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Abstract 

Microbial diversity encompasses the whole of the Earth’s biosphere and is incredibly vast. 

The microbial diversity of three disparate micro-environments using two culture-independent 

techniques (denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing) were 

revealed. Five commercially available DNA polymerase (pol) enzymes were assessed in 

determining the bacterial community generated in sandy soil. The V3 region of the 16S rRNA 

gene was targeted for amplification by polymerase chain reaction (PCR). Using a PCR-

DGGE approach, different DNA pols exhibited differences in the DGGE profiles produced. 

Both high-fidelity DNA pols Ex Taq™ Hot Start (HS) and Platinum® Pfx detected greater 

microbial diversity present within sandy soil than the other DNA polymerase enzymes. 

We employed Ex Taq™ HS to characterise the microbial communities present in two 

chronic respiratory tract diseases, non-cystic fibrosis bronchiectasis (nCFBR) and chronic 

obstructive pulmonary disease (COPD). Seventy individuals expectorated sputum, and using 

16S and 28S rRNA PCR-DGGE polymicrobial communities were revealed. From the 70 

patients investigated, 20 presented with symptoms consistent with an exacerbation, the 

remainder being clinically stable. Demographic and culture data were used in constrained 

ordination analyses to identify any significant associations between these data and changes in 

the sputum microbiota. The data presented indicates that bacterial lung communities in adult 

nCFBR patients have distinct differences between exacerbating and clinically stable episodes. 

Persistent colonisation by Pseudomonas aeruginosa is significantly associated with reduced 

lung function, and is negatively correlated with Haemophilus influenzae carriage. Bacterial 

communities seem to be predominantly assembled by stochastic processes. Fungal taxa 

present were scarce. 

Stable COPD populations have been previously investigated using culture-dependent 

techniques. Eleven clinically stable COPD patients had a bronchoalveolar lavage (BAL) fluid 

taken from the right lower lobe. Both 16S and 28S rRNA PCR-DGGE was performed on all 

clinical samples from extracted DNA. Co-migration of bands was then compared to a 16S 

and 28S standard ladder consisting of pure cultivars. Additionally, execution of 454-

pyrosequencing and interrogation of the V3-V5 region of 16S rRNA genes resulted in 1799 

unique OTUs being identified. Dominant bacterial genera identified were Streptococcus, 

Arthrobacter, and Staphylococcus respectively. Bacterial taxa identified were then subjected 

to multivariate statistical analysis to identify relationships between the microbial 

communities and patient phenotypes. Metagenomic analysis demonstrated that heterogeneous 

bacterial populations exist in all eleven individuals. This preliminary study shows that the 

lungs of COPD sufferers are colonised with multiple species of bacteria and demonstrate that 

a complex microbial community is present. Furthermore, bacterial phylotypes resolved to 

class-level indicated three potential drivers of community structure within the COPD lung 

microbiome: lung function, moderate and severe COPD progression, and smoking status in 

cohort. The identification of a greater number of bacterial taxa was also apparent in culture-

negative patients using both PCR-DGGE and 454-pyrosequencing approaches. 
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Chapter One: General introduction 

1.1 A global view of micro-organism biodiversity 

The biosphere of Earth is absolutely dependent on micro-organisms since they are 

required to sustain almost every form of life on the planet and are also key drivers in almost 

all geochemical cycles (Madigan et al., 2009). Since the landmark paper published by Woese 

and Fox in 1977, followed by subsequent developments in molecular biology in the 1980s, 

microbial diversity on Earth is recognised as being greater than microbiologists had ever 

envisioned. Over evolutionary time, diversity has led to the successful proliferation and 

colonisation of micro-organisms across an extensive range of habitats. Environments such as 

soil, the ocean, the subsurface, and indeed macro-organisms including humans, harbour an 

extraordinary number of prokaryotes (Whitman et al., 1998). In addition, the many 

prokaryotic phyla have species capable of colonising a multitude of environments 

inhospitable to other forms of life for example: hot springs situated in Yellowstone Park 

(Hugenholtz et al., 1998b), the high temperatures and extremely low pH niche of the 

thermoacidicphilic euryarchaeon Picrophilus torridus (Futterer et al., 2004), the deep sea 

(DeLong et al., 1994), hydrothermal vents (Huber et al., 2000), the sea ice of the Antarctic 

(Thomas and Dieckmann, 2002), and even in the permanent ice both in Lake Bonney and 

Lake Vostok (Christner et al., 2001, Gordon et al., 2000, Priscu et al., 1999). 

Estimates of the total number of prokaryotes on Earth are in the order of 4-6 × 10
30

 cells 

with a biomass of 350-550 Pg of carbon (1 Pg = 10
15

 g) (Whitman et al., 1998). Owing to the 

inconceivable numbers of bacterial cells present in our biosphere, their rapid growth and 

ability to demonstrate physiological and genetic adaptability this group of organisms has 

incredible genetic diversity (Hindré et al., 2012). Putting these numbers into perspective is 

indeed a daunting task, it has been estimated that one ton of soil contains at least 4 × 10
6
 

different taxa (Curtis et al., 2002). Quoting Pace, et al., “we are only scratching the surface of 

a vast reservoir of microbial diversity” (Pace et al., 2012). 
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1.2 The origins of modern molecular microbiology 

A sobering aspect to consider in terms of the many species of bacteria that inhabit the 

Earth is that estimates of only 1 % of all microbial species have been identified and 

characterised by classical culture-based techniques (Amman et al., 1995, Staley and 

Konopka, 1985). Historically, before the advent of molecular sequence-based phylogenetics 

much of microbial life (and its genetic diversity) was alluded to and previous hypotheses 

regarding the kingdoms of life constituted five: animals, plants, fungi, protists, and monera 

(protozoa and bacteria respectively) (Whittaker, 1969). This model was adopted primarily on 

the previous knowledge of the macro-organisms around us within the biosphere, and rather 

ignorantly, bacteria themselves were thought to be unimportant; the term “prokaryote” itself 

was defined rather negatively in comparison to their eukaryotic counterparts in the 1960s 

(Stainer and van Niel, 1962). The advances in molecular biology in the next decade made 

possible the inference of phylogenetics across all the kingdoms of life by comparison of 

ribosomal ribonucleic acid sequences. In addition to the seminal work carried out by Pace 

and collaborators using these techniques enabled a reconstruction of the history of life and 

proposed a new model consisting of the now-recognised three primary lines of evolutionary 

descent as opposed to the initial standard two in the universal tree of life (Woese, 1987, 

Woese and Fox, 1977, DeLong and Pace, 2001, Olsen et al., 1986). These are now formally 

designated “urkingdoms” or “domains” represented by the Eucarya (eukaryotes), Bacteria 

(initially termed the eubacteria) and Archaea (initially termed archaebacteria) (Fig. 1.1) 

(Woese et al., 1990). 
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Fig. 1.1: The universal tree of life (ToL) representing the three known domains, 
Archaea, Bacteria, and Eucarya. These domains or kingdoms were phylogenetically 
reconstructed using partially or fully sequenced ribosomal ribonucleic acid sequences 
(rRNAs) from both the 16S (ubiquitous in archaeal and bacterial species) and 18S 
(exclusive to the Eucarya domain) ribosomal small subunits. Phylum levels indicated 
are shown by the branches in each kingdom, whereas at the bases of each 
phylogenetic tree there are unresolved branching orders (blue circles) (Pace, 2009). 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2786576_zmr0040922320003.jpg
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1.3 Culture-dependent microbiology 

Classical culture-based microbiological techniques pioneered by Beijerinck, Koch, 

Pasteur, van Leeuwenhoek, and Windogradsky maintained and developed microbiological 

research for centuries (Keller and Zengler, 2004). Culture-dependent microbiology is crucial 

if one is to characterise and gain a significant understanding of a bacterial species or micro-

organism, its physiology, or access to its metabolic pathways via genes dispersed throughout 

its genome (Keller and Hohn, 1997, Palleroni, 1997, Yu et al., 2002). However, using 

traditional enrichment and cultivation techniques accepts the issue that such techniques are 

highly selective and biased towards the growth of specific bacterial species. 

This facet of traditional culture-based microbiology is no more apparent than in the 

modern clinical microbiology laboratory where these techniques are used in conjunction with 

modern molecular-based methodologies for the routine isolation of potentially pathogenic 

micro-organisms (PPMs) from patient specimens (i.e., the detection of aetiological agents by 

providing conditions they require to grow in vitro (Rogers et al., 2009a)). Indeed, using 

selective media for effective isolation requires that the PPMs in question must grow to at 

least 10
5
 cells in density in order for these bacterial colonies to be visualised (Keller and 

Zengler, 2004). One must also bear in mind that for isolation of the aetiological agent(s), the 

selective media employed biases in favour of fast-growing and high density forming micro-

organisms that have the capacity to withstand high concentrations of nutrients and have the 

ability to grow in isolation (Keller and Zengler, 2004). A great number of traditional 

cultivation techniques fail to isolate many micro-organisms from most natural habitats, 

including humans. A major contributing factor of this, is that the traditional cultivation 

techniques employed such as selection and isolation of specific microbes utilise conditions 

for growth in vitro that are completely different to the natural environment from which many 

of these micro-organisms originate from (Eilers et al., 2000, Torvisk et al., 2002). 

The major limiting factor in using culture-based microbiology to isolate aetiological 

agents is that culture-based techniques do not consider the role of polymicrobial infections or 

the vast numbers of microbial taxa that colonise the human host. Indeed, bacteria infecting 

human tissues are often part of mixed bacterial communities, in particular when mucosal 

barriers have been compromised (Brogden et al., 2005). Contextually, we sometimes need to 

consider infection as a complex microbial milieu (Rogers et al., 2009a). This is very 
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important if appropriate treatment regimens are to be adopted and tailored to the individual 

patient infected with one or more pathogenic organisms. The advent of culture-independent 

techniques has revealed these microbial communities within the human host in greater detail 

than ever before and also enables investigators to appreciate the magnitude of the task 

involved in characterising these communities. 
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1.4 Culture-independent microbiology 

Culture-independent techniques have revealed a vast world of microbial diversity 

remaining to be discovered and placed microbes, once thought to be insignificant, firmly 

back into their respective positions in the universal tree of life (Pace et al., 2012). Molecular 

fingerprinting methods such as denaturing gradient gel electrophoresis (DGGE), temperature 

gradient gel electrophoresis (TGGE), terminal restriction fragment length polymorphism (T-

RFLP), single strand conformation polymorphism (SSCP), and denaturing high-performance 

liquid chromatography (DHLPC) have enabled researchers to analyse microbial communities 

from several ecosystems; these techniques are collectively known as microbial profiling 

(Nocker et al., 2007). These fingerprinting techniques have usually targeted the 16S rRNA 

gene(s) (Hugenholtz et al., 1998a, Pace et al., 1986) or sometimes functional genes encoding, 

for example, ammonium mono-oxygenase (amoA) (Horz et al., 2000, Yeager et al., 2005), 

nitrogenase (nifH) (Rosado et al., 1998, Widmer et al., 1999), and RNA polymerase B (rpoB) 

(Adékambi et al., 2008, Ormeno-Orrillo et al., 2006, Renouf et al., 2006) for the analysis of 

sub-populations that exhibit certain functional properties within a community (Nocker et al., 

2007). Total community DNA is extracted and used as a template for PCR amplification of 

the 16S rRNA gene(s), PCR fragments are then either analysed by electrophoresis (DGGE, 

TGGE, SSCP, and T-RFLP) or chromatography (DHLPC) (Nocker et al., 2007). Resolution 

of the different bacterial species within the community is achieved as a function of DNA 

sequence variation within the amplified 16S rDNA fragments as these are usually of similar 

size (Hamady and Knight, 2009, Nocker et al., 2007). Finally, from the community profiles 

generated, one can analyse the banding patterns or clustering of specific bands using 

statistical techniques such as Principal Co-ordinates Analysis (PCoA) (Dollhopf et al., 2001). 

More recently, the next-generation sequencing (NGS) analysers developed by Roche, 

Illumina®, and Applied Biosystems™ have taken sequencing to the next level via 

deployment of multiple platforms and different sequencing technologies paving the way for 

the era of metagenomics that we now live in. This ‘next level’ can be further defined as what 

is commonly known as ‘deep sequencing’, i.e., massively parallel sequencing ― the 

simultaneous sequencing of several hundred thousand DNA fragments with read lengths 

exceeding that of 100 base pairs (bp) (McPherson, 2009). The term metagenomics is defined 

as “culture-independent studies of the collective set of genomes of mixed microbial 

communities and applies to explorations of all microbial genomes in consortia that reside in 
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environmental niches, in plants, or in animal hosts (Petrosino et al., 2009). Using 454-

pyrosequencing as an example of a NGS platform; briefly, DNA pyrosequencing or 

sequencing synthesis is based on the detection of released inorganic pyrophosphate (PPi) 

during DNA synthesis. Visible light (i.e., photons) is generated by a cascade of enzymatic 

reactions and the amplitude of each light signal is proportionally represented by the 

incorporation of nucleotides (Fig. 1.2) (Novais and Thorstenson, 2011). In metagenomic 

studies using massively parallel sequencing technology, DNA pyrosequencing targets 

hypervariable regions within bacterial 16S rRNA genes amplified by PCR. By using millions 

of single-stranded DNA fragments from isolated genomic DNA (gDNA) as sequencing 

templates attached to beads in emulsion PCR, amplification occurs within each emulsion 

droplet. Each bead carrying millions of copies of unique DNA templates are all denatured 

and every bead attached to a single-stranded DNA (ssDNA) clone are deposited into tiny 

chambers before being exposed to another set of smaller beads carrying immobilised 

enzymes which are responsible for DNA pyrophosphate sequencing. Nucleotide composition 

of each ssDNA fragment is elucidated by the associative release of PPi and generation of 

photons (Margulies et al., 2005). Exploitation of 16S rRNA gene(s) in culture-independent 

studies of the microbiota of metazoan subjects and the environment has enabled microbial 

ecologists to not only infer the phylogenetic relationships of the bacterial communities but to 

also detect uncultivable species of bacteria from many taxa using modern sequencing 

technologies coupled with molecular fingerprinting methodologies. From the original 11 

phyla described by Woese and colleagues nearly 30 years ago (Woese et al., 1985), the 

bacterial phyla now number 53 thanks in part to the impact of 16S rRNA gene sequencing 

from uncultivable bacterial species (Rappé and Giovannoni, 2003). 
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Fig. 1.2: Principals of DNA pyrosequencing. 1.) Single-stranded DNA (ssDNA) in PCR amplicon 
serves as template for hybridisation of a sequencing primer incubated with four enzymes, DNA 
polymerase, adenosine triphosphate (ATP) sulphurylase, luciferase, and apyrase in addition to the 
substrates adenosine 5′ phosphosulphate (APS), and luciferin. 2.) Addition of the first 
deoxyribonucleoside triphosphate (dNTP) into the reaction results in catalysis of this dNTP by the 
DNA polymerase enzyme via insertion into the DNA strand but only if it is complementary to the 
base in the template strand. Incorporation of these complementary bases is associated with the 
release of inorganic pyophosate (PPi). Subsequently, the amount of PPi released is related to the 
amount of incorporated nucleotides in the reaction, i.e, in equimolar quantities. 3.) Conversion of 
PPi to ATP is executed by the enzyme ATP sulphurylase in the presence of APS. The generation 
of photons proportional to the amount of ATP released from the primary conversion from PPi to 
ATP is from the ATP product itself driving the luciferase-mediated conversion of luciferin to 
oxyluciferin. Detection of photons in the luciferase-catalysed reaction is achieved by a charge 
coupled device chip and is visualised by a peak in the program (i.e., raw data output). The light 
signal produced is proportional to the number of nucleotides incorporated. 4.) The nucleotide-
degrading enzyme, apyrase, continuously degrades unincorporated nucleotides and ATP. 
Subsequent addition of nucleotides only occurs once this degradation process is complete. 5.) 
The complementary DNA strand is synthesised continually by the sequential addition of dNTPs in 
which the nucleotide sequence data is determined by the signal peaks visualised in the program 
output and then annotated appropriately (Novais and Thorstenson, 2011, Qiagen). Abbreviations: 
ADP, adenosine diphosphate; AMP, adenosine monophosphate; dNDP, deoxyribonucleoside 
diphosphate; dNMP, deoxyribonucleoside monophosphate. 
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In particular, culture-based microbial identification to nucleic acid sequencing is now 

becoming more commonplace in diagnostic microbiology laboratories. In the past this 

approach has been infrequently adopted due to the technical expertise needed to perform 

DNA sequencing using Sanger technologies (Petrosino et al., 2009). Developments using 

Sanger-sequencing showed that 16S rRNA genes contain 9 hypervariable regions, V1-V9, in 

which ~ < 500 bp of the 16S rDNA coding sequence was required in order to generate genus- 

and species-level pathogen identification (Kolbert and Persing, 1999, Lane et al., 1985). The 

hypervariable V1-V9 regions (50-100 bases in size) situated within the 16S rRNA genes in all 

bacteria are interspersed between highly conserved regions (Fig. 1.3); indeed, all 16S rRNA 

vary in their nucleotide sequence composition, but the conserved regions remain as they 

were, unchanged, conserved invariant through time across nearly all bacterial species due to 

their essential functions within the bacterial cell (van de Peer et al., 1996, Jonasson et al., 

2002). This key property coupled with the inherent nature of 16S rRNA in addition to high 

information content and universal distribution reveals why 16S rRNA is utilised for 

phylogenetic analysis, microbial community profiling, and more recently, metagenomic 

studies using NGS technology. 

 

  

Fig. 1.3: Conserved and hypervariable regions within the 16S rRNA gene. The conserved regions 
interspersed throughout this gene are indicated in grey (C1-C9), whereas the hypervariable 
regions (V1-V9) are represented by different colours. Each hypervariable region ranges from ~ 50-
100 base pairs in length. The V4 subregion, as an example, shows PCR amplification using 
primers that target the hypervariable region of interest (pink circles in full length 16S rRNA gene 
and pink arrows representing primer-binding sites) and the sequencing primer site (blue bottom 
arrow). Metagenomic sequencing using 454-pyrosequencing technologies utilise multiple 
hypervariable regions of the 16S rRNA gene to generate greater read lengths and sequence 

coverage in microbial identification (Petrosino et al., 2009). 
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The V1-V9 regions themselves have been shown to demonstrate different efficacies in 

terms of the species or genus phylotypes resolved within the microbial community analysed 

and their respective environments sampled. A study by Chakravorty et al., has shown that the 

V2 and V3 regions were the most effective at independent genus identification (Chakravorty 

et al., 2007); in particular is the application of the V3 hypervariable region in microbial 

community profiling PCR-DGGE mediated studies in which Yu, et al, (2004)  showed that 

amplification of the V3 region within rrs genes generated better DGGE profiles than the 

other hypervariable regions amplified and analysed (Yu and Morrison, 2004). 

In summary, culture-independent techniques have been an indispensable aid in describing 

the many microbial consortia in the biosphere of planet Earth and in us, human beings. In the 

following section we will demonstrate that we are collectively as a species intimately 

involved and indeed in contact with a characteristic microbiota incorporating bacteria, 

viruses, archaea, protozoans, and fungi (Foxman et al., 2008). 

1.5 The bacterial ribosome and 16S rRNA 

The constant manufacturing processes involved in protein biosynthesis occur on the 

ribosome and these play a key role in a bacterium’s ability to proliferate in the environment, 

providing implications for bacterium-host interactions and crucially pathogenicity (Moss et 

al., 2007). This massive macro-molecular protein, 21 nm in size is comprised of both the 30S 

and 50S subunits which associate together via self-assembly forming the intact 70S bacterial 

ribosome (Ramakrishnan, 2002). Several publications of the three-dimensional structure of 

the ribosome have revealed the 30S and 50S subunits in great detail (Ban et al., 2000, Cate et 

al., 1999, Schluenzen et al., 2000, Schuwirth et al., 2005, Wimberly et al., 2000). Both 

subunits contain rRNA; the smaller 30S subunit comprising of 16S rRNA (1542 nt) and 21 

ribosomal proteins (termed r-proteins), the larger 50S subunit is composed of two rRNAs, 

23S (2904 nt) and 5S (120 nt) rRNA and 33 proteins (Noller and Nomura, 1996). 

Within the rrnB operon (Fig. 1.4) downstream from both promoters P1 and P2, the 16S 

rRNA is encoded by the rrs genes; these express the formation of the small subunit (SSU) 

16S rRNA ubiquitous in all bacterial species (one copy of this gene is always present in the 

bacterial genome ― although copy number can vary between bacterial species; e.g., model 

organisms such as Bacillus subtilis, Clostridium perfringens, Escherichia coli, and 
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Lactococcus lactis have been previously shown to possess 10 (both in B. subtilis and C. 

perfringens) (Garnier et al., 1991, LaFuci et al., 1986), 7 (Kiss et al., 1977), and 6 (Beresford 

and Condon, 1991, Tulloch et al., 1991) rrn operons respectively) (Kaczanowska and Rydén-

Aulin, 2007). Assembly of the prokaryotic ribosome is extremely complex and an in depth 

discussion of its assembly and multiple functions is beyond the scope of this thesis. 

 

  

Fig. 1.4: The rrnB operon showing nucleolytic processing of the rrnB primary transcript. 
Downstream promoters P1 and P2 in the rrnB operon encode the formation of both 16S and 23S 
rRNA species and their associated ribosomal proteins (r-proteins) (not shown). Both the 5′ and 3′ 
sites are indicated in addition to the promoter and termination regions (P1, P2, T1, and T2 
respectively). Also indicated are the processing sites of RNase III (III), RNase G (G), RNase E (E), 
RNase P (P), RNase T (T), and unknown RNases (?). These RNases process and chemically 
modify the pre-mature rRNA species in the positions shown above generating mature 16S and 
23S rRNA species (Kaczanowska and Rydén-Aulin, 2007). 
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1.6 The human microbiome 

In humans, estimates of the total amount of bacteria that colonise the gastrointestinal tract 

(GIT) outnumber our ‘own’ cells by up to 10-fold (Poxton, 2010). Acquisition of many 

bacterial taxa present in the gut is due to the early colonisation of these bacteria when the 

neonate first passes through the birth canal during labour (Palmer et al., 2007). The gut is not 

the only microbial ecosystem located in the human body, the skin, urogenital tract, and 

indeed the upper respiratory tract, have significant and complex bacterial communities 

(Gonzalez et al., 2011, Turnbaugh et al., 2007). These ubiquitous micro-organisms are an 

essential part of human evolution. In particular, mutual bacterial colonisation of the human 

mucosal surface interface forms a co-evolutionary relationship which benefits both the 

numerous bacterial species which inhabit these regions and the host; e.g., the upper 

respiratory tract (URT) and GIT plays host to ~ 600 and 1,000 unique species of bacteria 

respectively; identified as either permanent residents, others as transiently colonising these 

mucosal sites (Aas et al., 2005, Manson et al., 2008). 

The Human Microbiome Project (HMP) of the National Institutes of Health (NIH) was 

launched in 2007 in a venture to begin to understand and characterise the human-associated 

microbiota and microbiome factors; i.e., collectively, the microbes that inhabit us and the 

genes in all of these micro-organisms (Gonzalez et al., 2011). We are only beginning to 

appreciate the full impact of the human microbiota in health and disease and the genetic 

diversity that encompasses the human microbiome in chronic diseases such as obesity 

(Turnbaugh et al., 2009), Crohn’s disease (Eckburg and Relman, 2007) and other metabolic 

disorders (Spencer et al., 2011). Indeed micro-organisms are absolutely essential for human 

health offering beneficial effects such as the maintenance of pH in the oral and vaginal 

cavities, stimulation of the immune system, both innate and cellular, the prevention of 

invasion by PPMs, digestion of ingested foods through phase III metabolism processes, and 

finally providing nutrients vital to our health (Foxman et al., 2008). Most research is 

presently centred around bacterial diversity, whether this is through NGS or molecular 

fingerprinting methodologies, of the human microbiota, and several studies on bacterial 

diversity have been published on the GIT (Eckburg et al., 2005, Qin et al., 2010, Zoetendal et 

al., 1998), skin (Fierer et al., 2008, Gao et al., 2007), female urogenital tract (Brown et al., 

2007, Zhou et al., 2007) URT (Charlson et al., 2010), and lungs (Hilty et al., 2010) of 

individuals amongst others. However, the human microbiome is not only comprised of 
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bacteria, other studies looking at both fungal and viral metagenomics (termed mycobiome(s) 

and virome(s) respectively) in human hosts have also recently been published looking at both 

diseased and non-diseased cohorts (Ghannoum et al., 2010, Reyes et al., 2010, Willner et al., 

2009). 

1.7 Microbial ecology 

How does one make sense or comprehend this mass of genomic information contained 

within the human microbiome? In the GIT alone, it has been hypothesised that the entire gene 

complement of the intestinal microbiota was ~ 150 times larger than our own, many of these 

genes being uniquely encoded within this microbial assemblage (Qin et al., 2010). One way 

to tackle the increasing amounts of data and begin to model the numerous interactions within 

this abundance of microbes is to use microbial ecology hypotheses, i.e., looking at the 

microbial communities that make up the human microbiome from an ecological perspective. 

Using a microbial ecological framework provides microbiologists and the biomedical 

community powerful schemes for hypothesis testing of the HMP datum (Dethlefsen et al., 

2007, Robinson et al., 2010). Microbial community ecology arose from macro-ecology, i.e., 

the ecological frameworks used to study both the plant and animal kingdoms defined as 

“multi-species assemblages, in which organisms live together in an environment and interact 

with each other” (Knoopka, 2009). Using these frameworks enables microbial ecologists to 

better elucidate the way in which microbial communities that are part of the human 

microbiome contiguously interact within environmental niches inside the human body over 

space and time (Gonzalez et al., 2011). In addition, the investigation of the micro-

environment within and its concurrent effects on the distribution and abundance of microbial 

species will provide a better understanding of the communities that inhabit us (Gonzalez et 

al., 2011). Adapting these theories and applying them to the microbial world has taken time, 

but nevertheless two studies in 2006 combined the metagenomic strategies with microbial 

ecology modelling for the datum generated; the first investigated the metagenomics of the 

microbial community in water from an iron mine in Minnesota (Edwards et al., 2006). 

Subsequently, a second study elaborated the metagenomics of rare members of several 

microbial communities using massively parallel pyrotag sequencing (Sogin et al., 2006). 

With this data, ecological measurements of richness, diversity, and similarity were all used 

for data analysis. 
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In essence, microbial diversity within sample types analysed, can be performed using three 

measures: alpha, beta, and gamma diversity indices defined by Whittaker in which (i), alpha 

diversity quantifies the richness of the species (number of taxa) in a niche; (ii), beta diversity 

compares the diversity between environments thus describing how disparate communities are 

structured in different niches; and (iii), gamma diversity in which both the alpha and beta 

diversity of communities from different landscapes and geographical regions are measured 

(Whittaker, 1972, Whittaker, 1969). In the microbial world, the definition of the term species 

is pragmatic (Amman et al., 1995). Conceptually speaking the term species encompasses 

those individuals as a group interbreeding within a species but isolated from other groups 

(i.e., other species) by genetic recombination barriers (Mayr, 1957). However, bacteria and 

some eukaryotes are asexual, contradicting this assumption, thus not forming ecologically 

distinct species defined genetically (Amman et al., 1995). Nevertheless, bacterial species are 

still defined by the use of operational taxonomic units (OTUs), i.e., the binning of coding 

nucleotide sequences from 16S rRNA genes to form species-level OTUs at a phylogenetic 

distance of 0.03, equivalent to 97 % nucleotide similarity against reference species sequence 

databases (Robinson et al., 2010). In addition to species diversity, other factors implicated in 

microbial ecology are biological divers of community structure, spatial patterning and 

temporal dynamics. All of these factors are hypothesised to affect the human microbiota. 

1.8 Microbial biofilms 

It has been recognised for some time now that microbes very rarely exist in isolation in 

natural, industrial, and medical habitats; microbes, and in particular bacteria, tend to form 

aggregated complex three-dimensional structures (Stickler, 1999). These aggregated bacterial 

cells are embedded within a hydrated matrix of extracellular polymeric substances (EPS) 

termed biofilms (Costerton et al., 1999, Donlan and Costerton, 2002). A polymicrobial 

biofilm therefore can be further defined as an eclectic assortment of fungi, bacteria, and 

viruses, attached to biotic and abiotic sites within the human host (Peters et al., 2012). Studies 

conducted on polymicrobial biofilm communities within the oral cavity enabled an initial 

understanding of the properties of biofilms. 

Using bacteria as an example, the formation of biofilms is a result of an ancient adaptation 

(Hall-Stoodley et al., 2004) that prokaryotes utilise as a mode of growth in hostile 

environments, enabling the colonisation of new niches via dispersal mechanisms (Hall-
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Stoodley and Stoodley, 2005, Mai-Prochnow et al., 2008, Purvedorj-Gage et al., 2005). 

Polymicrobial biofilm formation is through sequential attachment mechanisms termed co-

aggregation, in which one species of microbe attaches itself to an appropriate substrate and 

then subsequently becomes a scaffold for other micro-organisms to facilitate adherence and 

biofilm formation (Rickard et al., 2003). Microbial biofilms are important both in healthy and 

diseased individuals due to several characteristics such as (i), phenotypic heterogeneity (ii), 

cell-cell communication via quorum sensing (QS), (iii), recalcitrance against antimicrobial 

compounds and (iv), resistance to both host phagocytic defences and antibodies (Hall-

Stoodley and Stoodley, 2009). All of these properties enable biofilm infections to persist in 

the host despite administration of antimicrobial therapies and sustained host innate and 

cellular immune responses. Microbial biofilms are also beneficial to the host; specifically 

speaking, the abundance of conserved bacterial genera in the oral cavity has been previously 

shown using implanted sterile enamel chips into the mouths of human volunteers 

demonstrating the early colonization (~ 4 h) of Streptococcus spp. in addition to other genera 

such as Actinomyces, Gemella, Granulicatella, Neisseria, Prevotella, Rothia, and Veillonella 

(Diaz et al., 2006). Changes in this conservation of specific bacterial genera, whether over a 

rapid or slower time, has been hypothesised to promote disease-associated phenotypes within 

the human host; one example of this is the administration of broad-spectrum antibiotics 

which can severely affect the global bacterial populations within the community in the gut, 

i.e., reducing the protective properties of the polymicrobial commensals, thus allowing the 

proliferation of more invasive and resistant bacterial species in the site affected (Dethlefsen et 

al., 2008). 
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1.9 Polymicrobial infections 

Just as polymicrobial biofilms are comprised not only of bacteria, but also viruses and 

fungi, polymicrobial infections can be defined as acute and chronic diseases caused by 

various combinations of viruses, bacteria, fungi, and also parasites (either protozoan or 

metazoan in origin) (Brogden et al., 2005). Further to this definition, polymicrobial infections 

are hypothesised to play a significant role within the human host and can manifest themselves 

via three distinct processes, although these processes could be all in unison (Brogden et al., 

2005): 

1. The generation of an environmental niche inside the human host due to the 

presence of one microbial species facilitates the colonisation of this niche by 

other PPMs. 

2. When one species of microbe is present, this predisposes the host to subsequent 

colonisation by other micro-organisms. 

3. Two or more non-pathogenic microbes are present and cause disease through 

synergistic effects in the host. 

Some of the above concepts have been touched on recently, especially in relation to the 

theoretical concepts presented in microbial ecology, a key point here is that in polymicrobial 

infections, microbe-microbe interactions such as microbial interference can actually suppress 

the proliferation of other micro-organisms in the environmental niche generated, this 

interference can occur between PPMs or between probiotic microbes and pathogens (Bogaert 

et al., 2004). Synergistically, an environmental niche is generated by one microbe, as in 

periodontal disease, and this leads to subsequent colonisation by other PPMs (Palmer et al., 

2001). Bacterial-viral synergism also plays a strong role in polymicrobial infections, for 

example, the isolation of human metapneumovirus (HPMV) in a range of debilitating 

respiratory tract conditions in conjunction with other viruses such as severe acute respiratory 

syndrome, with coronavirus, and bronchiolitis with respiratory syncytial virus (RSV) (Chan 

et al., 2003, Greensill et al., 2003). Infection with the measles virus also greatly pre-disposes 

the host to secondary infections with bacterial agents (Slifka et al., 2003); these secondary 

bacterial and viral infections can be attributed to the primary viral infection exhibiting and 

inducing an immunosuppressive effect within the host thus leading to, but not always, severe 

detrimental results. Additionally, infection with respiratory tract viruses can greatly pre-
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dispose the host to colonisation or subsequent infection with a secondary micro-organism via 

destruction of the epithelial lining of the respiratory tract thus increasing bacterial adhesion 

and up-regulation of bacterial cell-surface receptors with the immunosuppressive properties 

of the viral infection which can lead to bacterial super-infections (Peltola and McCullers, 

2004). 

What is the basis for polymicrobial interactions in the human host and their origin? In all 

humans there is a co-evolutionary relationship between the host and their microbiome, this 

co-evolution has developed over time for thousands of years and has consequently resulted in 

species-specific physical and chemical interactions between microbes; these microbe-microbe 

interactions are employed due to the large variety and concentration of micro-organisms 

present and relatively minute amount of physical space available within us (Peters et al., 

2012). Microbe-microbe interactions can be expressed variously within the host such as 

immunomodulation, augmented virulence phenotypes in trans, colonisation enhancement 

factors, cell-cell communication via QS, and contact-dependent attachment (Peleg et al., 

2010). 

Indeed, polymicrobial infections within human hosts are being increasingly recognised 

both in nosocomial and community settings as these several conditions imply: (i), human 

deficiency virus-acquired immunodeficiency syndrome (HIV-AIDS) patients in Africa are 

co-infected with malarial protozoan parasites and/or with Mycobacterium tuberculosis in 

addition to other micro-organisms (Lawn, 2004), (ii), bacterial vaginosis infection in women 

involves the increase in the mixed bacterial populations of Gardnerella vaginalis, Gram-

positive anaerobic cocci and Gram-negative anaerobic rods such as Peptostreptococcus spp. 

and Prevotella spp. respectively, in addition to Mycoplasma hominis and Ureaplasma 

urealyticum as the Lactobacillus sub-populations rapidly decline (Hill, 1993, Persson et al., 

2009, Pybus and Onderdonk, 1999), (iii), dental caries in the oral cavity is an extremely 

common condition affecting most of the adult population and younger children in which the 

hard enamel, dentin, and cementum surface surrounding the soft dental pulp is broken down 

(Holst, 2005). Breakdown of the hard dental surface is first by the creation of a polymicrobial 

biofilm ― i.e., dental plaque ― and secondly, the fermentation of carbohydrate sugars such 

as sucrose and fructose into lactic acid by several species of bacteria such as Actinomyces 

viscosus, Lactobacillus acidophilus, Nocardia spp., Streptococcus mutans, and the yeast 



 

18 

 

Candida albicans (Kinke et al., 2009, Minah and Loesche, 1977), (iv), chronic lower 

respiratory tract (LRT) infections in cystic fibrosis (CF) and chronic obstructive pulmonary 

disease (COPD) individuals are now thought to be polymicrobial in nature due to extensive 

studies, especially in CF where culture-independent techniques were employed (Erb-

Downward et al., 2011, Harris et al., 2007, Hilty et al., 2010, Rogers et al., 2005a, Rogers et 

al., 2004, Rogers et al., 2003, Sethi et al., 2009, Sethi and Murphy, 2008, Sibley et al., 2006, 

Veeramachaneni and Sethi, 2006). 

1.10 The respiratory tract 

The respiratory system in humans is categorised into two separate components, the upper 

and lower respiratory tract, both operate in unison for the effective and efficient distribution 

of air, from the external environment into the internal environment of the lungs. The URT 

serves to warm and moisten the air when inspiration occurs protecting the LRT from PPMs 

and other foreign particles such as allergens, but also enabling for effective gaseous 

exchange. The LRT is responsible for the gaseous exchange of diatomic oxygen (O2) in the 

alveoli to the peripheral blood capillaries that line the connecting tissues. Here O2 diffuses 

across the membrane and enters erythrocytes, initially binding to haemoglobin in the process, 

that are circulating in the blood capillaries before releasing O2 to the tissues and cells around 

and within the body where required. In humans, the process of respiratory function is an 

essential physiological process; it is the gaseous exchange of diatomic oxygen and carbon 

dioxide between blood and the external atmosphere (Bourke, 2002, Marieb and Hoehn, 

2007). 

The lung is the major interface between the internal and external environment of the 

human host, inspired air is abundant with opportunistic and pathogenic bacteria, viral and 

fungal micro-organisms (Bourke, 2002). Despite this constant exposure to potentially harmful 

particles, the health of an individual is maintained by sophisticated and complex host defence 

mechanisms (Stockley, 1998, Wilson et al., 1996). Defences such as the mucocilliary 

escalator which inhibits adherence and facilitates particle removal are dependent on bronchial 

epithelium integrity (Stockley, 1998). In addition, are antimicrobial agents such as lysozyme 

and lactoferrin that inhibit bacterial replication, secretory immunoglobulin A (IgA), and 

scavenging macrophages (Stockley, 1998). 
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1.10.1 Chronic respiratory tract diseases 

Chronic respiratory tract diseases are of major global importance; they are increasing in 

incidence worldwide and are now classified by the World Health Organisation (WHO) as 

non-communicable diseases (NCDs) in addition to cardiovascular disease, cancer, and 

diabetes, collectively they account for the highest rates of mortality on a global scale than all 

other causes combined (Reardon, 2011). Chronic respiratory diseases encompass conditions 

such as CF, COPD, non-cystic fibrosis bronchiectasis, and asthma amongst others. Asthma 

and COPD present problems worldwide, both in terms of morbidity and mortality, but also in 

economic costs on healthcare resources. Asthma is a chronic inflammatory airway disease in 

which individuals suffer from exacerbations which result in chest tightness, wheezing, cough 

and dyspnoea, all symptoms associated with airway obstruction (Jarjour and Kelly, 2002). In 

the Western world, asthma is the most common chronic respiratory disease affecting 10 % of 

adults and 30 % of children, in the U.S. alone, 1.75 million asthma-related emergency 

department visits and 456 000 asthma-related hospitalisations were recorded contributing 

towards one-third of the total $14.7 billion annual U.S. asthma-related health care 

expenditure (Akinbami et al., 2011, American Lung Association). Chronic obstructive 

pulmonary disease is primarily induced by cigarette smoking and is characterised by 

irreversible airflow limitation and chronic inflammation in the LRT (Pauwels et al., 2001). 

COPD is an increasingly leading cause of morbidity and mortality globally, but woefully 

under-recognised (Pauwels and Rabe, 2004); from 1990 to 2020, the 30 year projection of 

COPD ranking will be a rise from sixth to third most common cause of mortality and fifth in 

the cause of disability worldwide (Lopez and Murray, 1998). Economically, in the U.K., 

£500 million is spent annually through direct healthcare costs relating to COPD in addition to 

24 million working days also wasted (British Lung Foundation, 2006). 

Cystic fibrosis is the most common recessive autosomal genetic disorder affecting 

individuals of Caucasian descent, ~ 1:2,500 children are afflicted with the condition from 

birth and ~ 70,000 adults and children are thought to be affected with CF worldwide (Cystic 

Fibrosis Foundation, World Health Organization, 2002) Genetically, CF is caused by a 

mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene located on 

the long arm of chromosome 7, encoding for a membrane-bound cyclic-adenosine 

monophosphate (cAMP)-regulated chloride channel (Kerem et al., 1989, Riordan et al., 1989, 

Rommens et al., 1989). Mutations of the CFTR gene vary tremendously, and > 1,500 
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mutations and sequence variants have been identified presently and deposited into the Cystic 

Fibrosis Genetic Analysis Consortium. Although many of these mutations are rare, only four 

occur at > 1 % frequency, in particular, the most frequent mutation F508del exists in the 

region of DNA within the CFTR gene that encodes for one of two nucleotide-binding 

domains (NBDs), i.e., NBD1 (Döring and Ratjen, 2005). The mutation in NBD1 results in 

abnormal transport of chloride and sodium ions affecting water transport across mucus-rich 

epithelial tissues inducing systemic pathophysiological effects in CF individuals where the 

CFTR gene is expressed in various organs such as the respiratory, gastrointestinal, and 

reproductive tracts, the pancreas, and liver (Tizzano and Buchwald, 1995). Physiological 

dysfunction in the respiratory tract is the leading cause of morbidity in CF individuals as ~ 90 

% die of respiratory failure due to this CFTR defect consequently leading to several 

cascading factors; dehydration of the airway mucous, reduced mucocilliary clearance, 

mucous retention, and predisposition of the CF patient to recurrent chronic lung infections 

(Boucher, 2002, George et al., 2009). 

One of the main defining clinical features in CF and COPD is bronchiectasis; an abnormal 

dilatation of the bronchi and bronchioles due to repeated cycles of respiratory tract infection 

and subsequent inflammation (Barker, 2002, O'Donnell, 2008). Bronchiectasis is a highly 

debilitating disease which can cause premature mortality and chronic morbidity in some 

instances due to severe pulmonary infections and lung function impairment (Alzeer et al., 

2007, King et al., 2005). The paradigm relating to chronic infection in bronchiectasis is a 

vicious circle of continual transmural infection and inflammation followed by mediator 

release, the retention of inflammatory secretions and micro-organisms in the LRT cause 

further lung tissue damage thus accelerating pulmonary obstruction and recurrent chest 

infection (Cole, 1986). Patients with CF present with a very severe form of bronchiectasis, 

but increasingly, other individuals are now being diagnosed with an idiopathic variant of this 

disease, termed non-CF bronchiectasis (nCFBR). The term idiopathic arises from the initial 

diagnosis of nCFBR in many patients in which the aetiology of the disease is unknown. The 

increasing frequency in the diagnosis of nCFBR is due to the widespread use of high-

resolution chest computed tomography (HRCT) scanning (Cohen and Sahn, 1999), although 

the prevalence of nCFBR globally is unknown (O'Donnell, 2008). However, a recent study 

conducted in the U.S. alone revealed that 110,000 individuals may be receiving treatment for 
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nCFBR with an annual cost to the U.S. healthcare system of $630 million respectively 

(Weycker et al., 2005). 

