flowers, etc.) but which

also embodied a degree of variance and visual fluidity to echo the 'random'

nature and structure of organic forms. A central characteristic of the visual

development of the project is summarized by the idea of controlled variance.

The work has to be controlled enough to generate well defined plant, leaf

and flower shapes and types, but fluid enough to encompass the visual

variance of these types of forms i.e. to include variance of size, form and

movement within an overarching botanical structure.

In this way, the visual element of the work reflects the structural concerns

and tensions of the work, which is both rigidly structured and defined

according to the logical rules and syntax but also fluid and flexible enough to

embody and embrace a range of outcomes and possibilities; a defined

structure in which the generative (random) nature of the environment can be

expressed.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 227

Structural and computational differences between the Colorcalm and the

Moving Wallpaper project are, therefore, reflected by the visual outcomes of

each project: The narrowly defined, concept and data structure of the

Colorcalm work are mirrored by the visuals of this piece of work. The

repeating patterns and line drawings contain some element of visual

organisms to them but remain visually flat and unresponsive on screen.

Each of the drawn plant structures maintains a high degree of similarity with

some variation in colour and leaf structure. The limited visual range and

'responsiveness' of the Colorcalm work therefore reflects the narrowly

defined concepts and data structure of the programme.

Similarly, the conceptually and computationally broader structure of the

Moving Wallpaper project (in which a greater use and understanding of data

is developed) is also reflected by the visual range of the work, and the

responsiveness of the graphics on screen, which begin to engender a fluid

organic look and behaviour. The basic Moving Wallpaper computational

structure engenders a higher degree of flexibility and nuance; a greater

range of visuals can be developed from the structure (fig. 4.28), and the

visuals on screen move and respond to external input. The more flexible and

fluid data structure of the Moving Wallpaper project work is reflected by the

visually varied and fluid results on screen.

6.5 Reflections on Methodology

The methodology employed in this project is based on a well-established

practice-based research approach: a series of reflective practical projects

intended to address the research area, and a contextual review. Where this

research has differed from the basic model is that here the contextual review

(in particular the Arts and Crafts case study) has not only informed the

conceptual framework and the production method of the work, but it has also

inspired and shaped the aesthetic direction of the design work (the natural

plant forms which reflect not only Morris’ wallpaper, but also the

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 228

characteristics of recursion in computer programming). The distinctions

between process and form have therefore at times been difficult to delineate,

but rather than a more general ‘reflection’, the descriptive, step-by-step,

project-based method has intended to identify the key elements and

characteristics of programming which might be most useful to peers who are

also moving from using design software to using code. Documenting the

development of the work, and providing examples of individual algorithms

and data structure gives insight which other practitioners may find useful as

a basis for their own creative practice. It is hoped that this will be something

which informs and encourages a wider exploration and engagement with

code as a valuable creative material.

Reflection upon the overall development of this project has highlighted

limitations with the specific method and overall methodology of the research.

Learning to create and write using the correct programming language,

syntax and grammar was sometimes a time-consuming process which

impacted upon the time spend developing ideas for the work. Becoming

familiar with the correct language and syntax for each phrase or element of

the project meant that much of the research time was spent trying to

overcome and understand the basic aspects of the language. Technical

problems and errors in the code made the research process itself very time

consuming which limited the amount of creative experimentation. Further

limitations relate more specifically to the overall methodological approach

taken by the project i.e. the use of contextual review to steer the aesthetic

aims of the work, and the means of disseminating and involving a wider

audience as part of the practical process.

Looking back on the project, it is now possible to see that whilst the

contextual review provided an important conceptual and aesthetic focus and

direction for the work, the project was perhaps overly focused on developing

an Arts and Crafts aesthetic. Spending more time allowing the visual focus of

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 229

the work to grow and develop through experimentation with code may have

produced work which was led by the core properties of the programming

language, more directly reflecting the aesthetic qualities of computational

material. Whilst the aesthetics of the botanical shapes and forms provided a

very useful visual focus for the project, it can be argued that this point of

reference perhaps was leading the project too heavily. A 'freer' experimental

methodology may have produced different, more material-led, results.

A further limitation of the project's methodological approach lies in the area

of open source production and dissemination. The open source community

surrounding the Processing environment is a close and developing one

which encompasses a broad range of input from artists, designers and

developers who involve themselves in code-based practice. This research

benefited from the online Processing discussion lists and help fora during the

process of learning how to code. On reflection, however, the research could

perhaps have sought greater involvement from this community as part of its

methodology by making the design work public online; seeking 'live' ongoing

input throughout the stages of development and using comments and

feedback from the community to help inform the progress and direction of

the work. Creating stronger links with the open source community could

have enhanced the direction and the findings of the research, a missed

opportunity which may perhaps be addressed in the future during further

research.

6.6 Future Research

The scope of this research is centred around the development of an

understanding concerning the use and process of computation in a creative

design environment. Emphasis of this research has therefore been on the

contextualization and process of computation, identifying its situation within

the broader landscape of design and highlighting key elements and

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 230

characteristics of the computational process. Building upon the findings of

this research which make a link between traditional craft and computational

design, further detailed investigation into the specific nature, characteristics

and aesthetics of the computational object may be a worthwhile area of

future research. This could include a closer examination of the computational

object, its place within the tradition of craft, and a re-evaluation of the

aesthetic and visible qualities of computationally generated work within the

context of traditional craft.

A second area of study arising from the research concerns the process of

using computation itself: The research suggests that a requirement for

creative engagement with computation stems from the developed

understanding and engagement with the 'material' of code. The research has

shown that a developed understanding of the language structure of code is

necessary for creative engagement. Computationally flexible thinking arises

from a concentrated, developed understanding of the material. This idea has

implications for the development for future creative practitioners in this field.

Against a contemporary backdrop in which the demands of software

development and programming work increase and the commercial roles of

'designer' and 'programmer' are drifting apart, how will future creative

practitioners develop a use and understanding of the material of code? What

ways are there for developing the concepts of computational understanding

into design practice? This is perhaps an issue for educational as well as

creative establishments to explore.

