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ABSTRACT

On the surface of the Sun, magnetic flux elements collect in regions of con-

verging flow, grow in field strength and become pores, which have been observed

to exhibit nonaxisymmetric structure over a range of scales. Around a fully de-

veloped sunspot, as well as the fine scale of the penumbra, the moat sometimes

shows clearly observable spoke-like structure at low azimuthal wavenumbers. We

investigate the formation of azimuthal structure by computing the linear stability

properties of fully nonlinear axisymmetric magnetoconvection, which takes the

form of a central flux tube surrounded by a convecting field-free region. We find

steady and oscillatory instabilities with a preferred azimuthal wavenumber. The

unstable modes are concentrated in the convecting region close to the outer edge

of the flux tube. The instability is driven by convection, and is not a magnetic

fluting instability.

Subject headings: convection — MHD — Sun: magnetic fields — sunspot
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1. Introduction

Pores and sunspots are prominent magnetic features on the solar surface. Many of these

objects are roughly circular and appear to be axisymmetric near their centres. However, the

outer edges of these structures often have pronounced nonaxisymmetric features, the most

obvious being the penumbrae of sunspots. A wide range of azimuthal structures have been

observed: around pores there are nonaxisymmetric downflows, hair-like radial striations and

needle-like features, as well as proto-penumbral structures, while sunspots have prominent

penumbrae as well as moats with spoke-like lanes of converging flow.

As pores form from inflowing magnetic flux elements on the Sun’s surface, they have

patches of strong downflows around the flux concentrations (Hirzberger 2003; Rimmele 2004;

Stangl & Hirzberger 2005). Around the edge of pores hair-like striations have been observed

with an azimuthal wavelength smaller than the surrounding granular convection (Scharmer et

al. 2002; Berger et al. 2004). These striations are believed to be magnetoconvective downflow

lanes. Needle-like structures have been observed surrounding pores with an internal flow

towards the pore and a downflow at the end near the flux concentration (Sankarasubramanian

& Rimmele 2003). A pore growing in size due to accumulated flux may evolve a rudimentary

penumbral structure. This proto-penumbra is transitory in nature and may oscillate between

penumbral-like filaments and elongated granules (Dorotovič et al. 2002), decay (Sobotka et al.

1999) or evolve into a fully developed sunspot penumbra (Keppens & Mart́ınez Pillet 1996).

The formation of a fully formed penumbra around sunspots is usually abrupt, with a sudden

change of the magnetic field direction from vertical to inclined (Rucklidge et al. 1995; Yang

et al. 2003). The sunspot penumbra is highly structured with a small azimuthal wavelength

(Scharmer et al. 2002; Sobotka 2003; Thomas & Weiss 2004). The moat flow surrounding

sunspots sometimes exhibits azimuthal structure, with spoke-like lanes of converging flow

which have a higher average concentration of outwardly moving magnetic features (Shine &

Title 2001; Hagenaar & Shine 2005).

Two types of instabilities have been proposed as mechanisms for the formation of az-

imuthal structure in an axisymmetric system: magnetic interchange or fluting instabilities

(Parker 1975) driven by buoyancy and the Lorentz force, and convective instabilities (Spruit

1981) driven only by buoyancy. The first is a hydromagnetic instability of curved magnetic

fields in a stratified atmosphere: the instability is driven by tension along the curved field

lines, and opposed by a stable density stratification. The second is an instability of an ax-

isymmetric flow configuration that prefers to develop cell-like structure; this instability does

not necessarily require compressible effects or a magnetic field.

Here we present an investigation into the stability of nonlinear axisymmetric compress-

ible magnetoconvection, focusing on instabilities that generate azimuthal structures around
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magnetic flux tubes. We find that a convective mechanism can occur in a steady or oscilla-

tory fashion, producing nonaxisymmetric flows that resemble those found in the convecting

regions around pores and, on a supergranular scale, in the moat around sunspots.

2. Model

The numerical grid is a three-dimensional (3D) cylindrical wedge (r, φ, z) with depth

one unit and radius Γ. The azimuthal number Mφ = 2π/φmax quantifies its width, with

the constraint Mφ ≥ 4 built into the model. On this grid the nonlinear equations for fully

compressible, 3D magnetohydrodynamic (MHD) convection (Hurlburt et al. 2002) are solved,

together with
∂ψ

∂t
= −c2h∇ ·B−

c2h
c2p
ψ, (1)

where the variable ψ was introduced to enforce ∇ ·B = 0 (Dedner et al. 2002) and couples

with the MHD equations through an extra term in the induction equation:

∂B

∂t
= ∇× (v ×B) + η∇2B−∇ψ. (2)

The constants ch and cp are set to optimize the divergence clearance. All the other symbols

have their usual meaning.

Both the top and bottom boundary conditions on the domain set the magnetic field

to be vertical and treat the temperature as fixed. The outside wall is slippery, perfectly

conducting and thermally insulating, while regularity conditions apply to the central axis

(Botha et al. 2006). The numerical domain is periodic in the azimuthal direction. In the

numerical simulations we use a fourth-order Bulirsch–Stoer type time integration, with sixth-

order compact finite differencing in the (r, z) plane (Hurlburt & Rucklidge 2000) and a

spectral treatment azimuthally. The level of dealiasing is increased towards the central axis

to maintain grid uniformity.