Most, if not all, individuals who are afflicted with asthma, COPD, CF, and nCFBR suffer 

from punctuated episodes of exacerbations, i.e., a worsening of symptoms which induce 

airway obstruction in these patients clinically presented as dyspnoea, cough, chest pain, and 

wheeze. Exacerbations can be triggered by several factors, including a secondary infection of 

both the URT and LRT of several aetiologies, but they also vary in their severity and 

frequency in the chronic respiratory disease briefly described above. In summary, chronic 

respiratory tract diseases play a significant role in the morbidity, mortality, and economies 

not only in the Western world, but increasingly in the developing world. 

Cough, breathlessness, wheeze, chest pain, and sputum production, all major symptoms of 

respiratory disease may be indicative of acute or chronic respiratory tract infection (Leach, 

2007). As the respiratory tract is a continuous entity, via the nose to the alveoli, respiratory 

tract infections (RTI) are distinguished by diagnoses of the ‘preferred focus’ of the infectious 

agent, either in the URT or LRT, although there can be at times ambiguity concerning this 

issue; for instance, the parainfluenza virus can infect the nasopharynx, larynx, trachea, and 

occasionally the bronchi and bronchioles resulting in the common cold, laryngotracheitis 

(croup), bronchitis, bronchiolitis, or pneumonia respectively (Goering et al., 2008). The 

aetiology of respiratory tract infection may be bacterial, viral or fungal in origin. Some 

patients may already present with an underlying lung disease such as nCFBR, CF, and 

COPD, of which infection in the upper and lower respiratory tract is a secondary disease, but 

nevertheless a critical contributing factor to the morbidity and mortality of the individual in 

question. For the purposes of the investigative work contained herein, the author will focus 

primarily on lower respiratory tract infections in non-CF bronchiectasis and COPD. 

1.10.2 Respiratory tract defence mechanisms 

Approximately 14,000 L of air is processed on a daily basis by the human lungs, of which 

contact between the external and internal environments is in constant flux, the integrity of the 

thin alveolar membrane must be maintained at all times to ensure efficient O2 and CO2 

gaseous exchange within the host; thus the recognition, and conduct, of particulate matter 

without resulting in excessive inflammation is critically important (Valdivia-Arenas et al., 

2007). The fragile alveolar epithelial layer itself is protected by non-specific factors such as 
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the cough reflex mechanism, ciliary beat, and mucocilliary escalator, in addition to several 

complex host innate defences comprising of both pulmonary cellular and humoral elements. 

Pulmonary innate cellular components are mediated by the airway and alveolar epithelial 

cells, but also leukocytes, both resident and recruited, including natural killer cells (NKCs), 

dendritic cells (DCs), cytotoxic T cells, macrophages, and neutrophils; antimicrobial products 

secreted into the epithelial lining fluid such as collectins, defensins, lysozyme, lactoferrin, 

secretory IgA, and cathelicidins are all constituents of the pulmonary humoral innate system 

(Zass and Schwartz, 2005). All of the above factors mitigate a collective role in the innate 

immune system including initial defence mechanisms against micro-organisms and clearance, 

but also crucially, subsequent activation of the adaptive immune system (Medzhitov and 

Janeway, 1997). 

Recognition of PPMs in the respiratory tract is achieved by cell-surface conserved 

signature pathogen-associated molecular patterns (PAMPs) which are then mediated in turn 

by pattern-recognition receptors (PRRs) lining the airway epithelium, present in secretory 

components of the innate immune system and the cell-surface of leukocytes. Patter-

recognition receptors are able to facilitate recognition of micro-organisms because of several 

common characteristics in that PAMPs are highly conserved and therefore critical to micro-

organism subsistence, PPRs themselves are expressed constitutively within the host thus 

enabling detection of pathogens irrespective of life-cycle stage (Akira et al., 2006). The goal 

in the recognition of PPMs via PAMP-PPR mediation in the respiratory tract is two-fold; (i), 

to allow effective and efficient recognition of said PPMs by macrophages consequently 

leading to phagocytosis and induction of inflammatory mediators (Bals and Hiemstra, 2004), 

and (ii), to allow for discrimination between non-pathogenic and pathogenic elements that 

may come into contact with the airway epithelium in which the high specificity of PAMP-

PPR interactions confer for these actions (Zass and Schwartz, 2005). 

Toll-like receptors (TLRs) are an evolutionary conserved group of type I integral 

membrane glycoproteins characterised by their extracellular leucine-rich-repeat (LRR) motifs 

and COOH-terminal cytoplasmic signalling domains homologous to the interleukin 1 (IL-1) 

receptor in which the primary function of TLR molecules is that of PRRs (Baus and Fenton, 

2004, Bowie and O'Neil, 2000). Twelve mammalian TLRs to date have been identified in 

mammalian hosts, TLR-2 and TLR-4 are the most extensively studied of the TLR families, 
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but all recognise related PAMPs from viral, bacterial, and fungal origins via highly specific 

binding to microbial ligands mediated by the variable LRR domain and intracellular 

signalling carried out by the conserved COOH-terminal intracellular tail (Armstrong et al., 

2004). For example, TLR-2 and TLR-4 have all been shown to primarily bind to lipoteichoic 

acid (LTA) and lipopolysaccharide (LPS), both constitutive components of bacterial Gram-

positive and Gram-negative cell wall composition respectively (Akira et al., 2006, Bals and 

Hiemstra, 2004, Zass and Schwartz, 2005); in addition, TLR2 has also been shown to bind to 

mycobacterial lipoarabinomannan, suggesting a defensive role in Mycobacterium 

tuberculosis infection and other atypical mycobacterial agents (Drennan et al., 2004, Reiling 

et al., 2002, Weiland et al., 2004). Molecular display of TLRs is not only limited to the 

respiratory tract epithelial cells and leukocytes but also DCs, B cells, and T cell subtypes, 

including extracellular (e.g., TLR-2 and TRL-4 bind to bacterial cell wall components LTA 

and LPS as previously discussed) and intracellular expression (e.g., TLRs 3 and 9 utilise viral 

nucleic acid double-stranded RNA (dsRNA) and DNA as receptors respectively 

(Alexopoulou et al., 2001, Hochrein et al., 2004, Tabeta et al., 2004)) modes (Akira et al., 

2006). Constant modulation of TLR expression is an essential governing factor of the innate 

immune response if the host is effectively able to counter-attack insults by PPMs and respond 

to environmental stresses such as allergens thus inducing an inflammatory cascade and the 

release of components that comprise the adaptive immune response such as cytokines and 

chemokines (Zass and Schwartz, 2005). Indeed, as has been previously elucidated, an 

inflammatory cascade in the LRT in response to tissue architecture insults can in fact be 

occasionally detrimental to the host as seen in asthma, COPD, nCFBR, and CF respiratory 

conditions in which the innate immune response plays a pivotal role in the governance of 

these disease phenotypes. 
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1.11 Aims and objectives of research undertaken 

The primary goal of the investigative work undertaken was to characterise the microbial 

communities in two chronic obstructive respiratory disease patient cohorts whilst also 

inferring the optimum DNA polymerase enzyme to perform the culture-independent analysis 

using an environmental matrix (sandy soil). Determination of a suitable DNA polymerase 

will aid in the subsequent investigation and characterisation of the polymicrobial 

communities of the lung microbiome. Using PCR-DGGE technique analysis both in cross-

sectional patient cohorts presenting with nCFBR and COPD we aim to examine the effects of 

bacterial and fungal communities in the LRT and their relation to intrinsic and extrinsic 

factors such as pulmonary function, patient gender, height, and antimicrobial therapy, etc. 
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Chapter Two: Materials & methods 

2.1 DNA polymerase enzymes and microbial diversity 

2.1.1 Sandy soil sampling strategy 

Soil samples were taken from dunes located on Longsands Beach, Tynemouth, North East 

England (55⁰ 1’ 8.66’’ N, 1⁰ 25’ 36.23’’ W) in October 2008. The sand dunes themselves had 

typical plant cover for the area, consisting mainly of Marram grass (Ammophila spp.). Five 

plots (1.5 m x 0.5 m) were created 1 m (± 0.25 m) up the dune. Within each of the five plots 

sandy soil was taken from five randomly placed sub plots at a depth of 20 cm. The sandy soil 

was then combined to create one sample per plot before being stored at -80 °C. 

2.1.2 DNA extraction from sandy soil 

Microbial genomic deoxyribonucleic acid (gDNA) extraction from sandy soil was 

performed using a MO BIO PowerSoil™ DNA Isolation Kit. To the PowerBead Tubes 

provided in the kit, 0.25 g of soil was added before being gently vortexed. Sixty µL of 

Solution C1 was then pipetted and mixed in the PowerBead tubes by inversion following 

addition of the lysis buffer. PowerBead Tubes were then vortexed (Vortex-Genie2™) at 

maximum speed for 10 min; these were secured horizontally to the vortexer using the MO 

BIO Vortex Adaptor tube holder. Following this, the PowerBead tubes were then centrifuged 

at room temperature for 1 min at 10 000   g in which the supernatant was then transferred to 

a clean sterile 2 mL microfuge tube. Two hundred and fifty µL of Solution C2 was then 

added to the supernatant. This supernatant was then vortexed for 5 s and incubated for 5 min 

at 4 °C before being centrifuged at 10 000   g at room temperature for 1 min to form a cell 

pellet. Avoiding the cell pellet, 600 µL of supernatant was transferred to a clean, sterile 2 mL 

collection tube in which 200 µL of Solution C3 was added and then vortexed briefly. An 

incubation time at 4 °C for 5 min followed before the collection tubes were centrifuged at 10 

000   g at room temperature for 1 min. 

Again, transfer of the supernatant (up to 750 µL in volume) to a clean 2 mL collection 

tube was performed before the addition of 1.2 mL Solution C4 to the transferred supernatant 
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(ensuring at the same time that the Solution C4 supernatant mix did not exceed the rim of the 

2 mL collection tube). Approximately 650 µL was then loaded onto a Spin Filter and 

centrifuged at 10 000   g for 1 min at room temperature after which any flow through liquid 

was discarded. This Spin Filter process was repeated twice more (i.e., a total of three loads 

was required to pass through the Spin Filter). Five hundred µL of Solution C5 (ethanol wash 

solution) was added before centrifugation at 10 000   g for 1 min at room temperature in 

which the flow through liquid was discarded from the 2 mL collection tube. Centrifugation at 

10 000   g was carried out again for 1 min at room temperature for effective removal of any 

residual ethanol wash solution (these trace amounts can interfere with many downstream 

DNA applications). After removal of Solution C5, the Spin Filter was placed into a clean 

sterile 2 mL collection tube and 100 µL of Solution C6, an elution buffer (10 mM Tris), was 

added to the centre of the white filter membrane releasing the previously bound gDNA from 

the silica Spin Filter membrane. The final step was to centrifuge the 2 mL collection tube at 

10 000   g for 1 min at room temperature after which the released gDNA (50 µL in volume) 

was collected. The Spin Filter was discarded and the extracted gDNA was stored at -80 °C. 

2.1.3 Bacterial community detection PCR 

Bacterial community detection by polymerase chain reaction (PCR) in all five soil samples 

was performed by amplification of the V3 hypervariable region within the bacterial 16S 

rRNA gene using extracted gDNA as template. Primers V3F-GC (5′-CGC CCG CCG CGC 

GCG GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG CAG-3′) 

and V3R (5′- ATT ACC GCG GCT GCT GG-3′) were used producing amplicons of 16S 

rDNA regions of different bacterial species in the soil community as previously shown 

(Muyzer et al., 1993). Amplification of the 16S rDNA V3 regions corresponded to positions 

341 to 534 in Escherichia coli. Forward primer V3F-GC has an additional 40-bp GC-rich 

nucleotide sequence (GC-clamp) attached to its 5′ end allowing for higher sensitivity in 

detection of bacterial genomic DNA sequence variation in denaturing gradient gel 

electrophoresis (DGGE) processing and greater PCR fragment stability (Sheffield et al., 

1989). Addition of bovine serum albumin (BSA) was also introduced into the PCR as this has 

been previously shown to relieve inhibitory substances such as humic acids which are present 

in soil and other environmental samples (Kreader, 1996). 
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Positive and negative controls were set up in all PCR experiments. Positive control 

bacterial gDNA was extracted from a pure culture of Haemophilus influenzae (NCTC 

(National Collection of Typed Cultures) no. 11931 (generously donated by Prof. J.D. Perry, 

Freeman Hospital, Microbiology Department, Newcastle upon Tyne, U.K.)) for confirmation 

of V3 region amplicons. A negative control set up was for the determination of any 

environmental contaminants that may be present during PCR. Five different DNA 

polymerases (pols) were implemented for enzymatic amplification of the V3 hypervariable 

region: Platinum® Pfx (Invitrogen
™

), TaKaRa Ex Taq™ Hot Start (TAKARA BIO INC.), 

AmpliTaq® (Applied Biosystems™), GoTaq® Hot Start (Promega), and Taq (New England 

BioLabs®, Inc.) respectively. All DNA polymerases used generated technical replicates for 

each sandy soil sample, 3   50 µL vials of amplicons per pol, eventually yielding 15 batches 

of amplicons altogether for each sandy soil sample analysed by DGGE. Common to the entire 

repertoire of Taq DNA pols executed here was a touchdown protocol (commonly referred to 

as touchdown PCR), and a manual and automatic hot start (HS). Touchdown PCR reduces the 

formation of spurious by-products, created in the amplification process, by increasing the 

expected initial annealing temperature by 10 °C (Don et al., 1991); i.e., 65 °C as opposed to 

55 °C in this instance and then reducing the annealing temperature by 0.5 °C per cycle in 

PCR. Automatic HS DNA pols such as Ex Taq™ HS employ an antibody bound enzyme in 

which the activation temperature (e.g., 97 °C) results in release of the previously bound pol 

inhibiting not only spurious PCR product formation before initiation, but also minimising 

non-specific annealing primers to non-target DNA regions. Manual HS protocols execute a 

pol not bound to an antibody, but instead involve manually pipetting the pol at a specific 

volume and temperature (i.e., 80 °C) into the incubated sample once initial DNA template 

denaturation has been completed (i.e., 97 °C for 5 min). Introduction of DNA pols as a 

manual HS into PCR mirrors the purposes of automatic HS DNA pols. In summary, all of the 

above enzymes required different PCR conditions for satisfactory amplification of the V3 

rDNA PCR fragments. These conditions were programmed into a thermocycler (Eppendorf 

Mastercycler gradient) according to the manufacturer’s recommendations for each DNA pol 

used in PCR. These conditions are described below. 
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2.1.3.1 V3 rDNA amplification using AmpliTaq™ DNA polymerase 

The PCR performed using AmpliTaq® (Applied Biosystems™) pol involved the use of a 

manual HS and a touchdown protocol on a Mastercycler gradient (Eppendorf). PCR reagents 

per reaction were added as follows: 0.5 µM primers (both forward (V3F-GC) and reverse 

(V3R)), 1  GeneAmp® Buffer (Applied Biosystems™), 0.3 mM each dNTP (New England 

BioLabs®, Inc.), 2 mM MgCl2 (SIGMA® Life Science), 10 µg/µL BSA (Promega), 1.25 U 

AmpliTaq® and 2 µL of DNA template made up to 50 µL with sterile 18.2 Ω H20 

(MILLIPORE, Direct-Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm filter). Samples 

were incubated for 5 min at 97 °C executing an initial denaturation step of template DNA 

before holding at 80 °C indefinitely to allow a manual HS via introduction of AmpliTaq® pol 

into the sample; then 96 °C for 1 min, 65 °C for 1 min, with a reduction of 0.5 °C per cycle 

until touchdown at 55 °C. Primer extension lasted for 30 s at 72 °C and this was repeated for 

20 cycles. An additional fifteen cycles was carried out at 94 °C for 1 min, 55 °C for 1 min, 72 

°C for 3 min and a final extension time of 72 °C for 30 min. This extended final DNA 

elongation step was implemented to reduce the formation of artifactual double bands which 

can be problematic in microbial community profiling techniques such as DGGE (Janse et al., 

2004). 

2.1.3.2 V3 rDNA amplification using Ex Taq™ Hot Start DNA polymerase 

Unlike the above conditions, PCR fragments amplified using Ex Taq™ HS (TAKARA 

BIO INC.) pol utilised an automatic HS and a touchdown protocol on a Mastercycler 

gradient (Eppendorf). PCR reagents per reaction were added as follows: 0.5 µM primers 

(both forward (V3F-GC) and reverse (V3R)), 1  Ex Taq Buffer (TAKARA BIO INC.), 0.2 

mM each dNTP (TAKARA BIO INC.), 1 mM MgCl2, 10 µg/µL BSA (Promega), 1.25 U Ex 

Taq™ HS and 2 µL of DNA template made up to a total volume of 50 µL with sterile 18.2 

MΩ H2O (MILLIPORE, Direct-Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm 

filter). Samples were incubated for 5 min at 97 °C releasing antibody bound polymerase Ex 

Taq™ HS, then at 96 °C for 1 min, 65 °C for 1 min, with a reduction of 0.5 °C per cycle until 

touchdown at 55 °C. Primer extension lasted for 30 s at 72 °C and this was repeated for 20 

cycles. An additional fifteen cycles was carried out at 94 °C for 1 min, 55 °C for 1 min, 72 °C 

for 3 min and a final extension time of 72 °C for 30 min. 
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2.1.3.3 V3 rDNA amplification using GoTaq® Hot Start DNA polymerase 

Amplification of V3 rDNA using GoTaq® HS (Promega) pol was carried out with both an 

automatic HS and touchdown conditions on an Eppendorf Mastercycler gradient. PCR 

reagents per reaction were added as follows: 0.5 µM primers (both forward (V3F-GC) and 

reverse (V3R)), 2  Colorless GoTaq® Buffer (Promega), 0.3 mM each dNTP (New England 

BioLabs®, Inc.), 1 mM MgCl2 (Promega), 10 µg/µL BSA (Promega), 1.25 U GoTaq® HS 

and 2 µL of DNA template made up to 50 µL with sterile 18.2 Ω H20 (MILLIPORE, Direct-

Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm filter). Samples were incubated for 5 

min at 97 °C, releasing antibody bound polymerase GoTaq® HS, then at 96 °C for 1 min, 65 

°C for 1 min, with a reduction of 0.5 °C per cycle until touchdown at 55 °C. Primer extension 

lasted for 30 s at 72 °C and this was repeated for 20 cycles. An additional fifteen cycles was 

carried out at 94 °C for 1 min, 55 °C for 1 min, 72 °C for 3 min and a final extension time of 

72 °C for 30 min. 

2.1.3.4 V3 rDNA amplification using Platinum® Pfx DNA polymerase 

Platinum® Pfx (Invitrogen™) pol conditions differed from the Taq DNA pol enzymes 

employed here as no touchdown PCR was carried out. However, an automatic HS was still 

performed. PCR reagents were added as follows: 0.5 µM primers (both forward (V3F-GC) 

and reverse (V3R)), 2  Pfx Amplification Buffer (Invitrogen™), 0.5  Pfx Enhancer Solution 

(Invitrogen™), 0.3 mM each dNTP (New England BioLabs®, Inc.), 1 mM MgSO4 

(Invitrogen™), 10 µg/µL BSA (Promega), 1.25 U Platinum® Pfx and 2 µL of DNA template 

made up to 50 µL with sterile 18.2 Ω H20 (MILLIPORE, Direct-Q™ Ultra Pure Water 

Systems, MILLIPAK® 0.22 µm filter). Samples were incubated at 94 °C for 4 min 

initialising DNA template denaturation and release of bound Platinum® Pfx pol. Following 

this, 35 cycles at 97 °C for 30 s, 65 °C for 30 s, and 68 °C for 30 s were performed with a 

final elongation step at 68 °C for 30 min. 

2.1.3.5 V3 rDNA amplification using Taq DNA polymerase 

New England BioLabs® Inc., Taq pol amplification of V3 rDNA amplicons was executed 

on a Mastercycler gradient (Eppendorf) using a manual HS and touchdown PCR. PCR 

reagents per reaction were added as follows: 0.5 µM primers (both forward (V3F-GC) and 

reverse (V3R)), 1  Standard Taq Reaction Buffer (New England BioLabs® Inc.), 0.3 mM 

each dNTP (New England BioLabs®, Inc.), 2 mM MgCl2 (SIGMA® Life Science), BSA 
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(Promega), 5 U Taq pol and 2 µL of DNA template made up to 50 µL with sterile 18.2 MΩ 

H20 (MILLIPORE, Direct-Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm filter). 

Samples were incubated for 5 min at 97 °C executing an initial denaturation step of template 

DNA before holding at 80 °C indefinitely to allow a manual HS via introduction of Taq pol 

into the sample; then 96 °C for 1 min, 65.8 °C for 1 min, with a reduction of 0.5 °C per cycle 

until touchdown at 55.8 °C. Primer extension lasted for 30 s at 72 °C and this was repeated 

for 20 cycles. An additional fifteen cycles was carried out at 94 °C for 1 min, 55.8 °C for 1 

min, 72 °C for 3 min and a final extension time of 72 °C for 30 min. 

2.1.4 Agarose gel electrophoresis of V3 rDNA amplicons 

PCR fragments amplified by all five different polymerases were run out and validated 

using agarose gel electrophoresis (1 % (
w
/v) (App. 1) stained with SYBR® Safe DNA gel 

stain (10 000  concentrate in dimethyl sulphoxide (DMSO)) (Invitrogen™). Five µL of PCR 

product, 2 µL 6× bromophenol blue (BPB), and 5 µL 18.2 MΩ H2O (MILLIPORE, Direct-

Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm filter) were mixed by trituration 

before a final volume of 10 µL was loaded into the appropriate gel well, in addition to 5 µL 

of Hyperladder 1 (200-10 000 molecular bp size markers (BIOLINE)) (App. 2). PCR 

products were electrophoresed at 120 mA constant (BIO-RAD, Basic PowerPac™) for 20 

min in 1× TAE running buffer (tris-acetate-EDTA (ethylenediamine tetraacetic acid)). 

Visualisation of PCR products was done under ultra-violet (UV) light using a BIO-RAD Gel 

Doc 2000 system and Quantity One software (v. 4.6.6). Comparison of the molecular bp 

markers in Hyperladder I (BIOLINE) and the positive control confirmed the correct size of 

the amplicons for the V3 rDNA fragments produced by each DNA pol utilised, i.e., 233 bp. 

Hard copies of the electropherograms were generated using a Mitsubishi Video copy 

processor (model P91 attached to the Gel Doc 2000 system). 

2.1.5 Denaturing gradient gel electrophoresis of the bacterial community 

2.1.5.1 Assembly of parallel gradient gel sandwich 

Before DGGE analysis of PCR fragments, appropriate gel sandwich and casting was 

required (described below) for accurate determination of electrophoretic data. To ensure 

proper alignment of parallel gradient gel sandwich, all plates (16   16 cm) and spacers (1.0 

mm in width) were clean and dry before assembly and constructed on a clean laboratory 

bench surface. The large rectangular glass plate (termed long glass plate) was laid down first 
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before placement of the spacers in which a thin layer of silicone grease (glisseal® HV) was 

applied to the straight edge of the spacers facing inwards towards the large glass plate. 

Application of a thin layer of silicone grease prevents leaking of denaturing substances such 

as urea and formamide into the buffer reducing the formation of “down smiling” across the 

gel gradient in all lanes used, in particular the outermost lanes (Brinkhoff and van Hannen, 

2001). The smaller glass plate (termed short glass plate) was then placed on top of the 

spacers, but aligned so that it was flush with the bottom edge of the long glass plate. Each 

screw located at the top of the sandwich clamps was turned counter-clockwise (i.e., to loosen 

the screws) before placement at the appropriate side of the gel sandwich with the locating 

arrows facing up and towards the glass plates. Attachment of the sandwich clamps involved 

both the long and short plates fitting into the correct notches in the clamp (attached one at 

time) before tightening the screws (finger-tight) enough to hold both plates in position. 

Following this, a thin layer of silicone grease was applied to the entire bottom length of the 

assembled gel sandwich sealing the critical area (the attached spacers and glass plates) which 

prevents leakage of gel solution during the casting of gels (Brinkhoff and van Hannen, 2001). 

The gel sandwich assembly was then placed into the alignment slot of the casting stand 

with the short glass facing towards the author. Sandwich clamps were loosened to allow the 

insertion of the alignment card to keep spacers parallel to the clamps. Alignment of plates and 

spacers simultaneously was achieved by pushing inward on both clamps at the locating 

arrows whist at the same time pushing down on the spacers ensuring that the spacers and 

glass plates are flush against the sides of the clamps. Both clamps were tightened just enough 

to hold the sandwich assembly in place before removal of the alignment card. The sandwich 

assembly was then removed entirely from the casting stand to ensure that both the plates and 

spacers were flush at the bottom. Clamps were then tightened until finger-tight. 

2.1.5.2 Casting of parallel denaturing gradient gel 

Using the front casting slot the gel sandwich assembly was placed on top of a grey sponge 

with the short plate facing towards the author. Upon correct positioning, the handles of the 

camshafts were turned down to lock the sandwich assembly in place. This is in preparation 

for gel casting. Pieces of Tygon tubing cut into two lengths of 15 cm and an additional 

shorter piece cut at 9 cm was used to conduct the gel solution from the Y-fitting into the gel 

sandwich assembly. One end of the shorter 9 cm piece of Tygon tubing was attached to the 
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Y-fitting, the other end a luer coupling with a 19 gauge needle (BD Microlance™ 3). This 

needle was then inserted in between the short and long glass plates of the sandwich assembly 

located in the centre before being taped (parcel tape providing the most stable attachment) to 

the forward facing side of the long glass plate Two other luer couplings were also connected 

to one end of both long Tygon 15 cm tubing pieces in addition to both 30 mL syringes (BD). 

Each syringe labelled either HI (for the high density solution) and LO (for the low density 

solution) had attached a plunger cap, positioned exactly onto each syringe plunger “head”. 

Both syringes were correctly positioned into a syringe sleeve (with volume gradations 

visible); lever attachment screw was in the same plane as the flat or back side of the sleeve. 

This alignment enabled effective and undisturbed delivery of the denaturing gradient gel 

solution from the Gradient Delivery System. The cam wheel on the Gradient Delivery System 

was rotated back to its starting position (i.e., clockwise) with the delivery volume set to 16 

mL. 

Two 50 mL centrifuge tubes (SARSTEDT) labelled either HI (for high density solutions) 

or LO (for low density solutions) were used for preparation of denaturing gel solutions in a 

fume hood (Morgan and Grundy (Unitform) Ltd.). One hundred µL of DCode™ dye (App. 1) 

was pipetted into the HI 50 mL centrifuge tube before the addition of (i), 20 mL of 55 % 

denaturing gradient solution (12 % acrylamide/bis-acrylamide of gel percentage) (App. 1), 

216 µL of 10 % (
w
/v) ammonium persulphate (APS (SIGMA-ALDRICH®)) (App. 1), and 

then 21.6 µL of N,N,N′,N′-tetramethylethylenediamine (TEMED (SIGMA-ALDRICH®)) 

before the 50 mL centrifuge tube was inverted several times to mix contents; and (ii), into the 

LO 50 mL centrifuge tube, 20 mL of 35 % denaturing gradient solution (12 % 

acrylamide/Bis-acrylamide of gel percentage) (App. 1) 216 µL of 10 % (
w
/v) ammonium 

persulphate (APS), and then 21.6 µL of TEMED before the centrifuge tube was inverted 

several times to mix contents. Using the 30 mL syringes, with 15 cm Tygon tubing attached, 

~ 18 mL of each denaturing gradient solution was withdrawn from both the HI and LO 

centrifuge tubes and into the appropriately labelled syringe vials. Any air bubbles present (in 

particular in the LO syringe) were removed at this time by turning the syringe upside down 

and gently tapping the syringe against a hard surface in addition to pushing these solutions to 

the end of the tubing to remove any further air bubbles. 
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The two syringes were then placed into the Gradient Delivery System syringe holder on 

each side, both designated LO and HI density side, by insertion of the lever attachment 

screws into the lever groove. Following this, the ‘free’ ends of the 15 cm Tygon tubing from 

the 30 mL syringes were then slid over and attached to both ‘free’ ends of the Y-fitting ready 

for denaturing gradient solution distribution. The cam wheel of the Gradient Delivery System 

was then rotated in a counter clockwise direction at a steady flowing pace with two hands in a 

constant motion for delivery of the denaturing gel solution from the attached syringes into the 

gel sandwich assembly. Once dispensed to the top of the short plate, the 19 gauge needle with 

Tygon tubing still attached was removed and placed into a 500 mL beaker of hot water before 

careful insertion of a 16-tooth comb. The gel was then left to polymerise for 1 h before use. 

Both HI and LO syringes were removed from the Gradient Delivery System with Tygon 

tubing still attached and then using the syringes themselves were thoroughly rinsed with hot 

water from the 500 mL beaker to remove any excess denaturing gel solution. This was 

repeated several times and performed quickly after gel casting to avoid premature gel 

polymerisation taking place inside the syringes, Tygon tubing and Y-fitting. After gel 

polymerisation (1 h from the initial gel casting procedure), the 16-tooth comb was removed 

by pulling it straight up and slowly as not to disturb the cast wells within the gel. Distilled 

water (dH2O) was finally dispensed across the top of the short plate to fill all of the wells 

ready for sample loading. 

2.1.5.3 Assembly of the upper buffer chamber before electrophoresis of 

amplicons 

After gel polymerisation, the gel sandwich was released from the casting stand by turning 

the camshafts 180° to the up position and pulling them both outward and placed to the side on 

the bench. Laying the inner core flat on a bench, the gel sandwich assembly was then placed 

into position so the locating pins on the core fitted into the grooves on the outside surface of 

the sandwich clamps at an approximate angle of 20 °. The gel sandwich was then locked into 

position against the inner core by pushing up against the locating pins with the end result 

being that the upper edge of the short inner glass plate was seated against the notches of the 

U-shaped gasket and the tabs of both sandwich clamps held securely against the latch 

assemblies on both sides of the inner core. These above steps were repeated once again in 

order to attach a second gel sandwich assembly on the reverse side of the inner core, except 

soil sample 5 replicates (SS5R), in which only one gel sandwich assembly was required for 
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DGGE analysis. In this instance a ‘balance’ DGGE plate was constructed using the same 

method as the gel sandwich assembly above, but without the addition of the 1 mm spacers. 

2.1.5.4 V3 rDNA amplicon preparation and loading on DGGE apparatus 

The electrophoresis reservoir tank was filled with ~ 7 L of 1  TAE running buffer (App. 

1) to the “fill” line and pre-heated up to 65 °C (this was carried out whilst performing the gel 

sandwich assembly and gel casting steps as reaching the desired running temperature can take 

1 to 1.5 h). A 5 °C increase than the actual DGGE running temperature allows for quicker 

DGGE experimental and sample loading running time. Following this, the DCode™ 

temperature control module was switched off, removed, and placed on the DCode™ lid 

stand. Five hundred mL of 1  TAE running buffer was then removed from the reservoir tank 

to allow filling of the upper buffer chamber of the inner core assembly using a plastic beaker. 

The inner core with attached gel assemblies was placed into the buffer chamber with the red 

button towards the right hand side and the black button along the left hand side of the system. 

Approximately 350 mL of 1  TAE running buffer from the plastic beaker was decanted into 

the upper buffer chamber of the inner core assembly whilst in the reservoir tank; any excess 

was then used to fill the reservoir tank running buffer to the “max” line indicated. 

All amplicons synthesised by AmpliTaq™, Ex Taq™ HS, Go Taq® HS, Platinum® Pfx, 

and Taq DNA polymerases respectively were prepared for loading onto the DCode™ system 

as follows; PCR products were thoroughly thawed, pulsed (MSE MicroCentaur (SANYO)) 

and 15 µL of amplicons was mixed with 15 µL of 2  gel loading dye by trituration before 

being pulsed again. Thirty µL of amplicons and 2  gel loading dye mixture was then loaded 

into the appropriate wells present in both gel sandwich assemblies attached to the inner core 

(except SS5R in which a balance plate was attached to the inner core). In terms of loading 

strategy, all 3 technical replicate amplicons synthesised by each DNA pol enzyme in sandy 

soil samples 1-5 was loaded as follows using SS1R as an example: replicates A-C synthesised 

by Taq, replicates A-C synthesised by Go Taq® HS, replicates A-C synthesised by 

AmpliTaq™, replicates A-C synthesised by Ex Taq™ HS, and finally replicates A-C 

synthesised by Platinum® Pfx (Fig. 3.2A-E). This loading pattern was repeated for the 

remaining four sandy soil samples analysed by DGGE. The DCode™ temperature control 

module from the DCode™ lid stand was placed back on top of the electrophoresis tank, 

ensuring that the stirring mechanism fitted neatly into the correct socket, locking the core in 
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place, and the power, pump, and heater were all switched back on with a final adjustment of 

the initial running temperature; i.e., 60 °C as opposed to 65 °C. 

2.1.5.5 DGGE of V3 rDNA amplicon technical replicates in sandy soil samples 

When a running temperature of 60 °C was finally obtained, technical replicates of V3 

rDNA GC-clamped PCR fragments, amplified by the five different DNA polymerase 

enzymes in each sandy soil sample, were analysed by DGGE using the DCode™ Universal 

Mutation Detection System (BIO-RAD) on a 35-55 % denaturing gradient for 4.5 h at a 

constant of 200 V (Basic PowerPac™, BIO-RAD). All gels were removed before staining 

with SYBR Green nucleic acid stain I (Invitrogen™) for 30 min on a shaking platform at 75 

rpm (Edmund Bühler, KM-2). The staining solution was then decanted and any excess 

present on the gel(s) was rinsed off with distilled dH20. Visualisation of denaturing gels was 

under UV light using a BIO-RAD Gel Doc 2000 system and Quantity One software (v. 

4.6.6). Hard copies of DGGE bacterial community profiles from each sandy soil sample and 

pol type were generated using a Mitsubishi Video copy processor (model P91 attached to the 

Gel Doc 2000 system). 

2.1.6 Statistical and ecological analyses of bacterial community profiling 

2.1.6.1 DGGE profile capture and analysis 

The BIO-RAD Gel Doc 2000 system was used to capture all of the DGGE profile images 

(i.e., a photograph taken where the gel is converted into a digital file (TDS 1-D scan file 

format) producing an electropherogram) produced from the assessment of the DNA pol 

enzymes and the analysis performed using the included Quantity One software (version 

4.6.6). Initial DGGE profiles captured were then converted to an inverted electropherogram 

(i.e., black bands set against a white background producing a clearer image for band 

discrimination). From here, a rolling ball algorithm was selected manually to subtract any 

background interference so peak detection performed represented actual bands and not 

artifacts. Lanes within the DGGE profile were created manually and subsequently framed to 

address DGGE experimental nuances such as ‘smiling’ and ‘leaning’ by the creation of lane 

anchors that could be manipulated to centralize all of the bands produced in each 

corresponding lane. Band detection itself was carried out using Quantity One’s auto-detect 

software algorithm with lane width set to 4.100 mm preventing lane overlap. Subsequently, 

detected bands in the DGGE profile were assessed by eye and either removed or added using 
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the Create/Remove bands tool. Bands generated across all lanes were then matched using the 

Match command in Quantity One in which unique bands identified in all five gels were 

matched across different lanes. A distinct band that appeared in a lane or across several lanes 

is identified via matching as a unique band type generating a band number. This was required 

to ascertain the normalised relative band intensities in the gel. Following band matching 

within the gel image produced, both qualitative and quantitative data arising from the DGGE 

profile was exported via the All Lanes Report command. Exportation of this data contained 

the relative quantity, lane and band number variables respectively. These three variables were 

then manually inputted into Microsoft® Excel™ where a DGGE band matrix was 

subsequently created. 

Using the DGGE band matrix, the total intensity of each lane was calculated by using the 

AutoSum formula in Microsoft® Excel™ in which the normalised band values per lane were 

derived by dividing the relative intensity of each band in a lane by the total intensity value 

yielding a value between 0-1. A value of 0 corresponded to no band being present, whereas a 

value of 1 indicated that particular band accounted for the total intensity derived in that 

respective lane (i.e., one band was present or observable from the initial gel analysis 

performed in Quantity One). 

2.1.6.2 Shannon diversity index derivation 

Detection of the bacterial community by the five DNA polymerase enzymes employed 

was also assessed by calculation of the Shannon diversity index (H′) in each sample type. The 

Shannon diversity index is a biodiversity quantitative measure which derives both the species 

richness (number of bacterial taxa present) and evenness (J′) (how equal the different taxa are 

numerically distributed) in a sample type. The H′ was calculated by using the formula: 

      ∑(    [  ]) 

Where pi is the normalised relative intensity of each band detected in the DGGE profile, 

calculated using Microsoft® Excel™ (see section 2.1.6.1), and ln the natural logarithmic 

number of the normalised relative intensity band value. The ln was firstly derived of all the 

normalised relative intensity band values in each lane before being multiplied by these same 

values. Secondly, the sum of all these values per lane was multiplied by -1 converting the 

negative numbers into a positive H′ score for each respective DNA pol technical replicate. 
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Species richness (R) (i.e., the number of bacterial taxa present) was derived from the number 

of bands produced per lane per DNA pol technical replicate. 

2.1.6.3 Principal components analysis 

Once all normalised values were deduced in all five DGGE profiles generated, they were 

then copied and pasted into the PAST (v. 1.85) software program (Hammer and Harper, 

2001) and subjected to multivariate analysis using principal components analysis (PCA). All 

Eigenvalues (a measure of variation in each axis measured in PCA) were < 1 so the PCA 

scores generated were accepted. The PCA scores of the first two axes of variation, principal 

components 1 and 2 (PC1 is the x-axis whereas PC2 represents the y-axis) were then used to 

plot graphs for each sandy soil sample and DNA pol technical replicate represented. The PC1 

and PC2 percentage of variation were then added together to deduce the cumulative 

percentage of variation explained in the outputs. The variance between the DNA pol assessed 

and their detection of the bacterial diversity in each sample type was deduced by inputting 

both PC1 and PC2 scores into Minitab® 15 (v. 15.1.30.0). Variances along the x-axis and y-

axis corresponding to PC1 and PC2 were subjected to a one-way ANOVA (analysis of 

variance) (confidence level was set at 95 %) where a P-value was calculated indicating 

whether there was a significant difference or not between the five DNA pol employed in the 

diversity generated in all five sandy soil samples. Additionally, a Tukey’s test was performed, 

a post ad hoc ANOVA to determine if amplicons generated by the DNA pol enzymes 

differed. 

2.2 Bacterial and fungal standard organism ladders for semi-

quantitative DGGE analyses in patient cohorts 

2.2.1 Bacterial 16S standard ladder construction 

Nine bacterial species were selected for 16S standard ladder (SL) construction as these 

were all associated with microbial infection in both cystic fibrosis (CF) and non-CF 

bronchiectasis (nCFBR) individuals. These bacterial organisms (table 2.1) were comprised of 

reference strains from the NCTC, Laboratory of Microbiology, University of Ghent (LMG) 

and fully identified wild type strains from the Freeman Hospital, Microbiology Department, 

Newcastle upon Tyne. 
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Table 2.1 Bacterial species utilised in 16S standard ladder construction. 

Number Species Reference strain 

1 Haemophilus influenzae NCTC 11931 

2 Staphylococcus aureus NCTC 6571 

3 Ralstonia pickettii NCTC 11149 

4 Pseudomonas aeruginosa NCTC 10662 

5 Streptococcus oralis NCTC 11427 

6 Burkholderia cepacia complex LMG 17997 

7 Stenotrophomonas maltophilia NCTC 10257 

8 Pseudomonas fluorescens NCTC 10688 

9 Achromobacter xylosoxidans Wild strain FRH 604914 

 

The method of 16S SL construction has been previously demonstrated in both cross-

sectional and temporal patient cohorts in CF using PCR-DGGE technique (Nelson, 2011). 

Briefly, the above bacterial isolates, with the exception of H. influenzae, were all inoculated 

onto Luria-Bertani (LB) agar (App. 1) and incubated overnight at 37 °C under aerobic 

conditions excluding S. oralis (incubated anaerobically). H. influenzae was cultured on 

NADsens agar (App. 1) at 37 °C in a static incubator with 5 % CO2 saturation overnight. 

Subsequently, colony morphologies were validated by eye to ensure pure growth before a 

single colony (excluding H. influenzae) was utilised to inoculate 10 mL of sterile LB broth 

(incubated overnight at 37 °C). Colonies of H. influenzae were inoculated into 10 mL of 

sterile NADsens broth and subsequently incubated overnight in a microaerophilic 

environment. Examination of broth cultures for pure growth by inoculating fresh agar plates 

with 10 µL of culture and incubation overnight (as illustrated above) was performed as a 

quality control procedure. Once pure growth was validated, broth cultures were then 

subsequently utilised for gDNA extraction (UltraClean® Microbial Isolation Kit) (MO BIO 

Laboratories, Inc.)). 

Using the extracted gDNA as template from each pure bacterial isolate grown, the V3 

region of the 16S rRNA gene was targeted as previously demonstrated (Muyzer et al., 1993, 

Nelson et al., 2010) with the identical conditions described in section 2.3.4 performed on a 

Mastercycler gradient (Eppendorf) thermocycler. PCR amplification of V3 rDNA amplicons 
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was verified by agarose gel electrophoresis (as previously described in section 2.1.4) before 

being subsequently run out for DGGE analysis (DCode™ Universal Mutation Detection 

System (BIO-RAD)) on a 32.5-60 % denaturing gradient (12 % acrylamide/bis-acrylamide of 

gel percentage) (App. 1). Two µL of pure V3 rDNA amplicons mixed with 2 µL 2× loading 

dye was required before 4 µL was loaded into each well. The V3 rDNA amplicons from each 

bacterial species were also pooled and run out for DGGE analysis (36 µL in total (18 µL PCR 

products of 9 different bacterial species and 18 µL 2  gel loading dye)). Electrophoresis of 

bacterial isolate V3 rDNA amplicons was performed at 200 V constant (Basic PowerPac™, 

BIO-RAD) for 4.5 h, stained with SYBR Green nucleic acid stain I (Invitrogen™), incubated 

for 30 min (75 rpm on a shaking platform (Edmund Bühler, KM-2)), de-stained briefly with 

dH2O, before visualisation under UV light (BIO-RAD Gel Doc 2000 system and Quantity 

One software (v. 4.6.6)). Hard copies were generated as previously described. Pure V3 rDNA 

single bacterial strain PCR products amplified from the bacterial isolates listed above were to 

comprise the 16S SL. Execution of this 16S SL was essential for inter-comparison of the 

bacterial DGGE community profiles generated in all of the patient cohorts analysed enabling 

inter-gel alignment via these internal standards (Tourlomousis et al., 2010). 