This research represents a fruitful personal journey for the researcher and it

is hoped that future work and investigation into this area will prove to be as

rewarding.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 231

Appendix 1: Colorcalm Code

Appendix 1.1: Simple Line Drawings
Sketches: lineDraw1, lineDraw1b, lineDrawingSimple3,

float x ;
float y;
float angle;
float radius;
float w ;
float inc;
int timer = 0;
--

void draw () {
 if (timer % 15 == 0) {
 fill (0, 50, 0, 10);
 rect (250, 250, 500, 500);
 }
 fill (256,256,256);
 translate (200, 0);
 if (timer % 1 == 0) {
 lineDraw (x, y, angle, radius);
 }

 if (w < 2) {
 reset ();
 }

 timer ++;
}
--

void reset () {
 x = 0;
 y = 0;
 angle = 60;
 radius = 10;
 w = 20;
 inc = 1;
}
--

void lineDraw (float xpos, float ypos, float ang, float r) {
 translate (xpos, ypos);
 xpos = cos (radians (ang)) * r;
 ypos = sin (radians (ang)) * r;
 pushMatrix ();
 rotate (radians (ang));
 rect (0, 0, 8, w);
 popMatrix ();
 x += xpos;
 y += ypos;
 angle += sin (timer/10)*4;//+= inc;
 w -= 0.4;
}

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 232

Appendix 1.2: Branches
Sketches: lineDrawingSimple3fOOP3, lineDrawingSimple3fOOP4

Line
--

 float x, y, angle, radius, w, inc, timer;
 float xStart, yStart, wStart, angStart;
 float xpos, ypos;
 int segNum, segCount; // amount of segments in the line
 float wDecrement;

--

 void init () {
 x = xStart;
 y = yStart;
 w = wStart;
 angle = random (90);
 segCount = 0;
 }
--

 void run () {
 if (w < wDecrement) {
 init ();
 }
 if (timer % 1 == 0) {
 plotPoint (x, y, angle, radius);
 }

 if (segCount == 30) {
 makeBranch (x, y, angle, w);
 }
 timer++;
 }
--

 void plotPoint (float xpos, float ypos, float ang, float r) {
 fill (256, 256, 256);
 noStroke();
 translate (xpos, ypos);
 xpos = cos (radians (ang)) * r;
 ypos = sin (radians (ang)) * r;
 pushMatrix ();
 rotate (radians (ang));
 rect (0, 0, 8, w);
 popMatrix ();
 segCount++;

 incrementShape (xpos, ypos);
 }
--

 void incrementShape (float xpos, float ypos) {
 x += xpos;
 y += ypos;
 angle += sin (timer/10)*4;//+= inc;
 w -= wDecrement;
 }

--

 void makeBranch (float x, float y, float angle, float w) {
 branchNum ++;
 myLine[branchNum] = new Line (x, y, angle-10, 10, w;
 }

}

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 233

Appendix 1.3: Variance and Difference
Sketches: lineDrawingSimpleInhertance, lineDrawingSimpleInhertance2, lineDrawingSimpleInhertance2b

Line
--
 float x, y, angle, radius, w, timer;
 float xpos, ypos;
 int segNum, segCount;
 float wDecrement;
 boolean go;

--
 run ()
 plotPoint ()
 incrementShape ()

--

Mainline extends Line
--
 float xStart, yStart, wStart, angStart;
--
init ()

run () {
 super.run();
 if (w < wDecrement) {
 init ();
 }
 if (segCount == 20) {
 makeBranch (x, y, angle-10, 10, w, -0.8);
 makeBranch (x, y, angle+10, 5, w, +0.6);
 }
 }

makeBranch () {
 branchNum ++;
 myLine[branchNum] = new Branchline (x, y, angle, r, w, distort);
 }

incrementShape () {
 super.incrementShape (xpos, ypos);
 angle += sin (timer/10)*4;//+= inc;
 w -= wDecrement;
 }
}
--

Branchline extends Line
--

 float ang_inc;
 float distort;
--

 void run () {
 super.run ();
 if (w < wDecrement) {
 go = false;
 }

 }
--

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 234

 void plotPoint () {
 super.plotPoint (xpos, ypos, ang, r);

 if (segCount > 10) {
 float leafLength = 10;
 float leafAngle = ang+80;
 float leafDist = 0.5;

 for (float i=0; i<r; i+=leafDist) {
 float xPoint = cos (radians (ang)) * i;
 float yPoint = sin (radians (ang)) * i;
 float xEnd = cos (radians (leafAngle)) * w*10 + xPoint;
 float yEnd = sin (radians (leafAngle)) * w*10 + yPoint;
 line (xPoint, yPoint, xEnd, yEnd);
 xEnd = cos (radians (leafAngle-120)) * w*9;
 yEnd = sin (radians (leafAngle-120)) * w*9;
 line (xPoint, yPoint, xEnd, yEnd);
 }
 }
 }

--

 void incrementShape (float xpos, float ypos) {
 super.incrementShape (xpos, ypos);
 angle += ang_inc;
 ang_inc += 0.9 * distort;
 w -=0.1;
 }

--

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 235

Appendix 1.4: Colour, Shape and Form
Sketches: cc_basicVersion, cc_basicVersion2, cc_march_02, cc_march_03

Line
--
 float x, y, angle, radius, w, timer;
 float xpos, ypos;
 int segNum, segCount;
 float wDecrement;
 boolean go;

--
 run () {
 if (ratio < 80) { inc = 1; };
 if (ratio > 220) { inc = -1 ; }
 ratio += inc;
 frequency = 0.05;
 magnitude = frequency * ratio;
 timer += frequency; //timer += 1;
 plotPoint (x, y, angle, radius);

}

 plotPoint ()
 incrementShape () {
 tg -= int (random (-10, 10));
 if (tg < -200) { tg =-200;}
 if (tr < -200) { tr =-200;}
 if (tg >456) { tg=456;}
 if (tr>456) {tr=456;}
 tr+= int (random (-10, 10));
 }
}

--

Mainline extends Line
--
 float xStart, yStart, wStart, angStart;
--
init ()

run ()

--

Branchline extends Line
--

run ()

plotPoint ()

incrementShape ()

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 236

Appendix 1.5: Petals and Flowers
Sketches: cc_march05_Flower2b, cc_march05_Flower3, cc_march05_Flower3b, cc_aprilTest2, cc_aprilTest3

Line
--
x, y, angle, radius, w, timer;
xpos, ypos;
segNum, segCount;
wDecrement;
go;