In order to explore whether any observed instabilities are hydrodynamic or magnetic

in origin, we also solved the PDEs with the evolving magnetic field being replaced by its

azimuthal average at each time step. In this way, the Lorentz force in the Navier-Stokes

equation remains axisymmetric, so that the basic state does not change and magnetic effects

are removed from the nonaxisymmetric mode. Given that the basic state is a central magnetic

flux tube surrounded by field-free convection cells (Section 3), this nonaxisymmetric non-

magnetic solution is effectively confined to an annulus, with the inner boundary the shape

of the edge of the flux tube.
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3. Numerical results

We obtained results with two sets of parameter values, one close to the onset of con-

vection, and the second with more vigorous convection. The parameters in common are:

Q = 100, σ = 1.0, ζ0 = 0.2, θ = 10, γ = 5/3, and Γ = 3. (See Botha et al. (2006) for the

meaning of the symbols.) The first parameter set also has Rayleigh number R = 104 and

polytropic index m = 1, and the second has R = 105 and m = 1.495.

The initial state is a time independent axisymmetric solution (Hurlburt & Rucklidge

2000). It has a well defined flux tube at the centre of the cylinder and a clear separation

between magnetic field and field-free convection. Figure 1 presents this state for the first

parameter set: the central flux tube has radius r = 1.42, surrounded by two convection

cells. The inner cell is orientated so that it forms a collar flow around the tube (Botha et

al. 2006). The initial state for the second parameter set is similar, with a narrower flux

tube (its edge at r = 1.1) and higher convective velocities. The initial state is perturbed

with a single wave in the azimuthal direction. By changing the width of the wedge (φmax),

the stability of modes with different azimuthal wavenumbers (Mφ) can be investigated. The

nonaxisymmetric component of the vertical velocity, integrated over the domain, is used to

determine the linear growth rate for each mode.

Figure 2 shows the linear growth rates obtained with the full PDEs and with the PDEs

with azimuthally averaged magnetic field. In both cases the largest growth rate is with the

lowest value of Mφ, with decreasing growth rates as Mφ increases. Eventually the wedge

becomes thin enough for the nonaxisymmetric modes to be damped. All the modes are

steady growing or decaying modes. The eigenfunctions of the growing mode at Mφ = 4

is given in Figure 3 for both the full and averaged calculations. The eigenfunctions are

located primarily outside the magnetic flux tube, in the convecting region. These modes

are convective modes, with the nonaxisymmetric part of the magnetic field suppressing both

the growth rate (Figure 2) and the extent to which the mode penetrates the magnetic flux

tube (Figure 3). This result is reminiscent of the nonaxisymmetric instability of annular

convection rolls in a Boussinesq fluid, which has the largest growth rates for low values of

Mφ (Jones & Moore 1979).

For the second set of parameter values, there were two types of linear instability: for

4 ≤ Mφ ≤ 6 we obtain steady growth, and for Mφ ≥ 8 oscillatory growth (Figure 4). The

period of the oscillating modes depends on Mφ: the frequency decreases for smaller Mφ, and

may go to zero at the transition from oscillatory to steady instability. The eigenfunctions

of the steady modes look similar to those obtained for parameters R = 104 and m = 1

(Figure 3). An example of an oscillatory eigenfunction (Mφ = 12) is presented in Figure 5,

with approximately half a period between the two contour plots. Again the eigenfunction
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is situated in the convecting part of the domain, with maxima just outside to the magnetic

flux tube as well as between the two convection cells. The zero contour line moves as the

simulation evolves, which indicates that there are more than one mode present in the solution.

When compared with the solution obtained with the azimuthal averages, it is clear that the

nonaxisymmetric oscillations do not rely on the presence of a magnetic field. As such, they

correspond to the oscillatory instability found in Boussinesq (Busse 1972) and compressible

fluids (Rucklidge et al. 2000). Figure 4 shows that the absence of the magnetic field increases

the growth rates of the modes; the oscillation period is also larger.

4. Discussion

We solved the nonlinear PDEs for compressible 3D magnetoconvection in a cylindrical

wedge, investigating the linear stability of a nonlinear axisymmetric solution that has a

well defined magnetic flux tube at the center of the cylinder, surrounded by two convection

cells. The nonaxisymmetric instability can be either steady or oscillatory, depending on

the parameter regime chosen, with the wavelength of optimal growth shorter for oscillating

growing modes. The eigenfunctions of the instability show that it is located just outside the

magnetic flux tube.

We investigated the role of the magnetic field in the instability by taking the azimuthal

average of the magnetic field after each time-step. In this way the nonaxisymmetric per-

turbation becomes hydrodynamic, while at the same time the shape of the magnetic flux

tube is preserved. This procedure shows that the instability is primarily an instability of the

convection (rather than a fluting instability), and that the magnetic field is not responsible

for the oscillations, although the frequency of the oscillations is enhanced by the presence

of the magnetic field. In all cases (steady and oscillatory) the magnetic field inhibits the

growth of the nonaxisymmetric instabilities. In contrast, a fluting instability would require

more highly curved magnetic fields and different magnetic boundary conditions.