2.2.2 Fungal 28S standard ladder construction 

2.2.2.1 Fungal isolates selection and collection 

Seven fungal species were selected and utilised for the construction of the 28S SL for 

fungal community studies in all patient cohorts enlisted. Selection of the following was based 

on the implication of all species being opportunistic invasive respiratory pathogens in CF 

patients. Fungal species chosen were comprised of one spore-forming species, Aspergillus 

fumigatus, and five yeast-forming species: Candida albicans, Candida dubliniensis, Candida 

glabrata, Candida parapsilosis, Exophiala dermatitidis, and Scedosporium apiospermum. All 

fungal collections prior to gDNA extraction were generously donated by Mrs. Claire 

Rennison at the Freeman Hospital, Microbiology Department, Newcastle upon Tyne. The 

fungal isolates themselves were from clinical samples, identified in the Microbiology 

Department laboratory according to standard operating procedure (SOP) affiliated with the 

Freeman Hospital. 
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2.2.2.2 Extraction of fungal gDNA from isolates 

Extraction of fungal gDNA was performed using an UltraClean® Microbial Isolation Kit 

(MO BIO Laboratories, Inc.) in a Class II safety airflow cabinet (envair Bio 2+) with 

amendments to the protocol. Fungal species were firstly inoculated in 100 mL of sterile 

Sabourad (OXOID) liquid broth (pH 7.0) (App. 1) before being incubated (SANYO) at 22 °C 

for 7 days. Following incubation, a tea spoonful of sterile glass beads (3 mm diameter) was 

dropped into each fungal culture species before being placed in an orbital shaker (New 

Brunswick Scientific Ltd.) for 10 min at 200 rpm, 37 °C. This step is critical as it aids in the 

rupture and softening of the previously hard mycelial wall (prominent in the spore-forming 

species A. fumigatus) seen after the first incubation step. 

From the yeast cultures grown, 1.8 mL of microbial culture (broth liquid medium) was 

pipetted into a clean, sterile 2 mL microfuge tube and centrifuged at 10 000   g for 1 min at 

room temperature before the supernatant was decanted. The tubes were then spun down again 

at 10 000   g at room temperature generating a cell pellet. Any supernatant still present was 

removed by a pipette tip. For A. fumigatus fungal culture: using a clean pair of forceps 

(washed down with 70 % 
v
/v ethanol), a small piece of softened mycelia present at the top of 

the Sabourad broth was transferred to a clean sterile 2 mL collection tube, centrifuged at 10 

000   g for 1 min at room temperature before the supernatant was discarded. Again, this was 

spun down once more at 10 000   g for 1 min at room temperature in which any supernatant 

still present was removed by pipette as in the yeast species above. Cell pellets were 

resuspended in 300 µL of MicroBead Solution then gently vortexed before transfer of 

resuspended cells to MicroBead Tubes. Fifty µL of MD1 Solution was then added to the 

Microbead Tubes. 

Fungal cell preps (in MicroBead Tubes) were then heated at 70 °C for 10 min as an 

additional aid in fungal cell lysis. Following this incubation step, fungal cell preps were then 

vortexed at maximum speed for 10 min using the Mo Bio Vortex Adapter tube holder. After 

bead beating step, the 2 mL MicroBead Tubes were then centrifuged at 10 000   g for 1 min 

at room temperature. The supernatant (~ 300-350 µL) was aliquoted into a clean sterile 2 mL 

collection tube in which 100 µL of Solution MD2 was then added. Microfuge tubes were 

gently vortexed for 5 s then incubated at 4 °C for 5 min. Following this incubation step, 

fungal cell preps were centrifuged at 10 000   g for 1 min at room temperature. The entire 
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volume of supernatant (~ 450 µL) was then transferred to a clean sterile 2 mL collection tube, 

whilst avoiding the cell debris pellet. Solution MD3 was briefly shaken and 900 µL was 

aliquoted to the recently transferred supernatant and then vortexed for 5 s. 

Seven hundred µL was then loaded into the Spin Filter and centrifuged at 10 000   g for 1 

min at room temperature twice. All flow through liquid following this centrifugation step was 

discarded. Three hundred µL of MD4 Solution was then added before centrifugation at room 

temperature for 1 min at 10 000   g. Flow through liquid from Spin Filter was again 

discarded before repeating the above centrifugation step (10 000   g at room temperature for 

1 min). Spin Filter basket was then removed and placed into a new clean sterile 2 mL 

collection tube in which 50 µL of Solution MD5 was pipetted to the centre of the white filter 

membrane. Microfuge tubes containing Spin Filter baskets were then finally centrifuged at 

room temperature for 1 min, 10 000   g to elute isolated fungal gDNA. The Spin Filter 

basket was discarded and fungal gDNA was stored at -80 °C. 

2.2.2.3 PCR amplification of 28S rDNA segments 

Amplification of all seven fungal isolates using extracted gDNA was used as template for 

PCR. Two conserved regions flanking a highly variable region within the 28S rRNA gene 

were selected as previously demonstrated for amplification of small segments of 28S rDNA 

(Sandhu et al., 1995). Universal fungal primers U1F (5′-GTG AAA TTG TTG AAA GGG 

AA-3′) and U2R-GC (5′-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA 

CGG-3′) primer sets were executed, in addition to Ex Taq™ HS pol (TAKARA BIO INC.), 

to enzymatically amplify small segments of 28S rDNA (U1-U2 rDNA fragments). Both 

universal fungal primers both refer to co-ordinate numbers 403-422 (forward primer U1F) 

and 645-662 (reverse primer U2R) of the reference Saccharomyces cerevisiae 28S rRNA 

gene (Sandhu et al., 1995). As in the bacterial community detection PCR, addition of a GC-

clamp was executed, however, this was attached to the reverse fungal primer (U2R-GC) to 

aid in genomic sequence variation detection in DGGE (Sheffield; 1989). The PCR of the 

fungal isolates was performed on a Mastercycler gradient (Eppendorf). PCR reagents for this 

reaction were added as follows: 0.5 µM primers (both forward (U1F) and reverse (U2R-GC)), 

1  Ex Taq Buffer (TAKARA BIO INC.), 0.2 mM each dNTP (TAKARA BIO INC.), 1 mM 

MgCl2, 10 µg/µL BSA (Promega), 1.25 U Ex Taq™ HS and 1 µL of gDNA template made 

up to a total volume of 50 µL with sterile 18.2 MΩ H2O (MILLIPORE, Direct-Q™ Ultra 
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Pure Water Systems, MILLIPAK® 0.22 µm filter). An automatic HS and touchdown PCR 

protocol was utilised in which the conditions were an initial denaturation step of 97 °C for 5 

min, 94 °C for 1 min, 60 °C for 1 min with a reduction of 1.0 °C per cycle reaching 

touchdown at 50 °C and 72 °C for 1 min repeated for 10 cycles. An additional 25 cycles were 

performed at 94 °C for 3 min, 50 °C for 1 min, and 72 °C for 1 min. As previously 

introduced, a final extension time at 72 °C for 30 min was implemented in addition to the 

touchdown protocol (Don et al., 1991, Janse et al., 2004). 

2.2.2.4 Agarose gel electrophoresis of 28S rDNA segments 

The small pure 28S rDNA fragments from each fungal isolate were validated for 

amplification by running PCR products out on a 1 % (
w
/v) agarose gel stained with SYBR® 

Safe DNA gel stain (10 000  concentrate in (DMSO) (Invitrogen™). PCR fragments were 

then electrophoresed for 20 min at 120 mA constant (BIO-RAD, Basic PowerPac™) in 1  

TAE running buffer with 5 µL of PCR product, 2 µL 6  BPB, and 5 µL 18.2 MΩ H2O 

(MILLIPORE, Direct-Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm filter) mixed 

prior to 10 µL loaded into each well. Five µL of Hyperladder I (200-10 000 molecular bp-

size markers (BIOLINE)) was also added, in which after electrophoresis amplicons migrated 

between the 200 and 400-bp marker sizes (amplicon size was 300 bp in length, including the 

GC-clamp attached to U2R-GC reverse primer) confirmed under UV light (Gel Doc 2000 

system and Quantity One software (v. 4.6.6) (BIO-RAD). Hard copies of the 

electropherograms were generated using a Mitsubishi Video copy processor (model P91 

attached to the Gel Doc 2000 system). 

2.2.2.5 DGGE of U1-U2 rDNA PCR fragments 

The amplification of 28S rDNA segments (termed U1-U2 rDNA) using PCR from the 

fungal isolates selected for 28S standard ladder construction were subsequently analysed by 

DGGE to validate individual fungal strain migration position and pooled amplicon migration 

positions; a necessity when the fungal communities were amplified in patient cohorts 

investigated in thesis. Fungal species standard ladder analysis was performed using the 

DCode™ Universal Mutation Detection System (BIO-RAD) where U1-U2 rDNA fragments 

from each fungal isolate were run out on a 40-60 % denaturing gradient (12 % 

acrylamide/bis-acylamide of gel percentage) (App. 1) in addition to a balance plate attached 

to the inner core. Four µL of each fungal strain and its amplicons were loaded into the 
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appropriate gel wells (2 µL pure fungal strain U1-U2 rDNA and 2 µL 2× loading dye). 

Additionally, all fungal species amplicons were pooled together (28 µL (14 µL PCR products 

of 7 different fungal species and 14 µL 2× gel loading dye)) and loaded onto the DGGE 

apparatus. All PCR fragments were then electrophoresed at 70 V constant (Basic 

PowerPac™, BIO-RAD) for 17 h, stained with SYBR Green nucleic acid stain I 

(Invitrogen™), incubated for 30 min at 75 rpm, (Edmund Bühler, KM-2) and de-stained 

briefly with dH2O, before being finally visualised under UV light (BIO-RAD Gel Doc 2000 

system and Quantity One software (v. 4.6.6)). Hard copies of the fungal 28S standard ladder 

were generated by using a Mitsubishi Video copy processor (model P91 attached to the Gel 

Doc 2000 system). 

2.3 PCR-DGGE study of a cross-sectional cohort with non-CF 

bronchiectasis 

2.3.1 Patient cohort selection and ethical considerations 

Ethical approval was obtained from County Durham and Tees Valley research ethics 

committee. The inclusion criteria were adult out-patients attending a specialist bronchiectasis 

weekly clinic in North East England (Freeman Hospital, Newcastle upon Tyne) with a 

clinical diagnosis of non-cystic fibrosis bronchiectasis (nCFBR) diagnosed by high-resolution 

computed tomography (HRCT) scanning. Seventy patients (App. 3) were enrolled into the 

study in which all non-CF aetiologies were included with the related nCFBR condition. 

Information on bronchiectasis aetiology, patient sex, age, clinical status, forced expiratory 

volume in one second (FEV1) and one second predicted (FEV1% predicted) in addition to 

inhaled antibiotic therapy was collected. Patient cohort enrolled consisted both of clinically 

stable and exacerbated individuals. For clinical status an exacerbation was defined as per the 

British Thoracic Society 2010 Bronchiectasis guidelines in the presence of increased cough, 

malaise and increased sputum volume and purulence (Pasteur et al., 2010). Frequent 

exacerbators within cohort were defined as those patients who had greater than 3 episodes 

over this period (Pasteur et al., 2010). Aetiological designation was based upon the suggested 

protocols (Pasteur et al., 2001). Cystic fibrosis genotyping and/or sweat testing was 

undertaken as suggested by national guidelines. 
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2.3.2 Sputum sample collection and diagnostic microbiology 

Spontaneously expectorated sputum samples were collected from an outpatient cohort of 

an adult nCFBR population. Samples were divided with one half being used for genomic 

DNA extraction (below) whilst the remainder underwent routine microbial culture using 10 

µL aliquots of Sputasol (OXOID) treated and homogenised sputum according to the 

standardised Health Protection Agency methodology at the Department of Microbiology, 

Freeman Hospital, Newcastle-upon-Tyne (see App. 4 for standard operating procedure (SOP) 

regarding the selective media employed from this sample type). Information, from up to 10 

years previously, on patient sex, age, clinical and microbiological status, FEV1, and inhaled 

antibiotic therapy was collected. The definitions of Pasteur et al., (2001) were used to define 

persistent infection in study cohort. 

2.3.3 DNA extraction from sputum clinical samples 

All DNA extractions on sputum samples in patient cohort were performed using an 

UltraClean® Microbial DNA Isolation Kit (MO BIO Laboratories, Inc.) in a Microflow 

Peroxide Advanced Bio Safety Cabinet (Class I) at the Freeman Hospital, Microbiology 

Department. Before collection of extracted gDNA from sputum all samples were thawed 

thoroughly and then vortexed (Vortex-Genie2™) rigorously after addition of an approximate 

equal volume of sputolysin (if required as most sputum samples varied in their degree of 

purulence). The addition of sputolysin breaks down any mucus plugs that may be present in 

the sputum sample and aids in the creation of a more aqueous solution enabling the sample 

supernatant to pass through the 0.2 µm filter without obstruction. 

Once mucus plugs in sample were dissolved, 1.8 mL from aqueous solution (i.e., the 

sputum sample) was aliquoted into a sterile 2 mL collection tube before being spun down at 

10 000   g (SIGMA® 12094 rotor) at room temperature for 1 min in a microcentrifuge 

(SIGMA®). The supernatant was discarded leaving behind another mucus plug. At this stage 

all sputum samples extracted for gDNA left behind varying amounts of mucus plugs. As a 

precautionary step, any mucus plugs which exceeded > 200 µL needed be to be aliquoted off 

to approximately < 200 µL to ensure unobstructed flow through 0.22 µm filter at a later stage. 

Following this the sample was spun down again at 10 000   g to maximally concentrate and 

pellet microbial cells. Any supernatant present in sample was discarded. The cell pellet was 

re-suspended in 300 µL of MicroBead Solution containing salts and a buffer stabilising and 
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homogeneously dispersing the microbial cells present in the re-suspension solution prior to 

cellular lysis. After addition of MicroBead Solution re-suspended cells were gently vortexed 

to aid in microbial cell dispersion before being transferred to a MicroBead Tube. Fifty µL of 

MD1 solution (i.e., lysis buffer) was then added to re-suspended cells. The lysis buffer 

contains the anionic detergent sodium dodecyl sulphate (SDS) and other chaotropic salts 

(undisclosed in kit protocol, but these can be guanidine hydrochloric acid (HCl), guanidine 

thiocyanate, urea, and lithium perchlorate). Both chemical agents aid in cellular lysis, the 

former acting to breakdown fatty acids and cell membrane lipids via solubilisation; the latter, 

in addition to also breaking down the cellular membrane, plays an important role in the 

disruption of hydrogen bonds, van der Waals forces, and hydrophobic interactions. 

All MicroBead Tubes were then secured horizontally using the MO BIO Vortex Adapter 

tube holder and subsequently vortexed at maximum speed for 10 min to release ssDNA from 

lysed cells. Recovery of gDNA from cell debris was achieved by centrifuging at room 

temperature the 2 mL MicroBead Tubes at 10 000   g for 1 min in which the supernatant 

(now containing the gDNA) was transferred to a clean 2 mL microfuge tube. One hundred µL 

of MD2 Solution was added to the supernatant and then vortexed for 5 seconds before being 

incubated at 4 °C for 5 min. Solution MD2 precipitates both non-DNA and inorganic material 

present in proteins and cell debris. After incubation, the supernatant was then spun down at 

room temperature at 10 000   g for 1 min. 

Avoiding the pellet, as this contained non-DNA organic and inorganic materials (i.e., cell 

debris and proteins), the entire supernatant volume was transferred into an empty syringe vial 

(BD) with filter (PALL Gelman Laboratory, Acrodisc® Syringe Filter, 0.2 µm Supor® 

membrane, non-pyrogenic) attached before insertion of the syringe plunger. Once inserted, 

plunger was pushed down to filter sterilise the supernatant into an empty, clean 2 mL 

collection tube. Filter sterilisation of the supernatant ensured the removal of any tubercular 

agents that may be still present in the supernatant processed. Approximately 200-300 µL of 

supernatant volume was collected after this step. 

Solution MD3 was shaken before use and then 900 µL of this was added to the filter 

sterilised supernatant and subsequently vortexed for 5 s. Solution MD3 creates a high salt 

concentration which is necessary for the binding of the gDNA to the Spin Filter in the 

following step. Seven hundred µL of supernatant was loaded into the Spin Filter and 
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centrifuged (room temperature) at 10 000   g for 1 min before the flow through was 

discarded. The remaining supernatant was added to the Spin Filter and this process was 

repeated once more. Again, all flow through liquid was disposed of as the gDNA is 

selectively bound to the silica membrane in the Spin Filter device allowing impurities such as 

protein and polysaccharides to pass unobstructed in the flow through liquid. Three hundred 

µL of Solution MD4 (an ethanol based wash solution) was then added to further clean the 

gDNA bound to the silica membrane removing residues of salt and other impurities that may 

be still present in the previous step. All flow through liquid containing ethanol wash solution 

waste and contaminants was discarded as before. The Spin Filter was then spun down at 10 

000   g for 1 min at room temperature to remove any residual ethanol wash solution present 

(essential for a clean eluant). The Spin Filter basket was then placed in a new clean 2 mL 

collection tube before addition of 50 µL Solution MD5 (an elution buffer containing 10 mM 

Tris, pH 8) to the centre of the white membrane. The collection tube containing the Spin 

Filter was centrifuged at 10 000   g at room temperature for 1 min eluting the gDNA bound 

to the filter membrane. The elution buffer solution MD5 allows this, as release of the bound 

DNA is permitted only in the presence of this elution buffer as it contains no salt (previously, 

DNA was bound to the silica Spin Filter membrane only in the presence of salt). Following 

elution of the gDNA (50 µL in volume) the Spin Filter was discarded and the gDNA was 

stored at -80 °C. 

2.3.4 Bacterial community detection PCR 

As previously described, the V3 hypervariable region of the 16S rRNA gene was targeted 

for enzymatic amplification using gDNA as template. Primer sets V3F-GC (5′-CGC CCG 

CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG 

CAG-3′) and V3R (5′- ATT ACC GCG GCT GCT GG-3′) as previously shown (Muyzer et 

al., 1993, Nelson et al., 2010) were utilised to produce different V3 rDNA fragments 

amplified from multiple species of bacteria present in the clinical sputum samples. As before, 

a 40-bp GC-rich nucleotide sequence was attached to the 5′ end of the forward primer V3F-

GC (Sheffield et al., 1989). 

An automatic HS and touchdown PCR protocol (Don et al., 1991) was performed on a 

Mastercycler gradient (Eppendorf) with the PCR reagents per reaction added as follows: 0.5 

µM primers (both forward (V3F-GC) and reverse (V3R)), 1  Ex Taq Buffer (TAKARA BIO 
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INC.), 0.2 mM each dNTP (TAKARA BIO INC.), 1 mM MgCl2, 10 µg/µL BSA (Promega), 

1.25 U Ex Taq™ HS pol and 1 µL of gDNA template made up to a total volume of 50 µL 

with sterile 18.2 MΩ H2O (MILLIPORE, Direct-Q™ Ultra Pure Water Systems, 

MILLIPAK® 0.22 µm filter). Positive (extracted gDNA from a pure culture of H. influenzae, 

NCTC no. 11931) and negative controls were also set up to determine the correct size of the 

V3 rDNA fragments and to rule out any environmental DNA contamination. Samples were 

incubated for 5 min at 97 °C releasing antibody bound polymerase Ex Taq™ HS, then at 96 

°C for 1 min, 65 °C for 1 min, with a reduction of 0.5 °C per cycle until touchdown at 55 °C. 

Primer extension lasted for 30 s at 72 °C and this was repeated for 20 cycles. An additional 

15 cycles was carried out at 94 °C for 1 min, 55 °C for 1 min, 72 °C for 3 min and a final 

extension time of 72 °C for 30 min as previously described (Janse et al., 2004). 

2.3.5 Fungal community detection PCR 

As previously described in the 28S standard ladder construction sections, in addition to the 

bacterial community, we also investigated the fungal community in the cross-sectional 

cohort. Using primer sets U1F (5′-GTG AAA TTG TTG AAA GGG AA-3′) and U2R-GC 

(5′-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG-3′) to target 

conserved regions containing hyper-variable regions within the 28S rRNA gene, small 

fragments of 28S rDNA were generated using gDNA as template (Sandhu et al., 1995, 

Nelson, 2011). 

An automatic HS and touchdown PCR protocol was performed on an Eppendorf 

Mastercycler gradient apparatus. Reagents for this reaction were added as follows: 0.5 µM 

primers (both forward (U1F) and reverse (U2R-GC)), 1  Ex Taq Buffer (TAKARA BIO 

INC.), 0.2 mM each dNTP (TAKARA BIO INC.), 1 mM MgCl2, 10 µg/µL BSA (Promega), 

1.25 U Ex Taq™ HS (TAKARA BIO INC.) and 1 µL of gDNA template made up to a total 

volume of 50 µL with sterile 18.2 MΩ H2O (MILLIPORE, Direct-Q™ Ultra Pure Water 

Systems, MILLIPAK® 0.22 µm filter). Conditions for the PCR were as follows: an initial 

denaturation step of 97 °C for 5 min, 94 °C for 1 min, 60 °C for 1 min with a reduction of 1.0 

°C per cycle reaching touchdown at 50 °C and 72 °C for 1 min repeated for 10 cycles. An 

additional 25 cycles were performed at 94 °C for 3 min, 50 °C for 1 min, and 72 °C for 1 

min, with a final extension time at 72 °C for 30 min implemented as previously described in 

addition to the touchdown protocol (Don et al., 1991, Janse et al., 2004). Positive and 
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negative controls were also conducted confirming the correct size of the fungal U1-U2 rDNA 

amplicons (using extracted gDNA from a pure culture of A. fumigatus) and validation of any 

environmental sources of contamination. 

2.3.6 Agarose gel electrophoresis of both V3 and U1-U2 rDNA amplicons 

Regions amplified from both the 16S and 28S rRNA genes in extracted gDNA, i.e., V3 

and U1-U2 rDNA fragments, were confirmed by running PCR products on a 1 % (
w
/v) 

agarose gel stained with SYBR® Safe DNA gel stain (10 000  concentrate in (DMSO) 

(Invitrogen™). PCR fragments were electrophoresed for 20 min at 120 mA constant (BIO-

RAD, Basic PowerPac™) in 1  TAE running buffer with 5 µL of PCR product, 2 µL 6  

BPB, and 5 µL 18.2 MΩ H2O (MILLIPORE, Direct-Q™ Ultra Pure Water Systems, 

MILLIPAK® 0.22 µm filter) mixed prior to 10 µL loaded into each well. Five µL of 

Hyperladder I (200-10 000 molecular bp-size markers (BIOLINE)) was also added, in which 

after electrophoresis, positive confirmation of both the V3 and U1-U2 rDNA fragments was 

validated (233 and 300 bp in size respectively) under UV light (Gel Doc 2000 system and 

Quantity One software (v. 4.6.6) (BIO-RAD). Hard copies of the electropherograms were 

generated using a Mitsubishi Video copy processor (model P91 attached to the Gel Doc 2000 

system). 

2.3.7 Molecular fingerprinting of bacterial and fungal communities in 

patient cohort 

2.3.7.1 DGGE of V3 rDNA amplicons 

Molecular fingerprinting of V3 rDNA amplicons in cross-sectional patient cohort was 

carried out using a DCode™ Universal Mutation Detection System (BIO-RAD) run out on a 

32.5-60 % denaturing gradient (12 % acrylamide/bis-acrylamide of gel percentage) (App. 1) 

with a balance plate attached to the inner core of the DCode™ system apparatus. PCR 

fragments generated from each clinical sample (30 µL (15 µL PCR product and 15 µL 2  gel 

loading dye) were loaded onto wells in the denaturing gel in addition to a 16S standard ladder 

(36 µL (18 µL PCR products of 9 different bacterial species and 18 µL 2  gel loading dye)). 

Electrophoresis of V3 rDNA amplicons was performed at 200 V constant (Basic 

PowerPac™, BIO-RAD) for 4.5 h, stained with SYBR Green nucleic acid stain I 

(Invitrogen™), incubated for 30 min (75 rpm on a shaking platform (Edmund Bühler, KM-

2)), de-stained briefly with dH2O, before visualisation under UV light (BIO-RAD Gel Doc 
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2000 system and Quantity One software (v. 4.6.6)). Hard copies of the bacterial community 

DGGE profiles in cross-sectional patient cohort were generated (Mitsubishi Video copy 

processor (model P91) attached to the Gel Doc 2000 system). 

2.3.7.2 DGGE of U1-U2 rDNA amplicons 

Fungal community analysis of nCFBR cohort was performed using the DCode™ 

Universal Mutation Detection System (BIO-RAD) on a 40-60 % denaturing gradient (12 % 

acrylamide/bis-acylamide of gel percentage) in addition to a balance plate attached to the 

inner core. Amplicons consisting of U1-U2 rDNA fragments from each patient sample, (30 

µL (15 µL PCR product and 15 µL 2  gel loading dye)) were loaded appropriately, in 

addition to a 28S standard ladder (28 µL (14 µL PCR products of 7 different fungal species 

and 14 µL 2  gel loading dye)) were electrophoresed at 70 V constant (Basic PowerPac™, 

BIO-RAD) for 17 h, stained with SYBR Green nucleic acid stain I (Invitrogen™), incubated 

for 30 min at 75 rpm, (Edmund Bühler, KM-2) and de-stained briefly with dH2O, before 

being finally visualised under UV light (BIO-RAD Gel Doc 2000 system and Quantity One 

software (v. 4.6.6)). Hard copies of the fungal community DGGE profiles in the cross-

sectional patient cohort were generated as previously described. 

2.3.8 Bacterial and fungal DGGE profile capture and analysis 

Both bacterial and fungal DGGE profiles generated were first captured in the Quantity 

One software (v. 4.6.6) program, cropped appropriately and then copied. These copied 

DGGE profiles were then exported as TIFF (tagged image file format) picture files at 276 

dots per inch (DPI) resolution and subsequently imported into TotalLab’s Phoretix 1D 

(TotalLab Ltd.) via a new experimentation file being created. All DGGE profiles imported 

were subsequently converted into the inverted version of the DGGE profiles, thus 

measurements were all subsequently inverted. Processing of both the bacterial and fungal 

DGGE community profiles firstly involved the creation of lanes and appropriate framing 

before suitable adjustment to compensate for inter-gel variance effects such as lane bending. 

Once these changes were implemented and accepted, background detection was removed 

from the DGGE profiles using the rolling ball software algorithm (100 pixel radius) in 

Phoretix 1D. Detection of bands in gels was performed using the automatic detection 

algorithm, before bands and gel artefacts were either removed or added manually by eye; 

band width was also assessed and adjusted manually by eye. 
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Inter-gel alignment was achieved by executing both 16S and 28S SLs for bacterial and 

fungal community detection, important in relative front (Rf) calibration function 

(Tourlomousis et al., 2010). Comprising of 16S and 28S rRNA gene amplicons derived from 

pure cultures of selected relevant species, these served as internal markers in which all lanes 

were aligned relative to. Lane alignment was manually created and adjusted by the 

assignment of standard Rf values for the most reproducible bands (in particular the 16S SL) 

present in the standard ladders based upon migration distance through gel as these were 

approximately the same between gels analysed. Both 16S and 28S standard ladders contained 

> 5 reference bands throughout entire patient cohort analysis and for inter-gel alignment this 

has been suggested for accurate interpolation of multiple gels (Tourlomousis et al., 2010). 

The Rf lines created were then manipulated to correct for common inter-gel effects such as 

‘smiling’ and ‘leaning’. Once accomplished, the current Phoretix 1D experiment was saved 

and closed. 

Using TotalLab’s Phoretix 1D Pro program, a database was created in which all of the 

previously analysed DGGE profiles in Phoretix 1D were subsequently added to this database. 

Alignment of all gels was first validated by eye and then using the compare lanes software 

algorithm tool. Once alignment of gels was visually accepted, all gels and their respective 

standard ladders were matched using the match gel function in Phoretix 1D Pro. Following 

this, an automatic DGGE band matrix was then created using the Rf values and relative 

intensities of all detected bands in the experimental file. Both band presence and relative 

intensities were exported to Microsoft® Excel™ for further statistical and ecological 

analysis. The exported band presence matrix was directly utilised for the species richness in 

patient cohort (see below). The relative band intensities were normalised as previously 

described in section 2.1.6.1 (DGGE profile capture and analysis). 

2.3.9 Ecological analysis inferred from DGGE profiling 

Examination of the structure of the bacterial communities present in the sputum samples 

analysed by DGGE was performed. Biodiversity measures such as species richness (R) (the 

number of taxa present), evenness (J′) (the proportion contributed to the community by each 

taxa), and Shannon diversity (H′) (a diversity index giving a measure of both species numbers 

and the evenness of their abundance), were calculated using the exported DGGE band matrix 

in Microsoft® Excel™. Note that fungal biodiversity measures could not be carried out due 
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to scarce detection in patient cohort (only three fungal taxa in whole cohort). The H′ derived 

from the normalised band values in Excel™ has been previously described in section 2.1.6.2 

(Shannon diversity index derivation). This was conducted for the entire patient cohort 

analysed by DGGE and the bacterial community profiles generated. The J′ was also derived 

once the H′ was calculated, executed by the following formula: 

   
  

   (  )
 

Where J′ is the species evenness derived from the natural logarithm (ln) of the sum of the 

species richness (R) value per lane divided by the H′ of that particular lane. 

2.3.9.1 Raup-Crick similarity index 

The Raup-Crick similarity index was used to assess if the bacterial communities present in 

each patient were non-randomly (P = 0.05 ≤ or ≥ 0.95) or stochastically (P = > 0.05 and < 

0.95) assembled using the PAST software program in which the probabilities were calculated 

by 200 pair-wise Monte Carlo simulations (Hammer and Harper, 2001). 

2.3.10 Ordination analyses by Canoco 

Matrices derived from the normalisation of the band relative intensities were subjected to 

ordination analyses by using the Canoco (v. 4.5.1) software package with ordination plots 

being generated by CanoDraw (v. 4.14). In Microsoft® Excel™, normalised band matrices 

were copied onto the clipboard before being transposed into a data file format suitable for 

Canoco using the WCanoImp (v. 4.5.2.0) plug-in. Environmental variables such as patient 

phenotypic data (age, gender, current colomycin and azithromycin therapy, etc.) were 

assigned either contiguous values (e.g., age, FEV1% predicted) or a binary system to denote 

indiscreet variables (positive values = 1; negative values = 0). 

Band matrices were firstly analysed by detrended correspondence analysis (DCA) in 

Canoco to determine 1° axis length, used to ascertain what appropriate ordination analysis to 

use. If 1° axis length was < 3 SD (standard deviation units of species turnover) a redundancy 

analysis (RDA; a constrained linear ordination method) was executed as opposed to > 3 SD 

in which canonical correspondence analysis (CCA (a constrained unimodel ordination 

method)) was chosen instead. Statistical analysis of both the bacterial community, discreet 

and indiscreet variables was performed using full model Monte Carlo testing (499 
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permutations) with significant factors identified if P-values were < 0.05 and not significant if 

P = > 0.05. Following analysis, analysed data was then imported into CanoDraw for 

generation of ordination plots containing samples (patient subject number) and environmental 

factors. Ambiguity between discreet and indiscreet variables was solved by assigning discreet 

factors with centroids whereas contiguous variables were represented by an arrow. Patient 

samples analysed by DGGE, i.e, the normalised band matrices plotted, could be denoted by 

different shapes and colours in CanoDraw for clarity if deemed necessary. Ordination 

analyses of the bacterial profiles, derived from the initial DGGE analysis seek to represent 

the similarity between the bacterial communities from each sample. Profiles that have a 

similar community structure and composition group more closely together. Constrained 

unimodel (canonical) analyses show variation between the sample profiles that can be 

explained by the measured categorical and continuous environmental variables (ter Braak and 

Šmilauer, 2002). 

2.4 Molecular fingerprinting and metagenomic analysis in a chronic 

obstructive pulmonary disease cohort 

2.4.1 Sampling methodology and ethical considerations within patient 

cohort 

Eleven clinically stable patients (App. 5), comprised of smokers and ex-smokers with 

GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages II and III of chronic 

obstructive pulmonary disease (COPD) attended a routine clinic at the Freeman Hospital, 

Newcastle upon Tyne, to undergo bronchoscopy, in which a bronchoalveloar lavage (BAL) 

fluid was produced (except in one patient, where bronchial secretion (BS) fluids were 

obtained instead due to difficulty of BAL fluid extraction). The BAL and BS fluids were then 

processed for conventional microbiology testing in the Microbiology Department at the 

Freeman Hospital, Newcastle upon Tyne, under Health Protection Agency protocols (SOP in 

App. 4), where the remaining aliquots of clinical specimen fluids were stored at -80 °C prior 

to microbial gDNA extraction. Ethical approval for this study was granted by Northumbria 

University’s School of Life Sciences Research Ethics Committee and Newcastle upon Tyne 

Hospitals NHS Foundation Trust. 
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2.4.2 DNA extraction from bronchoalveolar lavage and bronchial 

secretion fluid clinical samples 

Microbial gDNA extraction from BAL and BS fluid samples was achieved using an 

UltraClean® Microbial DNA Isolation Kit (MO BIO Laboratories, Inc.) in a Microflow 

Peroxide Advanced Bio Safety Cabinet (Class I) at the Freeman Hospital, Microbiology 

Department, Newcastle upon Tyne with amendments to the kit protocol. All fluid samples (< 

5 mL in volume) contained in a 25 mL plastic universal were thawed thoroughly and then 

vortexed (Vortex-Genie2™) rigorously with addition of an equal volume of sputolysin 

(added only to slightly purulent fluid samples to aid in breakage of any mucus plugs present 

and enabling passage of the supernatant through the 0.22 µm filter (in later stages of this 

procedure)). Both the BAL and BS fluid samples were then centrifuged at 3000   g for 10 

min at room temperature (CENTAUR, P20075 rota) before the supernatant was decanted 

carefully and the cellular pellet resuspended in 300 µL of MicroBead Solution within the 25 

mL universal tube. This was gently vortexed and 500 µL of this mix was then transferred to a 

MicroBead Tube in which 50 µL of MD1 solution was added. 

The MicroBead Tubes were then secured horizontally using the MO BIO Vortex Adaptor 

tube holder and vortexed at maximum speed for 10 min before being spun down at 10 000   

g (SIGMA® 12094 rotor) at room temperature for 1 min in a microcentrifuge (SIGMA®). 

The supernatant was then transferred to a clean, sterile 2 mL Collection Tube with ~ 300-350 

µL of supernatant present. One hundred µL of Solution MD2 was then added to the 

supernatant and vortexed for 5 s and then incubated at 4 °C for 5 min. Following this 

incubation step, the 2 mL Collection Tubes were then centrifuged at 10 000   g for 1 min at 

room temperature. A 2 mL syringe (BD) was attached to a filter (PALL Gelman Laboratory, 

Acrodisc® Syringe Filter, 0.2 µm Supor® membrane, non-pyrogenic) and the syringe 

plunger removed and placed to one side. The entire supernatant medium from the 2 mL 

Collection Tube was then transferred to the empty syringe vial and filter-sterilised, via re-

attachment of the syringe plunger into the syringe vial, by pushing the supernatant through 

the 0.2 µm filter into another clean, sterile 2 mL Collection Tube. As previously described, 

this filter-sterilisation process was an extra step introduced into the gDNA extraction 

procedure to circumvent possible exposure to any tubercular agents that may have been 

present in the clinical sample. Less than 300 µL of supernatant volume should have been 

dispensed from the filter, although this varied due to the amount of BAL and BS fluids 
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originating from the 25 mL universal tube. Syringe and filter apparatus were discarded after 

use and only used once. 

Nine hundred µL of shaken and mixed Solution MD3 was then added to the filtered 

supernatant, vortexed for 5 s, before 750 µL of this mixture was added to a Spin Filter before 

being initially centrifuged at 10 000   g for 1 min at room temperature. Any flow through 

liquid was discarded and the remaining supernatant was added to the Spin Filter and 

centrifuged again at 10 000   g for 1 min at room temperature. All flow through liquid was 

discarded. Three hundred µL of Solution MD4 was then added to the Spin Filter before being 

centrifuged at 10 000   g for 1 min at room temperature. Again, any flow through liquid was 

discarded and the Spin Filter was centrifuged at 10 000   g for 1 min at room temperature. 

The spin filter basket was removed and the Spin Filter was placed into a new 2 mL Collection 

Tube in which 50 µL of Solution MD5 was pipetted directly into the centre of the white filter 

membrane. A final centrifugation at 10 000   g at room temperature for 1 min was required 

to release the gDNA (50 µL in volume) from the filter membrane. Following this, the Spin 

Filter itself was discarded and the eluted gDNA from the BAL and BS samples was stored at 

-80 °C prior to downstream processing. 

2.4.3 ‘Semi-nested’ bacterial community detection PCR in BAL and BS 

fluid samples 

As previously described in the nCFBR materials and methods sections, the bacterial 

community in the eleven COPD patients enrolled was amplified using Ex Taq™ HS pol 

(TAKARA BIO INC.). Primers V3F-GC (5′-CGC CCG CCG CGC GCG GCG GGC GGG 

GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG CAG-3′) and V3R (5′- ATT ACC 

GCG GCT GCT GG-3′) targeted the V3 hypervariable region of the 16S rRNA gene resulting 

in the enzymatic amplification of V3 rDNA amplicons using extracted gDNA as template as 

previously shown (Muyzer et al., 1993). As before, the forward primer V3F-GC had a 40-bp 

GC-rich nucleotide sequence attached to its 5′ end enabling greater detection of variances in 

bacterial gDNA within the V3 rDNA amplicons and PCR fragment stability when analysed 

by DGGE (Sheffield et al., 1989). 

An automatic HS and touchdown PCR protocol was performed on a Mastercycler 

gradient (Eppendorf) with the PCR reagents per reaction added as follows: 0.5 µM primers 

(both forward (V3F-GC) and reverse (V3R)), 1  Ex Taq Buffer (TAKARA BIO INC.), 0.2 
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mM each dNTP (TAKARA BIO INC.), 1 mM MgCl2, 10 µg/µL BSA (Promega), 1.25 U Ex 

Taq™ HS pol and 1 µL of gDNA template made up to a total volume of 50 µL with sterile 

18.2 MΩ H2O (MILLIPORE, Direct-Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm 

filter). Positive (extracted gDNA from a pure culture of H. influenzae, NCTC no. 11931) and 

negative controls were also set up to determine the correct size of the V3 rDNA fragments 

and to rule out any environmental DNA contamination. Samples were incubated for 5 min at 

97 °C releasing antibody bound polymerase Ex Taq™ HS, then at 96 °C for 1 min, 65 °C for 

1 min, with a reduction of 0.5 °C per cycle until touchdown at 55 °C. Primer extension lasted 

for 30 s at 72 °C and this was repeated for 20 cycles. An additional fifteen cycles was carried 

out at 94 °C for 1 min, 55 °C for 1 min, 72 °C for 3 min and a final extension time of 72 °C 

for 30 min. Following this completed reaction, the V3 rDNA amplicons were then used as 

DNA template for a second round of bacterial community amplification with exactly the 

same concentrations and conditions outlined above (a ‘semi-nested’ approach). As previously 

described, implementation of both a touchdown protocol and a longer final extension time 

was executed to circumvent spurious PCR product and double band formation bias on DGGE 

analyses (Don et al., 1991, Janse et al., 2004). These implementations were also executed on 

the consecutive round of PCR when the V3 rDNA fragments were utilised as template. 

2.4.4 ‘Semi-nested’ fungal community detection PCR in BAL and BS fluid 

samples 

As in the cross-sectional nCFBR patient cohorts, community fungal PCR on a 

Mastercycler gradient (Eppendorf) was also performed in addition to universal bacterial 

community detection. PCR primers specific for the amplification of variable regions within 

the 28S rRNA gene ubiquitous in the fungal genome were utilized as shown previously 

(Sandhu et al., 1995). PCR using the U1F (5′-GTG AAA TTG TTG AAA GGG AA-3′) and 

U2R-GC (5′-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG-3′) primer 

sets were executed, in addition to Ex Taq™ HS pol (TAKARA BIO INC.) to enzymatically 

amplify small segments of 28S rDNA (U1-U2 rDNA fragments). 

PCR reagents for this reaction were added as follows: 0.5 µM primers (both forward 

(U1F) and reverse (U2R-GC)), 1  Ex Taq Buffer (TAKARA BIO INC.), 0.2 mM each dNTP 

(TAKARA BIO INC.), 1 mM MgCl2, 10 µg/µL BSA (Promega), 1.25 U Ex Taq™ HS and 1 

µL of gDNA template made up to a total volume of 50 µL with sterile 18.2 MΩ H2O 
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(MILLIPORE, Direct-Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm filter). An 

automatic HS and touchdown PCR protocol was utilised in which the conditions were an 

initial denaturation step of 97 °C for 5 min, 94 °C for 1 min, 60 °C for 1 min with a reduction 

of 1.0 °C per cycle reaching touchdown at 50 °C and 72 °C for 1 min repeated for 10 cycles. 

An additional 25 cycles were performed at 94 °C for 3 min, 50 °C for 1 min, and 72 °C for 1 

min. As previously introduced, a final extension time at 72 °C for 30 min was implemented 

in addition to the touchdown protocol ((Don et al., 1991, Janse et al., 2004). Following this 

completed reaction, the U1-U2 rDNA amplicons were then used as DNA template for a 

second round of fungal community amplification with exactly the same concentrations and 

conditions outlined above (a ‘semi-nested’ approach). Both positive and negative controls 

were executed for confirmation of the correct size of the fungal U1-U2 rDNA amplicons 

(using extracted gDNA from a pure culture of A. fumigatus) and to rule out any 

environmental sources of contamination. 