--
run () {
plotPoint ()
incrementShape () {
--
--
Mainline extends Line
--
xStart, yStart, wStart, angStart;
--
init ()
run ()
--
--
Branchline extends Line
--
run ()
plotPoint ()
incrementShape ()

--
--

Flower
--
ox, oy;
p1x, p1y;
radius, angle;
fSize,fSizeMin,lineCount;
increaseAngle = 20;
depth;

--

drawLine () {

 if (fSizeMin < fSize) {
 ellipse (ox, oy , 7, 7);
 stroke (tr*3, tg*3, tb*3,50);
 strokeWeight (0.9);

 for (int i=0; i<500; i++) {
 angle += radians (60);
 radius = sin (radians (5*angle/3))* fSizeMin;
 p1x = cos (radians (angle)) * radius+ ox ;
 p1y = sin (radians (angle)) * radius+ oy ;
 line (ox, oy, p1x, p1y);
 lineCount ++;
 }
 fSizeMin+=4;
 }

--

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 237

Appendix 1.6: Leaf Class and Final Pieces
Sketches: cc_aprilTest4b, cc_aprilTest4c, cc_aprilTest5a, cc_aprilTest5b, cc_aprilTest5c, cc_May1, cc_May2,

cc_May2b, cc_May3, cc_May4, cc_May4b, cc_May5_testb, cc_May6.

Line
--
x, y, angle, radius, w, timer;
xpos, ypos;
segNum, segCount;
wDecrement;
go;

--
run () {
plotPoint ()
incrementShape () {
--
--
Mainline extends Line
--
xStart, yStart, wStart, angStart;
--
init ()
run ()
--
--
Branchline extends Line
--
run ()
plotPoint ()
incrementShape ()

--
--

Flower
--
ox, oy;
p1x, p1y;
radius, angle;
fSize,fSizeMin,lineCount;
increaseAngle = 20;
depth;

--

drawLine ()
--
--

Leaf extends Line {
 counter, leafBreadth;

--
count ()

run ()

plotPoint ()

incrementShape ()

 super.incrementShape (xpos, ypos, r_);

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 238

 float lineLength = sin (radians (counter*2)) * w * leafBreadth;
 strokeWeight (0.8);
 float xEnd = cos (radians (angle +90)) *lineLength;
 float yEnd = sin (radians (angle +90)) *lineLength;
 float xEndb = cos (radians (angle -120)) *lineLength*2;
 float yEndb = sin (radians (angle -120)) *lineLength*2;

 angle += sin (timer)*magnitude;

 w -= wDecrement ;

 counter++;
 float xEnd2 = (cos (radians (angle +90)) * lineLength) + xpos;
 float yEnd2 = (sin (radians (angle +90)) * lineLength) + ypos;
 xEnd2b = (cos (radians (angle -120)) *lineLength*2)+ xpos;
 yEnd2b = (sin (radians (angle -120)) *lineLength*2)+ ypos;

 fill (tr*1.2, tg*1.2, tb*1.2); // leaf fill colour
 beginShape ();
 vertex (0, 0);
 vertex (xEnd, yEnd);
 vertex (xEnd2, yEnd2);
 vertex (xpos, ypos);
 endShape ();
 fill (tr*1.2, tg*1.2, tb*1.2);
 beginShape ();
 vertex (0, 0);
 vertex (xEndb, yEndb);
 vertex (xEnd2b, yEnd2b);
 vertex (xpos, ypos);
 endShape ();

 }

}

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 239

Appendix 2: Moving Wallpaper Code
Appendix 2.1: Concept Stage

Example 1

Line
--
startLoc ;
target;
ballCount;
Ball ballArray [];
grow;
--
run ()
updateTarget ();
drawBalls ();
calcDistanceAndAddBalls ();
makeBallsDraggable();

Ball
--
loc;
vel;
draggable;
--
setLoc ();
drawBall ();
dragMe ();

Example 2

Early stages, simple line, trail of balls.

Spring
--
stiffness = 0.2;
damping = 0.7;// add some friction
mass = 2.0;
springLength = 5;
--
updateSpring ():

Line
--
startLoc ;
target;
ballCount;
Ball ballArray [];
Spring s;
grow;
--
run ()
updateTarget ();
drawBalls ();
calcDistanceAndAddBalls ();
makeBallsDraggable();
makeAllBallsSpringy ();

Ball
--

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 240

Appendix 2.2: Branching Structure

Example 1
Sketches: LinkingLineTests3

Engine

interpretChar (char letter, Target t)

if (letter == 'F') { t.timer += 100; }

if (letter == 'B') { t.branch(); }

Target
--
Vector3D vel, loc, acc;
r = 3; // magnitude (radius)
angle;
String s;
charCount = 0;
timer = 0;
counter = int (random (360));
hi = 400;
lo = 20;
magnitude = 100;// random (lo, hi);
inc = .1;
Engine e = new Engine ();
isAlive = true;
lineNum;

addLine ()
runTimer ()
getLetter ()
calcForce () ??
update ()
render ()
branch ()

the String, s, is defined in the Target object and interpreted by the Engine (e)

s = "FBFBF<";

Line

Ball

Spring

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 241

Appendix 2.3: Visual and Behavioural Experimentation

Example 1:
Sketches: LinkingLineTests3, LinkingLineTests3_outlines

Engine

interpretChar (char letter, Target t)

if (letter == 'F'){t.timer += 100; }
if (letter == 'B') { t.branch(); }
...

Target

s = "FBFBF<"; (stem)
s = "FFFF" (branch)
...