Our results are not directly relevant to the formation of penumbral structure at the edge

of magnetic pores, as described by Tildesley & Weiss (2004). However, the convective nature

and the location of the nonaxisymmetric instability indicate that our results are relevant to

the azimuthal structure observed in the convection around pores (Sankarasubramanian &

Rimmele 2003) and in the moat (Hagenaar & Shine 2005). In both cases there is a pre-

ferred azimuthal wavenumber, comparable to the scales of granulation and supergranulation

respectively. Taken with the fact that oscillations have been observed around pores, it seems

likely that the azimuthal structure around pores may be modeled by the higher Rayleigh

number (R) calculations, while the steady moat structures would fit the lower R results. The
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inflowing collar surrounding the magnetic flux tube in our model can naturally be compared

to the flow around magnetic pores on the Sun’s surface. The flow in the moat cell is radially

outward, but we would expect a similar convective instability to be found in this case.

A previous related study in Cartesian geometry investigated the linear stability of non-

linear two-dimensional Boussinesq magnetoconvection (Tildesley 2003). The initial configu-

ration was a magnetic structure concentrated on one side of the domain, with an effective

outflow at the top (opposite to our configuration), and stability to 3D perturbations was

computed. All growth rates obtained were real and the wavenumbers of maximum growth

rate were similar to those we observe for oscillatory modes. These wavelengths of optimal

growth seemed to be robust over a wide range of parameters. In contrast to the results pre-

sented here, it was found by Tildesley (2003) that the presence of a magnetic field enhanced

the growth rates. Its presence also pushed the instability closer to the boundary between

the magnetic flux bundle and the field-free convection area, similar to our results. This work

was extended into the nonlinear regime by Tildesley & Weiss (2004), who found that the 3D

modes saturated at low amplitude. However, both these studies were carried out in relatively

narrow domains (aspect ratio 1), and so may have been influenced by strong magnetic field

concentrations at the outer boundary.

Preliminary nonlinear studies in cylindrical geometry (Hurlburt et al. 2000; Hurlburt

& Alexander 2002) suggest that there is a critical magnetic field strength below which the

structure stays axisymmetric and pore-like, while above which azimuthal structures form

around the central flux tube. However, these calculations were started with a zero velocity,

uniform magnetic field initial condition, rather than the fully nonlinear axisymmetric state

that we use here. In addition, their calculations were carried out with much stronger magnetic

fields, and their results may have been influenced by the strong magnetic field concentration

at the outer boundary, as the calculations were performed in a relatively small domain (radius

Γ = 1).

This linear study is the first stage in a programme of numerical simulations in which we

hope to explore the development of different types of azimuthal structures around magnetic

flux tubes. It would be interesting to extend our study to include different magnetic field

strengths, as well as to allow magnetic boundary conditions that allow inclined fields at the

top of the domain – this will be the subject of a future paper. The ultimate aim is to model

the fine structure observed in and around sunspots.
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Fig. 1.— The time independent basic state for R = 104 and m = 1. The lines are magnetic

field, arrows are the velocity field and the grey scale the temperature fluctuations relative to

the unperturbed state.
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Fig. 2.— Growth rates for the steady modes for different azimuthal wavenumbers (Mφ),

obtained from the full PDEs (solid line) and the PDEs with azimuthally averaged magnetic

field (broken line), for R = 104 and m = 1.
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Fig. 3.— The eigenfunctions of the steadily growing linear modes in the (r, z) plane for Mφ =

4, using the full PDEs (left) and the PDEs with azimuthal averages (right). The magnetic

flux tube occupies approximately 0 < r < 1.42 (Figure 1) while the enhanced dealiasing sets

all nonaxisymmetric modes to zero between 0 < r < 0.75. The azimuthal perturbation of

the vertical velocity (ṽz) is plotted with the scale between contours logarithmic, and lighter

shades positive and darker shades negative contours. The black line is the zero contour.
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Fig. 4.— Growth rates for different wedge widths (Mφ), obtained from the full PDEs (solid

line) and the PDEs with azimuthal averages (broken line) for R = 105 and m = 1.495. The

modes for Mφ ≤ 6 are steady and for Mφ ≥ 8 oscillating, with their frequency increasing as

Mφ increases. The oscillation periods obtained from the PDEs with azimuthal averages are

approximately 25% longer compared to those obtained with the full PDEs.
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Fig. 5.— The eigenfunctions of the oscillating growing linear modes in the (r, z) plane for

Mφ = 12, using the full PDEs. The contour plot on the right is sampled 29.96 time units

after the plot on the left and is approximately half a period later. The magnetic flux tube

occupies approximately 0 < r < 1.1 while the enhanced dealiasing sets all modes to zero

between 0 < r < 0.7. The contours have the same meaning as in Figure 3.