2.4.5 Agarose gel electrophoresis of both V3 and U1-U2 rDNA amplicons 

from BAL and BS fluid samples 

Amplicons generated from bacterial and fungal community PCR from BAL and BS fluid 

samples were validated for positive amplification of their respective 16S and 28S rRNA gene 

segments by running out PCR fragments on an agarose gel (1 % (
w
/v) and electrophoresing at 

120 mA constant for 20 min (BIO-RAD, Basic PowerPac™). The agarose gel was stained 

with SYBR® Safe DNA gel stain (10 000  concentrate in DMSO) (Invitrogen™) prior to 

use for visualisation under UV light. Five µL of PCR product, 2 µL 6× BPB, and 5 µL 18.2 

MΩ H2O (MILLIPORE, Direct-Q™ Ultra Pure Water Systems, MILLIPAK® 0.22 µm filter) 

were mixed by trituration before a final volume of 10 µL was loaded into the appropriate gel 

well, in addition to 5 µL of Hyperladder 1 (BIOLINE). Using a BIO-RAD Gel Doc 2000 

system and Quantity One software (v. 4.6.6) comparison of the molecular base pair markers 

in Hyperladder I (BIOLINE), in addition to the positive control, confirmed the correct sizes 

of both types of amplicons; i.e., V3 and U1-U2 rDNA fragments (233 bp and 300 bp in size 

respectively). Hard copies of the electropherograms were generated using a Mitsubishi Video 

copy processor (model P91 attached to the Gel Doc 2000 system). 
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2.4.6 Molecular fingerprinting of the bacterial and fungal community 

within BAL and BS fluid samples 

2.4.6.1 DGGE of V3 rDNA amplicons from BAL and BS fluid samples 

Bacterial molecular fingerprinting within the BAL and BS clinical samples was carried out 

using DGGE as previously described on a DCode™ Universal Mutation Detection System 

(BIO-RAD) on a 32.5-60 % denaturing gradient (12 % acrylamide/bis-acrylamide of gel 

percentage). Amplicons from all 11 patients in addition to a 16S SL consisting both of V3 

rDNA fragments were loaded appropriately into wells; 30 µL (15 µL PCR product and 15 µL 

2  gel loading dye) and 36 µL (18 µL PCR products of 9 different bacterial species (see 

above) and 18 µL 2  gel loading dye) respectively. PCR fragments were electrophoresed for 

4.5 h at 200 V constant (Basic PowerPac™, BIO-RAD), stained with SYBR Green nucleic 

acid stain I (Invitrogen™) and incubated for 30 min at 75 rpm (Edmund Bühler, KM-2), de-

stained briefly with dH2O, before being finally visualised under UV light (BIO-RAD Gel Doc 

2000 system and Quantity One software (v. 4.6.6)). A hard copy of the bacterial community 

DGGE profile in this particular patient cohort was also generated (Mitsubishi Video copy 

processor (model P91) attached to the Gel Doc 2000 system). 

2.4.6.2 DGGE of U1-U2 rDNA amplicons from BAL and BS fluid samples 

Fungal community analysis of COPD cohort was performed using the DCode™ Universal 

Mutation Detection System (BIO-RAD) on a 40-60 % denaturing gradient (12 % 

acrylamide/bis-acylamide of gel percentage). As before, all eleven patient amplicons (30 µL 

(15 µL PCR product and 15 µL 2  gel loading dye)) were loaded appropriately, in addition 

to a 28S SL (28 µL (14 µL PCR products of 7 different fungal species (see above) and 14 µL 

2  gel loading dye)). Electrophoresis of U1-U2 rDNA amplicons was executed at 70 V 

constant (Basic PowerPac™, BIO-RAD) for 17 h, stained with SYBR Green nucleic acid 

stain I (Invitrogen™) and incubated for 30 min at 75 rpm, (Edmund Bühler, KM-2) de-

stained briefly with dH2O, before being finally visualised under UV light (BIO-RAD Gel Doc 

2000 system and Quantity One software (v. 4.6.6)). A hard copy of the fungal community 

DGGE profile in the COPD patient cohort was also generated (Mitsubishi Video copy 

processor (model P91) attached to the Gel Doc 2000 system). 
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2.4.7 Metagenomic analysis of BAL and BS fluid samples 

Extraction of gDNA from both BAL and BS fluid samples yielded 50 µL of eluted gDNA, 

20 µL of which was sent to Research and Testing Laboratories (RTL) LLC. (Lubbock, Texas, 

U.S.) for 454-pyrosequencing generating the metagenomic data within patient cohort. The 

bacterial tag-encoded FLX-Titanium amplicon pyrosequencing (bTEFAP) method targeted 

the V3-V5 hypervariable regions of the 16S rRNA gene creating amplicon libraries (Dowd et 

al., 2008). Primer sets corresponded to 341F (5′-CC TAC GGG AGG CAG CAG-3′) and 

907R (5′-CC GTC AAT TCC TTT GAG TTT-3′) co-ordinates of the reference E. coli 16S 

rRNA gene in addition to sample nucleotide bar codes. Roche A & B primers were then 

implemented to perform pyrosequencing by established methods (Dowd et al., 2008). 

Resulting 16S pyroamplicon sequences were then pre-processed and aligned using the 

SILVA reference alignment database, before being trimmed and eliminated for chimeras as 

previously described (Costello et al., 2009) in the open-source, platform-independent, 

community-supported software program mother (http://www.mothur.org) (Schloss et al., 

2009). The processed 16S pyroamplicon reads were then subsequently analysed and assigned 

OTUs with a 3 % cutoff with further analysis of the metagenomic data following the Costello 

Stool Analysis example (http://www.mothur.org/wiki/Costello_stool_analysis). 

2.4.8 Statistical and ecological analysis of COPD patient cohort 

From both the PCR-DGGE and metagenomic profiles generated, these were analysed 

using Canoco for Windows (v.4.5.1) with the ordination plots displayed in CanoDraw (v. 

4.14). Band and metagenomic matrices data was transposed into a suitable format for Canoco 

for Windows using WCanoImp (v. 4.5.2.0) plug-in and ordination plots and subsequent 

analysis was performed as previously described in section 2.3.10 (Ordination analyses by 

Canoco). 

 

http://www.mothur.org/
http://www.mothur.org/wiki/Costello_stool_analysis
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Chapter Three: DNA polymerase 
enzymes and microbial diversity 

3.1 Abstract 

Molecular fingerprinting techniques such as denaturing gradient gel electrophoresis 

(DGGE) enable the analysis of microbial communities in a variety of environments. 

However, a ‘gold standard’ DNA polymerase (pol) enzyme used to determine the microbial 

diversity in any given sample type is yet to be established. Reviewing the current literature, 

five DNA polymerase enzymes, Platinum® Pfx (Invitrogen
™

), TaKaRa Ex Taq™ Hot Start 

(TAKARA BIO INC.), AmpliTaq® (Applied Biosystems™), GoTaq® Hot Start Polymerase 

(Promega), and Taq (New England BioLabs®, Inc.) have all been widely utilised to study 

microbial diversity from a variety of different environments. These five DNA pol enzymes 

were assessed to determine the microbial diversity generated in sandy soil taken from dunes 

on Longsands Beach, Tynemouth, North East England. Using DNA extraction to obtain 

genomic DNA (gDNA) from sandy soil, the variable V3 region of the 16S rRNA gene was 

amplified with the five DNA pol using PCR conditions set out by the manufacturer’s 

recommendations for each enzyme. The PCR products from all five DNA pol reactions were 

compared by DGGE and multivariate analysis to determine the similarity of the profiles. Data 

strongly suggests that Platinum® Pfx and TaKaRa Ex Taq™ Hot Start detected greater 

microbial diversity present within sandy soil than the other DNA pol enzymes employed. 

3.2 Background 

Since the origins of life on Earth, polynucleotide pols exhibited the first signs of 

enzymatic activity early in the course of evolution; if absent, accurate and efficient genome 

replication would not have occurred, thus preventing the pre-requisites of evolution itself 

(Steitz, 1999). Evidently, accurate processing of genetic information in all organisms from 

parent to offspring is an absolutely essential process if the preservation and survival of all 

species is to continue; however, a critical step in species continuity is the tolerances in base-

pair mutation rates occurring over time, but providing life with an evolutionary selective 

advantage over other species (Perler et al., 1996). This preservation of the Watson-Crick 

structure in DNA during replication and repair is performed by DNA pol enzymes (Beard and 
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Wilson, 2003), a ubiquitous family of enzymes that are composed of functionally distinct 

domains and subdomains (Steitz, 1999). Characteristics of the DNA pol enzymes are often 

described as having a broad structural homology to that of the right hand, with “thumb”, 

“palm” and “fingers” sub-domains, all a common structural theme (Kohlstaedt et al., 1992). 

These enzymes can be further divided into several distinct families deduced from the 

structural homologies displayed from crystallographic studies and amino acid sequences in 

which the DNA pol families A, B, C, D, X and Y have all been characterised (Bebenek and 

Kunkel, 2004, Delarue et al., 1990, Joyce and Steitz, 1994). The best known and the most 

intensively studied is the DNA pols from the A family which include DNA pol I and Klenow 

fragments (a truncated version of this enzyme, which includes the C-terminal portion, 

containing the 3′ → 5′-exonuclease and pol domains) isolated from Escherichia coli and 

Bacillus DNA pol I in which the crystal structures of the above have been previously 

published (Ollis et al., 1985, Beese et al., 1993, Kiefer et al., 1998). Different DNA pol 

families exhibit general functions: (i), families B, C, and D and their respective DNA pols 

appear to be involved in chromosomal replication, (ii), A and B families exclusively promote 

the replication of DNA in viruses and bacteriophages, and (iii), DNA repair mechanisms are 

incorporated in all six families (Pavlov et al., 2004). 

Structurally homologous to all DNA pol families is the palm sub-domain ― the X family 

is unusual in that the DNA pol enzymes are described as being “left handed” and thus not 

homologous with the other families above (Steitz et al., 1994, Beard and Wilson, 2000) ― 

whereas across all DNA pol families, the finger and thumb domains differ in structure 

(Brautigam and Steitz, 1998). The palm sub-domain provides the catalytic action necessary 

for the addition of nucleotides via three catalytic residues that co-ordinate with two essential 

divalent metal ions that assist in the nucleotidyl transferase reaction (Steitz et al., 1994). The 

acquisition of two magnesium (Mg
2+

) cations is critical in the accurate synthesis of DNA, 

however, manganese (Mn
2+

) cations can be implemented as opposed to Mg
2+

 ions resulting in 

an increase in synthesising error rate during DNA replication but enabling numerous DNA 

pols to use RNA template as an alternative to DNA (Pavlov et al., 2004). Despite all of these 

differences in their tertiary structures, DNA pols all operate and synthesise new nucleotides 

via a standard catalysed reaction in which the addition of a nucleotide is added to the 3′-end 

of a DNA primer. 
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In the polymerase chain reaction (PCR) thermostable DNA pols are a necessity if one is to 

effectively select for and produce many copies of the gene of interest in addition to the 

subsequent isolation, characterisation and DNA template required for sequencing. In a 

sequence of events that led to the development of the polymerase chain reaction (PCR) (Saiki 

et al., 1985), the discovery of the thermophile (a micro-organism which proliferates optimally 

at < 80 °C) Thermus aquaticus and the isolation of its respective DNA pol I enzyme (Chien et 

al., 1976, Kaledin et al., 1980) has revolutionised thermocycling by enabling automation via 

the facilitation of thermostable Taq pol in PCR. Since the 1980s, the number of commercially 

available thermostable enzymes for automated thermocycling has risen rapidly, leading 

investigators to address specific questions such as which DNA pol is suitable for the 

investigation to be performed and will a ‘gold standard’ of DNA pol ever come into 

commercial viability? 

Thermostable DNA pols are derived from both thermophilic and hyperthermophilic 

eubacterial species; prior to this, many of the inherent properties of DNA pol enzymes were 

studied from the isolation and characterisation of said enzymes from mesophiles such as E. 

coli (Perler et al., 1996). In addition to exhibiting common structural themes derived from 

crystallographic studies, DNA pol enzymes also exhibit variances in their thermostability, 

extension rate, processivity and fidelity; all essential properties of thermostable DNA 

polymerases. Efficient replication of DNA in automated thermocycling must utilise 

thermostable DNA pol enzymes. Indeed, thermostability of all DNA pols is a critical property 

as free template DNA must be liberated during the DNA melting step, each cycle involving 

temperatures at ~ 95 °C, a necessity if new strands of double-stranded DNA (dsDNA) are to 

be synthesised in amplification procedures. The specific extension rate of a DNA pol is 

expressed as the number of dNTPs (deoxyribonucleoside triphosphates) polymerised per 

second per molecule of DNA polymerase, whereas processivity is characterised by the mean 

number of bases affixed by a DNA pol in a single binding episode during DNA synthesis 

(Pavlov et al., 2004). As in the other essential preceding properties, DNA pol enzymes also 

display an intrinsic property termed fidelity, defined as the comparison of the ability of a pol 

enzyme to insert a correct nucleotide versus an incorrect base (Beard and Wilson, 2003), this 

efficiency can vary 10
7
-fold (Beard et al., 2002, Kunkel, 2004). Inefficient DNA polymerases 

are naturally occurring enzymes that generally display poor correct nucleotide insertion 

efficiency, i.e., low fidelity, whereas more efficient DNA pols exhibit a higher fidelity, an 
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increased capacity for correct base insertion during DNA replication and other mechanisms 

(Beard and Wilson, 2003). 

As previously stated, the inherent microbial diversity within Earth’s biosphere is vast. Due 

to the limitations in using culture-dependent techniques and the ‘great plate count anomaly’ a 

paradigm was created in that an incomprehensible amount of bacteria are uncultivable and 

are therefore alluded to us (Amman et al., 1995, Rappé and Giovannoni, 2003, Staley and 

Konopka, 1985). However, in the last two decades culture-independent methodologies 

encompassing molecular fingerprinting techniques such as DGGE have emerged to provide 

investigators with powerful tools for discerning the many microbial communities that 

comprise the biosphere. Microbial communities have been identified and characterised from 

an extensive number of dissimilar natural habitats, not only around us, but also within us 

(Postec et al., 2005, Fujimoto et al., 2003, Vitali et al., 2007, Brakstad et al., 2008, Edenborn 

and Sexstone, 2007, van de Wiele et al., 2004). 

In terms of the other molecular fingerprinting methods briefly elaborated on, DGGE is one 

of the most established culture-independent techniques used in molecular microbial ecology 

studies (Muyzer and Smalla, 1998) as for most laboratories the initial implementation and 

cost-effectiveness of next generation sequencing (NGS) platforms is too high. Operating on 

principles and modifications since 1983 when it was first introduced (Fischer and Lerman, 

1983); small PCR fragments (~ 200-700 base pairs (bp)) are amplified from variable regions 

within the 16S rRNA gene representing members from the bacterial community. 

Amplification of these variable regions (e.g., the V3 region yielding V3 rDNA fragments) is 

usually performed by universal PCR primers resulting in amplicons of approximately the 

same length, thus, PCR products analysed by DGGE cannot be separated on traditional 

agarose or non-denaturing acrylamide gels. The bacterial community produced from the pool 

of V3 rDNA amplicons from extracted total gDNA in either environmental or clinical 

samples are separated out on a linear chemical denaturing gradient (urea and formamide) 

embedded within an acrylamide gel matrix according to genome fragment base-composition, 

i.e., guanine (G) and cytosine (C) content (Hovig et al., 1991) and a decrease in the 

electrophoretic mobility of the partially melted dsDNA molecules (Muyzer, 1999). 

Differential migration of these heterogeneous PCR amplicons containing gDNA sequence 

variation is achieved by the amount of denaturant in the gradient and the dissociation of the 
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two DNA strands containing differences in the number of hydrogen (H) bonds between the 

complementary nucleotides binding the DNA strands together; i.e., three H bonds bind G and 

C, as opposed to adenine (A) and thymine (T) which only contain two H bonds (Nakatsu, 

2007). Thus, PCR fragments containing a greater amount of GC-rich amplicons will take 

longer to denature and dissociate migrating towards the bottom of the gradient in which the 

partial melting point of these GC-rich DNA fragments is reached, whereas AT-rich DNA 

sequences will migrate towards the top of the denaturant gradient. Once this partial melting 

temperature has been achieved, the DNA fragments can no longer migrate through the 

denaturing gradient and are immobilised because of the transition of the DNA macromolecule 

from a helical to partially melted structure, thus dsDNA sequence variation is not only 

separated out by GC-content, but also variations in the partial melting temperatures thus 

affecting dissimilar immobilisation points within the linear denaturing gradient of the PCR 

amplicons analysed (Muyzer and Smalla, 1998). Further to this, the attachment of a GC-

clamp (a GC-rich nucleotide sequence) to the 5′-end of one of the universal primers can 

facilitate greater detection of sequence variants within the community being analysed as this 

increases PCR fragment stability as it migrates through the denaturing gradient, increasing 

the melting temperature, thus preventing complete dissociation of the dsDNA into single-

stranded DNA (ssDNA) (Muyzer and Smalla, 1998). Attachment of a GC-clamp in PCR-

DGGE mediated studies in microbial ecology studies under optimum running conditions in 

DGGE can result in the detection of ~ 100 % of sequence variants within the microbial 

community in DNA fragments ≤ 500 bp in size (Sheffield et al., 1989, Myers et al., 1985). 

Thus DGGE can represent a global ‘snapshot’ of the microbial population structure and 

diversity analysed by said technique (Nakatsu, 2007) from when it was first introduced to 

study bacterial communities in soil (Muyzer et al., 1993). 

In PCR-DGGE mediated studies of environmental samples and indeed human clinical 

samples, a variety of thermostable DNA polymerases are utilised in order to ascertain the 

microbial communities present. In this study, five DNA pols were assessed to analyse the 

bacterial communities in sandy soil obtained from dunes on Longsands Beach, Tynemouth, 

North East England. These were, AmpliTaq® (Applied Biosystems™), GoTaq® Hot Start 

Polymerase (Promega), Platinum® Pfx (Invitrogen
™

), TaKaRa Ex Taq™ Hot Start 

(TAKARA BIO INC.), and Taq (New England BioLabs®, Inc.). All of the thermostable 

DNA polymerases used in this study were originally isolated from strains of T. aquaticus 
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expressing modified versions of the DNA polymerase gene which were then inserted and 

expressed in strains of E. coli (Lawyer et al., 1989) thus belonging to the A polymerase 

family (Kim; Eom refs.). The exception being Platinum® Pfx ― cloned and purified from the 

archaeon Pyrococcus spp. strain KOD1 a member of the B polymerase family (Westfall et 

al., 1999, Takagi et al., 1997, Nishioka et al., 2001). Comparison of the DNA polymerase 

enzymes assessed in this study are summarised below in table 3.1. 

Table 3.1: Comparison of DNA pols utilised to determine microbial diversity in sandy soil 

samples. 

DNA 

polymerase 

DNA polymerase 

family group 

Supplier Average error rate 

reported‡ 

Taq A New England BioLabs® 

Inc. 

285 × 10-6 bp 

GoTaq® Hot 

Start 

A Promega ~ 8.0 × 10-6 bp† 

AmpliTaq® A Applied Biosystems™ Not available 

Ex Taq™ Hot 

Start 

A TAKARA BIO INC. 8.7 × 10-6 bp 

Platinum® Pfx B Invitrogen™ 1.58 × 10-6 bp 

‡ Determined by the Cline method (Cline et al., 1996). 

† Was not determined, error rate is based on older versions of Taq DNA pol that Promega 

used to distribute. 

Different DNA pols from the above were assessed in order to select the most appropriate 

DNA polymerase enzyme prior to study of clinical samples involving sputum and 

bronchoalveolar lavage fluid from multiple patient cohorts with chronic respiratory tract 

diseases. Sandy soil obtained from dunes was utilised in this assessment for several reasons: 

(i), no ethical approval was needed prior to initial sample excavation, (ii), the microbial 

communities inhabiting the soil microenvironment are genetically diverse, with estimates 

ranging from 467 to 500,000 species of bacteria present (Curtis et al., 2002, Hughes et al., 

2001, Torvisk et al., 1998, Dykhuizen, 1998) ― thus if the DNA pol enzymes assessed were 

to effectively amplify DNA template producing V3 rDNA amplicons this would be detected 

by DGGE strongly indicating the dominant microbial taxa present in sandy soil ― and (iii), 
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humic acids consisting of complex polyphenolic compounds produced from the 

decomposition of organic matter within soil sediments can strongly inhibit PCR (Tsai and 

Olsen, 1992b, Tsai and Olsen, 1992a), sandy soil contains less of these interfering humic 

substances due to a relative lack of organic matter content as opposed to agricultural soils. 

From here, once the appropriate DGGE profiles were generated, statistical methods were 

executed to ascertain if there was a difference within the community generated from the 

pooled V3 rDNA fragments amplified in each sandy soil sample analysed by each DNA pol 

enzyme employed. 

3.3 Results 

3.3.1 Optimisation of PCR amplifications 

As previously described in Chapter Two, steps were taken to minimise artefacts, spurious 

and heteroduplex PCR products (Don et al., 1991, Janse et al., 2004); relief of sample 

inhibitors was also implemented (Kreader, 1996). In terms of optimisation of each DNA pol 

assessed, both Ex Taq™ HS and GoTaq® HS followed the protocol closely outlined as 

previously described (Muyzer et al., 1993) producing the amplifications in figure 3.1A and B. 

The only differences between the Ex Taq™ HS and GoTaq® HS PCR experiments were 

buffer, dNTP, and MgCl2 concentrations per reaction. Applied Biosystems™ AmpliTaq® 

was optimised using an MgCl2 concentration gradient set-up experiment (0.5-2 mM MgCl2), 

optimum MgCl2 concentration was 1 mM. However, despite repeated attempts at adjustment 

of GeneAmp® Buffer and AmpliTaq® DNA pol volumes in multiple reactions, V3 rDNA 

amplification was still poor (figure 3.1C). Taq (New England BioLabs® Inc.) DNA pol was 

optimised by slight adjustment to the annealing temperature using a temperature gradient 

(ranging from 53-63 °C, optimum annealing temperature was at 55.8 °C) and addition of 5 U 

Taq pol instead of 2.5 U. Pfx DNA pol was optimised by the addition of Pfx Enhancer 

Solution (Invitrogen™) at 0.5   concentration as opposed to 1   concentration. Final 

amplification of V3 rDNA fragments using both Taq and Pfx are shown in figures 3.1D and E 

respectively. 
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Fig. 3.1A-E: Gel images showing final PCR amplifications of V3 rDNA fragments by each DNA pol 
technical replicate in sandy soil samples 1-5. A, Ex Taq™ HS amplification; B, GoTaq® HS 
amplification; C, AmpliTaq® amplification; D, Taq amplification; E, Pfx amplification. HL, 
Hyperladder I (10 000-200 bp) in which four molecular markers are annotated for clarity. Lane 
numbers: 1-3, SS1R V3 rDNA amplicons; 4-6, SS2R V3 rDNA amplicons; 7-9, SS3R V3 rDNA 
amplicons; 10-12, SS4R V3 rDNA amplicons; 13-15, SS5R V3 rDNA amplicons. 
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3.3.2 Ecological analysis from DGGE profiles generated 

Each commercially available DNA polymerase enzyme was assessed in all five sandy soil 

samples by employment of technical replicates to ensure PCR bias was countered for (within 

a certain degree) when the appropriate statistical analysis was performed (below). Ecological 

analysis of the bacterial community generated in each DGGE profile varied. Isolated distinct 

bands migrating through the denaturing gradient were treated as a single bacterial taxon from 

which the mean species richness and diversity indices (i.e., Shannon diversity index scores 

(H′)) was calculated from the technical replicates of the five different DNA pol enzymes in 

addition to the average number of bands detected (summarised in table 3.2). 

Across sample numbers 1-5, both high-fidelity enzymes Ex Taq™ HS and Pfx generated 

the greatest mean number of bands in each DGGE profile analysed and highest mean H′ 

scores (the only exception being in SS3R where the mean H′ score (2.30) of Ex Taq™ HS 

was equivalent to GoTaq® HS). Applied Biosystems™ AmpliTaq® detected the lowest 

number of bands (only 1 in SS5R as opposed to Platinum® Pfx in which 20.7 bands were 

detected on average) across all five samples in addition to the lowest mean H′ scores, again, 

taking into consideration that no H′ indices could be calculated for SS5R (each AmpliTaq® 

replicate only detected one bacterial taxa) and in SS4R as previously mentioned above. 

Overall bacterial diversity in the five sandy soil sample types is summarised in table 3.3. 

SS3R yielded the highest detection of bacterial diversity (H′ range 0.66-3.16 (mean = 2.31)) 

in addition to also showing the highest band range (2-25 (mean = 13.5)) whereas SS4R 

displayed the lowest (H′ range 0.61-3.03 (mean = 1.95)). Both SS3R and SS4R produced a 

wide range in their H′ scores, it should be noted however that in two of the AmpliTaq® 

technical replicates SS4R and SS5R (i.e., all AmpliTaq® replicates) Shannon diversity 

indices could not be derived as only one bacterial taxa each was detected. 

  



 

69 

 

Table 3.2: Comparison of mean number of bands detected and H′ scores calculated using 

technical replicates of the five DNA polymerase enzymes assessed. 

Sample 

replicate 

number 

DNA pol 

enzyme§ 

Mean number of bands 

detected by each DNA 

pol 

Mean H′ score generated 

by each DNA pol (n = 5) 

SS1R Taq 7.7 1.94 

GoTaq® HS 12 2.29 

AmpliTaq® 4 1.29 

Ex Taq™ HS 18.3 2.83 

Pfx 16 2.65 

SS2R Taq 7 1.84 

GoTaq® HS 10.7 2.30 

AmpliTaq® 3.7 1.27 

Ex Taq™ HS 11.7 2.30 

Pfx 12 2.42 

SS3R Taq 9.3 2.16 

GoTaq® HS 11.7 2.37 

AmpliTaq® 3.7 1.06 

Ex Taq™ HS 18 2.80 

Pfx 25 3.16 

SS4R Taq 8 1.94 

GoTaq® HS 10 2.20 

AmpliTaq® 1.3 0.20 

Ex Taq™ HS 21 3.02 

Pfx 14 2.39 

SS5R Taq 11.3 2.36 

GoTaq® HS 9.7 2.16 

AmpliTaq® 1 0† 

Ex Taq™ HS 17.7 2.76 

Pfx 20.7 2.87 

§ In order of loading on DGGE profile generated. 

† Average H′ score cannot be derived if only one bacterial taxon is detected across all three 

AmpliTaq® technical replicates. 
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Table 3.3: Comparison of bacterial diversity in the five sandy soil samples analysed by 

DGGE. 

Sample 

replicate 

number 

Band range 

per lane 

Mean number of 

bands per lane 

H′ range 

across sample 

Mean H′ 

across sample 

SS1R 4-19 11.6 1.23-2.88 2.20 

SS2R 4-13 9 1.10-2.52 2.03 

SS3R 2-25 13.5 0.66-3.16 2.31 

SS4R 1-21 10.9 0.61-3.03 1.95 

SS5R 1-21 12.1 2.01-2.95 2.03 

 

Qualitatively, each DGGE profile generated (i.e., SS1R to SS5R) yielded similar banding 

patterns from bacterial taxa detected by the five individual DNA pols assessed, including the 

technical replicates (Fig. 3.2A-E). Applied Biosytems™ AmpliTaq® performance was very 

poor in comparison to the other DNA pol assessed due to the distinct lack of bands 

throughout the denaturing gradient, in particular, the bands that were detected are faint (white 

arrows, Fig. 3.2C). New England BioLabs® Inc. Taq and Promega’s GoTaq® HS both 

produced approximate equivalent banding patterns from their technical replicates in all 

DGGE profiles (Fig. 3.2A-E). Both high-fidelity DNA pol enzymes Ex Taq™ HS and 

Platinum® Pfx detected the most abundant bacterial taxa from the dominant members of the 

community as seen in all gels below resulting in a greater mean band range across all five 

sample types. Amplification of the V3 rDNA regions performed with Pfx did result in more 

bacterial taxa being detected in SS2R, SS3R, and SS5R. Interestingly, bands were notably 

absent in the upper 25 % of the denaturing gradient (i.e., near the top of the gel in Fig. 3.2A-

E, circled) in almost all Pfx technical replicates and thus consequently not detected. 

TAKARAS BIO INC. Ex Taq™ HS in SS1R-SS5R in this regard produced a more 

widespread detection of bacterial taxa throughout the 35-55 % denaturing gradient utilised 

(and indeed more numerous specifically in SS1R and SS4R), in addition to taxa that migrated 

towards the top of the gradient. A global factor in all of the DNA pol enzymes assessed is 

that band detection in the lower part of the denaturing gradient seemed to be more abundant 

in the derived Thermus aquaticus DNA pol types despite the band number, whereas in Pfx, 

derived from Pyrococcus spp. strain KOD1, detected a greater number of bands in the middle 
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of the gradient. All DGGE profiles generated showed heteroduplex artefacts (i.e., double 

band formations that migrate through the denaturing gradient very close together) and these 

have been putatively identified with examples shown in Fig. 3.2A, B, and D. These double 

bands were common in all Taq, GoTaq® HS, and Ex Taq™ HS technical replicates across all 

five sample types. 
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A 

B 

                Taq               GT                 AB                 ET                 Pfx 

Fig. 3.2A-E: DGGE profiles (35-55 % denaturing gradient) of SS1R-SS5R showing V3 rDNA 
fragments from all DNA pol technical replicates assessed. SS1R = A; SS2R = B; SS3R = C; SS4R 
= D, and SS5R = E. Top of the denaturing gradient is shown (35 %) along with the bottom (55 %). 
Migration direction of the amplicons and denaturing gradient is indicated on the left in gels A-E 
(arrow). Technical replicates of each DNA pol enzyme are indicated above each DGGE profile (A-E) 
respectively. Non-detection of bands by Pfx in all technical replicates across SS1R-SS5R is circled. 
Examples of putative artefacts in DGGE profiles are shown (black arrows) whereas detection of 
taxa by AmpliTaq® is indicated because of faint bands produced in gel profiles (white arrows). AB, 
AmpliTaq®; ET, Ex Taq™ HS; GT, GoTaq® HS. 
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3.3.2 Statistical analysis from DGGE profiles generated 

All DGGE profiles generated and the number of taxa detected by each DNA pol enzyme 

was then subjected to principal components analysis (PCA) to see if there were any 

differences between enzyme and sandy soil sample. The first two components were displayed 

in the outputs (x- and y-axis) accounting for the cumulative percentage variance explained 

with SS5R showing the highest percentage variation at 84 %, followed by 80 % (SS4R), 61 

% (SS3R), 44 % (SS2R), and finally 59 % (SS1R). All P-values derived from the first 

principal component output by one-way ANOVA (analysis of variation) were significant 

indicating that there was differences in the number of bacterial taxa detected between the 

disparate DNA pol enzymes assessed in each DGGE profile (SS1R, P = < 0.001, SS2R, P = 

0.001, SS4R, P = < 0.001, and SS5R, P = < 0.001) with the exception of SS3R (P = 0.118). 

Furthermore, from the PCA outputs a difference can be clearly seen in the clustering between 

the disparate types of thermostable polymerases assessed and their technical replicates. Both 

high-fidelity pols Ex Taq™ and Pfx exclusively cluster together in all of the DGGE profiles 

(Fig. 3.3A-E). This strongly suggests that though they detected the most number of bacterial 

taxa in comparison to the other enzymes, there was still a difference between these two 

enzyme’s performances in some of the soil samples analysed due to spatial distribution. All 

second principal components analysed were not significant indicating that there was no inter-

sample variance between the DGGE profiles SS1R-SS5R examined. 

We next wanted to investigate whether there was a difference in bacterial taxa detected by 

the technical replicates analysed in SS1R-SS5R. Shannon diversity index scores generated by 

each thermostable DNA pol enzyme technical replicate were calculated and then a one-way 

ANOVA was performed using Tukey’s test to determine which thermostable enzymes were 

significantly different from each other in terms of their microbial diversity detected. All P-

values were significant (SS1R-SS5R, P = < 0.001) between the H′ scores obtained by each 

DNA pol in each soil sample showing differences in the microbial diversity detected using 

the five different thermostable enzymes (tables 3.4-3.8). In all five samples analysed, 

AmpliTaq® thermostable DNA pol was significantly different from the other DNA 

polymerases assessed (tables 3.4-3.8 (P = < 0.001)). However in SS1R, (GoTaq® HS and 

Taq; table 3.4 (P = < 0.001)), SS2R (Taq; table 3.5 (P = < 0.001)) and SS4R (Ex Taq™ HS; 

table 3.7 (P = < 0.001)) DNA pol enzymes indicated in brackets were also significantly 

different to the other in addition to AmpliTaq® based on their H′ scores. In SS5R all DNA 
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pol were significantly different from each other in the bacterial taxa detected (table 3.8 P = < 

0.001). 

Table 3.4: Comparison of H′ scores generated by each DNA pol replicate and significant 

differences in diversities detected in SS1R. 

DNA pol replicate H′ score Tukey’s test grouping from ANOVA‡ 

Taq 1.86 A 

Taq 1.93 

Taq 2.02 

GoTaq® HS 2.15 B 

GoTaq® HS 2.42 

GoTaq® HS 2.30 

AmpliTaq® 1.31 C 

AmpliTaq® 1.33 

AmpliTaq® 1.23 

Ex Taq™ HS 2.81 D 

Ex Taq™ HS 2.79 

Ex Taq™ HS 2.89 

Pfx 2.65 D 

Pfx 2.59 

Pfx 2.72 

‡ Tukey’s test: DNA pols that do not share a letter are significantly different from each other 

(P = < 0.001) 
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Table 3.5: Comparison of H′ scores generated by each DNA pol replicate and significant 

differences in diversities detected in SS2R. 

DNA pol replicate H′ score Tukey’s test grouping from ANOVA 

Taq 2.17 A 

Taq 1.78 

Taq 1.56 

GoTaq® HS 2.33 B 

GoTaq® HS 2.34 

GoTaq® HS 2.24 

AmpliTaq® 1.34 C 

AmpliTaq® 1.38 

AmpliTaq® 1.10 

Ex Taq™ HS 2.44 B 

Ex Taq™ HS 2.35 

Ex Taq™ HS 2.10 

Pfx 2.39 B 

Pfx 2.52 

Pfx 2.34 

 

Table 3.6: Comparison of H′ scores generated by each DNA pol replicate and significant 

differences in diversities detected in SS3R. 

DNA pol replicate H′ score Tukey’s test grouping from ANOVA 

Taq 2.34 A 

Taq 2.13 

Taq 1.99 

GoTaq® HS 2.38 A 

GoTaq® HS 2.39 

GoTaq® HS 2.33 

AmpliTaq® 1.83 B 

AmpliTaq® 0.69 

AmpliTaq® 0.66 

Ex Taq™ HS 2.83 A 

Ex Taq™ HS 2.79 

Ex Taq™ HS 2.79 

Pfx 3.16 A 

Pfx 3.16 

Pfx 3.15 
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Table 3.7: Comparison of H′ scores generated by each DNA pol replicate and significant 

differences in diversities detected in SS4R. 

DNA pol replicate H′ score Tukey’s test grouping from ANOVA 

Taq 2.25 A 

Taq 1.77 

Taq 1.79 

GoTaq® HS 2.28 A 

GoTaq® HS 2.16 

GoTaq® HS 2.17 

AmpliTaq® 0 B 

AmpliTaq® 0.60 

AmpliTaq® 0 

Ex Taq™ HS 3.0 C 

Ex Taq™ HS 3.0 

Ex Taq™ HS 3.0 

Pfx 2.43 A 

Pfx 2.24 

Pfx 2.51 

 

Table 3.8: Comparison of H′ scores generated by each DNA pol replicate and significant 

differences in diversities detected in SS5R. 

DNA pol replicate H′ score Tukey’s test grouping from ANOVA 

Taq 2.60 A 

Taq 2.29 

Taq 2.18 

GoTaq® HS 2.21 B 

GoTaq® HS 2.01 

GoTaq® HS 2.25 

AmpliTaq® 0 C 

AmpliTaq® 0 

AmpliTaq® 0 

Ex Taq™ HS 2.78 D 

Ex Taq™ HS 2.94 

Ex Taq™ HS 2.54 

Pfx 2.84 E 

Pfx 2.84 

Pfx 2.95 
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PC1: 46% of variation explained 

A: PCA of SS1R DNA polymerase technical replicates Fig. 3.3A-E: PCA of SS1R-SS5R 
from each of the DGGE profiles 
generated and DNA pol technical 
replicates assessed. SS1R = A; 
SS2R = B; SS3R = C; SS4R = D; 
SS5R = E. Each DNA pol 
technical replicate is indicated in 
the PCA ouput (AB, AmpliTaq®; 
ET, Ex Taq™ HS; GT, GoTaq® 
HS; Pfx, Platinum® Pfx; Taq, New 
England BioLabs® Inc. Taq). The 
x-axis (PC1) explains the most 
variation followed by the y-axis 
(PC2) explaining the second most 
variation in the PCA output. This 
variation is shown as two 
percentages indicated on both the 
x- and y-axes respectively. 
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PC1: 24% of variation explained 

B: PCA of SS2R DNA polymerase technical replicates 



 

81 

 

 

Taq Taq 

Taq 

GT 

GT 
GT 

AB 

AB 

AB 

ET 

ET 

ET 
Pfx 

Pfx 

Pfx 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

P
C

2
: 

2
1

%
 o

f 
v
a

ri
a

ti
o

n
 e

x
p

la
in

e
d

 

PC1: 40% of variation explained 

C: PCA of SS3R DNA polymerase technical replicates 
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PC1: 70% of variation explained 

D: PCA of SS4R DNA technical polymerase replicates 
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E: PCA of SS5R DNA polymerase technical replicates 
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3.4 Discussion 

In this study we have demonstrated that five available commercial thermostable DNA pol 

enzymes amplifying the V3 region within the bacterial 16S rRNA gene can produce DGGE 

profiles across five sandy soil samples excavated from Longsands Beach, Tynemouth, North 

East England. However, within the DGGE profiles generated and between the technical 

replicates of the five DNA pol enzymes assessed significant dissimilarity was exhibited in the 

detection of the dominant members of the bacterial community in four out of the five sample 

types. Further, high fidelity DNA polymerases (Ex Taq HS™ and Pfx) enabled detection of 

abundant bacterial taxa that eluded detection by the low-fidelity DNA pols, i.e., AmpliTaq®, 

GoTaq® HS and Taq. In all five samples analysed by DGGE, AmpliTaq™ DNA pol 

performance was significantly different (P = < 0.001) in detection of bacterial taxa in sandy 

soil (tables 3.4-3.8). 

From the results presented above, a discussion of the data and each respective DNA pol 

performance must be approached with caution in respect to other PCR-DGGE mediated 

studies and the inherent bacterial community because of several underlying potential biasing 

factors: (i), PCR amplification can be inhibited by co-extracted contaminants from the sample 

type (i.e., humic substances in soil) (ii), differential amplification ― does the amplification of 

16S rDNA produce a pool of either homologous or heterogeneous template molecules? (iii), 

PCR fragment artefactual formation (iv), contaminating DNA, and (v), rRNA gene region 

(rrn operon) variability within the community amplified (von Wintzingerode et al., 1997). 

The high-fidelity polymerases, (Ex Taq™ HS and Platinum® Pfx) gave significantly (P = < 

0.001) higher bacterial taxa detection than the lower fidelity alternatives used in this study. In 

particular is the amplification of the V3 region by both Ex Taq™ HS and Pfx which resulted 

in a higher proportion of GC-rich bacterial taxa detected (Fig. 3.2A-E) such as the 

Actinobacteria. Conversely where one expects to find bands with a low GC-ratio typical of 

the Proteobacteria it was possible to differentiate between Pfx and Ex Taq™ HS PCR 

products. The latter appeared much more effective in amplifying low GC-ratio 16S rRNA 

genes as seen in all of the gels produced (Fig. 3.2A-E; circled). In three soils (SS2R, SS3R, 

SS5R) the diversity of bacteria detected by Pfx was greater than that detected by Ex Taq™ 

HS (tables 3.5, 3.6, and 3.8) Whereas in SS1R and SS4R bacterial diversity detected using Ex 

Taq™ HS was higher than that of Pfx (tables 3.4 and 3.7). However, in comparing Ex Taq™ 
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HS and Pfx high-fidelity pols only significant differences between the two were observed in 

SS4R and SS5R (P = < 0.001). In SS1R, SS2R, and SS3R there was no significant difference. 

Production of PCR artefacts and chimeras is a confounding factor that may lead to an 

over-estimation of the microbial diversity present in the sample analysed, however, the 

formation of these anomalies is not uncommon in DGGE (Muyzer, 1999). Chimera formation 

is generated by incompletely synthesised extended DNA fragments annealing together 

producing closely related sequences generating recombinants between starting templates 

(Judo et al., 1998, Bradley and Hillis, 1997). Differentiation between original haplotypes and 

chimeras generated can be problematic resulting in occasionally an overestimation of the 

community diversity in microbial ecology studies (von Wintzingerode et al., 1997, 

Hugenholtz and Huber, 2003, Berney et al., 2004). A study reported several years ago has 

tried to circumvent this problem by introducing an additional extension time of 30 min 

reducing the formation of double bands in PCR-DGGE analysis in environmental microbial 

diversity PCR (Janse et al., 2004). This longer extension time was implemented here in all 

DNA pol technical replicates carried out at the end of each PCR cycle. GC-clamp attachment 

to the forward primer, although designed to improve sequence heterogeneity from the pool of 

amplicons in analysis by DGGE, can induce effects such as G quartet or four-stranded 

tetraplex formation caused by multiple adjacent G residues (Poon and Macgregor, 1998, Poon 

and Macgregor, 2000). Further, a recently published study suggested the procurement of 

enough oligonucleotides incorporating a GC-clamp in a single batch for a project to avoid the 

GC-clamp sequence itself actually affecting DGGE profiles due to differences in 

performance between repeat syntheses of GC-clamp oligonucleotide primers from disparate 

batches (Rettedal et al., 2010). 