Line
--
Target t
calcBallWidth () {
width = 180 / ballCount
}

drawBalls () {
beginShape (QUADS);
vertex (b.loc.x -b.w, b.loc.y);
vertex (prevb.loc.x-prevb.w, prevb.loc.y);
vertex (prevb.loc.x+prevb.w, prevb.loc.y);
vertex (b.loc.x +b.w, b.loc.y);
endShape ();
}

--
Ball

--

Spring

--

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 242

Example 2
Sketches: stage3.0c_Line_Forces_test_LRG // stage3.1_Line_Forces_27_Feb // Line_Forces_27Feb_new

Engine

--

Target

--

Line
--
-- react to mouse movement
void calcForces () {
 // add a force to each of the balls..
for (int i=1; i<=ballCount; i++) {
Ball b = (Ball) ballArray.get (i);
Vector3D force = b.loc.sub (b.loc, mouse);
// find 'force' diff between ball and mouse;
// find the distance and the angle
float d = force.magnitude ();
d = 1/d * 200;
float a = force.heading2D ();
Vector3D newForce = new Vector3D (cos (a) * (d *.1), sin (a) * (d *.1));
newForce.limit (.15);
b.addForce (newForce);
b.update ();
 }
}
--
'grow' behaviour..// check this.
using new variable: lineExpandAmount, maxWidth

lineWidth += lineExpandAmount
if (b.w > maxWidth) {
lineExpandAmount = - lineExpandAmount
}

--

Ball

--

Spring

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 243

Example 3

Sketches: March1, Moving Wallpaper_March1_b, Moving Wallpaper_March_1B , March1C_silhouette, silhouette2

Engine

--

Target

--

Line
--
...
Line () {
...
if (parentLinePos == 0) {
 maxWidth = 2;
 }
 else {
 maxWidth = 30;
 }
}
...
void calcBallWidth () {
...
float widthInc = (90/ float (ballCount));
...
if (b.w >= maxWidth) {
 lineExpandAmount = -lineExpandAmount;
 addNewLine (parentLinePos);
 if (lineWidth < maxWidth) {
 lineWidth+= lineExpandAmount;
 }
 if (lineWidth < 0.1) {
 removeLine ();
 }
}

void timer () {
 time++;
 if (time == 100 && parentLinePos == 0) {
 addLine ();
 }
 }
void addLine () {
 Target t = new Target (sinLUT, new Vector3D (width/2, height/2, 0));
 a.add (t);
 }
removeLine () { }
--- blur???

--
Ball

--

Spring

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 244

Appendix 2.4 : Extending the Vocabulary

Example 1

Sketches: Moving WallpaperBlurEdgeATTRIBUTESMarch18, Moving WallpaperBlurEdgeATTRIBUTESMarch19,
March19B, April1, April1_segs&ends.

setup ()
String stemString = "F+L-LF-LFBF-fP*";
String branchString = "F+L-LF+L-LF+f*" ;
String leafString = "FF*";
String flowerString = "-p-p-p-p-p-p-p-p-p-p-p-p-p-p-p*"; ///
String petalString = "FF*"
Stem = new Attributes (1, stemString, l1/2, l2/2);
Branch = new Attributes (1, branchString, l1, l2);
Leaf = new Attributes (6, leafString, l1, l2);
Petal = new Attributes (12, petalString, f1, f2);

Engine
--
if (letter == 'B') {t.addBranch(Branch); }
if (letter == 'P') {t.addPlant (Stem); }
if (letter == 'L') {t.addBranch (Leaf); }
if (letter == 'f') {t.addBranch (Flower); }
if (letter == 'p') {t.addBranch (Petal); }

Attributes
--
color fillColor;
color c1, c2;
float maxW; // maxwidth
String s;
String type;
--
color colorBlend (color c1_, color c2_, float fract) {
 return color(r1 + r2 * fract, g1 + g2 * fract, b1 + b2 * fract);
 } -- plus different types of Constructor ??

Target
--
Target (Attributes atts, Vector3D loc_, float angle_, int parent, int depth_) {
addLine(atts); // attach a line object to this target.
}
void addLine (Attributes atts) { }
void addBranch (Attribute atts) { }

Line
--
Attributes lineType; Line (Attributes atts, Target t_, int currentLine, int
parentLine) {

Ball
--

Spring

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 245

Example 2

Sketches: Moving Wallpaper...AttibutesMarch19B, April1, April1c, April1_segs&ends. April2, April2_test, April2_B.

setup ()
String [] segArray = {"F++L+L-L--L", "FF+L-L"};
String [] endArray = {"F+LL-L*","F+LL-L*", "Ff*"};
String stemString = "F+L-LF-LFBF-fP*";
String branchString = "SSSSSSE*" ;
String leafString = "FF*";
String flowerString = "-p-p-p-p-p-p-p-p-p-p-p-p-p*";
String petalString = "FF*"

color l1 = color (47, 60, 20);
color l2 = color (47, 140, 20);
color f1 = color (132,105,206);
color f2 = color (49,21,37);

Stem = new Attributes (1, stemString, l1/2, l2/2);
Branch = new Attributes (1, branchString, l1, l2);
Leaf = new Attributes (6, leafString, l1, l2);
Petal = new Attributes (12, petalString, f1, f2);

Engine

String convertString (String s) {
if (c == 'S') { ...}
if (c== 'E') {...}
if (c != 'S' && c != 'E') {...}
}

Attributes
--
new constructors --
Attributes (float mw, String s_, color c1_, c2_)
Attributes (String s_)
-- string arrays
Attributes (float mw, String [] s_, color c1_, c2_)
Attributes (String [] sa)

Line
--
Ball
--

Spring
--

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 246

Appendix 2.5: Translation and Rotation

Example 1
Sketches: translateExample10b / 10c / translateExample12 / 12c / Moving Wallpaper_June13 / Moving

Wallpaper_June13_LRG2Color / Moving WallpaperJune14 --- Moving Wallpaper_June23_unfurl_shape3. Key
elements of code taken from Moving Wallpaper_June13

Line
--
Line () {
float spin; (initial rotation value)
float spinInc; // amount each segment is incremented (to get a curve)
float unfurlTarget = 2;

//

void fineParents () {
if (lineType.type == "petal") {
 spinInc = 20;
 spin = 60; }
 else {
 spinInc = 0;
 spin = 90;// random (40, 100);
 }
}

//

 void run ()
 if (lineType.type == "petal") {unfurl ();// rotate }}

void unfurl () {
 float spinIncDiff = unfurlTarget - spinInc;
 spinInc += spinIncDiff *0.008; }

///

void drawBalls () {
for each ball ...
float x_angle = sin (radians (spin-i*spinInc)) *r; // xpos
float z_angle = cos (radians (spin-i*spinInc)) *r; // zpos
float xpos = cos (direction) * x_angle;
float ypos = sin (direction) * x_angle;
translate (xpos, ypos, z_angle);
b.screenLoc.x = screenX (0, 0, 0);
b.screenLoc.y = screenY (0, 0, 0);
b.screenLoc.z = screenZ (0, 0, 0);

Ball

--

Spring

--

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 247

Appendix 2.6: Final Development and Variations

Example 1 (Plant Class)

Sketches: Moving Wallpaper_June27_PlantTypes / Moving Wallpaper_July1_PlantTypes (added petal Array)
/Moving Wallpaper_July1_PlantTypes2 / _b

setup ()
plantList = new Plant [1];
plantList[0] = new Plant (Stem, Branch, Leaf, Flower, Petal, 20, 300, 68);
String [] petalArray = { "FF*", "FFF*"};

Engine

--
Plant
--
Attributes Stem, Branch, Leaf, Flower, Petal;
 float lo, hi;
 int petalNum;
 /// values the same for all plants //
 float radius = 7;
 float _alpha = 100;
 float unfurlSpeed = 0.06;
 float decayRate = 0.8;
// Constructors //
Plant (Stem, Branch, Leaf, Flower, Petal) { }
Plant (Stem, Branch, Leaf, Flower, Petal, lo_, hi_, petalCount) { }

Attributes

--
Target
--

Line

void setTargets () {
 if (lineType.type == "petal") {
 spinIncTarget = 2;
 spinInc = 50;
 spin = 90;
 }
 if (lineType.type == "leaf") {
 spinIncTarget = random (10);
 spinInc = spinIncTarget+5;
 spin = 90;
 }
 if (lineType.type != "leaf" && lineType.type != "petal") {
 spinIncTarget = 0;
 spinInc = 0;
 spin = 90;
 }
 }

Ball

--

Spring

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 248

Example 2

setup ()

Engine

Plant {
--
float decayRate = 0.3; //
float refurlRate = 0.02;
float blurRate = 0.05;
boolean decay = false;
boolean flowerBlur = false;
boolean leafBlur = false;
boolean drawLines = false;
float blurAmount = 10;
float blurAlphaFraction = 0.2;
int blurNum = 1;
int minAngle = 90; // min angle for 'spin'
int maxAngle = 90;
int bCount;
int fCount;
boolean leafFollowParentColor = true; //
boolean flowerFollowParentColor = true;
float leafGrowth = 0.95; // how much leaves grow
float leafStart = 2.0f; // starting size of leaf
float flowerGrowth = 0.7;// how much subsequent flowers
float flowerStart = 1.0f; // starting size of flower
int[] flowerDev = { -4, 15 };// min and max amounts flower can deviate

Attributes
--
float unitLength;// how long each F section is
float sineLength; // how long the sine curve is for line
float sineStart;
float minWidth;
float deviation;
float angle;// = 90; // (spin); / default value
int petalNum;//= 15;
float petalAngle;// = 45;
float lo ; //
float hi ;//
--
Target
--
Line
--
calcBallWidth ()
float w = sineStart;
float magnitude = lineType.maxW;
for (int i=0; i<=ballCount; i++) {
float widthInc = (lineType.sineLength / (ballCount));
b.w = (sin (radians (w))*magnitude)+minWidth;
w += widthInc;

--
Ball

--
Spring

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 249

Appendix 3: Research Paper

During the course of the research, a paper was successfully submitted and

presented at Siggraph 2006. The title of the paper was ‘New Media, New

Craft?’ and addressed the initial links made between computation and the

Arts and Crafts movement. The abstract of the paper reads as follows:

This paper is a reflective study, which considers the use, role,

and status of computer programming (when used in a creative

context) within the broader context of the ideals and ethos of

the late 19th century Arts and Crafts Movement. It seeks to

draw comparisons between the role of programming as a

means of understanding and manipulating the "material" of the

computer environment, and the ethos and attitudes of the craft

environment in which artists work with traditional materials.

Looking beyond the physical differences between the types of

process and artefact involved, this study highlights important

areas of commonality of mental approach and attitude which

link the ethos of traditional crafts with that of computational

artists and designers. It is the contention of this paper that

programming, like the traditional crafts, provides a way in which

creative people can manipulate or "sculpt" the material of the

computer environment. Although it is a reflective and analytical

study, the foundation for this discussion derives from creative

practical experience and expresses a concern that the role of

programmer simply as "engineer" should, in the light of much

creative computational work, be re-assessed and re-examined.

Richardson, A., 2006. New media, new craft?. In: Siggraph 2006: The 33rd

International Conference and Exhibition on Computer Graphics and

Interactive Techniques. Boston, Massachusetts, USA 30 July - 3 August

2006. Boston, USA.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 250

Appendix 4: CD of Colorcalm and Moving Wallpaper
Work

The CD (attached) contains source documents and code for both the

Colorcalm and Moving Wallpaper projects which can be accessed as an

offline version of the web site. Both projects and source code are available

online at:

http://www.random10.com/colorcalm_research/

http://www.random10.com/movingwallpaper_research/

Whilst every effort has been made to make sure that the work is fully

accessible, the nature of the files (exported as java applets) means that

performance will vary according to the browser and operating system on

which they are run. The Moving Wallpaper work in particular can cause

Macintosh based browsers to freeze, and may require the browser to be re-

started. With this in mind, the CD also includes a version of the Moving

Wallpaper work exported as a series of Macintosh formatted stand-alone

applications, which should prove to be more stable for the Mac OS platform.

Some of these pieces require a camera attached to the computer, and are

set up to run from a Macbook or iMac. In most cases clicking the mouse will

trigger new plants to grow on screen. In the case of Moving Wallpaper work,

mouse movement often makes the images move.

It is also possible to run the source code from with the Processing

environment which is available for download at http://www.processing.org.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 251

References
All online material accessed between January 2008 and July 2010

Alexander, A. Goriunova, O. Mclean, A. & Shulgin, A., 2003. runme.org - say

it with software art! [Online]. Available at: http://www.runme.org/.

Andujar, D. et al., 1996. irrational [online]. Available at:

http://www.irational.org/irational/.

Antonelli, P., 1999. Introduction In: J. Maeda, 1999. Design By Numbers.

Cambridge, Massachusetts: The MIT Press

Austin, T. & Doust, R., 2007. New media design. London: Laurence King.

Aydin, E. & Budak, B., 2005. The Work of Art in the Digital Age . In:

International Symposium of Interactive Media Design (ISIMD). Istanbul,

Turkey 5-7 January 2005.

Baudrillard, J., 1990. Ecstasy of communication. In: H. Foster, ed. 1990.

Postmodern Culture. London: Pluto Press. pp.126-134.