Duplex banding patterns seen in the DGGE profiles (Fig. 3.2A, B, and D) could also be 

attributed to the formation of spurious PCR products after the addition of the DNA pol to the 

reagent master mix (MM). This can be circumvented by the induction of either a manual or 

automatic HS; with the exception of Ex Taq™ HS, GoTaq® HS and Platinum® Pfx, (all 

bound to a proprietary antibody) both AmpliTaq® and Taq were introduced into the master-

mix via a manual HS procedure, but despite this process, poor AmpliTaq® performance was 

unequivocal in bacterial taxa detection unlike that of its counterpart Taq. A previous study 

assessed the impact of DNA polymerase bound to a proprietary antibody on the resulting 
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PCR products synthesised. This demonstrated an increased specificity, sensitivity, and yield, 

in addition to reducing the formation of spurious PCR products before the PCR was actually 

initialised (Sharkey et al., 1994). 

Assessment of the microbial diversity in sandy soil samples using the T. aquaticus derived 

DNA pol enzymes (i.e., Taq, GoTaq® HS, and AmpliTaq®) produced similar banding 

patterns in most replicates across SS1R-SS5R. However, AmpliTaq® amplification of pooled 

V3 rDNA amplicons produced very faint bands in the denaturing gradient (Fig. 3.2C; white 

arrows). It is questionable if this is a true reflection of AmpliTaq®’s capability in comparison 

to the other DNA pols. Further optimisation of AmpliTaq® is probably required to draw 

satisfactory results and conclusions. Detection of hypothetical GC-rich bacterial taxa was 

noticeable in both GoTaq® HS and Taq, although less so than in Ex Taq™ HS and Pfx. 

Another mitigating factor in the variances of DGGE profiles generated from the 

commercially available thermostable enzymes assessed here, concerns the DNA pol property 

of fidelity. The DNA pols Taq, GoTaq®, and AmpliTaq® carry out DNA replication and 

repair with a low degree of fidelity and have a low proofreading capacity in comparison to Ex 

Taq™ and Pfx. In relation to this, it can be suggested that the formation of PCR-mediated 

recombination or chimeras, giving rise to heteroduplex PCR products, would increase when 

using Taq, GoTaq® HS, or AmpliTaq® when assessing the microbial diversity in any given 

environmental type in PCR-DGGE studies. It is worth noting that despite the higher mean 

band ranges and H′ scores produced by both Ex Taq™ HS and Pfx, the risk of artefactual 

PCR products is decreased compared to their lower-fidelity counterparts. Surprisingly, it has 

been previously shown that even high-fidelity DNA pols insert incorrect nucleotides with 

similar efficiencies to that of naturally occurring low-fidelity polymerases (Beard and 

Wilson, 2003). This finding concludes that right from selection of DNA pol in PCR-DGGE 

mediated investigations, there will always be an inherent bias, and as thus, this must be taken 

into account from the data presented. 
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3.5 Conclusions 

In summary, all DNA pol enzymes employed in this study could have been optimised 

further, in particular AmpliTaq®, raising concerns over its true performance in the microbial 

community detection from the sample types collected herein. What is apparent, and 

significant in four out of the five samples analysed (P = < 0.001), is that from the DNA pol 

technical replicates assessed is that PCA shows that the higher-fidelity pols Ex Taq™ HS and 

Platinum® Pfx cluster together explaining some of the variance observed. This variance can 

be attributed between the other DNA pols assessed, in addition to greater bacterial taxa 

detection and H′ scores generated. From the data presented, comprising both the multivariate 

analysis and DGGE profiles generated, Ex Taq™ HS DNA pol proved the most effective in 

best representing the microbial communities present in the samples analysed by DGGE 

despite the inherent limitations of this approach outlined above. Thus Ex Taq™ HS will be 

implemented in the PCR-DGGE mediated studies in two chronic respiratory tract disorders 

presented further in this body of work. 
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Chapter Four: PCR-DGGE study of a 
cross-sectional cohort with non-cystic 

fibrosis bronchiectasis 

4.1 Abstract 

The aim was to investigate the polymicrobial communities in sputum samples derived from 

an adult non-cystic fibrosis bronchiectasis cohort that consisted of 70 individuals (25 males 

and 45 females). Twenty patients had symptoms consistent with an exacerbation, the 

remainder were clinically stable. DNA was extracted from sputum samples of all patients. 

Universal primers were used to amplify fragments both within the 16S and 28S rRNA genes. 

Amplicons were analysed by denaturing gradient gel electrophoresis. Demographic and 

culture data were used in constrained ordination analyses to identify any significant 

associations between these data and changes in the sputum microbiota. Standard culture 

indicated that 19 (27 %) sputum samples were negative for recognised pathogens. Molecular 

analyses demonstrated these samples contained a bacterial diversity (mean = 7 taxa) not 

significantly different to culture positive sputum. There was a significant difference between 

the bacterial community structure in the sputum samples of exacerbated patients compared to 

those that were clinically stable (P = 0.002). Antibiotic administration within 1 month of 

sampling caused no significant changes to the microbial community investigated. 

Haemophilus influenzae carriage is identified as a significant driver (P = 0.006) of change in 

the microbial community structure. Further, H. influenzae was not identified in samples (n = 

12) that harboured Pseudomonas aeruginosa. Consistent with earlier studies, the persistent 

presence of P. aeruginosa (n = 23) determined by culture was significantly correlated with 

reduced lung function (P = < 0.001). In adult non-CF bronchiectasis patients bacterial lung 

communities show significant differences between exacerbation and clinically stable states 

and also when H. influenzae is present. Antibiotic administration does not significantly alter 

these microbial communities. Persistent colonisation by P. aeruginosa is significantly 

associated with reduced lung function, and is negatively correlated with H. influenzae 

carriage. 
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4.2 Background 

Bronchiectasis is a highly debilitating disease causing severe pulmonary infections and 

lung function decline resulting in chronic morbidity, and in some cases, premature mortality 

(King et al., 2005). The disease itself was initially characterised in 1819 by René Théophile 

Hyacinthe Laënnec in which from his writings, he described that “This affection of the 

bronchioles is always produced by chronic catarrh, or by some other disease attended by 

long, violent, and often repeated fits of coughing” (Laënnec, 1962). Presently, bronchiectasis 

is defined by irreversible abnormal dilatation of one or more bronchi, with chronic airway 

inflammation, associated with chronic cough and sputum production, recurrent chest 

infections, and airflow obstruction (Barker, 2002, Cohen and Sahn, 1999, Wilson and 

Boyton, 2006). In terms of a primary phenotype, bronchiectasis exists in two forms; (i) cystic 

fibrosis (a genetically inherited disease resulting in a severe form of bronchiectasis 

(Strausbaugh and Davis, 2007)), and (ii), non-cystic fibrosis bronchiectasis (nCFBR). 

Contributing factors that induce nCFBR can be physical obstruction or post infectious 

damage, genetic defects (as observed in cystic fibrosis (CF)), abnormal host defence 

mechanisms or autoimmune disease, in many cases nCFBR is idiopathic (Pasteur et al., 

2001). 

Diagnosis of nCFBR using high-resolution computed  tomography (HRCT) reveals 

varying structural and anatomic phenotypes within either one lobe or both lobes of the lung, 

pending local or more commonly general distribution of the disease in the lower lobes (King 

et al., 2006). These characteristic phenotypes defined by Reid described three main subtypes 

of bronchiectasis; (i), smooth dilation of the bronchi giving rise to the tubular form (ii), 

dilated bronchi populated with multiple indentations ― varicose phenotype and (iii), cystic, 

dilated bronchi terminating in blind sacs (Reid, 1950). As opposed to HRCT, pathology of 

bronchiectasis lung tissue specimens by Whitwell resulted in the addition of three sub-types 

of the bronchiectasis phenotype: (i), follicular (ii), saccular and (iii), atelectatic. From his 

findings, infiltration of the bronchial wall with inflammatory cells in conjunction with the 

loss of elastin, and in more severe cases, muscle and cartilage injury was associated with 

bronchial dilatation (Whitwell, 1952). In conjunction with HRCT and Whitwell’s description, 

the dominant form of bronchiectasis disease today is the follicular sub-type corresponding to 

the tubular phenotype. In this form, as Whitwell had previously shown earlier; in the small 

airways lymphoid follicle formation by the infiltration of inflammatory cells in the bronchial 
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walls is extensive, causing obstruction of the small airways. Conversely, in the larger 

airways, dilation is followed by the loss of elastin, cartilage and muscle (King, 2011b). 

Paradoxically, studies have shown that in bronchiectasis individuals, lung function decline 

occurs gradually with loss of forced expiratory volume in one second (FEV1), despite the 

characteristic dilatation of the airways (King et al., 2005, Martínez-García et al., 2007, Twiss 

et al., 2006). Explanation of this paradox is demonstrated by Whitwell’s original pathology 

findings demonstrating that during large airway dilation, the small airways were obstructed; 

net effect of the pulmonary tree is airflow obstruction as composition of this is in the small 

airways (King, 2011a). Pulmonary airflow obstruction in bronchiectasis caused by structural 

anatomic changes is critical as they adversely affect normal airway clearance and impede 

innate immunity mechanisms (Morrisey, 2007). Indeed, bronchiectasis pathophysiology 

defines the impairment, control, prevention, and resolution of respiratory tract diseases. 

Cole’s original paradigm in bronchiectasis disease states that a vicious circle of recurrent or 

persistent airway infection and inflammation promotes additional lung tissue structural insults 

predisposing bronchiectasis individuals to prolonged infection ― a self-promoting cycle 

(Cole, 1986). 

Chronic airway infection is strongly associated with bronchiectasis disease and this 

appears to contribute to the underlying pathogenesis of the disease, with progressive lung 

damage resulting from recurrent bacterial infections and inflammatory responses (Wilson and 

Boyton, 2006). Previous studies investigating the bacteriology of nCFBR from several types 

of clinical samples have identified common lower respiratory tract pathogens including 

Haemophilus influenzae, Pseudomonas aeruginosa, Streptococcus pneumoniae, and 

Moraxella catarrhalis; other less frequently encountered isolates are Staphylococcus aureus 

and non-tuberculosis mycobacterial (NTM) species (Angrill et al., 2002, King et al., 2007, 

Pasteur et al., 2001, Nicotra et al., 1995). S. aureus involvement in nCFBR is uncommon and 

repeated culture isolation from sputa is suggestive of cystic fibrosis, particularly in younger 

patients (King, 2011a). When using sputa to investigate the aetiology of nCFBR infection, 

both H. influenzae and P. aeruginosa are the most commonly cultured pathogens with many 

isolated strains showing significant antibiotic resistance (King, 2011a, Angrill et al., 2002). 

Infection with H. influenzae in the lower airways in nCFBR is almost always associated with 

the non-typeable strain of this species. A normal resident of the upper respiratory tract (URT) 

in most persons, non-typeable strains lack a polysaccharide capsule where recurrent or 
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chronic lower airway infection with non-typeable H. influenzae (NTHI) in nCFBR is 

common place (Grimwood, 2011). Persistence of NTHI in the lower airways is due to several 

mechanisms such as antigenic drift, protease secretion, expression of multiple adhesion 

molecules, and intracellular survival in either host lung macrophages or epithelial cells 

(Murphy et al., 2009). Indeed, infection with NTHI is a dynamic process as different strains 

of this organism can infect bronchiectasis patients sequentially as previously shown in CF 

(Román et al., 2004). Furthermore the lung bronchi have been shown to exhibit a dynamic 

turnover of lower respiratory tract (LRT) pathogens; the acquisition of new bacterial strains 

in bronchiectasis has been investigated in which patients were continually colonised with 

Moraxella catarrhalis, but strains of this bacterium were shown to have a continuous 

turnover every 2-3 months (Klingman et al., 1995). 

As opposed to H. influenzae, and the other bacterial isolates above, P. aeruginosa 

colonisation of the URT is infrequent in healthy individuals as it is rapidly cleared from the 

lower airways (Garau and Gomez, 2003). Indeed, P. aeruginosa infection with nCFBR in 

children is rare; however, in older individuals presenting with bronchiectasis, infection with 

P. aeruginosa is much more common. Individuals with nCFBR harbouring no pathogens 

showed the mildest disease whereas isolation of P. aeruginosa had the most severe 

bronchiectasis (King et al., 2007). Concurrently, isolation of H. influenzae tended to be from 

patients with moderately impaired pulmonary function (King et al., 2007). P. aeruginosa is 

widely dispersed throughout the environment and is a superb opportunistic respiratory 

pathogen able to acclimatise to the niche micro-environment of the lung as it is particularly 

adapted to binding to the damaged epithelial lining of the pulmonary tree in chronic 

respiratory diseases (de Bentzmann et al., 1996), but more specifically in CF. Most of our 

understanding of P. aeruginosa and its mechanisms of infection in individuals presenting 

with nCFBR is through extensive work carried out in CF where it is the most important 

pathogenic isolate (de Vrankrijker et al., 2010). Infection with P. aeruginosa in CF is 

comprised of three phases: no infection, intermittent infection, followed eventually by 

chronic infection, in which the pathogen undergoes gradual mutational changes in its 

bacterial genome in response to the micro-environmental challenges in the CF lung (Li et al., 

2005). One of the major mutational changes in P. aeruginosa in the CF lung is the 

development from a non-mucoid to mucoid phenotype commonly isolated by culture in 

chronically infected patients (Foweraker, 2009). Establishment of this mucoid phenotype 



 

92 

 

plays a major role in phagocytic evasion, increased tolerance to toxic oxygen free radicals 

mediated by neutrophils and resistance to antibiotics (Murray et al., 2007). The production of 

biofilms by P. aeruginosa is a critical factor in the treatment of CF patients, as the bacteria 

within them are inherently difficult to eradicate as antibiotics bind to the extracellular matrix 

as opposed to penetrating the inner matrix in addition to exhibiting increased resistance to the 

host immune system (Foweraker, 2009) (Davies and Bilton, 2009). Biofilm formation 

subsequently leads to persistent infection thus resulting in severe damage to the lung tissue 

architecture. 

Chronic infection in nCFBR with P. aeruginosa is associated with an increase in airflow 

obstruction, sputum production, hospitalisations, in addition to extensive lung disease and 

worsening in quality of life in patients’ afflicted (King, 2011b, Martínez-García et al., 2007, 

Wells et al., 1993). As a result of this, the presence and persistence of P. aeruginosa has been 

identified as a marker of bronchiectasis severity, although it remains unclear whether this is 

linked to accelerated lung function decline (Davis et al., 2006). Frequent exacerbations 

experienced by bronchiectasis patients may contribute to the progressive decline of lung 

function (Martínez-García et al., 2007) though the cause of these remains poorly understood. 

Exacerbations are frequently managed with antibiotics, however, viral infections may also be 

significant in many cases but their role requires clarification (King, 2011a). In CF 

bronchiectasis, there is a significant contribution to exacerbations by fungal pathogens 

(Bouchara et al., 2009). However, their role, if any, in nCFBR remains to be elucidated. 

In this study our aim was to undertake a community level investigation of the microbiome 

associated with the nCFBR lung, to characterise their diversity and structure, and to 

determine whether differences in the communities reflect the clinical status of the patient, the 

presence or absence of culturable pathogens or show significant changes in response to the 

interventions used in the clinic to manage patient outcomes. 
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4.3 Results 

4.3.1 Patient cohort analysis 

Seventy patients (25 male, 45 female) were enrolled in this study (App. 3), both consisting 

of clinically stable and exacerbating outpatients currently diagnosed with nCFBR at time of 

sampling. The mean FEV1 derived was 1.47 L (± 0.78 L) with a mean age of 61.6 ± 12.9 

years across cohort. Between the males and females comprising cohort, the absolute FEV1 

values were significantly higher in males 1.84 vs. 1.26 litre (P = 0.002). However, there was 

no significant difference in the age (P = 0.492) or the FEV1% predicted between the sexes (P 

= 0.785). Similarly, the distribution of genders between the culture-negative, exacerbated, 

non-exacerbated, H. influenzae and P. aeruginosa colonisation states were not significantly 

different to the overall sex ration of the cohort. For 61 of the 70 patients, data on the number 

of exacerbations reported in the preceding 12 months was available. Frequent exacerbators 

were defined as those patients who had greater than 3 episodes over this period, 38 patients in 

the cohort satisfied this criterion. At the time of sample collection 20 patients reported 

symptoms consistent with an exacerbation defined as per the British Thoracic Society (BTS) 

2010 bronchiectasis guidelines by the presence of increased cough, malaise, increased 

sputum volume and purulence (Pasteur et al., 2010). A summary of the patient demographic 

data is shown in table 4.1. 
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Table 4.1: Summary of patient demographic data. 

 All patients (n = 
70) 

Non-
exacerbated 
sub-cohort (n 
= 50) 

Exacerbated 
sub-cohort (n = 
20) 

Demographic data:    

Age (years) 61.6 ± 12.9 61.2 ± 12.9 62.5 ± 13.4 

Female population in cohorts (%) 45 (64.3) 30 (60) 15 (75) 

FEV1 (L) in both genders: 

Male population 

Female population 

1.47 

1.84a† 

1.26b 

1.46 

1.86a 

1.17b 

1.50 

1.77a 

1.41b 

FEV1% predicted 58.3 % 56.3 % 64.9 % 

Frequent exacerbators (%) (n = 61§) 38 (54) 26 (52) 12 (60) 

Culture-negative (%) 19 (27) 11 (22) 8 (40) 

H. influenzae colonisation (%) 12 (17.1) 7 (14) 5 (25) 

P. aeruginosa colonisation (%) 

Never isolated 

Intermittently isolated 

Persistent isolation 

 

28 (40) 

17 (24) 

25 (36) 

 

17 (34) 

12 (24) 

21 (42) 

 

11 (55) 

5 (25) 

4 (20) 

Recent Abx¿ 16 (23) 10 (20) 6 (30) 

§ Frequent exacerbation data was only available for 61 patients in total cohort. 

¿ Antibiotic treatment within the last month other than colomycin or azithromycin. 

† FEV1 (L) values in male and female populations followed by different letters are 

significantly different (P = <0.05). 

4.3.2 Microbial culture analysis 

In whole cohort, 51 patients (73%) from the sputa examined were culture-positive for 

pathogenic microorganisms; the remainder being classified as either no growth or culture 

identified mouth flora only (additionally defined as culture-negative because of non-isolation 

of associated respiratory pathogens). The most common pathogenic organisms isolated from 

sputa were P. aeruginosa (PA) found in 39 % and H. influenzae (HI) in 17 % of patients 

respectively, however, there were no instances of both these taxa being found within a single 

sputum sample. Only three clinical samples were culture positive for fungal species: 
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Aspergillus fumigatus was isolated from patient 32 and Candida spp. both from patients 8 

and 44 respectively. 

Assessment of lung function showed that patient’s culture negative for pathogens, or those 

harbouring HI, had similar values. But these were significantly higher (P = 0.0001 and P = 

0.0002 respectively) than individuals whose sputum was positive for PA isolation. From the 

medical records examined, 25 individuals were culture-positive for PA isolation from all 

previous sputum samples submitted for microbiological testing; these patients were defined 

as persistently colonised. A further 18 individuals were intermittently colonised and 28 were 

culture-negative for PA isolated from all previously submitted sputum samples. Following 

these criteria, we next examined the relationship between the presence and persistence of PA 

infection and forced expiratory volume in one second predicted (FEV1% predicted). This 

demonstrated a significant reduction in FEV1% predicted (P = < 0.001) between those ever 

and those never colonised by PA sub-groups. Further, FEV1% predicted lung function was 

significantly reduced in persistently versus intermittently colonised (P = 0.004) and 

persistently versus never colonised patients (P = < 0.001). However, FEV1% predicted was 

not significantly different between those with intermittent PA carriage and those where PA 

had not been isolated (P = 0.1). In patients culture-positive for HI the FEV1% predicted was 

significantly higher than the FEV1% predicted of individual’s chronically infected with P. 

aeruginosa (P = < 0.001). Patients experiencing frequent exacerbations (i.e., > 3 

exacerbations per annum; n = 38) were predominantly culture-positive for the presence of 

known lung pathogens (71 %). Within this sub-group of exacerbating individuals, 50 % were 

colonised with PA and 10.5 % with HI but co-isolation of these two respiratory pathogens 

was never observed. Pulmonary function (FEV1% predicted) was not significantly different 

between patients who frequently exacerbated and the remaining individuals that did not. 

4.3.3 Ecological analysis of bacterial community 

The bacterial community profiles generated from the PCR-DGGE analysis produced 45 

distinct band classes with a mean of 8.4 bands per lane (band range 1-18 per lane) (Fig. 4.1A-

G). Each individual DGGE band was presumed to be a single bacterial taxon and was used as 

a measure of species richness. The mean bacterial Shannon diversity (H′) was 1.53 (range 0-

2.55) and the mean species evenness (J′) of the bacterial communities was 0.78 (range 0.197-

0.992). Species evenness is a biodiversity measure used to ascertain how equal the bacterial 
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community is in this instance via quantification; whereas the H′ is a measure of both species 

richness and evenness in the community analysed. Analysis of variance on the entire cohort’s 

community profiles showed that there was no significant difference associated with the 

number of taxa, community diversity or evenness between those sputum samples where there 

was a self- reported exacerbation. Similarly, there were no significant differences between 

taxa or community diversity indices in patients who were never, intermittently or persistently 

colonised with P. aeruginosa or where H. influenzae could be isolated from sputa samples. 

  

SL     1      2     3      4     5     SL    6     7      8      9    10    11   SL 

A 

Fig. 4.1A-G: DGGE profiles of whole nCFBR cohort investigated using a 16S rRNA PCR-DGGE 
culture-independent approach. Amplicons were run out on a 32.5-60 % denaturing gradient 
(shown by arrow). Each band migrated was treated as a single bacterial taxon for the purposes of 
community profiling and multivariate statistical analysis subsequently carried out. Patient numbers 
are represented by a sequential series of numbers above each lane. Those lanes denoted with an 
X (and a red line) represent those individuals removed from the study. Patients indicated with 
blue, green and red arrows represent patients that are culture-negative and culture-positive for 
only H. influenzae or P. aeruginosa respectively. The 16S standard ladder (SL) comprised of V3 
rDNA fragments derived from pure bacterial cultivars is also shown. Because of the inter-gel 
variation in the 16S SL reproducibility, the Rf values (in parentheses) derived for each bacterial 
species are only indicated in DGGE profile D for clarification purposes. AX, Achromobacter 
xylosoxidans; BCC, Burkholderia cepacia complex; HI, Haemophilus influenzae; PA, 
Pseudomonas aeruginosa; RP, Ralstonia pickettii; SA, Staphylococcus aureus and SM, 
Stenotrophomonas maltophilia. Co-migration of bands against the HI and PA 16S SL markers are 

indicated in green and red rectangles respectively. 

32.5% 

60% 

PA (Rf: 0.200) 
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SL    12    13   14    15   16    SL   17   18    19   20     X     X    SL 

 SL    21   22    23    24   25    SL   26     X    27   28    29    30    SL 

B 

C 

32.5% 

60% 

32.5% 

60% 

HI (Rf: 0.075) 

PA (Rf: 0.200) 
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 SL   31   32     33    34   35    SL   36    37    38    39   40    41    SL 

  SL    42   43    44   45    46   SL   47    48   49    50   51    52   SL 

D 

E 32.5% 

60% 

32.5% 

60% 

HI (Rf: 0.075) 

SA (Rf: 0.100) 

RP (Rf: 0.140) 

PA (Rf: 0.200) 

BCC/SM     

(Rf: 0.400) 

AX (Rf: 0.560) 
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 SL   53    54   55    56   57   SL   58   59   60    61   62   63    SL 

  SL    64    65   66    67   68   SL    69   70                                 SL 

F 

G 32.5% 

60% 

32.5% 

60% 

HI (Rf: 0.075) 

PA (Rf: 0.200) 

HI (Rf: 0.075) 
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In the DGGE profiles shown in Fig. 4.1A-G, co-migration of bands against the 16S 

standard ladder (SL) annotated strongly suggest the presence of bacterial communities in our 

nCFBR cohort. However, the 16S SL across the DGGE profiles is not strictly reproducible 

(compare Fig. 4.1D with Fig. 4.1E); therefore any observations noted here are postulated. 

Culture-negative patients (App. 3) defined by conventional microbiology also included those 

patients for whom culture of mouth flora was identified (n = 19 (27 %)). Multiple bacterial 

taxa were detected by PCR-DGGE technique across this sub-cohort of patients; these are 

indicated (Fig. 4.1A-G (blue arrows)). Patient number 21 was reported as culturing for no 

growth, but detection of bands is present, although these are very faint (Fig. 4.1C, blue arrow 

and circle). 

Culture-positive individuals harbouring P. aeruginosa and H. influenzae without co-

isolation of mouth flora and any other bacterial species numbered eight (11.4 %) and four 

(5.7 %) patients respectively (App. 3). The co-migration of bands against the annotated HI 

(Rf 0.075) and PA (Rf 0.200) 16S SL markers are shown in these patients (Fig. 4.1A, B, D, E, 

and F (green arrows and red arrows indicate exclusively HI and PA culture-positive 

individuals respectively)). In all of the exclusively culture-positive HI individuals’ (n = 4) co-

migration against the HI (Rf 0.075) 16S SL marker is confirmed (Fig. 4.1B, D, F, and G 

(green rectangles)), in addition to other multiple bands being detected. Co-migration of bands 

against the PA 16S SL marker in the exclusively culture-positive PA patients (n = 8) is 

identified (Fig. 4.1A, B, D, and F (red rectangles)) in all but one patient (number 47 (Fig. 

4.1E red circle)). As before, detection of numerous bacterial taxa in addition to P. aeruginosa 

is also shown across the DGGE profiles in Fig. 4.1A, B, D, and F. Interestingly, patient 

numbers 36, 38, 41, and 63 show co-migration of bands against the HI 16S SL marker (Rf 

0.075). In the culture-based data that was reported co-isolation of P. aeruginosa and H. 

influenzae did not occur in the above patients. 

Using phenotypic data supplied from the complied cohort’s medical database we next 

investigated the bacterial community profiles generated from DGGE using the Canoco for 

Windows (v. 4.5.1) and CanoDraw (v. 4.14) software. Analysis of this data was then used to 

perform an initial detrended correspondence analysis (DCA) giving a 1° axis length of 5.171 

(i.e., > 3 SD (standard deviation units of species turnover). Therefore canonical 

correspondence analysis (CCA (a constrained unimodel ordination method)) was chosen 
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subjecting the entire cohort (n = 70) with permutation testing under full model (499 

permutations) constraining the bacterial community profile variance with 14 measured 

variables: presence of an exacerbation at sampling (P = 0.002); culture-positive for 

pathogenic micro-organisms (P = 0.01); isolation of HI and PA from sputum (P = 0.006 and 

0.06 respectively); persistent isolation of PA (P = 0.06); intermittent isolation of PA (P = 

0.003); no isolation of PA (P = ND (not determined); antibiotic treatment within 1 month of 

sample submission (P = 0.2); both current colomycin and azithromycin treatment (P = 0.8 

and 0.6 respectively) gender (P = 0.2); FEV1% predicted (P = 0.7); frequent exacerbation (P 

= 0.9) and finally age (P = 0.6). From the CCA three of the above variables tested for were 

significant: current exacerbation at time of sampling (P = 0.002), culture-positive isolation of 

H. influenzae (P = 0.006), and intermittent isolation of P. aeruginosa (P = 0.003). These 

variables were significantly associated with the variance of the community structure (Fig. 

4.2). Culture-positive identification of P. aeruginosa from sputum almost approached 

significance (P = 0.062). 
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Fig. 4.2: Canonical correspondence analysis of whole patient nCFBR cohort. The ordination plot 
shows within cohort that the presence of an exacerbation in an individual (P = 0.002) and H. 
influenzae colonisation (P = 0.006) affects the bacterial community assembly. The first (x-axis) and 
second (y-axis) axes explain 18.8 % and 14.9 % of the variance respectively. From the 14 patient 
phenotypes in the analysis only five are shown for clarity. Symbols represented are: ○, exacerbated 
bacterial profile individual; ●, stable bacterial profile individual. Discreet variables are indicated by ▲: 
Ex, exacerbation present; HI +ve, isolation of H. influenzae from sputum culture; PA +ve, isolation of 
P. aeruginosa from sputum culture (blue arrow indicates discreet variable). Continuous variables 

indicated by arrows are FEV1% predicted and age. 
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In addition to the whole cohort and the ordination analysis we also investigated a sub-

cohort of nCFBR patients who presented with an exacerbation at time of sampling (n = 20). 

As before, an initial DCA was executed to ascertain the appropriate method of analysing the 

bacterial community. The primary axis length gradient was 5.918, thus CCA was chosen to 

perform constrained ordination analyses (Fig. 4.3). From the 13 variables analysed [gender (P 

= 0.5); age (P = 0.5); FEV1% predicted (P = 0.6); recent antibiotic treatment within one 

month (P = 0.2); both current colomycin and azithromycin treatment (P = 0.6 and 0.09 

respectively); isolation of PA and HI from sputum (P = 0.7 and 0.6 respectively); no isolation 

of PA (P = 0.1); intermittent isolation of PA (P = 0.5) and frequent exacerbators within sub-

cohort (P = 0.5)] none exerted a significant effect (P   ≤ 0.05) on the variance explaining the 

community structure with the exception of those individuals within sub-cohort who were 

chronically infected with P. aeruginosa which approached significance (P = 0.058). As a 

comparison to the exacerbated individuals, we next examined the stable sub-cohort. As 

before, an initial DCA was performed (1° axis length gradient = 4.966) followed by a CCA 

(Fig. 4.4) of the stable sub-cohort resulting in three factors that significantly influenced the 

bacterial community structure: recent antibiotic treatment (excluding maintenance inhaled 

colomycin or oral azithromycin administration) (P = 0.04), culture positive detection of PA 

(P = 0.038), and intermittent colonisation of PA (P = 0.004). Culturable H. influenzae was 

notable (P = 0.08), although within this particular sub-cohort, the isolation from the 

individuals analysed was small (n = 7). A final constrained ordination analyses was 

performed on the subset of patients for whom data on exacerbation frequency for the 

preceding 12 months was available (61 individuals). Although within this sub-cohort of 

frequently exacerbating patients (n = 38) they did not exhibit a community structure that was 

significantly different to non-frequently exacerbating patients (data not shown). 
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Fig. 4.3: Canonical correspondence analysis of exacerbated nCFBR sub-cohort. Within this sub-
cohort only chronic infection with P. aeruginosa (PA) approached significance (P = 0.058). The first (x-
axis) and second (y-axis) axes explain 16.1 % and 12.8 % of the variance respectively. From the 14 
patient phenotypes in the analysis only three are shown for clarity. Symbols represented are: □, 
individuals with chronic PA infection bacterial profile; ●, individuals with non-chronic PA infection 
bacterial profile. Discreet variables are indicated by ▲: chronic PA infection (blue arrow indicates 
discreet variable). Continuous variables indicated by arrows are FEV1% predicted and age. 
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Fig. 4.4: Canonical correspondence analysis of stable nCFBR sub-cohort. Discreet variables indicated 
by ▲ (blue arrows for clear indication) such as recent antibiotic treatment (RAbx) (P = 0.036), isolation 
of P. aeruginosa (PA) from sputum (P = 0.0038), and intermittent colonisation with P. aeruginosa (PAi) 
(P = 0.004) exerted an effect on the bacterial community structure in sub-cohort. Both gender and 
isolation of H. influenzae (HI) are shown in the CCA output as they were notable from the analysis 
performed (P = 0.06 and P = 0.08 respectively). The first (x-axis) and second (y-axis) axes explain 
19.4 % and 15.8 % of the variance respectively. Symbols represented are: □, individuals with recent 
antibiotic treatment bacterial profile; ●, non-treatment of antibiotics in patient bacterial profile. 
Continuous variables indicated by arrows are FEV1% predicted and age. 
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4.3.4 Fungal DGGE analysis 

From the DGGE analysis performed on whole cohort of the fungal community 1 distinct 

band position was produced in two sputum samples, one each in patients 50 and 65. The band 

was compared with a standard ladder of pure fungal isolates and co-migrated with the band 

corresponding to Candida glabrata. 

4.3.5 Bacterial community assembly 

A total of 2,450 Raup-Crick pair-wise comparisons were carried out and the analysis 

found that 71 (3 %) of pair-wise comparisons yielded statistically different (P   ≤ 0.05) 

communities than would be expected by chance; 225 (9 %) of pair-wise comparisons were 

statistically similar (P   ≥ 0.95) and the remaining 2,154 (88 %) had no statistical 

significance (P   0.05 ≥ ≤ 0.95). 

4.4 Discussion 

We have demonstrated three substantive findings from the data presented. Firstly, that the 

bacterial community profiles from exacerbating individuals were significantly different from 

those of stable patients (Fig 4.1). From the twenty individuals recruited into the study that 

were exacerbating when sputum was collected, fourteen individuals had not yet been 

prescribed antibiotics for their symptoms suggesting that the data was not confounded by 

therapeutic intervention. The remaining six patients were administered recent antibiotics. The 

impact of exacerbation in nCFBR is in contrast to studies on the lower airway bacterial 

community in the CF lung which significantly resulted in no change in community 

composition as a result of these exacerbations (Tunney et al., 2011, Sibley et al., 2008). Both 

culture-dependent and culture-independent studies in chronic obstructive pulmonary disease 

(COPD) suggest that acquisition of new strains is highly associated with a risk of a COPD 

exacerbation (Murphy et al., 2008, Sethi et al., 2002). Further studies are, therefore, needed to 

define if nCFBR exacerbations are more analogous to COPD exacerbations rather than CF 

exacerbations. 

Secondly, as in previous studies (Angrill et al., 2002) we found 27 % of samples were 

culture-negative for recognised pathogens. Molecular analyses demonstrated that these 

samples did contain a bacterial community with on average 7 taxa which was not 

significantly different from the culture-positive sputum. Measures of community diversity, 
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species richness and evenness did not indicate that these indices were significantly different 

between the communities from culture-positive and culture-negative sputum. Moreover, the 

community structure was also not significantly different between sputum samples that were 

culture-positive or -negative. The significance of those taxa that are not routinely identified 

by culture is unknown. Under some circumstances they may be pathogenic (Tunney et al., 

2008), or the increased bacterial load they represent may be associated with airway 

inflammation and decline in lung function (Weinrich and Korsgaard, 2008). These data are 

important when considering the management of a patient who fails to respond to antibiotic 

regimens based on sensitivity results of the predominant species with culture data. 

Finally, we have also shown that the presence of H. influenzae is significantly associated 

with a distinct microbial community structure (Fig 4.2). In other studies, it is the most 

common pathogen isolated from the nCFBR lung (Angrill et al., 2002, King et al., 2007, 

Pasteur et al., 2001) and is particularly prevalent in paediatric patients. However, in our study 

the most prevalent organism isolated from sputum was P. aeruginosa, which is in agreement 

with a much earlier study (Nicotra et al., 1995), followed by H. influenzae. Infection with H. 

influenzae typically follows a pattern of sequential colonisation by different strains of the 

bacteria (Grimwood, 2011). H. influenzae stimulates mucous production and adheres to and 

damages epithelial cells, there may also be a role for biofilm formation in resisting host 

clearance from the lung (King, 2011a). A previous study on a cohort of paediatric CF 

bronchiectasis patients identified that there was an inverse relationship between P. 

aeruginosa and H. influenzae in both culture and metagenomic analyses of the microbial 

communities (Klepac-Ceraj et al., 2010). However, it was unclear whether the inhibition of 

H. influenzae was due to repeated antibiotic exposure, the arrival of P. aeruginosa, or indeed 

both factors. It is striking in our study that H. influenzae was never co-isolated from sputum 

with P. aeruginosa, which supports the observations of Klepac-Ceraj et al. (2010). Moreover, 

H. influenzae was present in patients who had been subjected to long term and repeated 

antibiotic therapy. This suggests a potentially significant relationship between P. aeruginosa 

colonisation and the loss of H. influenzae from the LRT. P. aeruginosa has been shown to 

inhibit the growth of H. influenzae in vitro (Riley and Hoffman, 1986) and the interaction 

between these two major pathogens deserves further study. 



 

108 

 

There has been some evidence to suggest the stratification of patients with nCFBR based 

on colonisation with P. aeruginosa, with those chronically infected showing significantly 

lower lung function than intermittently or never colonised patients (Davis et al., 2006, King 

et al., 2007, Martínez-García et al., 2007). Our data supports these finding with a significant 

reduction in FEV1 % predicted (P = < 0.001) between those persistently versus intermittently 

colonised (P = 0.002) and persistently versus never colonised patients (P = < 0.001). The 

presence of P. aeruginosa has been previously linked to reduced diversity in the bacterial 

communities in the CF lung (Klepac-Ceraj et al., 2010). Bacterial communities isolated from 

older CF patients are less diverse, more phylogenetically similar and increasingly dominated 

by Pseudomonas than those of younger CF patients (Cox et al., 2010). Within the total 

nCFBR cohort there was not a significant association between a patient ever having been 

colonised by P. aeruginosa and the bacterial community structure. In the stable cohort (n = 

50) the bacterial communities which are intermittently colonised with P. aeruginosa are 

significantly different from those never or persistently colonised (Fig. 4.3). In CF, persistent 

colonisation is associated with mucoid strains of P. aeruginosa and those that have acquired 

mutations enhance their adaptation to the CF lung (Grimwood, 2011). In contrast, these 

adaptations are not observed in COPD strains with P. aeruginosa infections being more 

intermittent and sporadic (Rakhimova et al., 2009). Currently, the persistence of P. 

aeruginosa infection and its impact on the overall bacterial community in nCFBR is not 

known. Our data suggests that P. aeruginosa infections are less likely to persist than those 

seen in CF as only 23 of 70 patients showed persistent P. aeruginosa infection. It has also 

been shown that measures of quality of life are significantly lower in patients colonised by P. 

aeruginosa compared to those that were culture-negative or where H. influenzae was the 

predominant pathogen (Wilson et al., 1997). The factors determining persistence require 

further study as they may allow new therapeutic interventions and a reduction in the 

morbidity associated with persistent P. aeruginosa infection. 

In this study, the patient cohort was recruited from an nCFBR out-patients clinic and as a 

result the administration of different antibiotics to individuals within the cohort may be a 

confounding factor to these analyses. We identified 25 patients that were not receiving any 

antibiotics for one month prior to the collection of samples. Ordination analyses showed that 

these individuals did not have a significantly different bacterial community to those who 

were receiving antibiotic therapy. Clinical observations show that antibiotics suppress the 
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symptoms of exacerbations but have limited effects on chronic symptoms (Anwar et al., 

2008). This may be because the non-CF community as in the CF lung are spatially 

heterogeneous. As a result antibiotic treatment may be ineffective against infections in some 

areas of the lung (Willner et al., 2012). Our data suggests that antibiotics do not cause a 

significant perturbation of the bacterial community in the lower airway as determined by 

analysis of expectorated sputum. 

The assembly of the bacterial community in the nCFBR lung does not follow strictly niche 

or neutral processes, Whereas, the Raup-Crick similarity index of the cohort profiles showed 

that the majority (88 %) of pair wise comparisons between bacterial profiles indicated neutral 

(random) community assembly as is observed in the CF lung (van der Gast et al., 2011). 

Ordination analyses demonstrated a significant role of exacerbation and, colonisation by H. 

influenzae on the community structure suggesting that these factors were drivers for a 

specific niche community to develop. Similar observations have been reported in other 

microbial systems (Dumbrell et al., 2010) where initial community assembly is by random 

immigration of taxa. However, as a community structure develops and interacts with the host 

lung, environmental niches develop that are occupied by species best adapted to them, 

resulting in highly adaptable species such as P. aeruginosa being common components of the 

lung microbiome. There appears little consistent colonisation by fungal pathogens within this 

patient cohort, which is in contrast to the CF airway where fungi have been implicated with 

lung function decline and increased exacerbations (Bouchara et al., 2009, Chotirmall et al., 

2010). 

Although we have demonstrated that the lower airways of nCFBR patients are dominated 

by numerous bacterial taxa by a 16S rRNA PCR-DGGE strategy, there are still limitations in 

using this approach. Firstly, the reproducibility of the 16S SL across the DGGE profiles 

generated and their inherent variance (Fig. 4.1A-G) between these profiles means that the 

assignment of any bacterial taxa must be postulated. This is additionally confounded by the 

lack of sequencing data to support our claims when comparing the co-migration of bands in 

individual patients against the 16S SL markers. Indeed, it has been previously demonstrated 

that PCR fragments from different bacterial species can also migrate at the same rate 

confounding bacterial species identification even further (Jackson et al., 2000). Other caveats 

in using 16S rRNA PCR-DGGE technique to analyse microbial communities also include 
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heterogeneity in the 16S rRNA gene itself which can often lead to an overestimation of the 

bacterial community being investigated (Dahllöf et al., 2000, Nübel et al., 1996). Another 

problem is that the microbial population in using PCR-DGGE is misrepresented or biased 

because of the detection limits in using the technique, i.e., the rDNA amplicons generated 

only represent the dominant members present in the community (Muyzer and Smalla, 1998). 

Analysis of sputa using conventional microbiology resulted in either H. influenzae or P. 

aeruginosa being isolated; none were co-isolated in our whole patient cohort. However, using 

PCR-DGGE we have revealed that in four patients (Fig. 4.1D and F (numbers 36, 38, 41, and 

63)) who were exclusively culture-positive for P. aeruginosa, co-migration of bands 

corresponding to the HI 16S SL marker were identified. This identification of H. influenzae is 

postulated as comparing bands against a 16S SL is limited by several factors, such as the 

above. Additionally, the identification of these co-migrated bands could also be assigned 

either Haemophilus parainfluenzae or Haemophilus haemolyticus. However, without any 

sequencing data available from the multitude of bands in each patient presented here, the 

identification of H. influenzae and indeed any other bacterial taxon is presumptive at best. 

Previous studies have demonstrated that even with molecular phylotyping techniques, the 

assignment of species within the Haemophilus genus itself is difficult (Hedegaard et al., 

2001, Nørskov-Lauritsen et al., 2009). An additional culture-independent approach which 

would have supplemented the data from our PCR-DGGE analysis would have been to 

employ a deep sequencing strategy via 454-pyrosequencing. 