Berzowska, J., 1998. Computational expressionism: A study of drawing with

computation. MSc. Massachusetts Institute of Technology.

Blokland, E. 2007. RandomFont Beowolf (Interview with Erik van Blokland).

In: B. Fry, & C. Reas. 2007. Processing: A programming handbook for visual

designers and artists. Cambridge, Massachusetts: The MIT Press, pp.169-

170.

Bøe, A., 1979. From gothic revival to functional form. New York: Da Capro

Press.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 252

Bolter, J.D. & Grusin, R., 2000. Remediation: understanding new media.

Cambridge, Massachusetts: The MIT Press.

British Council Arts, 2005. My World – crafts and applied arts – British

Council Arts. [Online] Available at: http://www.britishcouncil.org/arts-aad-

design-crafts-and-applied-art-my-world.htm.

Brown, D., 2007. Play/create homepage. [Online]. Available at:

http://www.play-create.com/.

Brown, D., 2010. Daniel Brown’s. [Online]. Available at:

http://www.danielbrowns.com/.

Brown University. 2008. Jared Tarbell. [Online]. Available from:

https://wiki.brown.edu/confluence/display/mcm1700n/Jared+Tarbell.

Bunnell, K., 2004. Craft and digital technology. In: World Crafts Council 40th

Anniversary Conference. Metsovo, Greece, 2004. Falmouth College of Arts.

Burgoyne, P. & Faber, L., 1999. Reload: browser 2.0: The internet design

project. London: Laurence King.

Burns, D., 1992. Designers on mac. Tokyo: Graphic-sha Publishing.

Burton, E., 2007. Sodaconstructor (Interview with Ed Burton). In: B. Fry, & C.

Reas. 2007. Processing: A programming handbook for visual designers and

artists. Cambridge, Massachusetts: The MIT Press, pp.263-264.

Carlisle, H., 2002. Towards a new design strategy: A visual and cultural

analysis of small-scale pattern on clothing. Ph. D. Nottingham: Nottingham

Trent University.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 253

Carlisle, H., 2007. The craft of organic programming. In:

New Craft - Future Voices, International Conference, University of Dundee,

Scotland, 04-06 July 2007.

Cox, G. McLean, A. & Ward, A., 2001 The aesthetics of generative code.

[Online] Available at: http://www.generative.net/papers/aesthetics/paper.doc.

Cramer, F., 2002. Concept, notations, software, art. [Online]

Available at:

http://www.netzliteratur.net/cramer/concepts_notations_software_art.html.

Cramer, F., 2003. Exe.cut[up]able statements: The insistence of code. In: H.

von Gerfried Stocker &C. Schopf, ed. 2003. Code – The language of our

time: Ars Electronica 2003. Osterfildern-Ruit: Hatje Cantz, pp.98-103.

Crimp, D., 1990. On the museum’s ruins. In: H. Foster ed. 1990. Postmodern

Culture. London: Pluto Press, pp.43-56.

Crow, D., 2008. Magic Box. Eye 18 (70), pp.20-25.

Crowley, D. & Jobling, P., 1996. Graphic design reproduction and

representation a critical introduction - reproduction and representation since

1800. Manchester: Manchester University Press.

Crutzen, C. & Kotkamp, E., 2006. Object Orientation. In: M. Fuller, ed. 2008.

Software studies a lexicon. Cambridge, Massachusetts: The MIT Press.

pp.200-207.

Cumming, E., 1991. The Arts and Crafts movement. London: Thames &

Hudson.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 254

Davis, J., 2002. Flash to the core. USA: New Riders Publishing.

Davis, J., 2004. Dynamic abstraction machine. In: J. Maeda. 2004. Creative

code. London: Thames & Hudson, p.142.

Davis, J., 2009. Joshua Davis Studios. [Online]. Available at:

http://www.joshuadavis.com/.

Design Museum, 2002. Web Wizards- Design, Architecture, Fashion –

Design Museum London [Online]

Available at: http://designmuseum.org/exhibitions/Online/web-wizards.

Design Museum, 2006. Design library – Design Museum London [Online]

Available at: http://designmuseum.org/design/.

Dormer, P., 1997. The culture of craft. Manchester: Manchester University

Press.

Dormer, P., 2001. Meanings of modern design. London: Thames & Hudson.

Epilog Laser. 2009. Jared Tarbell – Epilog Laser case study. [Online]

Available from: http://www.epiloglaser.com/cs_tarbell.htm.

Fiell, C., 2003. Graphic design for the 21st century, 100 of the world's best.

Köln: Taschen.

Flake, G. W., 1998. The computational beauty of nature. Cambridge,

Massachusetts: The MIT Press.

Forman, C. et at., 2004. Setpixel // Index [Online]. Available at:

http://www.setpixel.com.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 255

Fry, B., 2003. Ben Fry. [Online]. Available at:

http://acg.media.mit.edu/people/fry.

Fry, B. & Reas, C., 2009. Processing online. [Online]. Available at:

http://processing.org/.

Fuller, P., 1988. The search for a post modern aesthetic. In: J. Thakara, ed.

Design after modernism. London: Thames & Hudson. pp.117-134.

Galanter, P., 2005. Generative.net - Definitions. [Online] Available at:

http://www.generative.net/read/definitions.

Gere, C., 2002. Digital culture. London: Reaktion Books.

Gerhardt, J. & Jarman, R., 2007. The Mini-Epoch Series (Interview with

Semiconductor). In: B. Fry, & C. Reas. 2007. Processing: A programming

handbook for visual designers and artists. Cambridge, Massachusetts: The

MIT Press, pp.391-392.

Goriunova, O., 2007. Digital artists handbook: Software art. [Online]

Available at: http://www.digitalartistshandbook.org/softwareart.

Graham, P., 2003. Hackers and painters. [Online]. Available from:

http://www.paulgraham.com/hp.html.

Gray, C. & Malins, J., 1993. Research procedures / methodology for artists

& designers . Invited chapter in: ‘Principles and Definitions: Five Papers by

the European Postgraduate Art & Design Group’, European League of

Institutes of the Arts (ELIA). Winchester: Winchester School of Art.

Gray, C. & Malins, J., 2004. Visualizing research: a guide to the research

process in art and design. Aldershot: Ashgate Publishing.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 256

Gray, C. & Pirie, I., 1995. Artistic' research procedure: Research at the edge

of chaos?. In: Proceedings of Design Interfaces Conference Vol.3. The

European Academy of Design. Salford: University of Salford.

Hamilton Grant, I., 1998. Post modernism and science and technology In: S.

Sim, ed. The icon dictionary of postmodern thought. Cambridge: Icon books.

pp.53-64.

Harris, J., 2000. Surface tension - the aesthetic fabrication of digital textiles:

The design and construction of 3D computer graphic animation. Ph. D.

London: Royal College of Art.

Heller S., 2002. The Graphic Design Reader. New York: Allworth Press.

Heller, S. & Finamore, M. eds., 1997. Design Culture. New York: Allworth

Press.

Hodgin, R., 2009. Robert Hodgin portfolio [Online]. Available at:

http://roberthodgin.com/.

Hodgin, R., 2010. All manner of distractions [Online]. Available at:

http://www.flight404.com/blog/.

Hopper, R., 2004. Splines nurbs and boolean curves: The poetics of virtual

form made flesh. In: Challenging Craft International Conference. Gray’s

School of Art, Aberdeen 8-10 September 2004. Available at:

http://www2.rgu.ac.uk/challengingcraft/ChallengingCraft/papers/richardhoop

er/rhooperabstract.htm.

King, M. 1995. Programmed graphics in computer art and animation.

[Online]. Available at:

http://web.ukonline.co.uk/mr.king/writings/technical/progart.html.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 257

King, E. & Küsters, C., 2001. Restart: New Systems in Graphic Design.

London: Thames & Hudson.

Kirschenbaum, M. G., 2005. The other end of print: David Carson, graphic

design, and the aesthetics of media. [Online]. Available from:

http://web.mit.edu/comm-forum/papers/kirsch.html.

Krysa, J. & Sedek, G., 2006. Source Code. In: M. Fuller, ed. 2008. Software

studies: A lexicon. Cambridge, Massachusetts: The MIT Press. pp.236-243.

Lehni, J. 2007. Hektor and Scriptographer (Interview with Jürg Lehni). In: B.

Fry, & C. Reas. 2007. Processing: A programming handbook for visual

designers and artists. Cambridge, Massachusetts: The MIT Press, pp.271-

272.

Levin, G., 2000. About the Audiovisual Environment Suite Communication

Arts Magazine, [Online]. May 2000, Competition Issue.

Available at: http://www.flong.com/texts/essays/statement_commarts/.

Levin, G. Lia, Meta, & Ward, A., 2001. Generative design: Beyond

Photoshop. Birmingham: Friends of ED.

Levin, G., 2006. Interview by Dayna Crozier for Res Magazine June 2006.

[Online] Available at: http://www.flong.com/texts/interviews/interview_res.

Levin, G. & Lieberman, Z., 2007. Messa di Voce (Interview with Golan Levin

and Zachary Lieberman). In: B. Fry, & C. Reas. 2007. Processing: A

programming handbook for visual designers and artists. Cambridge,

Massachusetts: The MIT Press, pp.511-512.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 258

Levin, G., 2009. Flong interactive art by Golan Levin and collaborators.

[Online]. Available at: http://www.flong.com/.

Lupton, E., 1997. A postmortem on deconstruction. In: S. Heller, & M.

Finamore, eds. 1997. Design Culture. New York: Allworth Press, pp.113-

115.

Lupton, E., 1999. Design writing research. London: Phaidon.

Lupton, E. & Cole Phillips, J., 2008. Graphic design the new basics. New

York: Princeton Architectural Press.

Macdonald, N., 2002. Web Wizards: Designers Who Define The Web, Eye,

[Online] 43 (11), Available at:

http://writing.spy.co.uk/Articles/Eye/WebWizards/.

Maeda, J., 1995. Essay for MDN Magazine March / April 1995 [Online]

Available at:

http://www.maedastudio.com/1995/mdn2/index.php?category=all&next=exist

s&prev=exists&this=reactive_graphics.

Maeda, J., 1999. Design by numbers. Cambridge, Massachusetts: The MIT

Press.

Maeda, J., 2000. Maeda@media. London: Thames & Hudson.

Maeda, J., 2004. Creative code. London: Thames & Hudson.

Manovich, L., 2002a. Generation flash. [Online] Available at:

http://manovich.net/DOCS/generation_flash.doc.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 259

Manovich, L., 2002b. The language of new media. Cambridge,

Massachusetts: The MIT Press.

Manovich, L., 2003. Don’t call it art. [Online] Available at:

http://manovich.net/DOCS/ars_03.doc.

Manovich, L., 2004. Abstraction and complexity. [Online] Available at:

http://manovich.net/DOCS/abstraction_complexity.doc.

Manovich, L., 2006. Import / export: Design workflow and contemporary

aesthetics. [Online] Available at: http://manovich.net/DOCS/workflow.doc.

Manovich, L., 2008. Software takes command. [Online] Available at:

http://softwarestudies.com/softbook.

Marshall, J.J., 2008. An exploration of hybrid art and design practice using

computer-based design and fabrication tools. Ph. D. Aberdeen: The Robert

Gordon University.

Mazanti, L., 2004. Re-reading the functional: A new position for

contemporary craft. In: Challenging Craft International Conference. Gray’s

School of Art, Aberdeen 8-10 September 2004. Available at:

http://www2.rgu.ac.uk/challengingcraft/ChallengingCraft/papers/louisemazan

ti/lmazantiabstract.htm.

McCullough, M., 1998. Abstracting craft: The practiced digital hand.

Cambridge, Massachusetts: The MIT Press.

McLean, A. & Wiggins, G. 2010. Bricolage Programming in the Creative Arts.

[Online]. Available at: http://yaxu.org/writing/ppig.pdf/.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 260

Meggs, P., 1998. A history of graphic design. 3rd edition. New York: John

Wiley & Sons Inc.

Middendorp, J., 2000. LettError type and typography: ToolSpace. [Online]

Available at: http://letterror.com/content/toolspace/index.html.

Mignonneau, L. & Sommerer, C., 2003. From the poesy of programming to

research as an art form. In: H. von Gerfried Stocker & C. Schopf, ed. 2003.

Code – The language of our time: Ars Electronica 2003. Osterfildern-Ruit:

Hatje Cantz, pp.242-249.