Using conventional microbiology resulted in the detection of 14 bacterial taxa (12 taxa 

were identified to species level, the two remaining taxa identified to genus level) across our 

patient cohort. However, in each patient the maximum number of bacterial taxa identified 

was only two species. Selective media in diagnostic microbiology laboratories is a mitigating 

factor in this. The use of artificial media is limited in that only 1 % of bacteria can be cultured 

in vitro (Amman et al., 1995, Rappé and Giovannoni, 2003, Staley and Konopka, 1985) this 

is in addition that several human diseases are now being increasingly recognised as being 

polymicrobial in nature. Nevertheless, the employment of selective media is still very useful 

for the determination of bacterial species morphotypes such as the mucoid phenotype in P. 

aeruginosa which is frequently observed in chronically infected CF patients (Foweraker, 

2009). 
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In the past decade it has been previously shown that using culture-independent techniques 

to investigate other chronic pulmonary diseases that LRT infections could be polymicrobial 

in nature, as seen in CF (Bittar et al., 2008, Harris et al., 2007, Rogers et al., 2005a, Rogers et 

al., 2004, Rogers et al., 2003) and increasingly in (COPD) (Cabrera-Rubio et al., 2012, Erb-

Downward et al., 2011, Hilty et al., 2010, Huang et al., 2010, Pragman et al., 2012, Sze et al., 

2012). Clinical microbiology studies in nCFBR executed a conventional microbiological 

approach using sputum as a diagnostic marker of bacterial infection. Presently, no studies 

exist that have investigated the lung microbiome of non-cystic fibrosis patients employing 

metagenomic culture-independent techniques Recently, a study by Maughan et al., (2012) 

profiled lung tissue samples in both nCFBR (n = 10) and CF (n = 21) patients by a 16S rRNA 

clone library approach. They demonstrated a significant bacterial diversity in the 

bronchiectasis patients analysed, 955 16S rRNA gene sequences were obtained respectively, 

pertaining to 20 genera being identified in the bronchiectasis sub-cohort alone. Additionally, 

the most prevalent genus was that of Pseudomonas which was present in all ten 

bronchiectasis patients profiled. Interestingly, H. influenzae was detected in only one nCFBR 

individual. Maughan, et al., (2012) suggest that this could be attributable to the sample type 

analysed; tissue sections from end-stage lung disease as opposed to sputum in earlier nCFBR 

studies in which the isolation of H. influenzae is highly prevalent (Angrill et al., 2002, King 

et al., 2007, Nicotra et al., 1995, Pasteur et al., 2001). The authors also concluded that no 

significant differences in the community structure between the nCFBR and CF patients were 

observed (Maughan et al., 2012). 

The recent study by Maughan, et al., (2012) partly corroborates our culture-independent 

data, in particular the finding of significant bacterial diversity in their cross-sectional cohort 

against our conventional microbiology data. However, in the 16S rRNA PCR-DGGE 

methodology we carried out, expectorated sputum was profiled for bacterial community 

analysis not lung tissue sections. Additionally, a comparison of the bacterial genera that was 

identified in the above study from our own data cannot be drawn as no sequencing data was 

available from our own DGGE profiles that were generated in our nCFBR cohort. 
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4.5 Conclusions 

We have demonstrated that the microbial community of the lower airway in nCFBR is 

dominated by bacterial taxa. Using a 16S rRNA PCR-DGGE approach has revealed several 

putative bacterial taxa in patients who were initially diagnosed as being culture-negative by 

using conventional microbiology, although these additional bands could represent the 

microbial flora in the URT. Furthermore, application of this culture-independent technique 

has enabled us to discern both H. influenzae and P. aeruginosa taxa identification in four 

patients who were all exclusively culture-positive for P. aeruginosa. This assignment of the 

above taxa in these patients is postulated as no sequencing data was obtainable from any of 

the PCR-DGGE profiles generated in conjunction to the limitations of the technique 

employed. 

Patient exacerbations appear to be associated with a significant shift in the bacterial 

community therefore, identifying the taxa responsible for these changes are a priority as they 

may help explain the cause of exacerbation events. H. influenzae, when present in the lower 

airway, is associated with a distinct community profile. However, there appears to be a 

negative correlation between the presence of P. aeruginosa and the persistence of H. 

influenzae. Understanding the nature of this interaction is of interest as it may cast light on 

the persistence of H. influenzae in the lower airway and the dynamics of the microbial 

community as a whole. In agreement with other studies we have demonstrated that P. 

aeruginosa is a significant pathogen in nCFBR. Patient cohorts do appear to be stratifiable on 

the basis of the presence and persistence of infection by this bacterium which may be relevant 

to the design of future intervention trials. 
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Chapter Five: Molecular fingerprinting 
and metagenomic analysis in a 
chronic obstructive pulmonary 

disease cohort 

5.1 Abstract 

Culture-independent studies of chronic obstructive pulmonary disease (COPD) are only 

recently coming to light. Little is known about the role of bacterial colonisation in stable 

COPD populations. Earlier studies used sputum and classical conventional microbiological 

techniques to characterise infection in COPD patients. Bronchoalveolar lavage (BAL) fluid 

was taken from the right lower lobe (RLL) from which genomic DNA (gDNA) was 

extracted. This was then used as template for amplification of 16S rRNA and 28S rRNA 

genes. Amplicons were then run out for molecular fingerprinting by denaturing gradient gel 

electrophoresis (DGGE). Metagenomic analysis of the 16S rRNA gene using 454-

pyrosequencing was also performed. Both culture-independent techniques and the bacterial 

taxa identified were then subjected to multivariate statistical analysis. Culture-based detection 

resulted in four species. The DGGE profiles produced a distinct number of bands in each 

sample. The co-migration of bands in each BAL sample was compared against a 16S and 28S 

standard ladder enabling putative assessment of which taxa were present. Metagenomic 

analysis generated 1799 unique OTUs (operational taxonomic units) with the dominant 

genera identified being Streptococcus, Arthrobacter, and Staphylococcus species respectively 

across patient cohort. Bacterial OTUs resolved to class-level were found to be significantly 

associated with lung function (P = 0.002), moderate and severe COPD (P = 0.04), and 

smoking status (P = 0.05) of patient phenotypes in cohort. Using two culture-independent 

approaches we have characterised a polymicrobial community in eleven clinically stable 

COPD patients. Against conventional microbial culture, we have demonstrated the detection 

of a greater number of bacterial taxa and identified potential drivers of community structure 

within the COPD lung microbiome. 
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5.2 Background 

Chronic obstructive pulmonary disease is a serious and highly debilitating condition which 

is an increasing global health problem, ranked the sixth most common cause of mortality 

worldwide in 1990 (Barnes, 2007), by the year 2020 it is predicted to become the third most 

common cause of death worldwide and fifth in the cause of disability (Lopez and Murray, 

1998). COPD is defined as “a disease state characterised by airflow limitation that is not fully 

reversible. The airflow limitation is usually progressive and associated with an abnormal 

inflammatory response of the lungs to noxious particles and gases” (Pauwels et al., 2001). 

Overall, the most determining factor in the cause of COPD is cigarette smoking (> 95 % of 

cases in developed countries); however, several other risk factors have been proposed: 

genetic disposition, poor diet, occupational exposure, and air pollution (Barnes et al., 2003). 

COPD patients commonly exhibit a disparate, overlapping, multi-factorial pathology of the 

lower respiratory tract (LRT); including chronic bronchitis, emphysema, mucus plugging, 

asthma, bronchiectasis, and bronchiolitis (Stockley et al., 2009). Chronic illnesses such as 

cardiovascular disease, depression, osteoporosis, and lung cancer have also been shown to be 

adjunct risk factors in patients with COPD (Decramer et al., 2008). Lung pathology in COPD 

patients leads to episodes of acute exacerbations, i.e., increased dyspnoea, cough, sputum 

volume and purulence. Over time as COPD progresses, these exacerbations both increase in 

frequency and severity leading to higher rates of morbidity and mortality in patients 

(Wedzicha and Wilkinson, 2006). 

Historically, the cause of exacerbations was hypothesised to be predominantly by tobacco 

smoke. However, in the past two decades the cellular and pathological mechanisms that occur 

during bacterial and viral infections in the respiratory tract has been defined more clearly. In 

light of this knowledge, there is considerable evidence that infection in COPD patients is now 

the predominant cause of exacerbations (Sethi et al., 2002, Papi et al., 2006, Murphy et al., 

2008, Murphy et al., 2005), although the roles that bacterial and viral agents predispose 

COPD patients to colonisation or infection with initial development of this disease is less 

clear and still controversial (Huang and Lynch, 2011). Lung structural damage caused by 

COPD gives rise to disruption of the innate respiratory tract defences causing mucus gland 

hypertrophy, hypersecretion, mucocilliary escalator disruption, airway antimicrobial peptide 

down regulation, and impaired alveolar macrophage function, facilitating the adherence of 

bacteria when they come into contact with the lower epithelial airways (Bourke, 2002, Sethi 
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et al., 2009). Colonisation of bacteria in the lower airways induces not only chronic infection 

in some cases, but also elicits an inflammatory response in COPD patients; both of these 

factors mitigate disease progression. This phenomenon is known as the vicious circle 

hypothesis proposed several years ago (Murphy and Sethi, 1992). 

The role of bacteria in exacerbations has been primarily investigated in COPD using 

culture-dependent approaches. These methods have led to the routine isolation of four 

bacterial pathogens, non-typeable Haemophilus influenzae (NTHI), Moraxella catarrhalis, 

Streptococcus pneumoniae, and Pseudomonas aeruginosa (Sethi and Murphy, 2001); 

acquisition of new bacterial strains relating to these four species isolates has been previously 

shown to induce exacerbations in COPD patients resulting in notably increased airway 

inflammation in contrast to those COPD patients whose exacerbations were not associated 

with a new strain (Sethi et al., 2007). Indeed, bacterial infection in COPD is associated with ~ 

50 % of exacerbations with isolation of H. influenzae species accounting for 20-30 % of 

known bacterial isolates in COPD patients (Huang and Lynch, 2011). Other bacterial isolates 

such as Staphylococcus aureus, Haemophilus parainfluenzae, Haemophilus haemolyticus, 

and members from the Enterobacteriaceae family have also been detected in COPD but their 

role in exacerbating the condition of the disease, particularly in stable COPD patients is 

unlikely (Sethi and Murphy, 2008). The use of culture-independent techniques exploiting the 

bacterial 16S rRNA gene for metagenomic analysis has only recently come to light in COPD 

(Erb-Downward et al., 2011, Hilty et al., 2010, Huang et al., 2010), unlike that of CF disease 

where several studies have been previously published (Bittar et al., 2008, Harris et al., 2007, 

Rogers et al., 2005a, Rogers et al., 2004, Rogers et al., 2003). Publications in COPD using 

these culture-independent techniques have successfully demonstrated that the lower airways 

of COPD subjects are composed of a resident microbial community (termed the lung 

microbiome), critically, said studies have also elucidated that the LRT in healthy individuals 

is also colonised with bacteria thus challenging the notion that the lower airways are a 

completely sterile environment. Definitively speaking, the presence of a lung microbiome in 

healthy individuals must be approached with caution as they are practical challenges in 

sampling the lower airways in human subjects such as oropharyngeal contamination in 

addition to the establishment of what actually constitutes a “healthy” individual in terms of 

pulmonary disease, as some conditions can be sub-clinical in their presentation. These 
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measures must also be expressed when assessing the lung microbiome in other chronic 

pulmonary diseases previously mentioned. 

As well as bacterial, viral infection is hypothesised to be a major determinant in inducing 

acute exacerbations in COPD patients especially during the winter season (Wedzicha, 2004). 

Viruses such as influenza A and B, rhinovirus, and adenovirus are highly prevalent in the 

community during these months and could be triggers of acute exacerbations in COPD 

patients. Pulmonary function decline and increases in clinical symptom severity in viral and 

bacterial co-infection in COPD patients has also been shown in exacerbations thus 

lengthening hospital bed stay (Papi et al., 2006, Wilkinson et al., 2006). Fungal infection 

induced acute exacerbation in COPD is currently undefined and their pathogenesis is not yet 

known, however, associations between the eukaryotic fungal pathogen Pneumocystis jiroveci 

and lower airway colonisation in COPD has been demonstrated (Morris et al., 2004). 

This chapter describes a comparison between traditional culture-based detection versus 

both molecular fingerprinting and a metagenomic approach via DGGE and next generation 

sequencing provided by 454-pyrosequencing from the eleven clinical samples analysed. 

Colonisation of bacteria in the lower airways due to the impairment of the innate immune 

system in the respiratory tract in COPD patients is hypothesised to be major contributing 

factor for the induction of acute exacerbations. This constant microbe-host agonist 

autoimmune response plays a major role in the damage of the lung tissue architecture as in 

the vicious circle hypothesis. The investigation of these colonising bacteria, and indeed viral 

infection, in COPD is critical for effective prophylactic and antibiotic administration regimen 

development to treat this increasingly significant disease. 

5.3 Results 

5.3.1 Patient cohort analysis 

From the 11 patients within the cohort (App. 5), they were two females (CS#9 and CS#12) 

and nine males, of which 3 were current smokes (CS#5, CS#9, and CS#10) the rest ex-

smokers (n = 8). Patient CS#11 was unable to submit a BAL sample so bronchial secretions 

(BS) were produced instead. Mean age (65), height (1.65 m), forced expiratory volume in one 

second (FEV1) (1.40), and FEV1% predicted (50 %) of cohort were also calculated 
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respectively. The FEV1% predicted was also used to ascertain how severe the COPD was in 

each patient according to the GOLD (Global Initiative for Chronic Obstructive Lung Disease) 

stages of COPD. Patients at time of sampling presented with either GOLD stage II (i.e., 

moderate COPD clinical diagnosis; FEV1/FVC (forced vital capacity) < 0.7 L or 50 % ≤ 

FEV1 < 80 % predicted (CS#4, CS#7, CS#9, and CS#12)) or GOLD stage III (i.e., severe 

COPD; FEV1/FVC < 0.7 L or 30 % ≤ FEV1 < 50 % predicted (CS#1, CS#3, CS#5, CS#6, 

CS#8, CS#10, and CS#11)). Two patients were not receiving treatment for their COPD at the 

time of sampling (CS#4 and CS#9); only one patient (CS#4) had a previous high-resolution 

computed tomography (HRCT) scan resulting in a diagnosis of emphysema in addition to 

their COPD condition. 

5.3.2 Culture-dependent analysis of clinical samples 

All eleven patients enrolled in the study had routine culture and sensitivity testing 

performed in the Microbiology Department, Freeman Hospital, Newcastle upon Tyne, by 

Health & Care Professions Council (HCPC) registered Biomedical Scientists on the clinical 

samples submitted, i.e., 10 BALFs and 1 BS sample. Note that sample numbers do not follow 

consecutively as COPD subject 2 (CS#2) was later found not to be diagnosed with COPD and 

was subsequently removed from this study. From the eleven COPD subjects, five were 

positive for isolation of potentially pathogenic bacterial species, in which four COPD 

subjects’ yielded typical bacterial species associated with COPD exacerbations (CS#1, S. 

pneumoniae; CS#3, H. influenzae; CS#8, M. catarrhalis, H. influenzae; and CS#10, M. 

catarrhalis). Detection of an atypical pathogen in COPD was observed in CS#6 in which 

growth for Chryseobacterium indologenes was positive. The remaining six other COPD 

subjects yielded culture-negative growth; CS#4, CS#5, CS#7, CS#9, CS#11, and CS#12. Out 

of the 11 COPD patients, only CS#3 was positive for the growth of the yeast forming 

Candida spp. (species name was undetermined form the culture-based data provided). 

5.3.3 Ecological analysis of bacterial and fungal communities by DGGE 

Molecular fingerprinting analysis by DGGE of the 11 COPD subjects yielded 23 and 18 

distinct bands for the bacterial and fungal community analysed respectively. From the 

bacterial DGGE profile generated (Fig. 5.1) a mean of 8 bands per lane was deduced (2-17 

bands present per lane), whereas in the fungal DGGE profile (Fig. 5.2), band range was less, 

2-10 bands per lane, with a mean value of 5 bands per lane. Each individual band from the 
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DGGE profiles produced was thus assumed to be a single taxon or operational taxonomic unit 

(OTU) from which measurements of species richness and evenness could be derived. 

Shannon diversity (H′) indices were calculated and gave a mean of 1.39 (range, 0.423-2.28) 

for bacterial and 1.24 (range, 0.553-2.02) for fungal diversity present across cohort. 

Qualitatively, from the bacterial DGGE profile (Fig. 5.1), there is a strong band presence 

across the cohort towards the top of the gradient (upper 25 % of gel image shown (Fig. 5.1)), 

in which the bands present correspond to the bacterial organisms H. influzenae (Rf 0.075), S. 

aureus (Rf 0.100), Ralstonia pickettii (Rf 0.140), and P. aeruginosa. Although, these four 

bands migrated very closely together, the most prominent bands of the four reference 

organisms is that of P. aeruginosa and H. influenzae. Co-migration of bands matching that of 

P. aeruginosa was in all COPD subjects with the exception of CS#6. Samples containing 

bands that co-migrated with H. influenzae were present in CS#5, CS#7, CS#8, CS#10, 

CS#11, and CS#12. Bands that migrated further down the denaturing gradient, i.e., in the 

middle, are present, although across cohort these tend to be fainter than those produced in the 

upper 25 % of the denaturant gel. Migration of bacterial taxa at the bottom of the denaturing 

gradient is shown in only two patients (CS#11 and CS#12). Three COPD subjects (CS#6, 

CS#11, and CS#12) showed possible co-migration of bacterial taxa corresponding to the 

atypical cystic fibrosis pathogen Achromobacter xylosoxidans (Rf 0.560). 

From the fungal DGGE profile (Fig. 5.2), Aspergillus fumigatus, Exophiala dermatitidis, 

and Scedosporium apiospermum organisms whose bands all co-migrated very closely 

together (Rf values 0.660, 0.700, and 0.770 respectively), only samples CS#6 (Rf 0.740), 

CS#8 (Rf 0.700), and CS#12 (Rf 0.740) produced possible bands corresponding to these three 

fungal organisms. In contrast, four COPD patients, CS#1, CS#6, CS#7, and CS#9 revealed 

fungal taxa that co-migrated with the yeast-forming species Candida glabrata (Rf 0.340). 

However, in CS#7 a band was identified that co--migrated with Candida albicans (Rf 0.420). 
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Fig. 5.1: DGGE profile (32.5-60 % denaturing gradient) showing 
amplified V3 rDNA fragments in COPD cohort. Direction of 
denaturing gradient and migration of bands during electrophoresis is 
shown (arrow). Lane numbers: 1, 16S standard ladder (SL); 2, CS#1; 
3, CS#3; 4, CS#4; 5, CS#5; 6, CS#6; 7, 16S SL; 8, CS#7; 9, CS#8; 
10, CS#9; 11, CS#10; 12, CS#11; 13, CS#12; 14, 16S SL. Rf values 
of reference organisms in 16S SL are also shown indicating migration 
distances of bands in comparison to distinct bands seen in COPD 
subjects. AX, Achromobacter xylosoxidans; BCC, Burkholderia 
cepacia complex; HI, Haemophilus influenzae; PA, Pseudomonas 
aeruginosa; RP, Ralstonia pickettii; SA, Staphylococcus aureus and 
SM, Stenotrophomonas maltophilia. 
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Fig. 5.2: DGGE profile (40-60 % denaturing gradient) showing 
amplified U1-U2 rDNA amplicons in COPD cohort. Direction of 
denaturing gradient and migration of bands during electrophoresis is 
shown (arrow). Lane numbers: 1, 28S standard ladder (SL); 2, CS#1; 
3, CS#3; 4, CS#4; 5, CS#5; 6, CS#6; 7, 28S SL; 8, CS#7; 9, CS#8; 
10, CS#9; 11, CS#10; 12, CS#11; 13, CS#12; 14, 28S SL. Rf values 
of reference organisms in 28S SL are also shown indicating migration 
distances of bands in comparison to distinct bands seen in COPD 
subjects. AF, Aspergillus fumigatus; CA, Candida albicans; CD, 
Candida dubliniensis; CG, Candida glabrata; CP, Candida 
parapsilosis; ED, Exophiala dermatitidis and SAP, Scedosporium 
apiospermum. 
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Ordination plots using Canoco for Windows (v. 4.5.1) of both the bacterial and fungal 

communities in the COPD cohort analysed were produced. The bacterial community from the 

DGGE profile generated was analysed by detrended correspondence analysis (DCA) 

producing a 1° axis length of 2.336 (i.e., < 3 SD (standard deviation units of species turnover) 

so a redundancy analysis (RDA; a constrained linear ordination method) was executed to 

analyse the relationship between the bacterial taxa present and environmental variables 

within cohort at time of sampling. Using Monte Carlo full model permutation testing (499 

permutations), analysis of both the contiguous and discreet variables (seven in total 

including: age (P = 0.612); FEV1% predicted (P = 0.488); gender (P = 0.374); GOLD COPD 

stage (P = 0.662); height (P = 0.444) and smoking status (P = 0.274)) against the bacterial 

community resulted in no significant association between these variables and the variance 

seen in the community profile. GOLD COPD stages II and III discreet variables were 

removed from the RDA ordination plot for clarity (Fig. 5.3). The two axes explained 61.5 % 

and 19.3 % of the variation. 

The fungal community analysed by DGGE was also used to generate a second ordination 

plot in which DCA resulted in a 1° axis length of 3.745 (> 3 SD), therefore canonical 

correspondence analysis (CCA; a constrained unimodel ordination method) was utilised to 

investigate the relationship between the fungal taxa and seven environmental variables within 

cohort as above; age; FEV1% predicted; gender; GOLD COPD stage; height and smoking 

status. As before, full model Monte Carlo permutation execution of the fungal community 

present and the environmental variables resulted in no significant associations between the 

variance of the community profiles and the discreet and continuous variables (age (P= 0.456); 

FEV1% predicted (P = 0.75); gender (P = 0.526); GOLD COPD stage (P = 0.3); height (P = 

0.252) and smoking status (P = 0.596)). The first and second axes explained 31.8 % (x-axis) 

and 26.7 % (y-axis) variation observed in the dataset (Fig. 5.4). As previously, GOLD COPD 

stages II and III discreet variables were removed in the fungal CCA ordination plot for the 

purposes of clarity. 
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  Fig. 5.3: Redundancy analysis showing ordination plot of the bacterial community analysed by 
DGGE and environmental variables in COPD cohort. An association with the relationship between 
community structure and environmental variables was not significant. The x-axis explains 61.5 % 
of the variation, whereas the y-axis explains 19.3 % respectively. Environmental factors shown 
consisted of both continuous (height and FEV1% predicted) and indiscreet variables (smoking 
status and patient gender). CS.X, COPD subject number (● male; ○ female); ES, ex-smoker; F, 
female; FEV1 Pr, FEV1% predicted; M, male. 
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Fig. 5.4: Canonical correspondence analysis showing ordination plot of the fungal community 
analysed by DGGE and environmental variables in COPD cohort. Associations with the 
relationship between community structure and environmental variables were not significant. The 
x-axis explains 31.8 % of the variation, whereas the y-axis explains 26.7 % respectively. 
Environmental factors shown consisted of both continuous (height and FEV1% predicted) and 
indiscreet variables (smoking status and patient gender). CS.X, COPD subject number (● male; ○ 
female); ES, ex-smoker; F, female; FEV1 Pr, FEV1% predicted; M, male. 
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5.3.4 Metagenomic analysis by 454-pyrosequencing of bacterial 

community 

Analysis of the entire cohort by 454-pyrosequencing from extracted gDNA using the 

bacterial tag-encoded FLX-Titanium amplicon pyrosequencing (bTEFAP) method created 

16S rDNA amplicon libraries (Dowd et al., 2008). Following quality control procedures, 

pyro-amplicons consisting of 380 base pairs (bp) in length were obtained and then assigned to 

1,799 unique OTUs generated from the metagenomic data analysis. Following this, a 

rarefaction curve was generated to ascertain the diversity of the bacterial community present 

in the clinical samples analysed from the sampling effort (Fig. 5.5). The number of reads per 

sample and unique number of OTUs assigned are summarised below in table 5.1. 

Table 5.1: Number of reads and OTUs assigned per COPD subject from metagenomic 

analysis. 

COPD subject number Number of reads Number of unique OTUs assigned 

CS#1 2415 504 

CS#3 2715 532 

CS#4 2308 136 

CS#5 3536 447 

CS#6 2239 271 

CS#7 2657 55 

CS#8 1775 126 

CS#9 2122 182 

CS#10 2148 366 

CS#11 542 51 

CS#12 557 3 

 

We next investigated the most abundant bacterial genera represented within the 

community in cohort in rank order. A large number of unique OTUs (1,799) were generated 

from the 454-pyrosequencing reads therefore any OTUs assigned with < 100 reads per COPD 

subject were excluded from further analysis. Consequently, assignment of OTUs with > 100 

reads was included for further metagenomic analysis of cohort. After this meta-data analysis 

criterion was met, this resulted in 36 OTUs being designated at genus-level within the cohort, 
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of which 29 were classified bacterial genera and 7 designated unclassified (Fig. 5.6). Further, 

from the rankings attributed to the most abundant OTUs, the percentages of these OTUs per 

COPD subject was determined reflecting the bacterial community at genus level that was 

present at time of sampling (Fig. 5.7). In terms of abundance, Streptococcus, Arthrobacter, 

and Staphylococcus were the most prevalent. Strikingly, no OTUs representing the 

Pseudomonas genus were identified within cohort. Investigating individual COPD subjects 

displayed a heterogeneous bacterial population across the cohort when resolved to genus-

level. In samples CS#7, CS#11, and CS#12 the phylogenetic diversity was lower than that 

seen in the other COPD subjects. Both CS#7 and CS#11 had four bacterial genera present: 

Granulicatella Prevotella, Streptococcus, and Veillonella. CS#12 was comprised of only two 

dominant bacterial genera, Staphylococcus and Streptococcus respectively in the BAL sample 

analysed. The most abundant genus-level OTUs (i.e., 36) were then resolved to class-level in 

which 9 different bacterial classes were assigned: Acidobacteria; Actinobacteria; Bacilli; 

Bacteroidia; Clostridia; α-proteobacteria; β-proteobacteria; γ-proteobacteria and δ-

proteobacteria (Fig. 5.8). All COPD subjects were dominated with the Actinobacteria class, 

with the exception of CS#7, CS#11, and CS#12. These three patients were most prevalent for 

Bacilli class. The second most dominant bacterial class was that of the α-Proteobacteria, 

again though, this class was absent in patients CS#7, CS#11, and CS#12. 

Ordination analysis using the bacterial community at genus-level was performed. Using 

the most abundant OTUs generated from the metagenomic analysis (i.e., > 100 reads per 

OTU designated). An initial DCA was executed to analyse the relationship between the 

COPD subject bacterial genera in cohort against both discreet and continuous variables 

resulting in a 1° axis length of 10.776 (axis length > 3 SD). Therefore, canonical 

correspondence analysis was performed (data not shown as CCA ordination plot is indistinct) 

resulting in two significant environmental variables: gender (P = 0.026) and height (P = 

0.03). Other environmental variables investigated were not significant such as age (P = 

0.218), FEV1% predicted (P = 0.136), GOLD COPD stage (P = 0.076), and smoking status 

(P = 0.268). Following this, a further investigation of the bacterial community variance at 

class-level (Fig. 5.9) and their associations with the discreet and continuous variables was 

conducted in order to ascertain what were the dominant drivers in shaping the COPD 

community structure. Using CCA (DCA yielded a 1° axis length of 16.969 (> 3 SD)) and the 

above environmental variables against the nine different bacterial phylotypes represented at 
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class-level within cohort, two significant factors were identified: FEV1% predicted (P = 

0.002) and GOLD COPD stage (P = 0.04). Smoking status of the COPD subjects, i.e., ex-

smoker or current smoker approached significance (P = 0.05). The remaining continuous and 

discreet variables consisting of age, gender, and height from the CCA output were not 

significant as P-values of 0.186, 0.132, and 0.14 were all obtained. Both bacterial phylotypes 

and environmental variables in cohort by CCA (78.4 % (x-axis) and 12.1 % (y-axis) 

accounted for the percentage of variation explained) are shown in the final output (Fig. 5.9).
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Number of sequence reads 

Fig. 5.5: Rarefaction curve showing sample coverage diversity in COPD cohort 
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Fig. 5.5: Rarefaction curve 
showing sample coverage 
diversity in COPD cohort. Both 
CS#3 and CS#5 displayed the 
highest amount of sample 
diversity, whereas CS#11 and 
CS#12 exhibited the lowest 
amount of diversity in their 
samples analysed. 
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Bacterial genera classification 

Fig. 5.6 Ranking of bacterial genera within COPD cohort 
Fig. 5.6: Ranking of bacterial 
genera within COPD cohort. 
The most abundant genera 
across cohort numbered 36 
after exclusion of those OTUs 
that generated < 100 reads 
per COPD subject. 
Streptococcus, Arthrobacter, 
and Staphylococcus were the 

most abundant bacterial 
genera present in patient 
cohort from the 454-
pyrosequencing analysis. 
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Fig. 5.7: Bacterial genus population in COPD cohort 
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  Fig. 5.7: Bacterial genus 
population in COPD cohort. A 
percentage population of the 
bacterial genera composition 
in the community of each 
COPD subject analysed from 
the 454-pyrosequencing data 
generated. With the exception 
of CS#7, CS#11, and CS#12, 
a heterogeneous population is 
shown in each of the COPD 
subjects. 
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Fig. 5.8: Bacterial class-level population in COPD cohort 
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 Fig. 5.8: Bacterial class-level 
population in COPD cohort. 
Resolution of the 36 most 
abundant genera at class-level 
reveals that all of the COPD 
subjects with the exception of 
CS#7, CS#11, and CS#12 are 
populated in bacterial 
members comprised of the 
Actinobacteria and α-

proteobacteria. The Bacilli 
class completely dominates 
CS#12, but also constitutes a 
significant member of 
population bacterial class in 
CS#7 and CS#11. 
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Fig. 5.9: Canonical correspondence analysis of bacterial phylotypes resolved to class-level 
showing potential drivers of the COPD bacterial community in the COPD subjects analysed. 
Associations with the relationship between community structure and environmental variables were 
significant in FEV1% predicted (P = 0.002), GOLD COPD stage status (P = 0.04), and smoking 
status in patient (P = 0.05). The x-axis explained 78.4 % of the variation and the y-axis explained 
12.1 % of the variation respectively. Environmental factors shown consisted of both continuous 
(height and FEV1% predicted) and indiscreet variables (smoking status and patient gender). 
CS.X, COPD subject number (● male; ○ female); ES, ex-smoker; F, female; FEV1 Pr, FEV1% 
predicted; M, male. Bacterial class abbreviations: Acido, Acidobacteria; Actino, Actinobacteria; 
Bacteroi, Bacteroidia; Clostrid, Clostridia; α-proteo, α-proteobacteria; b-proteo, β-proteobacteria; 
g-proteo, γ-proteobacteria. 
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5.4 Discussion 

Although patient cohort was small (n = 11), using both a PCR-DGGE mediated approach 

in conjunction with 454-pyrosequencing metagenomic analysis we have been able to 

demonstrate several factors in COPD. We have identified the presence of a polymicrobial 

community in the RLL of the LRT not only comprised of multiple bacterial genera, but 

strikingly, also perhaps a fungal element. Further, comparison of the bacterial communities 

identified and their respective populations within each COPD subject demonstrate that they 

are heterogeneous in nature. Both the bacterial and fungal community generated when a 

PCR-DGGE culture-independent approach was taken has provided us with a ‘snapshot’ of the 

polymicrobial communities exhibited. Both of these community profiles and their respective 

ordination plots did not reveal any significant factors in the community structure. However, 

execution of a deep-sequencing strategy and the metagenomic data analysed in addition to the 

relationship between the bacterial community and patient phenotypes produced significant 

outcomes in terms of the community structure. The resolution of OTUs from 454-

pyrosquencing metadata at two levels, genus- and class-level, with CCA of the bacterial 

element in COPD subjects where environmental variables within cohort were related yielded 

varying results; gender and height were significant at bacterial genus-level. Resolution at 

class-level however revealed that lung function (FEV1% predicted) and either moderate or 

severe COPD progression were seen as significant in conjunction with smoking status of 

individuals. 

5.4.1 Bacterial community analysis in COPD cohort by PCR-DGGE 

From the PCR-DGGE bacterial community of all COPD subjects some qualitative 

observations can be made. Intense banding in the upper section of the gel at the top of the 

gradient suggests that the lungs of the COPD subjects are heavily colonised with bacteria that 

have a low GC-ratio genomic content such as H. influenzae, M. catarrhalis, P. aeruginosa, 

and S. pneumoniae (Fig. 5.1). Indeed, this has previously been shown in patients suffering 

from acute exacerbations in COPD as these same bacterial species were isolated from 

positive culture from expectorated sputa in 59 patients (Larsen et al., 2009). However, in this 

cohort, sampling strategy involved lower airway BAL from the RLL, not expectorated 

sputum. Additionally, our patient cohort on presentation at clinic was free of the symptoms 

associated with those of acute exacerbations. 
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It has been hypothesised that initial colonisation of pathogenic organisms in patients with 

COPD in the lower airways elicits an immune response to the pathogen in the host whilst 

inducing an acute exacerbation. However, acquisition of the same bacterial strain at a later 

encounter induces a less frequent and severe exacerbation strongly indicating that despite the 

impairment of the lung innate immune defences, there is still an adaptive immune response in 

play mediating partial protection against respiratory pathogens (Sethi et al., 2004). A study 

recently published, described that the lower airways in healthy individuals, i.e., control 

subjects in their patient cohorts respectively, were not sterile, challenging the bronchial tree 

sterility hypothesis (Hilty et al., 2010) reported by other authors (Stockley, 1998, Wilson et 

al., 1996). Hilty, et al., (2010) also analysed the microbial communities in 5 COPD patients, 

in which pathogenic Proteobacteria, particularly Haemophilus spp. were highly prevalent 

(Hilty et al., 2010). The sampling strategy adopted by Hilty, et al., (2010) utilised disposable 

sheathed cytology brushes and sampled the left upper and right lower lobes of the subject’s 

lungs allowing for a more extensive analysis of the lower airways. Our preliminary data from 

the PCR-DGGE profile (Fig. 5.1) would support these findings of a microbial community 

which is present in the LRT of COPD individuals, in particular low GC-count bacterial 

species like the above. 

Execution of a PCR-DGGE approach in this patient cohort yielded the detection of 23 

putative bacterial taxa across the 11 COPD individuals enrolled into this study, with a 

maximum of 88 bacterial taxa detected in total (Fig. 5.1). The use of DGGE in ascertaining 

these bacterial taxa are reputable as no sequencing data was obtained from any of the co-

migrated bands against the 16S standard ladder (SL) in each of the COPD subjects profiled. 

This is against the observed four bacterial species (H. influenzae, M. catarrhalis, S. 

pneumoniae, and C. indologenes) isolated from the BAL specimens using conventional 

microbiological techniques. However, despite the greater detection of microbial species using 

DGGE to investigate the bacterial community in our COPD cohort, this is insignificant to our 

own metagenomic analysis in which 1,799 unique OTUs were generated from 454-

pyrosequencing. This is in addition to several recently culture-independent studies 

investigating the lower airways of COPD patients in which the number of OTUs and 

sequence reads was far greater than both the PCR-DGGE and conventional microbiology 

approach presented here. Hilty, et al., (2010) identified ~ 3,000 sequence reads in their study 

(n = 5), Erb-Downward, et al., (2011) averaged ~12,000 sequences per sample (n = 14), Sze, 
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et al., (2012) identified > 1,400 OTUs (n = 8), and finally, Cabrera-Rubio, et al., (2012) 

generated ~ 1,033 sequences from the 16S rRNA gene metagenomic analysis corresponding 

to ~ 500 bacterial species per sample (n = 6). 

Comparing the bacterial organisms in the 16S SL against the bacterial taxa present in the 

DGGE profile (Fig. 5.1) several confounding factors can be demonstrated. In preparing the 

16S SL via PCR-DGGE of the bacterial isolates, an apparent observation was the 

heterogeneous nature of the 16S rRNA gene leading to multiple bands migrating through the 

denaturing gradient by an individual bacterial isolate. This finding has already been 

demonstrated, indicating that many bacterial species possess several copy numbers of the 16S 

rRNA gene which can lead to an overestimation of the bacterial community (Dahllöf et al., 

2000, Nübel et al., 1996). Additionally, when using 16S rRNA PCR-DGGE technique for 

microbial community analysis it has also been shown that amplicons from different bacterial 

species can migrate at the same rate (Jackson et al., 2000). This co-migration of different 

bacterial species can pose problems for the excision of bands for Sanger sequencing 

applications ― i.e., the retrieval of clean DNA sequences from individual bands (Muyzer and 

Smalla, 1998). No sequencing data was generated from our cohort using PCR-DGGE 

technique in both the bacterial and fungal communities investigated. Construction of the 16S 

SL by PCR-DGGE has revealed the above caveats, thus an accurate depiction of the 

microbial community detected in our COPD cohort is putative at best. 

Other drawbacks of using the 16S rRNA PCR-DGGE approach adopted here also need to 

be taken into consideration. The employment of a ‘semi-nested’ approach for PCR 

amplification of the V3 region could have led to additional biasing factors in the final DGGE 

profile produced (Fig. 5.1). Furthermore, the attachment of a GC-clamp to the 5′-end of either 

the forward or reverse primers tends to lower PCR amplification efficiency in addition to 

increasing the risk of artefact generation and heteroduplex formation (Ferris and Ward, 1997, 

Lee et al., 1996, Nocker et al., 2007, Ruano and Kidd, 1992). A critical issue in using PCR-

DGGE technique is its resolution, i.e., the maximum number of different DNA fragments in a 

microbial community that can be separated out in the denaturing gradient (Muyzer and 

Smalla, 1998). Bacterial populations that constitute ≥ 1 % of the total community can be 

detected by PCR-DGGE as previously shown (Murray et al., 1996, Muyzer et al., 1993), 

however, the rDNA amplicons obtained in PCR-DGGE mediated studies only reveals the 
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predominant species present in the community (Muyzer and Smalla, 1998), thus the total 

population analysed is misrepresented or biased. Nevertheless, despite these inherent 

limitations, DGGE is a useful technique in comparing community structural changes in 

response to perturbations or to identify differences observed when comparing bacterial 

communities in disparate micro-habitats (van der Gast et al., 2008). This would have been 

invaluable if the BAL samples from our COPD cohort were followed longitudinally as 

opposed to a cross-sectional enrolment. To date, no present study using a culture-independent 

approach has addressed this issue. 

Traditional culture-based techniques using bacterial morphology suffer from several 

drawbacks such as the inability of selective media to isolate fastidious and anaerobic bacteria 

(Staley and Konopka, 1985), in addition to the difficulty of differentiating colonial 

morphology on plates after swarming with the mucoid phenotype of P. aeruginosa (van 

Belkum et al., 2000). An over-reliance in routine diagnostic microbiology for assessment of 

the aetiology of microbial infections in COPD is concerning because of the differentiation 

between colonisation and infection in the host (Lentino and Lucks, 1987). In spite of these 

limitations, the conventional microbiology data presented here is strongly corroborated by 

several culture-dependent lower airway investigations in which both stable and exacerbating 

COPD patients were examined by using quantitative microbial culture methods on BAL 

samples (Cabello et al., 1997, Soler et al., 1999, Soler et al., 1998). As well as the established 

microbial agents associated with COPD exacerbations, the identification of C. indologenes in 

CS#6 is unusual as infection with this organism is rare as it is an environmental microbe 

(Hsueh et al., 1996). However, in a previous study, C. indologenes has been implicated in 

causing pneumonia in mechanically ventilated patients in a critical care unit (Bonton et al., 

1993), but there was no report of any patients enrolled into this study as being diagnosed with 

COPD. A recent retrospective study has been published in which Chen, et al., (2012) 

investigated 125 reported cases of C. indologenes being isolated from clinical samples. From 

their findings, C. indologenes was isolated in 91 cases of pneumonia, of which 19 patients 

presented with COPD as an underlying disease (Chen et al., 2012). The role of C. 

indologenes in stable and exacerbated COPD patients has not been fully investigated yet. 

As a comparison between culture-dependent and –independent methods, a recent study 

investigated clinically stable CF and COPD patients whose expectorated sputum samples 



 

136 

 

were then inoculated onto six different media. Using terminal restriction fragment length 

polymorphism (T-RFLP) profiling technique Rogers, et al., (2009) also harvested the 

bacterial growth on these plates for both RNA and DNA extraction, in addition to RNA and 

DNA being directly extracted from the same sputum sample. The authors concluded that 

when comparing conventional microbiology and T-RFLP, the former method was shown to 

be highly selective for the isolation of a small group of recognised respiratory tract 

pathogens. The use of T-RFLP from both the RNA and DNA directly harvested, in addition 

to the RNA and DNA extracted from the bacterial growth on diagnostic media, provided a 

more comprehensive profile of the bacterial species identified confirming that many bacterial 

taxa are present in sputum samples and that these may be clinically relevant (Rogers et al., 

2009b). From the study conducted by Rogers, et al., (2009) and the PCR-DGGE approach we 

employed against our conventional microbiology data, there is partial corroboration, although 

between out study and Rogers, et al., (2009) there is a distinct difference in the patient 

sampling methodologies and a lack of sequencing data. Furthermore, unlike that of Rogers, et 

al., (2005) only DNA was extracted from the clinical BAL samples, not RNA. Because of 

this factor, the profiling of the bacterial community represented in our COPD cohort does not 

indicate which bacterial taxa are metabolically active. This limitation was addressed in a 

previous study using extracted RNA to detect the presence of metabolically active bacteria in 

CF sputum samples using reverse transcribed 16S rRNA yielding cDNA amplicons which 

were analysed by reverse transcription T-RFLP (Rogers et al., 2005b). 

The identification of microbial communities has been demonstrated for several years in 

CF using culture-independent methodologies reported in numerous studies (Rogers et al., 

2005b, Rogers et al., 2003, Rogers et al., 2004, Rogers et al., 2006, Harris et al., 2007, Bittar 

et al., 2008) revealing the potential true number of bacterial isolates in CF infected 

individuals. The preliminary data generated from this small COPD cohort using a 16S rRNA 

PCR-DGGE methodology suggests that a microbial community in the lower airways is 

perpetuating host inflammatory responses and provides evidence supporting the vicious circle 

hypothesis (Murphy and Sethi, 1992). However, further analysis is required to indicate 

whether the bacterial genera in the lower bronchioles represent a core-microbiota in COPD 

patients as seen recently in CF (van der Gast et al., 2011). Investigations of this core-

microbiota in different respiratory disease states such as COPD, CF and non- CF 
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bronchiectasis could prove valuable for additional studies in the lower airways of individuals 

afflicted with these diseases. 

5.4.2 Metagenomic analysis of bacterial communities in COPD cohort 

As previously shown, we have identified a diverse bacterial community present in the 

LRT of the RLL in a cohort of eleven COPD subjects. Further, using constrained community 

ordination analysis we also have demonstrated that specific COPD phenotypic features 

significantly affect the community structure. Culture-dependent microbiological studies 

focusing in COPD have long been able to identify four main bacterial species, all thought to 

induce acute exacerbations in COPD: NTHI, M. catarrhalis, S. pneumoniae, and P. 

aeruginosa (Sethi and Murphy, 2001). Recently though, investigators using 16S rRNA 

community profiling techniques have revealed that the COPD lung microbiome is composed 

of a greater community richness than previously hypothesised (Erb-Downward et al., 2011, 

Hilty et al., 2010, Huang et al., 2010). Comparing these studies against the work performed 

here, interesting observations can be made. Huang and co-authors investigated a small cohort 

of eight COPD patients being managed for severe respiratory exacerbations. Using 16S rRNA 

PhyloChip technology on endotracheal aspirate (ETA) samples they were able to define 

1,213 bacterial taxa present of which 38 bacterial phyla and 140 distinct families were 

characterised in the lower airways of the COPD cohort investigated. Among the families 

detected were Alteromonadaceae, Burkholderiaceae, Comamonadaceae, Enterobacteriaceae, 

Helicobacteraceae, Pasteurellaceae, and Pseudomonadaceae respectively (Huang et al., 

2010). Further, despite all of the COPD subjects enrolled into the study being administered 

broad-spectrum antimicrobial therapies, the ETAs analysed from the patients harboured an 

average of 411 bacterial taxa. Although this patient cohort was very selective and small in 

number, it does confirm our current findings of a microbial community residing in the lower 

airways even though 16S rRNA profiling was determined by different culture-independent 

techniques. However, the diversity reported between our data and Huang, et al., (2010) 

differs dramatically. This difference can be attributed to the fact that in our cohort, sample 

extraction was performed on eleven clinically stable COPD patients, i.e., non-exacerbating. 

In contrast, Huang, et al., (2010) demonstrated that from their 16S rRNA community 

profiling analysis, patients were positive for the detection of P. aeruginosa (belonging to the 

bacterial family Pseudomonadaceae) in all subjects enrolled. Conversely, in our cohort the 
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detection of P. aeruginosa was not represented in any of the COPD subjects we analysed in 

significant numbers. 

Acquisition of new strains in P. aeruginosa has been previously shown to induce acute 

exacerbations in COPD individuals (Murphy et al., 2008). Additionally, using lower-airway 

protected brush sampling procedures, Rosell, et al., detected the presence of P. aeruginosa in 

their COPD cohort (Rosell et al., 2005); thus between the Huang COPD patient cohort and 

our study cohort, the absence of P. aeruginosa taxa from our metagenomic analysis could 

explain the clinically stable state of the COPD subjects we investigated. Another plausible 

reason for the organism’s absence from our own metagenomic analysis can be attributed to 

insufficient numbers present from the OTUs generated from the number of sequence reads. 

Strikingly, an absence of the Haemophilus genera has also been observed from our cohort. H. 

influenzae has long been implicated in COPD bacterial infections and a critical factor in the 

induction of acute exacerbations in COPD patients (Sethi and Murphy, 2008). The detection 

of the Haemophilus genera in insignificant numbers from the 454-pyrosequencing analysis 

could be again attributed to the stable state of cohort when sampling was undertaken. 

Retrospectively though, H. influenzae itself is notorious for persistent colonisation in the 

lungs of COPD sufferers with selected strains persisting for months to years (Murphy et al., 

2004). A common disease phenotype of COPD is chronic bronchitis and colonisation of the 

lower airways is usually associated with NTHI (Cabello et al., 1997) with new strain 

acquisition and colonisation of the lungs being a continuous and dynamic process (Samuelson 

et al., 1995). Indeed, such is the persistence of H. influenzae in COPD and other chronic 

pulmonary diseases, that a previous study investigated the distribution of H. influenzae in 

explanted lung tissues from individuals suffering from end-stage pulmonary diseases 

including COPD, CF and non-CF bronchiectasis (Möller et al., 1998). H. influenzae was 

detected both in the respiratory epithelium and sub-epithelial layers in the explanted lung 

tissues analysed from the pulmonary end-stage disease patients. This finding strongly 

suggests that H. influenzae plays an invasive role, but also persists in patients with severe 

lung disease, spreading throughout the pulmonary tree especially in COPD and CF patients 

(Möller et al., 1998). Additional previous studies have also shown that multiple strains of 

NTHI can colonise the respiratory tract in concert in chronic bronchitis settings (Murphy et 

al., 1999, Groeneveld et al., 1988). Excluding H. influenzae, both H. parainfluenzae and H. 
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haemolyticus are believed to play a role in COPD bacterial infection but their roles in acute 

exacerbations is uncertain (Sethi and Murphy, 2008). 

In another study of COPD subjects, Erb-Downward, et al., (2011) investigated the lung 

microbiome by using massively parallel 454-pyrosequencing of bacterial 16S amplicons from 

not only collected BAL samples but also in explanted lung tissues. They demonstrated three 

key findings: (i), that the bacterial lung microbiome is present and diverse, but different from 

the nasopharynx and oral cavity sites, (ii), that a decrease in pulmonary function is associated 

with a decrease in bacterial community diversity, i.e., the dominance of Pseudomonas spp., 

and (iii), the micro-anatomic sites sampled and analysed within the lung gave rise to disparate 

microbial communities between them. 

In their study, 14 subjects were analysed (7 ‘healthy’ smokers, 4 individuals with COPD 

(1 mild, 2 moderate, and 1 severe), and 3 non-smokers with no smoking history or evidence 

of lung disease) and from the metagenomic analysis performed in this cohort, the dominant 

phyla in the COPD subjects were the Bacteroidetes, Firmicutes, and Proteobacteria. At 

genus-level, the dominant bacterial genera in the COPD subjects were Pseudomonas, 

Streptococcus, Prevotella, Fusobacterium, and Veillonella respectively (Erb-Downward et 

al., 2011). In contrast, our meta-analysis demonstrated that the predominant bacterial genera 

were Streptococcus, Arthrobacter, and Staphylococcus indicating a very heterogeneous 

distribution of microbial diversity across COPD patients. However, in three of our COPD 

subjects, CS#7, CS#11, and CS#12, the diversity was limited; in particular CS#12 (moderate 

COPD) only the bacterial genera Streptococcus and Staphylococcus spp. were detected. This 

dominance of a very few bacterial genera could be attributed to the one sampling site (RLL) 

from where the BAL was taken in cohort. Erb-Downward, et al., (2011) also demonstrated 

that sampling from multiple micro-anatomical sites within the lungs demonstrated local 

differences in the bacterial communities inhabiting them highlighting that bacterial species in 

the lower airways of COPD patient’s exhibit differences not just globally, but also locally. 

The observations by Erb-Downward, et al., (2011) have only been recently partly 

corroborated by Sze, et al., (2012), although there is still contrasting data presented in their 

study. The authors of this study investigated the lung tissue microbiome in very severe COPD 

patients (GOLD stage IV (n = 4)) and compared them to other explanted lung tissues 

obtained from individuals who were non-smokers (n = 8) and current smoker control subjects 
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(n = 8). Lung tissue samples were also collected from CF patients (n = 8) acting as a positive 

control sub-group ― the lungs of CF individuals have been previously shown to contain 

bacteria and this finding is well documented, both in cross-sectional and temporal studies 

(Cox et al., 2010, Harris et al., 2007) ― for the culture-independent analyses that was carried 

out in this study. 

Executing an approach using terminal-restriction fragment length polymorphism (T-

RFLP) and pyrotag sequencing spanning the V1-V3 hypervariable regions within the 16S 

rRNA gene, Sze, et al., concluded that the lung tissue microbiome from the COPD GOLD 

stage 4 patients was significantly different from all of the other lung tissue sections 

investigated. Strikingly, from their metagenomic analysis in the study both the Lactobacillus 

and Burkholderia genera were significantly associated with the COPD GOLD IV explanted 

lung tissues. Additionally, both of the above genera represented the top five bacterial species 

within this sample group (i.e., two Burkholderia spp. and three Lactobacillus spp. were 

identified, although all were unclassified to species level) (Sze et al., 2012). The bacterial 

community composition within the GOLD 4 sub-group conflicts with that of the data shown 

in the Erb-Downward, et al., (2011) and Huang, et al., (2010) COPD microbiome studies. 

With our own meta-analysis a comparison cannot be deduced as no GOLD stage IV patients 

were recruited into our study. However, Sze, et al., (2012) state the differences in their study 

design and COPD patient selection in relation to the two aforementioned studies. They 

suggest that their investigation reflects the microbiome of lung parenchymal tissue as 

opposed to the above previous studies which examined the COPD lung bacterial community 

composition by BAL, ETA, and bronchial brushing collections respectively. Despite some of 

the conflicting data presented by Sze and co-authors, they conclude that a major limitation in 

their study was the exclusion of moderate and severe COPD patients (GOLD stages II and III 

respectively), and as thus, extrapolation of the Burkholderia and Lactobacillus genera found 

in their GOLD IV explanted lung tissue samples cannot be made across the other GOLD 

stages in COPD because of this constraint. 

A concerning factor from the metagenomic dataset shown across this patient cohort is the 

high prevalence of the bacterial genus Arthrobacter; in this study Arthrobacter spp. was one 

of the predominant bacterial genera present in all COPD subjects except CS#7, CS#11, and 

CS#12 (Fig. 5.7). Arthrobacter species that are implicated and isolated in clinical human 
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infection are rare as individuals are continually exposed to Arthrobacter strains in the 

environment (Funke et al., 1996). The first documented cases of Arthrobacter infection in 

patients isolated from clinical specimens by using 16S rRNA gene sequencing methods were 

reported in 1996 resulting in two new Arthrobacter species being identified: Arthrobacter 

cumminsu (isolated from a urine sample and skin swab) and Arthrobacter woluwensis 

(isolated from blood culture from a patient presenting with human immunodeficiency virus 

(HIV) infection) (Funke et al., 1996). Following this, Bernasconi et al., (2004) reported a 

case of infective endocarditis in a patient (HIV-seronegative habitual drug user) in which A. 

woluwensis was subsequently isolated and only identified through full-fragment 16S rDNA 

sequencing (Bernasconi et al., 2004). Initial laboratory diagnosis presumptively identified the 

organism as Corynebacterium aquaticum using conventional microbiology assays. In 

addition to the Bernasconi case report, there have been only five other documented cases of 

clinical disease involving Arthrobacter spp. none of which involved the pulmonary tree: 

bacteraemia (2 cases), severe phlebitis (1 case), post-operative endophthalmitis (1 case) and a 

patient presenting with Whipple’s syndrome (1 case) (Bodaghi et al., 1998, Esteban et al., 

1996, Hsu et al., 1998, Wauters et al., 2000). The rarity of cases pertaining to the 

Arthrobacter genus can be attributed to its relatively low pathogenicity and the challenges in 

its precise identification using conventional microbiological techniques such as the above, 

possibly biasing in a low recovery rate of Arthrobacter species (Bernasconi et al., 2004). In 

our COPD subjects, the dominance of the Arthrobacter genus in the metagenomic analysis 

could be from an environmental source either directly, i.e., Arthrobacter and 

Corynebacterium spp. may be a part of the human skin flora, or indirectly. This could be one 

reason why our metagenomic data-set conflicts with the other COPD lung microbiome 

studies and as such should be taken into consideration. 

In comparing the conventional microbiology data from the COPD cohort to our meta-

analysis, the application of a deep-sequencing strategy through 454-pyrosequencing yielded 

many different bacterial taxa across our COPD patient cohort, in which 1,799 unique OTUs 

were generated representative to genus-level. Conventional microbiology of patient BAL 

samples resulted in only four species being isolated: C. indologenes (CS#6), H. influenzae 

(CS#3, CS#8), M. catarrhalis (CS#8, CS#10), and S. pneumoniae (CS#1). Interestingly, from 

the meta-analysis employed in our study, none of the above genera were identified in our 

patient cohort from the data shown (Fig. 5.6 and Fig. 5.7) with the exception of the 
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Streptococcus genus (CS#7, CS#11, and CS#12). Nevertheless, Chryseobacterium (CS#11), 

Haemophilus (CS#7, CS#10, and CS#11), and the Moraxella (CS#10) genera were present in 

the COPD subjects analysed in this study (indicated in parentheses), but the assignment of 

OTUs pertaining to these three particular genera accounted for < 100 sequence reads per 

OTU. Strikingly, the detection of all the above genera by 454-pyrosequencing conflicts with 

the conventional microbiology data as Chryseobacterium, Haemophilus, and Moraxella spp. 

was not detected by culture-based methodologies in CS#7, CS#10, and CS#11 respectively. 

COPD subject #1 was positive for S. pneumoniae growth by culture, but the Streptococcus 

genus itself was not assigned to any OTUs in this individual from the meta-analysis 

performed. Only the isolation of M. catarrhalis by culture in CS#10 corroborates both the 

culture-dependent and metagenomic analysis performed, as the Moraxella genus was also 

present in CS#10, although the OTU assigned to this genus generated 80 reads. 

Historically, from earlier studies, bacterial infection in COPD was established as a 

potential driver in exacerbations in these patient populations (Burrows and Earle, 1969, Tager 

and Speizer, 1975). The application of conventional microbiological methods in COPD has 

primarily identified four organisms highly prevalent in exacerbating COPD patient 

populations: H. influenzae, M. catarrhalis, S. pneumoniae, and P. aeruginosa (Ko et al., 

2005, Larsen et al., 2009, Miravitlles et al., 1999, Sethi et al., 2002, Soler et al., 1998). 

Furthermore, several preliminary studies have been carried out on stable COPD patient 

cohorts investigating the bronchial tree bacteriologic flora (Brumfit et al., 1957, Lees and 

McNaught, 1959, Potter et al., 1968). Despite these earlier studies demonstrating the role of 

bacterial infection and exacerbations in COPD, this paradigm is still controversial. Earlier 

studies used sputum as a diagnostic measure for determining the role of bacterial infection in 

COPD (Gump et al., 1976, Lambert and Stern, 1972, McHardy et al., 1980). The execution of 

sputum as a diagnostic marker coupled with conventional microbiology is limited because of 

the complexity in the differentiation between colonisation and infection in the individual 

(Lentino and Lucks, 1987). Furthermore, culture-dependent microbiology of sputum also 

carries the risk of culturing those organisms that are residents in the URT, thus potentially 

leading to contamination of the culture plates being analysed. 

Comparison and interpretation of the data from the conventional microbiology approach 

employed here to other studies investigating the respiratory tract flora in stable COPD 
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patients are difficult because of the differences in microbiological methods and patient 

selections executed. Some comparisons can be made however from other studies. From our 

study, culture-dependent microbiology was conducted on BALF samples (with the exception 

of patient CS#11 in which BS were obtained instead) obtained from the RLL. Additionally, 

all individuals were stable at presentation before bronchoscopy was performed. The 

conventional microbiology data is in stark contrast to a study by Cabello, et al., (1997) in 

which they investigated the distal airways of 18 stable non-exacerbating COPD patients by 

using quantitative culture techniques on both bronchoscopic protected specimen brush (PSB) 

and BAL samples in the RLL. In their study, Cabello, et al., (1997) categorised any bacterial 

agents identified as either PPMs (potentially pathogenic micro-organisms) or non-PPMs 

(non-potentially pathogenic micro-organisms. The former being those micro-organisms well 

established in respiratory tract infections (Gram-positive cocci (S. aureus and S. 

pneumoniae); Gram-negative rods (P. aeruginosa); Enterobacteriaceae and Haemophilus spp; 

and Gram-negative cocci (M. catarrhalis)). The latter comprising of bacterial species such as 

Streptococcus viridans group, Neisseria spp., and Corynebacterium spp. which are normally 

associated with either the oropharyngeal or gastrointestinal flora, playing no role in 

respiratory infection in non-immunocompromised individuals (Cabello et al., 1997). 

Cultivation of micro-organisms using both PSB and BAL samples resulted in 22 non-

PPMs and 7 PPMs being isolated across 15 COPD patients in their cohort. From the BAL 

samples analysed, only two COPD patients yielded positive growth, S. pneumoniae and S. 

viridans, a PPM and non-PPM respectively. However, 15 COPD patients were positive for 

bacterial colonisation using PSB technique, resulting in the isolation of 27 micro-organisms, 

both comprising 5 PPMs (H. influenzae, S. pneumoniae, and S. aureus isolates) and 22 non-

PPMs (S. viridans, Neisseria spp., plasma-co-agulase S. aureus, and Corynebacterium spp. 

isolates) (Cabello et al., 1997). In our cohort, five patients yielded positive growth from the 

BAL samples cultured. Three bacterial species according to the Cabello, et al., (1997) 

categorisation were classified as PPMs: H. influenzae (CS#3, CS#8), M. catarrhalis (CS#8, 

CS#10), and S. pneumoniae (CS#1). It is also interesting to note that in the Cabello study, 

both M. catarrhalis and P. aeruginosa were negative for growth in both BAL and PSB 

samples analysed, unlike in our COPD cohort in which M. catarrhalis was present in CS#8 

and CS#10 by culture respectively. 
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Preceding Cabello, et al., (1997) are two earlier studies by Fagon, et al., (1990) and 

Monsó, et al., (1995) which both used PSB lower airway sampling technique and quantitative 

culture to characterise the lower airways in COPD patients. The former study by Fagon, et 

al., (1990) investigated the lower airways of COPD inpatient’s mechanically ventilated 

suffering from severe exacerbations, whereas the latter study by Monsó, et al., (1995) 

sampled the lower pulmonary tree in stable and moderately severe exacerbating COPD 

outpatients. Evidence for bacterial bronchial pathogens in 50 % of cases was confirmed by 

both studies using PSB, with the remaining 50 % of cases implying the absence of pathogens 

(Fagon et al., 1990, Monsó et al., 1995). A comparison in the validity of both study’s findings 

against other techniques such as BAL was not performed by Fagon, et al., (1990) and Monsó, 

et al., (1995) as BAL samples from the lower bronchial tree were not analysed in both COPD 

cohorts enrolled into both studies. Retrospectively, a comparison of our conventional 

microbiology culture data cannot be made, but both studies corroborate by culture-dependent 

techniques that the lower airways in COPD patients are colonised both in exacerbated and 

stable COPD populations. Indeed, other studies have shown that the lungs of stable COPD 

populations are colonised with bacteria and this has been subsequently demonstrated to 

contribute towards to the severity and frequency of patient exacerbations (Patel et al., 2002, 

Rosell et al., 2005, White et al., 2003, Wilkinson et al., 2003). 

From their original characterisation of the bronchial COPD pulmonary tree, Soler, et al., 

(1999) investigated 18 control (8 non-smokers and 18 smokers) and 53 stable COPD subjects 

(28 mild, 11 moderate, and 13 severe COPD phenotypes based on FEV1) using PSB and BAL 

sampling techniques. As before, a quantitative conventional microbiology approach was 

carried out as in the previous studies (Cabello et al., 1997, Soler et al., 1998) in which they 

found from the PSB and BAL sample analysis, the vast majority of PPMs isolated from both 

patient cohorts were community acquired, i.e., S. pneumoniae, S. aureus, H. influenzae, and 

M. catarrhalis. Indeed, from the COPD cohort subjected to culture-dependent microbiology, 

9 (mild), 11 (moderate), and 2 (severe) COPD patients respectively, was culture-positive for 

PPMs (Soler et al., 1999). In corroboration with the previous study by Soler, et al., (1997), 

the most prevalent non-PPM isolated was S. viridans. The findings by Soler, et al., (1999), 

partly confirm our findings both by culture-dependent and –independent means as they 

conclusively found that both patient cohorts analysed, in particular their COPD cohort by 
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BAL sample analyses, were frequently colonised by community acquired PPMs in the 

bronchial tree (Soler et al., 1999). 

The remaining COPD subjects (CS#4, CS#5, CS#7, CS#9, CS#11, and CS#12) in our 

study were all culture-negative from the conventional microbiology investigation. Although, 

from the 454-pyrosequencing approach employed, detection of many bacterial taxa was 

evident. This is clearly apparent in CS#4, CS#5, and CS#9, in which 136, 447, and 182 OTUs 

pertaining to bacterial genera respectively, were generated from the sequencing reads 

obtained (Table 5.1). In COPD subjects #7, #11, and #12, in which the number of bacterial 

genera detected by 454-pyrosequencing was much lower in comparison to the other COPD 

subjects, the number of OTUs observed is indicative of several bacterial species recovered 

from the RLL in the BAL samples analysed. Additionally, from the data presented in Fig. 5.7 

it is evident that the COPD subjects diagnosed as being culture-negative indeed harbour a 

lower airway bacterial population varying in diversity. 

Furthermore, despite this diagnosis by conventional microbiology, the use of BAL for 

culture-based microbiological detection is still advantageous over the culture-based methods 

using sputum as a diagnostic tool, although bronchoscopy itself is still a highly invasive 

examination technique. The main advantage being that BAL provides an in situ 

representation of the lower airways in healthy or diseased individuals (Reynolds, 2011). 

However, a previous initial study has demonstrated that recovery of BAL from patients for 

microbial culture can also yield oropharyngeal commensals; these can sometimes be 

designated as normal or mouth flora by an individual identifying bacterial species on culture 

media (Reynolds and Newball, 1974). This identification of normal or mouth flora could 

have been a biasing factor leading to the conflicting culture-dependent and metagenomic data 

presented above. The retrieval of BAL however, for the detection of bacterial infection in 

COPD alongside other investigations is still preferable over sputum due to the decreased risk 

of contamination from URT organisms in either the oro- or nasopharyngeal cavity. 

The use of conventional microbiology for analysis in COPD, and indeed other chronic 

respiratory diseases such as CF, is also limited in its detection due to the selective nature of 

the media employed; investigation of the LRT using traditional culture-based methodologies 

under standard conditions can only culture up to 30 % of bacteria (Suau et al., 1999), this is 

in addition to culture-dependent techniques being very labour intensive. Also, the 
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differentiation of bacterial strains isolated from the same species is a confounding factor as 

these strains cannot be detected by conventional microbiology. Thus detection of different 

bacterial strains can only be accomplished by molecular typing methods such as pulsed-field 

electrophoresis. As has been recently shown in the last decade, acquisition of different 

bacterial strains in COPD is strongly associated with the induction of acute exacerbations in 

these patient populations (Murphy et al., 2005, Murphy et al., 2007, Sethi et al., 2002, Sethi 

et al., 2007). 

Because of these limitations, many researchers investigating the lower bronchial tree in 

COPD are now using modern 16S rRNA molecular profiling techniques to reveal a bacterial 

diversity that is greater than previously imagined; this is now being realised (Cabrera-Rubio 

et al., 2012, Erb-Downward et al., 2011, Hilty et al., 2010, Huang et al., 2010, Pragman et al., 

2012, Sze et al., 2012). The preliminary research conducted in CF in the last decade using 

culture-independent techniques provides a foundation for much of the investigative work 

carried out in COPD. This approach has resulted in CF now being increasingly recognised as 

a polymicrobial disease (Rogers et al., 2009a). This is in addition to the complexity of the 

human oral microbiome and the just recently postulated core respiratory tract microbiome 

(Avila et al., 2009, Han et al., 2012). Culture-based detection in chronic respiratory tract 

diseases via expectorated sputum and bronchial washings are still essential for the diagnosis 

of acute infections or the determination of a carrier state in the patient (Reynolds, 2011). 

Despite the above limitations, traditional based cultivation of bacterial pathogens still has its 

advantages though. In CF this is particularly important as conventional microbiological 

methods enable the detection of the mucoid phenotype established by P. aeruginosa in 

chronically infected CF patients (Fegan et al., 1990, Hassett et al., 2002, Martin et al., 1993, 

Sokol et al., 1994, Yu et al., 2002). Differentiation between P. aeruginosa morphotypes is 

critical in a diagnostic microbiology laboratory as it has been demonstrated that within these 

morphotypes there is an inherent variability in their antimicrobial susceptibility patterns 

(Foweraker et al., 2005), thus this can affect the antibiotic treatment regimen of the CF 

patients concerned. 

5.4.3 Fungal community analysis in COPD cohort by PCR-DGGE 

The possibility of a fungal element in stable COPD patients has not been widely reported. 

Here our analysis revealed a significant and diverse fungal community. This raises several 
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questions. Does this fungal element contribute towards disease in the lower airways? Do 

fungi also drive an immunological response; inducing a host-pathogen antagonistic 

relationship thus contributing towards the vicious-circle hypothesis proposed nearly two 

decades ago using the bacterial paradigm (Murphy and Sethi, 1992)? Is there an interaction 

between fungal and bacterial populations that significantly affects disease pathology and 

severity? Published work on fungal interactions and infections in COPD patients is scarce. A 

report published several years ago detected the eukaryotic fungal pathogen Pneumocystis 

jiroveci in lung tissues from patients undergoing either lung resection or transplantation in 

COPD subjects (all GOLD classification stages) (Morris et al., 2004). Aetiology involving P. 

jiroveci infections are generally associated with pneumonia in immunocompromised hosts, 

specifically, patients infected with HIV (Goldenberg and Price, 2008). However, Morris, et al 

(2004) proposed that colonisation by P. jiroveci affected airflow obstruction in smokers, but 

was greatly pronounced in GOLD IV COPD subjects pointing towards a possible pathogenic 

link with COPD progression. These findings indicate that in the airways of COPD patients 

the increasing and irreversible airflow limitation, especially in more severe COPD, provides a 

more suitable environment for initial colonisation and inevitable proliferation of this fungal 

pathogen. In our study, FEV1% was not significant in relation to the fungal community 

present in the COPD subjects and thus a correlation with reduced airflow obstruction was not 

shown (Fig. 5.4). 

From the culture-dependent microbiology of the COPD subjects, only one patient (CS#3) 

was positive for fungal growth, identified to genus-level as a Candida spp. From the DGGE 

analysis presented in Fig. 5.2, co-migration of two possible fungal taxa detected in the BAL 

sample from this patient corresponded to the yeast-forming Candida genera, C. albicans and 

C. glabrata represented in the 28S SL qualitatively. Previous studies in CF individuals have 

detected numerous fungal species such as A. fumigatus, C. albicans, E. dermatitidis, and S. 

apiospermum (Bouchara et al., 2009, Phiet et al., 2009) some studies support the notion that 

the above fungal species can be an attributing factor in lung function decline in CF patients 

(Chotirmall et al., 2010, Haase et al., 1990, Amin et al., 2010, Cimon et al., 2000). However, 

in terms of COPD disease progression this is currently unproven, and investigations into 

fungal infections with COPD are unmet. Thus far, only P. jiroveci has been implicated in 

lung function decline in this regard (Morris et al., 2004, Norris and Morris, 2011). 



 

148 

 

All other environmental variables examined by CCA were not significant although this 

can be possibly attributed to the small cohort number. In terms of male and female 

phenotypic relationship to the fungal community only two females were enrolled into this 

study group, thus having an impact on the constrained community variance analysis 

performed. Additionally, the detection limits of PCR-DGGE of the fungal community must 

be considered, even though we have clearly demonstrated that fungal detection in cohort is 

much greater when using a culture-independent approach as opposed to traditional cultivation 

methods. Indeed, other culture-independent analysis of potential mycobiomes within diseased 

and healthy subjects has been previously shown in the oral cavity, but not in the lower 

airways of COPD patients as stated above. Two recent studies, the first a clone-library 

approach, investigated the oral cavity in HIV-infected patients using 18S rDNA primer sets 

demonstrating amplification of C. albicans and Saccharomyces cerevisiae in the subgingival 

plaque (Aas et al., 2007). The second demonstrated a greater coverage of the oral 

mycobiome, and thus a more comprehensive profile, by employing a novel Multitag 

Pyrosequencing approach using the pan-fungal internal transcribed spacer (ITS) regions 1 

and 2 nestled between the 18S and 28S rRNA gene sequences (Ghannoum et al., 2010). From 

the reads sequenced and subsequently analysed, 101 fungal species were identified, of which 

74 genera were culturable and 11 non-culturable in the oral cavity of healthy individuals. 

Moreover, the number of fungal species inhabiting the oropharynx in these subjects (n = 20) 

was between 9 and 23 in total with Candida being the most frequently isolated genera in 75 

% of subjects studied followed by Cladosporium, Aureobasidium, Saccharomycetales, 

Aspergillus, Fusarium, and Cryptococcus genera respectively (Ghannoum et al., 2010). 

Although these two studies focused predominantly on the oral cavity, it is interesting to note 

that the oral cavity contains this much fungal diversity successfully demonstrated by 

Ghannoum and colleagues, however, against this; a fungal element in the LRT in healthy 

individuals would be concerning as in nearly all cases of fungal isolation from the lungs 

points towards an underlying lung pathology, whether it be CF, AIDS in HIV-infected 

patients or atypical disease phenotypes. Conversely, would it be incorrect to presume that the 

lung microbiome does indeed contain a fungal element? To date, no metagenomic analysis 

examining BAL samples from healthy subjects have investigated the potential role fungi may 

play in the lung microbiome opening the door for other hypotheses. 
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Critically, the PCR-DGGE approach adopted here is constrained by the choice of primer 

set and the ‘semi-nested’ PCR performed. The DGGE profile in Fig. 5.2 representing the 

fungal community in cohort must be approached, to a degree, with caution. Firstly, the 

attachment of a GC-clamp to the reverse universal fungal primer U2R-GC may mirror the 

effects observed in GC-clamp attachment amplicon variation in PCR-DGGE studies of 

bacterial 16S rRNA gene community profiling leading consequently to artefactual production 

such as chimeras and heteroduplex formation (Muyzer and Smalla, 1998, Rettedal et al., 

2010). To counter these effects we used a single batch of primers to offset any potential bias 

that has been previously reported in using multiple batches of a single primer (Rettedal et al., 

2010). Additionally, during the PCR and subsequent amplification of the universal regions 

within the 28S rRNA gene, an additional 30 min during the final elongation step was 

implemented to further reduce the formation of any artefacts which could adversely affect the 

fungal community analysis (Janse et al., 2004). Thirdly, because cohort is small and only one 

clinical sample (either BAL or BS (in the case of CS#11)) was analysed the data at best can 

only attempt to provide a ‘snapshot’ of the microbial community identified. Longitudinal 

studies in this cohort using gDNA from BAL to generate both bacterial and fungal 

communities via PCR-DGGE profiles would have been complementary to the data presented. 

Additionally, no sequence data is available from the fungal community. 

Retrospectively in terms of a paradigm; fungal infection could have a role in disease 

progression in COPD subjects in relation to polymicrobial infection processes. Impaired 

innate lung defence mechanisms in the LRT in COPD induced primarily by smoking in 

addition to the fungal mycobiome in the oral cavity could predispose COPD patients to 

fungal infection. The action of smoking on the lower airways has been previously shown to 

cause defects in mucocilliary clearance thus effecting mucocilliary escalator function, and 

inducing surfactant abnormalities (Finley and Ladman, 1972, Vastag et al., 1985, Stanley et 

al., 1986, Verra et al., 1995, Honda et al., 1996). Both of these dysfunctional properties 

suggestively increase the probability of fungal colonisation in the LRT, as in bacterial 

colonisation, and in turn decrease the fundamental mechanisms necessary for pathogen 

clearance. 
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5.4.4 Microbial community profiles by ordination analysis 

Both the 16S and 28S rRNA PCR-DGGE techniques employed were used to investigate 

the lower airway microbial community in our COPD cohort. Additionally, the microbial 

communities detected by the above approach were then subjected to ordination analyses. 

However, the ordination analyses by the RDA and CCA performed did not show any 

significant community structure changes in relation to the COPD cohort patient phenotypes 

analysed (Fig. 5.3 and Fig. 5.4). Conversely, the assignment of OTUs from the metagenomic 

analysis at two different bacterial phylotypes (representative at class- and genus-level) 

revealed potential drivers of the bacterial community that we have identified in our COPD 

cohort by CCA. At class-level, associations with the relationship between community 

structure and patient phenotypic variables were significant in FEV1% predicted (P = 0.002), 

GOLD COPD stage status (P = 0.04), and smoking status (P = 0.05) (Fig. 5.9). At genus-

level, both patient gender (P = 0.026) and height (P = 0.03) phenotypes were shown to be 

significant in association with community structure (data not shown). These potential drivers 

of the community structure at genus-level are skewed as only two female individuals were 

enrolled into our COPD cohort versus nine males. Furthermore, an individual’s height and 

ethnicity can also affect their lung volume respectively (Cotes et al., 2006b, Cotes et al., 

2006a, Hughes, 2007). In our COPD cohort database, patient ethnicity was not disclosed for 

the purposes of this study. 

Previous longitudinal studies in CF have shown that in stable patients, there is a decline in 

FEV1 with age (Corey et al., 1997, Kerem et al., 1992). Additionally, Cox, et al., (2010) 

investigating an age-stratified CF cohort has shown that a decrease in bacterial diversity and 

community richness is correlated with an increase in patient age. These findings strongly 

suggest that bacterial colonisation in CF plays a major role in the frequency and severity of 

patient exacerbations via lung function decline. Although our cohort was a cross-sectional 

investigation, from our observations, lung function (FEV1% predicted) was shown to be 

significantly associated with bacterial community structure (P = 0.002). Two longitudinal 

studies in COPD have demonstrated lung function decline in stable COPD populations 

(Marin et al., 2010, Wilkinson et al., 2003). Wilkinson, et al., (2003) followed-up 30 stable 

COPD patients over 1 year and demonstrated that FEV1 decline was correlated with an 

increase in bacterial load and species change. Subsequently, Marin, et al., (2010) found that 

colonisation with H. influenzae, P. aeruginosa, enterobacteria spp. and neutrophilic 
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inflammatory response markers was significantly associated with a decrease in FEV1 in a 

cohort of 40 COPD patients over an eight month period. The studies by Wilkinson, et al., 

(2003) and Marin, et al., (2010) not only show interplay between bacteria and lower airway 

inflammation, but also importantly, that bacterial infection in COPD patients is not a static 

phenomenon (Beasley et al., 2012). Both the Wilkinson, et al., (2003) and Marin, et al., 

(2010) studies partly corroborate our findings in that bacterial colonisation in the LRT 

exhibits an effect on lung function in COPD individuals. 

A potential driver of the microbial community we have identified in our COPD cohort was 

significantly associated with GOLD stages II and III, i.e., moderate COPD and severe COPD 

respectively (P = 0.04). Chronic obstructive pulmonary disease severity is classified into four 

stages by spirometric diagnosis which is used to ascertain the severity of pathologic changes 

occurring in the patients assessed (Rabe et al., 2007). Recently, Pragman, et al., (2012) 

characterised and compared the lung microbiomes of both moderate (n = 14) and severe 

COPD (n = 8) patients, including a healthy control group (4 smokers and 6 non-smokers). As 

in other lung microbiome studies they executed a deep sequencing strategy of the V3 region 

of 16S rDNA amplicons and demonstrated that there was a significant increase in microbial 

diversity in both the moderate and severe COPD BAL samples analysed in comparison to the 

healthy control group (Pragman et al., 2012). Furthermore, from the metagenomic analysis 

performed by Pragman, et al., (2012), principle co-ordinates analysis (PCoA) revealed 

separation between the control and COPD cohorts investigated. However, no separation was 

observed by PCoA between the moderate and severe COPD BALF samples analysed in this 

study (Pragman et al., 2012). From our data, there is a clear separation in the patients and 

their GOLD stage COPD characterisation (i.e., 4 moderate (stage II) and 7 severe (stage III) 

COPD patients), in addition to the bacterial class phylotypes we have profiled (Fig. 5.9). 

In our cohort, eight patients were ex-smokers and three current smokers. These two 

phenotypic parameters were classified as smoking status in the patient and were significant 

(P = 0.05). A previous study has investigated the microbial communities of the URT 

(nasopharynx and oropharynx) using a deep sequencing approach comparing smoking (n = 

29) and non-smoking (n = 33) healthy asymptomatic adults (Charlson et al., 2010). Charlson, 

et al., (2010) found global community structure differences in bacterial taxa at both genus 

and phylum level. The smoker sub-cohort tended to exhibit disordered microbial community 
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structure than the non-smoking sub-cohort, including an increase in diversity in both the 

oropharyngeal and nasopharyngeal sites sampled (Charlson et al., 2010). Additionally, the 

smoker sub-cohort URT microbiome was also characterised by more bacterial genera 

potentially associated with respiratory tract disease. The data presented by Charlson, et al., 

(2010) is in agreement with our own data suggesting that smoking status in a COPD patient 

can exhibit an effect on the community structure, although in the above study only the URT 

was sampled not the LRT. 

5.5 Conclusions 

The culture-independent techniques against the conventional culture-based methods have 

enabled us to characterise the lung microbiome in a small cohort of moderate and severe 

COPD patients. We have also demonstrated that the lower airways in our COPD cohort are 

composed of a polymicrobial community using both a PCR-DGGE and deep sequencing 

strategy. Both these bacterial and fungal elements may drive the perpetuating immunological 

response playing a role in the vicious circle hypothesis. However, no sequencing data was 

obtained when using a 16S and 28S PCR-DGGE approach so the profiles we have generated 

using this technique is putative at best. 

The metagenomic data analysed from the 454-pyrosequencing reads has shown that each 

COPD subject was host to heterogeneous bacterial populations, with the most dominant 

genera being Streptococcus, Arthrobacter, and Staphylococcus spp. respectively. The deep 

sequencing approach has enabled us to characterise this COPD cohort to reveal a diverse 

population in the RLL of the pulmonary tree. The most prevalent bacterial genera we have 

identified conflicts with other metagenomic studies which have previously profiled the 

COPD lung microbiome in both stable and exacerbating COPD populations. However, all 

previous studies executed different sampling strategies involving their COPD cohorts 

respectively. 

From the ordination analyses, both bacterial and fungal communities identified by PCR-

DGGE exhibited no significance in terms of patient phenotype and community structure. 

However, from the metagenomic analysis, the bacterial community identified and resolved to 

genus-level, both gender and height are shown to be significant in community structure. 

Resolution at class-level revealed that lung function (FEV1% predicted), COPD disease 
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progression (GOLD stage II or III), and smoking status, were all associated with community 

structure in the cohort analysed. 

Molecular-based detection techniques in COPD could point the way towards a greater 

understanding of the microbial communities in colonised individuals and elucidate the 

complex mechanisms between host and microbe and their role in the induction of 

exacerbations. 
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Appendix 1: Chemicals and media 

A1.1 1 % (w/v) agarose gel 

1.  0.3 gm of agarose (MELFORD) was added to 30 mL of of 1× TAE buffer solution 

and boiled until fully dissolved. 

2. Five µL of SYBR® Safe DNA gel stain (10 000× concentrate in dimethyl sulphoxide 

(DMSO)) (Invitrogen™) was then added to the molten agarose, and mixed before 

being poured into the gel casting chamber. 

3. The gel was then left to set in order for the rest of the electrophoresis experiment to 

continue. 

A1.2 Molecular biology dyes 

A1.2.1 10 mL 6× bromophenol blue loading dye 

1. 0.025 g of bromophenol blue (SIGMA®) was added to 4 g of sucrose (SIGMA®) in 

an empty 25 mL plastic universal tube. 

2.  These two chemicals were then made up to 10 mL with dH2O. 

A1.2.2 10 mL DCode™ dye solution reagent 

1. 0.05 g of bromophenol blue (SIGMA®) was added to an empty 25 mL plastic 

universal tube. 

2. 0.05 g of xylene cyanol FF (SIGMA®) was then added to the universal tube. 

3. The contents of which were then made up to 10 mL with 1× TAE buffer solution. 

A1.2.3 10 mL 2× DCode™ gel loading dye 

1. 0.25 mL of a 2 % bromophenol blue solution (0.02 g of bromophenol blue 

(SIGMA®) made up to 1 mL with dH2O) was added to an empty 25 mL plastic 

universal tube. 

2. 0.25 mL of a 2 % xylene cyanol solution (0.02 g of xylene cyanol FF (SIGMA®) 

made up to 1 mL with dH2O) was then added to the universal tube. 

3. 7 mL of a 100 % glycerol solution (Fisher Scientific) was then added. 

4. This solution was then made up to 10 mL by the addition of 2.5 mL of dH2O. 
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A1.3 Denaturing solutions for DGGE experiments 

A range of denaturing solutions were utilised for DGGE analysis in a variety of different 

sample types. The reagent composition and amounts used in each denaturing solution are 

summarised below: 

100 mL denaturing solution (%age denaturant) 

Reagent 32.5 % 35 % 40 % 60 % 

40 % (v/v) 37.5:1 

acrylamide:bis-acrylamide 

(SIGMA® Life Sciences) 

30 mL 30 mL 30 mL 30 mL 

50× TAE 2 mL 2 mL 2 mL 2 mL 

Deionised formamide 

(SIGMA® Life Sciences) 

13 mL 14 mL 16 mL 24 mL 

Urea (electrophoresis 

grade) (MELFORD) 

13.65 g 14.7 g 16.8 g 25.5 g 

dH2O To 100 mL To 100 mL To 100 mL To 100 mL 

 

A1.4 10 % (w/v) ammonium persulphate (APS) 

1. 1 g of ammonium persulphate (SIGMA®) was weighed out and then decanted into an 

empty 25 mL plastic universal tube. 

2. This was then made to 10 mL using dH2O, before being aliquoted into 500 µL 

amounts in 1.5 mL microfuge tubes. 

3. These aliquots were then stored at -20 °C until further requirement. 
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A1.5 Running buffers for gel-based experiments 

A1.5.1 2 L 50× TAE solution 

1. 200 mL of a 0.5 M EDTA solution pH 8.0 was made up first (37.22 g EDTA made up 

to 200 mL of dH2O at pH 8.0 (this must be at pH 8.0 otherwise all of the EDTA will 

not entirely dissolve into solution)). 