Morris, W., 1882. Hopes and fears for art. [Online] Available at:

http://www.marxists.org/archive/morris/works/1882/hopes/hopes.htm.

Morris, W., 1884. Some hints on pattern-designing. [Online] Available at:

http://www.marxists.org/archive/morris/works/1881/hints.htm.

Morris, W., 1893. Textiles [Online] Available at:

http://www.marxists.org/archive/morris/works/1893/textiles.htm.

Nakamura, Y., 2004. The internet tree. In: J. Maeda. 2004. Creative code.

London: Thames & Hudson, p.110.

Nakamura, Y. & Fitzpatrick, M., 2008. Yugo Nakamura: The craftsman

(interview). Creative Review, February 2008 pp.46-48.

Natzke, E., 2007. Natzke. [Online]. Available at: http://play.natzke.com/.

Olding-Smee, A., 2002. The new handmade graphics: beyond digital design.

Switzerland: Rotovision.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 261

Paul, C., 2003. Public CulturalProduction Art (Software) {. In: H. von Gerfried

Stocker & C. Schopf, ed. 2003. Code – The language of our time: Ars

Electronica 2003. Osterfildern-Ruit: Hatje Cantz, pp.129-135.

Paul, C., 2003b. Digital art. London: Thames & Hudson.

Pevsner, N., 1960. Pioneers of modern design: from William Morris to Walter

Grophius. Harmondsworth: Penguin.

Poynor, R., 2003. No more rules: Graphic design and postmodernism.

London: Laurence King.

Pye, D., 1978. The nature and art of workmanship. Cambridge : Cambridge

University Press.

Raymond, E., 2000. The Cathedral and the Bazaar [Online] Available at:

http://catb.org/esr/writings/homesteading/cathedral-bazaar/cathedral-

bazaar.ps.

Reas, C., 2003. Programming media. In: H. von Gerfried Stocker & C.

Schopf, ed. 2003. Code – The language of our time: Ars Electronica 2003.

Osterfildern-Ruit: Hatje Cantz, pp.174-179.

Reas, C., 2004. The language of computers. In: J. Maeda. 2004. Creative

code. London: Thames & Hudson, p.44.

Reinfurt, D., 2005. Making do and getting by. [Online] Available at:

http://www.adobe.com/designcenter/thinktank/makingdo/.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 262

Richardson, A., 2006. New media, new craft?. In: Siggraph 2006: The 33rd

International Conference and Exhibition on Computer Graphics and

Interactive Techniques. Boston, Massachusetts, USA 30 July - 3 August

2006. Boston, USA.

Riedelbauch, G., 2004. Craft and new technologies, implications for practice:

A match made in heaven. In: Challenging Craft International Conference.

Gray’s School of Art, Aberdeen 8-10 September 2004. Available at:

http://www2.rgu.ac.uk/challengingcraft/ChallengingCraft/papers/griedelbauch

/griedelbauchabstract.htm.

Robbins, C., 2005. Christopher Robbins PhpWiki - Dm Digital Materials

[Online] Available at:

http://www.grographics.com/wiki/index.php/DmDigitalMaterials.

Ruskin, J., 1977. The nature of the gothic. A chapter of the stones of Venice.

New York & London: Garland Publishing.

Shaw, E., 2007. Re-locating ceramics: art, craft, design? A practice-based,

critical exploration of ceramics which re- locates the discipline in the context

of consumption, the home and the everyday. Ph. D. London: University of

Westminster.

Simon, J., 2004. Authorship, creativity and code. In: J. Maeda. 2004.

Creative code. London: Thames & Hudson, p.46.

Small, D., 2009. Small design firm. [Online]. Available at:

http://www.davidsmall.com/

Smith, B. K., 2006. Design and computational flexibility. Digital Creativity, 17

(2), pp.65-72.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 263

Tarbell, J., 2005. Levitated | the exploration of computation [Online].

Available at: http://levitated.net.

Tarbell, J. 2007. Fractal.Invaders, Substrate (Interview with Jared Tarbell).

In: B. Fry, & C. Reas. 2007. Processing: A programming handbook for visual

designers and artists. Cambridge, Massachusetts: The MIT Press, pp.157-

158.

Thackara, J. ed., 1988. Beyond the object in design. In: J. Thackara, Design

after modernism: Beyond the object. London: Thames & Hudson. pp. 11-34.

Ulmer, G., 1990. The object of post-criticism. In: H. Foster. ed. Postmodern

culture. London: Pluto Press. pp.83-110.

Van Rossum, J. & Van Blokland, E., 2000. LettError. [Online]. Available at:

http://letterror.petr.com/content/toolspace/index.html.

Van Rossum, J. & Van Blokland, E., 2003. LettError type: Fonts and

typography. [Online]. Available at: http://www.letterror.com/index.html.

Ward, A., 2002. Software art. [Online]. Available at:

http://www.adeward.com/go/Software+Art.

Ward, A., 2003. Signwave Auto-Illustrator 1.2. [Online]. Available at:

http://swai.signwave.co.uk/.

Watson, N., 1998. Postmodernism and lifestyles. In: S. Sim. 1998. The Icon

Dictionary of Postmodern Thought. Cambridge: Icon Books, pp.53-64.

Wattenberg, M., 2004. The art of visualization. In: J. Maeda. 2004. Creative

code. London: Thames & Hudson, p.78.

Truth to Material: Moving from Software to Programming Code as a New Material for Digital Design Practice. 264

Wattenberg, M., 2007. Shape of Song (Interview with Martin Wattenberg). In:

B. Fry, & C. Reas. 2007. Processing: A programming handbook for visual

designers and artists. Cambridge, Massachusetts: The MIT Press, pp.161-

162.

Watz, M., 2003. Teaching – computational design and generative art.

[Online] Available at: http://workshop.evolutionzone.com/old/.

Watz, M., 2005. Generator.x >> Computational design. [Online] Available at:

http://www.generatorx.no/category/computational-design/.

Watz, M., 2006. 10*10 - 10 questions for 10 Nordic artists. [Online] Available

at: http://www.artificial.dk/articles/10x10marius.htm.

Wild, L., 1997. Art and design, lovers or just good friends. In: S. Heller, & M.

Finamore, eds. 1997. Design Culture. New York: Allworth Press, pp.92-95.

Womack, D., 2006. Tools to make or break. Eye, Summer 60 (15), pp.64-66.