2. 200 mL of the EDTA (0.5 M, ph 8.0) solution was then decanted into a 2 L 

DURAN® glass bottle before 484 gm of Tris-HCl (MELFORD) was added. 

3. Following this, 114.2 mL of glacial acetic acid (Fisher Scientific) was added. 

4. Then, the resulting solution was made up to 2 L using dH2O. 

A1.5.2 1 L 1× TAE solution 

1. 20 mL of 50× TAE solution was decanted into a 1 L DURAN® glass bottle. 

2. This was then made up to 1 L using dH2O. 

A1.6 Bacteriology and mycology media 

A1.6.1 Basic recipe for 1 L Luria-Bertani (LB) media and broth 

 10 g of tryptone (OXOID); 

 5 g of yeast (OXOID); 

 5 g of sodium chloride (NaCl) (SIGMA®); 

 15 g of agar bacteriological (agar no. 1) (OXOID); (omit this step from the recipe 

when making LB broth); 

 Made up to 1 L in an appropriate conical flask using dH2O; 

 Adjust the pH to 7.0 with NaOH; 

 Autoclave at 121 °C for 45 min, cool to 50 ° C and then pour 20 mL into each Petri 

dish. 
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A1.6.2 NADsens agar and broth 

This particular agar and broth was previously prepared at the Freeman Hospital, 

Microbiology Department, as a requirement of their routine media consortia by an 

appropriate member of staff. The agar and broth function as an isosensitest, used in antibiotic 

disk diffusion assays. Briefly, these components are all added together in the following order: 

hydrolysed casein, peptones, glucose, NaCl, starch, disodium hydrogen phosphate, sodium 

acetate, magnesium glycerophosphate, calcium gluconate, cobaltous sulphate, cupric 

sulphate, zinc sulphate, ferrous sulphate, manganous chloride, menadione, cyanocobalamin, 

L-cysteine hydrochloride, L-typtophan, pyridoxine, pantothenate, nicotinamide, biotin, 

thiamine, adenine, guanine, xanthine, uracil, and finally agar. These nutrients are all 

autoclaved at 121 °C for 60 min before cooling down to 50 °C and supplemented with 5 % 

whole horse blood and 20 mg/L NAD (nicotinamide dinucleotide). In making NADsens 

broth, as in LB broth, agar is omitted. 

A1.6.3 Basic recipe for 100 mL Sabourad broth 

1. 100 mL of Sabourad broth was implemented for each fungal strain. 

2. 3 g of Sabourad liquid medium (OXOID) was decanted into an appropriate conical 

flask before being made up to 100 mL with dH2O. 

3. Once Sabourad liquid medium was in solution, this was autoclaved at 120 °C for 45 

min. 

4. Once sterilised, these broths were now ready for inoculation by the fungal strains 

already described. 
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Appendix 2: Molecular base-pair markers 

Confirmation of successful PCR experiments and the resulting amplicons were confirmed by 

comparing the PCR fragments against a known set of molecular base-pair markers and 

standards shown below (Hyperladder I (BIOLINE)): 
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Appendix 3: Cross-sectional nCFBR cohort demographic data 

Part 1: Phenotypic data 

Patient 
number 

Sex Age FEV1 (L) FEV1% 
predicted 

Exacerbation 
present

a 
Recent

b
 

Abx
 

Current 
colomycin 

Current 
azithromycin 

Frequent 
exacerbators

c
 

1 F 61 0.67 30 Y N N Y Y 

2 M 67 1.42 46 Y Y N N Y 

3 F 62 1.32 64 Y Y N Y N 

4 M 59 2.02 63.8 N N Y N Y 

5 F 32 3 90 Y N N N Y 

6 F 80 1.35 94 Y N N Y Y 

7 F 63 1.1 49 N Y N Y Y 

8 M 64 2.8 84 N N N Y N 

9 M 58 2.3 70 Y Y N Y Y 

10 M 65 2.25 73 N N Y N N 

11 M 64 1.8 56 N Y N Y N 

12 F 60 1.55 60 N N N N N 

13 F 62 1.9 54 N N N Y N 

14 F 72 0.75 45 Y N N N N 

15 F 68 0.7 53 N N N N Y 

16 M 83 2.2 95 N N N N N 

17 M 68 1.6 52 N Y N N Y 

18 M 65 3.05 101 Y N Y Y Y 

19 F 64 0.5 25 Y N N Y N 

20 F 59 1.2 47 N Y Y Y Y 

21 F 62 2.1 112 Y N N Y Y 

22 F 55 2.5 93 N N N N Y 

23 M 58 0.85 23 N Y N Y Y 

24 F 68 1.65 70 N N N N N 
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25 M 35 1.6 39 N Y N N Y 

26 M 75 0.85 27 N N N N N 

27 F 56 0.7 32 N N N N Y 

28 M 58 0.8 24 N N N Y Y 

29 F 63 1.1 54 N N N Y N 

30 F 73 0.9 85 N N N N N 

31 F 62 0.75 33 N N Y Y N 

32 F 72 0.85 37 Y Y N N Y 

33 M 58 1.6 63 N N N Y N 

34 M 29 2.4 56 N N N N Y 

35 F 62 0.6 33 N N N N N 

36 F 79 0.4 27 N N N N N 

37 F 72 0.9 50 N N Y N N 

38 F 52 0.8 34.4 N N Y Y N 

39 F 48 2.5 114 N N Y Y Y 

40 F 71 0.45 25 N Y N Y N 

41 F 67 0.77 39 N N N N Y 

42 F 64 0.59 48 N N N Y Y 

43 M 61 1.27 41 N N Y Y N 

44 F 25 2.45 74 Y Y N Y Y 

45 F 76 1 56 N N N N Y 

46 F 70 0.95 42.3 N N N N Y 

47 F 64 1.05 44.5 N N N N Y 

48 F 72 0.9 50 N N N N N 

49 F 72 0.9 55 Y Y N Y Y 

50 F 71 0.65 41 N N N Y Y 

51 M 74 1 34 Y N N Y N 

52 M 74 0.6 21 Y Y Y Y Y 

53 M 59 2.6 84 N N N N N 

54 F 50 0.8 45 Y N N N Y 

55 F 58 2.4 102 Y N N Y Y 

56 M 60 0.85 28 N N N N Y 
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57 F 41 3.2 112 N N N Y N 

58 M 54 2.63 68.7 N N N N Y 

59 M 55 2.4 64 N N N Y N 

60 F 64 1.6 79 Y N N N N 

61 M 18 3.3 69.8 N N N N N 

62 F 33 ND ND N N N N Y 

63 F 60 1.55 69 N N N N Y 

64 F 79 0.9 65 N N N N N 

65 M 77 1.9 73 N N N N Y 

66 F 66 2 66 N Y N N N 

67 F 75 0.9 44.6 N N N N Y 

68 F 57 2 99 N Y N N Y 

69 F 66 1.85 96 Y N N N N 

70 F 66 0.55 27 Y N N N N 
a
 As defined by Pasteur, et al., (2010) at time of sampling. 

b
 Administration within one month of sampling, excluded patient who at the time were being treated with current colomycin and azithromycin 

therapy. 

c
 Defined as those individuals who presented with an exacerbation > 3 times in the last 12 months. 

Abbreviations: Abx, antibiotics; FEV1 (L), forced expiratory volume in one second; FEV1% predicted, forced expiratory volume in one second 

%age predicted; ND, not determined from patient’s medical notes. 
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Part 2: Conventional microbiology culture data 

Patient 
number 

Cuture-based detection
a 

Culture 
+ve

b
 

PA 
+ve 

HI 
+ve 

Chronic 
PA infection 

Intermittent 
PA infection 

No isolation 
of PA 

1 Mouth flora only N N N Y N N 

2 Haemophilus parainfluenzae Y N N N Y N 

3 Mouth flora only N N N N Y N 

4 Pseudomonas aeruginosa Y Y N N Y N 

5 Mouth flora, Haemophilus influenzae, Streptococcus pneumoniae 1 N Y N N Y 

6 Mouth flora only N N N N N Y 

7 Escherichia coli Y N N N Y N 

8 Candida spp. Y N N N N Y 

9 Haemophilus parainfluenzae and Staphylococcus aureus Y N N N Y N 

10 Pseudomonas aeruginosa and Streptococcus pneumoniae Y Y N Y N N 

11 Pseudomonas aeruginosa Y Y N Y N N 

12 Haemophilus influenzae Y N Y N Y N 

13 Pseudomonas aeruginosa X 2 Y Y N Y N N 

14 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

15 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

16 Mouth flora, Haemophilus parainfluenzae Y N N N N Y 

17 Pseudomonas aeruginosa and Achromobacter xylosoxidans Y Y N Y N N 

18 Mouth flora only N N N N N Y 

19 Mouth flora only N N N N N Y 

20 Mouth flora only N N N Y N N 

21 No growth N N N N N Y 

22 Mouth flora only N N N N Y N 

23 Mouth flora/ Stenotrophomonas maltophilia / MRSA Y N N Y N N 

24 Proteus spp. Y N N N N Y 

25 Mouth flora only N N N N Y N 

26 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

27 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

28 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 
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29 Mouth flora, Serratia spp. Y N N N N Y 

30 Mouth flora, Pseudomonas aeruginosa, Klebsiella pneumoniae Y Y N Y N N 

31 Mouth flora, Haemophilus influenzae Y N Y N N Y 

32 Mouth flora / Aspergillus fumigatus Y N N N Y N 

33 Mouth flora, Haemophilus influenzae Y N Y N Y N 

34 Mouth flora, Haemophilus influenzae Y N Y N N Y 

35 Haemophilus influenzae Y N Y N Y N 

36 Pseudomonas aeruginosa Y Y N Y N N 

37 Pseudomonas aeruginosa and Staphylococcus aureus Y Y N Y N N 

38 Pseudomonas aeruginosa X 2 Y Y N Y N N 

39 Mouth flora only N N N N N Y 

40 Mouth flora only N N N Y N N 

41 Pseudomonas aeruginosa Y Y N Y N N 

42 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

43 Mouth flora, Pseudomonas species Y Y N Y N N 

44 Mouth flora, Haemophilus influenzae/Candida spp. Y N Y N N Y 

45 Escherichia coli Y N N N N Y 

46 Escherichia coli and Moraxella catarrhalis Y N N N N Y 

47 Pseudomonas aeruginosa X 2 Y Y N Y N N 

48 Mouth flora only N N N N N Y 

49 Mouth flora only N N N N Y N 

50 Mouth flora, Pseudomonas aeruginosa X 2 Y Y N Y N N 

51 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

52 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

53 Mouth flora and Staphylococcus aureus Y N N N Y N 

54 Mouth flora, Haemophilus influenzae Y N Y N N Y 

55 Mouth flora, Stenotrophomonas maltophilia Y N N N Y N 

56 Mouth flora only N N N N Y N 

57 Mouth flora only N N N N Y N 

58 Haemophilus influenzae Y N Y N N Y 

59 Morganella morganii Y N N N Y N 

60 Mouth flora, Haemophilus influenzae Y N Y N N Y 
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61 Mouth flora only N N N N N Y 

62 Mouth flora, Pseudomonas aeruginosa Y Y N Y N N 

63 Pseudomonas aeruginosa Y Y N N N Y 

64 Haemophilus influenzae Y N Y N N Y 

65 Mouth flora, Serratia liquefaciens Y N N N N Y 

66 Mouth flora only N N N N N Y 

67 Mouth flora only N N N N N Y 

68 Mouth flora and Staphylococcus aureus Y N N N N Y 

69 Mouth flora and Haemophilus influenzae Y N Y N N Y 

70 Mouth flora only N N N N N Y 
a
 Performed by Health & Care Professions Council registered Biomedical Scientists at the Freeman Hospital, Microbiology Department, 

Newcastle upon Tyne. 

b
 The culture of mouth flora in this study was defined as culture-negative. 

Abbreviations: HI, Haemophilus influenzae; PA, Pseudomonas aeruginosa. 
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Appendix 4: Microbiology Department 
at the Freeman Hospital SOP: 
Sputum and related samples 

Contained in the following appendix is the official SOP documentation relating to the 

processing of respiratory tract specimens carried out by the Freeman Hospital; This 

SOP was generously donated to the author by Prof. John Perry and Audrey Perry. 

Note that this document has been re-formatted and edited slightly from the original 

copy to ensure that it meets the requirements of thesis submission. 

Newcastle upon Tyne Hospitals NHS Trust:   MIFSOP003 

Microbiology Department:     Edition 6.0 26/06/2012 

Newcastle upon Tyne Hospitals NHS Trust:   MICRAF009 

Microbiology Department:     Edition 3.0 30/01/2012 

Location of SOP documentation:    Room 102 FH 

  



 

198 

 

 

Purpose and 
scope, 
applications 

 

Sputum samples and other samples such as Pleural fluid, Tissue, NPS 
BAL and cough swabs may be sent for examination. Samples are 
inoculated onto culture media and incubated in an appropriate 
atmosphere and temperature to allow the growth of micro-organisms. 
General guidance is presented in line with National SOPs. Specific 
requirements for specimen types are given in checklists. 

 

COSHH, 

Health and 
safety 

 

Before handling samples the following must be read and understood: 

COSHH assessments FH: F003, F007, F010, F017, F022, F032, 
F038, F042, F043. 

The following Risk Assessments must also be read :- FH : F001, F002, 
F012 also those specific to location : F009, R003. 
 
All respiratory samples must be processed in a Class 1 safety cabinet 
wearing appropriate gloves conforming to EN 166. 

The following documents should also be read before proceeding: 

Containment level 3 protocols MICH&SF010  

Category 3 room fumigation MICH&SF011 

Fumigation of Class 1 safety cabinet MICH&SF012 

 

Personnel All grades of BMS staff and Trainee staff under supervision may 
perform these procedures. 

 

 

 

 

 

file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F003%20Acetone.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F007%20Carbol%20fuschin.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F010%20Crystal%20violet.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F017%20Iodine.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F022%20Lenzol.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F032%20Safranin%20solution.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F038%20Terminex.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F042%20Hazard%20group%202.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/COSHH/FH%20COSHH/F043%20Hazard%20group%203.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Risk%20Assessment/FH%20Risk%20assessment/F001%20Segregation%20of%20laboratory%20waste.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Risk%20Assessment/FH%20Risk%20assessment/F002%20Disposal%20of%20laboratory%20waste%20for%20autoclaving.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Risk%20Assessment/FH%20Risk%20assessment/F012%20Use%20of%20commercial%20kits.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Risk%20Assessment/FH%20Risk%20assessment/F009%20Respiratory%20section.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Risk%20Assessment/RVI%20Risk%20assessment/R003%20Category%203%20laboratory.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Health%20and%20Safety%20Policies/H&SFH/Containment%20level%203%20protocols.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Health%20and%20Safety%20Policies/H&SFH/Category%203%20room%20fumigation.doc
file:///C:/Documents%20and%20Settings/Paul%20Purcell/My%20Documents/C%20PREMISES%20AND%20ENVIRONMENT/Health%20and%20safety/Health%20and%20Safety%20Policies/H&SFH/Fumigation%20of%20Class%201%20safety%20cabinet.doc
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Introduction 

This document describes the isolation of organisms known to cause 
respiratory infection from associated specimens. Recovery and recognition of 
organisms responsible for pneumonia depends on 

• The adequacy of the lower respiratory tract specimen 

• Avoidance of contamination by upper respiratory tract flora 

• The use of microscopic techniques and culture methods. If these are 
suitable, fastidious organisms will grow 

• Current and recent antimicrobial treatment 

Distinction between tracheobronchial colonisation and true pulmonary 
infection can prove difficult. Ventilator associated pneumonia carries a high 
mortality but is difficult to diagnose clinically and microbiologically. The criteria 
which should be used for diagnosis remain controversial. The poor sensitivity 
and specificity of sputum culture in the diagnosis of pneumonia in hospitalised 
ventilated patients has led to the development of a variety of techniques for 
obtaining lower respiratory tract specimens either with or without the use of 
fibreoptic bronchoscopy. Specimens which may be received include 
bronchoalveolar lavage and protected brush specimens collected 
bronchoscopically, ‘blind’ protected brush specimens and non directed 
bronchoalveolar lavage. A pure bacterial count of greater than 103 cfu/ml in a 
brush specimen obtained bronchoscopically has been found to correlate with 
a histological diagnosis of pneumonia. Brush specimen results and 
bronchoalveolar lavage results are comparable if a cut off of 104 cfu/ml is used 
for the bronchoalveolar lavage although this is not recommended in this SOP 
because optional methodology, interpretation and clinical significance remain 
controversial. Non directed techniques have been found to give results 
comparable to bronchscopic methods. 

Types of specimen 

Bronchial aspirate 

These are collected by direct aspiration of material from the large airways of 
the respiratory tract by means of a flexible bronchoscope. 

Bronchial brushing 

This uses a protected brush catheter in the bronchoscope (a brush within two 
catheters sealed at the end with a polyethylene glycol plug) to tease material 
from the airways. 
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Bronchial washings 

Bronchial washings are collected in a similar fashion to bronchial aspirates, 
but the procedure involves the aspiration of small amounts of instilled saline 
from the large airways of the respiratory tract. 

Pleural fluid 

Pleural fluid is the accumulation of fluid between the inner and outer (visceral 
and parietal) layers of the pleura. 

Tracheal aspirate 

Tracheal aspirates are collected via the endotracheal tube. They are subject 
to the same limitations as sputum specimens. 

Transthoracic aspirate 

These samples are obtained through the chest wall, via a needle passed 
between the ribs. This procedure may be undertaken to sample, for instance, 
an aspergilloma, abscess or any focal lung lesion which is accessible. It is 
rarely used because of the risk of complications. 

Transtracheal aspiration 

Transtracheal aspiration is also a procedure which carries clinical risks and is 
therefore rarely performed in the UK. Its clinical usefulness in defining the 
aetiology of acute bacterial pneumonia has been described. The technique 
entails the insertion of a large bore needle containing a catheter through the 
cricothyroid space and into the trachea. The needle is then removed leaving 
the catheter in place. A syringe attached to the catheter is used to aspirate the 
secretions. If no material is obtained, 2-3 ml of sterile saline (without 
antibacterial additives) is injected and aspiration attempted again. 

Clinical associations 

Empyema 

Empyema is the collection of pus in the pleural cavity. It most often occurs as a 
complication of bacterial infection of the pulmonary parenchyma, either 
pneumonia or lung abscess. 

Any organism can be isolated from pleural fluid, in particular organisms 
associated with lower respiratory tract infection and organisms acquired by 
aspiration of the oropharyngeal flora, including oral streptococci and anaerobes. 
Unusual organisms such as L. monocytogenes have been reported. 

 

Organisms particularly associated with empyema in patients with acquired 
immune deficiency syndrome (AIDS) include: 
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• Cryptococcus neoformans 

• Mycobacterium avium-intracellulare  

• M. tuberculosis 

• Nocardia asteroides  

Other organisms which may cause infection in this group of patients include 
Pneumocystis carinii and Rhodococcus equi. 

Lower respiratory tract infection 

Lower respiratory tract infection (LRTI) is a major cause of morbidity and 
mortality. In the UK, about 50,000 people are admitted to hospital annually, of 
whom 10% die. The expression LRTI includes pneumonia, where there is 
inflammation of the lung parenchyma, and infections such as bronchiolitis, 
which affect the small airways. Lung abscess, where the lung parenchyma is 
replaced by pus filled cavities, and empyema, where pus occupies the pleural 
space, are less common manifestations of LRTI. 

Pneumonia can be classified according to whether it is community acquired or 
nosocomial (often defined as being acquired more than 48 hours after 
hospitalisation). It may be primary, occurring in a person without previously 
identified risk factors, or secondary. Many conditions are associated with an 
increased risk of pneumonia. Common risk factors include chronic lung 
diseases such as chronic obstructive pulmonary disease, diabetes mellitus, 
cardiac or renal failure and immunosuppression (either congenital or 
acquired). Reduced level of consciousness and weakness of the gag and 
cough reflexes are risk factors for aspiration pneumonia. Recent infection with 
respiratory viruses, particularly influenza, is also a risk factor. There are 
clinical signs and laboratory indices which can be used to assess the severity 
of pneumonia in an individual patient, some of which are predictive of an 
increased risk of death if present. 

Pleurisy  

Pleurisy is inflammation of the pleura, the serous membranes which cover the 
lungs and the inner aspect of the thoracic cavity. 

Pleural effusion is the accumulation of fluid between the inner and outer 
(visceral and parietal) layers of the pleura. It may arise as the result of 
pneumonia or of chronic heart failure or uraemia (when cultures will be 
negative), or by direct spread of infection, such as a primary tuberculous focus 
rupturing into the pleural cavity. Carcinomatous involvement of the visceral 
pleura is one of the more common causes of sterile pleural effusions. 

Effusion occurs early in the course of pneumonia representing the pleural 
response to an inflammatory reaction in the adjacent lung. Bacteria reach the 
pleural space by various routes: 
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• spread from an adjacent area of pneumonia 

• thoracic surgery or drainage 

• bacteraemia 

• chest trauma 

• trans-diaphragmatic spread from intra-abdominal infection 

Tuberculous pleural effusion usually arises as an extension of infection from a 
sub pleural focus. Only small numbers of bacilli are found in the effusion, as a 
result microscopy is rarely positive. Pleural biopsy is the specimen of choice. 

Pneumonia 

The aetiology of pneumonia varies according to whether it has been acquired 
in the community or in hospital and the risk factors present. Many of the 
bacteria found as colonisers of the upper respiratory tract have been 
implicated in pneumonia. Antibiotic treatment and hospitalisation affect the 
colonising flora, leading to an increase in numbers of aerobic Gram-negative 
bacilli. These factors affect the sensitivity and specificity of sputum culture as 
a diagnostic test and results must always be interpreted in the light of the 
clinical information. Many patients do not have a productive cough and are 
frequently unable to produce sputum. Sputum culture results are often 
unreliable and sensitivity of culture is poor for many pathogens. 

Community acquired pneumonia 

The commonest cause overall is Streptococcus pneumoniae, which is 
responsible for up to 60% of cases in community based surveys. It can affect 
individuals of any age, including those without known risk factors. Other 
bacterial pathogens tend to cause pneumonia in the presence of specific risk 
factors. Patients with COPD are additionally at risk of pneumonia caused by 
Haemophilus influenzae and Moraxella catarrhalis. Staphylococcus aureus 
pneumonia occurs either in the context of recent influenza infection or, less 
commonly, as a result of bloodborne spread from a distant focus, COPD or 
aspiration. Aerobic Gram-negative rods are rare causes of community 
acquired pneumonia. Occasionally, Klebsiella pneumoniae causes a severe 
necrotizing pneumonia, typically in patients with a history of alcohol abuse and 
homelessness (“Friedlanders” pneumonia). 
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Mycoplasma pneumoniae causes up to 20% of community acquired 
pneumonia, second only to Streptococcus pneumoniae. It tends to occur in 
epidemics every 4-5 years and affects younger age groups. Chlamydia 
pneumoniae is an exclusively human pathogen, but pneumonia caused by 
Chlamydia psittaci and Coxiella burnetii occurs in individuals with the relevant 
exposure history (birds and farm animals). These agents are responsible for a 
minority of cases. Legionella pneumophila is a rare cause of outbreaks of 
community acquired pneumonia and about 50% of cases seen in the UK give 
a recent history of travel. Respiratory viruses, such as RSV, influenza and 
adenoviruses may occasionally cause primary viral pneumonia. Other rare 
causes of community acquired pneumonia include Pasteurella species and 
Neisseria meningitidis. 

Hospital acquired pneumonia 

This is the second commonest type of nosocomial infection. Risk is increased 
by the presence of underlying disease and by various interventions and 
procedures. Mechanical ventilation is a major risk factor. Aerobic Gram-
negative bacilli, including members of the Enterobacteriaceae (such as 
Klebsiella and Enterobacter species) and Pseudomonas aeruginosa are 
implicated in up to 60% of cases. 

Pneumonia in special situations and patient groups 

Aspiration pneumonia: 

This occurs when oropharyngeal contents are introduced into the lower 
respiratory tract. Reduced level of consciousness, for instance following head 
injury or drug overdose is a risk factor, as are weak gag and cough reflexes 
which can follow a stroke or other neurological disease. True aspiration 
pneumonia usually has an insidious onset. Anaerobes such as 
Porphyromonas species, Fusobacterium, Prevotella and anaerobic 
streptococci are implicated and may be part of a mixed infection with aerobic 
bacteria. Lung abscess formation and empyema are common complications. 

Lung abscess: 

This may be secondary to aspiration pneumonia, in which case the right 
middle zone is most frequently affected. Other organisms may give rise to 
multifocal abscess formation and the presence of multiple small abscesses 
(<2cm diameter) is sometimes referred to as necrotising pneumonia. 
Pneumonia caused by S. aureus and K. pneumoniae may show this picture. 
Nocardiosis, almost always occurring in a setting of immunosuppression, may 
present as pulmonary abscesses. Abscesses as a result of blood borne 
spread of infection from a distant focus may occur in conditions such as 
infective endocarditis. Burkholderia pseudomallei may cause lung abscesses 
or necrotising pneumonia in those who have visited endemic areas (mainly 
south East Asia and northern Australia). 
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Lemierre's syndrome or necrobacillosis originates as an acute oropharyngeal 
infection. Infective thrombophlebitis of the internal jugular vein leads to septic 
embolisation and metastatic infection. The lung is most frequently involved 
and multifocal abscesses may develop. Fusobacterium necrophorum is the 
most common pathogen isolated from blood cultures in patients with this 
syndrome. 

Cystic fibrosis 

The major cause of morbidity and mortality in cystic fibrosis patients is 
progressive pulmonary disease associated with pulmonary infection. The 
major pathogens are S. aureus, H. influenzae, S. pneumoniae and 
pseudomonads, particularly mucoid P. aeruginosa strains. Strains of P. 
aeruginosa with differing antibiotic susceptibilities may be isolated from a 
single sample. Anaerobes may also be present. 

Resistance to antibiotics, particularly in Burkholderia cepacia, 
Stenotrophomonas maltophilia (both previously in genus Pseudomonas) and 
P. aeruginosa, limits the options for treatment. Transmission of B. cepacia 
between patients may occur and some patients succumb to "B. cepacia 
syndrome" which is a rapidly fulminating pneumonia sometimes accompanied 
by septicaemia. Nosocomial transmission of Burkholderia gladioli has also 
been reported. Fungi, particularly Candida and Aspergillus species have also 
been implicated in infections in cystic fibrosis patients. 

Fungal infections 

Exposure to environmental fungi is universal and the outcome of exposure is 
a function of the immune status of the individual and the intrinsic pathogenic 
potential of the fungus involved. Candida species are normal human 
commensals. Aspergillus species and Pneumocystis carinii have a worldwide 
distribution. Cryptococcus neoformans is also ubiquitous, but certain 
serotypes (C. neoformans var gattii) are restricted to tropical and subtropical 

areas. 
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Candida species are extremely rare causes of LRTI. Occasionally infection 
occurs as a result of haematogenous seeding. Diagnosis is difficult given that 
the airways may become heavily colonised in compromised patients. 
Aspergillus fumigatus is the commonest Aspergillus species to infect humans. 
Pulmonary manifestations in hosts without major impairment of cellular or 
humoral immunity include allergic bronchopulmonary aspergillosis in patients 
with asthma or cystic fibrosis and aspergilloma, which occurs when the 
organism colonises a pre-existing lung cavity or cyst. Invasive pulmonary 
aspergillosis may have an acute and rapid course in heavily 
immunosuppressed patients (e.g. allogeneic bone marrow transplant 
recipients) or a more chronic indolent progression in less compromised 
patients (e.g. chronic granulomatous disease, HIV infection). Pneumonia 
caused by P. carinii occurs in the setting of impaired cell-mediated immunity 
such as advanced HIV infection and solid organ or bone marrow 
transplantation. 

Cryptococcal pulmonary infection is unusual in the absence of immune 
dysfunction and may coexist with extrapulmonary cryptococcosis. Pneumonia 
may be severe and rapidly progressive in patients with advanced HIV infection 
but those with better immune function may have a more indolent and variable 
course. Several other fungi have been reported to cause pulmonary infection 
in immunocompromised patients, often as part of multisystem disseminated 
disease. Penicillium marneffei infection typically occurs in HIV-infected 
patients in areas of South East Asia where it is endemic. Pseudallescheria 
boydii, Fusarium, Alternaria and zygomycetes have been implicated in 
infections in patients being treated for haematological malignancy and in bone 
marrow transplant recipients. 

Some unusual fungal causes of LRTI are endemic to defined geographical 
areas. Although many infections are sub clinical, clinically apparent infections 
are occasionally imported into the UK. They occur in persons with normal 
immunity but tend to be more severe in the immunocompromised. The 
diagnosis should be considered in travellers returning from endemic areas 
who present with respiratory illness or pneumonia, particularly if they fail to 
respond to standard therapy. These infections include: histoplasmosis, 
caused by Histoplasma capsulatum (south east USA, Central America); 
coccidiodomycosis, caused by Coccidiodes immitis (south west USA, Central 
and South America) and blastomycosis caused by Blastomyces dermatidis 
(eastern USA, Africa). Although these infections have distinguishing 
characteristics, it is often difficult to differentiate them clinically from other 
causes of respiratory infection, particularly in their early stages. 
Paracoccidioidomycosis caused by Paracoccidioides brasiliensis (Central and 
South America) usually causes asymptomatic primary pulmonary infection, 
which may reactivate if immune function declines. 
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Immunosuppression 

Patients with congenital or acquired immune defects are susceptible to 
infection with unusual organisms which do not cause problems in the normal 
host. The range of organisms to which an individual is susceptible varies 
according to the nature of the immune defect. In addition, these patients 
remain at risk of infection with the common pathogens. Environmental 
bacteria such as Nocardia species, Rhodococcus equi, Legionella species 
and environmental mycobacteria may be implicated. Fungal pathogens such 
as Pneumocystis carinii and Aspergillus species are also important as are 
herpesviruses, particularly cytomegalovirus. Patients with advanced HIV 
disease and transplant recipients are susceptible to P. carinii pneumonia and 
mycobacterial infection. CMV infection often manifests itself as pneumonitis in 
heart, lung and heart/lung transplant recipients (but HIV infected individuals 
only rarely get CMV pulmonary disease). Invasive pulmonary aspergillosis is 
seen especially in patients who have had prolonged periods of 
granulocytopenia. 

Mycobacterial disease 

Primary pulmonary infection with Mycobacterium tuberculosis may lead to the 
formation of the ‘primary complex’, particularly in childhood. The pulmonary 
focus may be relatively small, but the draining hilar lymph nodes become 
greatly enlarged and may rupture, spreading infectious material into other 
areas of the lung. It is at this stage that miliary spread to other organs may 
occur via blood and lymphatics. Adolescents and adults may have 
asymptomatic primary infection, a typical primary complex or infection which 
progresses to typical chronic cavitating tuberculosis. Chronic cavitating 
disease is usually seen in reactivated primary infection and the lung apices 
are most commonly involved. The cough which accompanies this process 
produces aerosols of infectious particles which are the route by which other 
persons may become infected. 

Nocardia and Actinomyces infections 

Nocardiosis and actinomycosis are rare conditions which may affect other 
systems apart from the lungs. Nocardia is most often seen in the lung where it 
may cause acute, often necrotising, pneumonia. This is commonly associated 
with cavitation. It may produce a slowly enlarging pulmonary nodule and 
pneumonia which is often associated with empyema. Immune defects ranging 
from alcoholism to organ transplantation and HIV infection are present in the 
majority (60% plus) of patients presenting with nocardiosis. Actinomyces 
species cause a thoracic infection which may involve the lungs, pleura, 
mediastinum or chest wall. Cases often go unrecognised until empyema or a 
chest wall fistula develops. Aspiration of oral contents is a risk factor for the 
development of thoracic actinomycosis, thus predisposing conditions include 
alcoholism, cerebral infarction, drug overdose, general anaesthesia, seizure, 
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diabetic coma or shock. The appropriate specimens for investigation of both 
these organisms are pus, tissue and biopsy specimens. 

Parasitic infections 

Several helminth infections may give rise to a syndrome characterised by 
patchy pulmonary infiltrates and eosinophilia accompanied by symptoms of 
cough, fever and weight loss. These signs and symptoms are associated with 
passage of larval forms through the lungs and include Ascaris lumbricoides, 
hookworms and Strongyloides stercoralis. The lung fluke, Paragonimus 
westermanii has a wide distribution and is particularly prevalent in the far 
East, Indian subcontinent and West Africa. Human infection is acquired by 
consumption of uncooked freshwater crabs or crayfish, which harbour 
encysted metacercariae. Although infection may be asymptomatic, heavy 
infestations are manifested by pulmonary infiltrates as above which may 
progress to chronic productive cough with pleuritic chest pain. Ova of P. 
westermanii are demonstrable in sputum. Refer to parasite SOP for 
processing of samples for parasite examination. 
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Specimen processing 

 

SAMPLES SHOULD BE GRADED AS FOLLOWS: 

 

100% pus    - Purulent  

 

The sample is stuck to the container and does not move 
when it is inverted. 

 

 

75% pus / 25% saliva  - Mucopurulent 

 

 

 

50% pus / 50% saliva  - Mucopurulent 

 

 

 

25% pus / 75% saliva  - Mucopurulent 

 

 

 

100% saliva    - Mucoid 

 

The sample may be discarded as unsuitable using the Apex code MUCOID, 
unless it is from an ICU/HDU, cystic fibrosis or immunocompromised patient. 
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Preparation of Sputasol 

Carefully using forceps peel the metal foil from a fresh vial of Sputasol 
(Refrigerator Category 3 suite) and discard the foil into a Sharps box. 

Using a medical flat containing 100 ml of sterile de-ionised water pour in the 
vial of Sputasol and mix until dissolved. Using a sterile pipette place the 
contents of the vial into the remainder of the de-ionised water, tighten cap, mix 
and label with the current date. Sputasol must not be used if more than 48 
hours old. 

Store in the Blood Culture refrigerator. Discard the Sputasol glass vial into the 
Sharps box. 

Sputum Culture Protocol 

Before culture is commenced check the sample details match those on the 
request form and proceed to number the appropriate plates according to the 
tables at the back of the SOP, or the quick guide at the front of the SOP 
(MIFSOP 033). 

Carry the plates and samples into the Category 3 suite in carrier racks and 
place into the safety cabinet. Switch on the safety cabinet and ensure the air-
flow readings are within range before commencing. If not inform a Senior 
member of staff – DO NOT PROCEED UNTIL RECTIFIED. 

Put on relevant P.P.E (Disposable gloves and safety gown) 

Using a sterile pipette, add an equal volume of Sputasol to the samples, 
discard the pipette to waste. Tighten the lids securely and vortex until the 
sample is fully homogenised.  

Using a 10 μl loop place a level loopful of sample into 5 ml of sterile de-
ionised water, and vortex to homogenise. Discard loop to waste jar. 

Using a separate sterile 10 µl loop, inoculate the appropriate plates and 
spread for single colonies. Discard the loop into the discard jar. 

Incubate the plates in appropriate atmospheric conditions for 24 hours, and 
examine for typical bacterial pathogens as contained in the tables. Re-
incubate as required according to the tables. 

Store samples in the cold room when finished. 

Wipe down the safety cabinet with Terminex after culturing a batch of 
samples, discard gloves into clinical waste bags and remove gown. 
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Pleural Fluids Culture Protocol 

Upon arrival in the laboratory check that the sample details match those on 
the request form. In the category 3 suite, place the sample into the sealed 
centrifuge buckets and balance ready for centrifugation. Spin the sample for 
10 minutes at 3000 r.p.m. Turn on the safety cabinet and check readings are 
acceptable before proceeding.  

Pour off the sample supernatant into a labelled sterile universal. Number up 
the plates as per protocol and place 5 drops of spun deposit onto a vial of 
sterile saponin (Blood Culture Refrigerator) using a sterile Pasteur pipette. 
Vortex to mix. Using a 10 µl loop apply 10 µl to the culture plates and spread 
for single colonies. Discard loop and pipette into discard waste. Incubate the 
plates under the appropriate atmospheric conditions overnight before 
reading. See tables for list of appropriate pathogens. Re-incubate as 
required. 

Tissues and Biopsies Culture Protocol 

Upon arrival in the laboratory check that the sample details match those on 
the request form. Label the plates as appropriate and transfer to the safety 
cabinet. Pour Terminex into autoclavable container and place into the cabinet. 
Switch on the safety cabinet and ensure the air-flow readings are within range 
before commencing. If not inform a Senior member of staff – DO NOT 
PROCEED UNTIL RECTIFIED. 

Put on relevant P.P.E (Disposable gloves and safety gown) 

Place the sample into a tissue grinder, add 3 drops of sterile de-ionised water, 
and grind the sample ideally until a smooth homogenous suspension is 
achieved. Occasionally the sample may be difficult to grind, in such cases 
grind the sample for at least 10 minutes. Using a 10 µl loop place a loopful of 
the ground tissue suspension onto each plate and spread for single colonies. 
Discard loop into discard waste. Upon completion of all cultures and 
enrichments place the grinder into the disinfectant and using a pipette ensure 
the grinder is filled. Leave to stand overnight before autoclaving. 

Incubate the plates under the appropriate atmospheric conditions overnight 
before reading. See tables for list of appropriate pathogens. Re-incubate as 
required. 

Respiratory Swab Culture Protocol 

Occasionally swabs of respiratory samples are sent. These are often from CF 
patients, lung Tx donors or from anastomosis sites. These are cultured 
according to the quick guide. The sample is checked to ensure the details 
match those on the request form. Number the plates as appropriate and 
inoculate the swab onto the plates and spread for single colonies. Place swab 
into appropriate rack in cold room upon completion. Incubate the plates under 
the appropriate atmospheric conditions overnight before reading. See tables 
for list of appropriate pathogens. 
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BAL Samples 

Introduction 

It is possible to recover bacteria, viruses, protozoa and fungi responsible for 
pulmonary infection from BAL specimens. Although isolation of Aspergillus 
species from BAL is of value in patients with invasive disease, it is only 30% 
sensitive. BAL specimens are particularly useful in the diagnosis of 
Pneumocystis carinii pneumonia, pneumonia caused by Legionella 
pneumophila and for the detection of Mycobacterium tuberculosis presenting 
as pneumonia. 

Bronchoalveolar lavage (BAL)  

A segment of lung is `washed' with sterile saline after insertion of a flexible 
bronchoscope, thus allowing recovery of both cellular and non-cellular 
components of the epithelial surface of the lower respiratory tract. It is a 
reliable method for making a definitive aetiological diagnosis of pneumonia 
and other pulmonary infections. 

Non directed bronchoalveolar lavage (NBL) 

A suction catheter, preferably a protected BAL catheter to minimise 
contamination, is passed down the endotracheal tube until resistance is met. 
An aliquot of sterile saline is injected and then aspirated. This method 
provides a lower respiratory tract sample without the need for bronchoscopy 
and without the attendant risks of transtracheal aspiration. 

Culture of BAL samples 

Before culture is commenced check the sample details match those on the 
request form and proceed to number the appropriate plates according to the 
tables at the back of the SOP, or the quick guide at the front of the SOP 
(MIFSOP 030). 

Carry the plates and samples into the Category 3 suite in carrier racks and 
place into the safety cabinet. Switch on the safety cabinet and ensure the air-
flow readings are within range before commencing. If not inform a Senior 
member of staff – DO NOT PROCEED UNTIL RECTIFIED. 

Put on relevant P.P.E (Disposable gloves and safety gown). 

Place the sample into the sealed centrifuge buckets and balance ready for 
centrifugation. Spin the sample for 10 minutes at 3000 r.p.m. In the safety 
cabinet transfer the supernatant into a labelled plastic universal. Add 20 ml of 
sterile de-ionised water to the deposit and vortex. Centrifuge the sample again 
and discard the supernatant to another labelled plastic universal. Vortex. The 
sample is now ready for culture. 

Lavages from patients are cultured as neat onto the appropriate plates by 
placing 10 µl of sample onto the plates and spreading for single colonies. 
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Lavages from patients with cystic fibrosis and bronchiectasis may also be 
diluted by placing a 10 µl loopful into 5 ml of sterile de-ionised water and 
inoculating this diluted sample onto a chocolate plate only. Discard loops into 
discard waste. 

Incubate the plates under the appropriate atmospheric conditions overnight 
before reading. See tables for list of appropriate pathogens. Re-incubate as 
required. 

Interpretation guidelines 

This applies to all routine samples from FRH, RVI, Clinics, Outpatients and 
GP’s. It excludes samples from both Critical Care sites, CF patients and 
bronchiectasis. 

Sensitivities are performed on Pseudomonas spp, Coliforms and S. aureus 
when: 

- Heavy and pure from a purulent sample 
- Or accompanied by good clinical details 

 
Sensitivities are suppressed. The medical staff may add a further comment if 
necessary. 
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Charts 

BAL Samples (Diagnostic/Donor/Recipient) 

Clinical 
details/ 

Conditions 

Standard media Incubation Cultures 
read 

Target organism(s) 

  
Temp 
(
o
C) Atmos Time 

  

Culture neat 
only 

Blood agar 

 

35-37 5-10% 
CO2 

24-48 h Daily 
S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure growth may be 
significant. 

 

CBAC 35-37 5-10% 
CO2 

24-48 h Daily Haemophilus sp 

Enterobacteriaceae 

Pseudomonads sp. 

Capnocytophagia 

 
Legionella media 35-37 CO2 10 days Daily Legionella sp. Nocardia 

 Gram stain     Any organisms and cellular examination 

 

Send sample to 
HPA for TB 
culture 

    Mycobacteria 

 

Sab  35-37 Air 5 Days Daily Candida sp. 

Aspergillus sp. Other fungi. 

If the patient 
has cystic 
fibrosis then 
add the 
following: 

      

 

B. cepacia 
media 

35-37 Air 5 days 

10-day 
terminal 
read 

Daily B. cepacia, B. gladioli 

Atypical Mycobacteria 

 
SAID 35-37 Air 24-48 h Daily S. aureus 
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Sputum 

General guidance on Culture media, conditions and organisms  

Clinical 
details/conditions 

Standard 
media 

Incubation Cultures 
read 

Target organism(s) 

  Temp 
(
o
C) Atmos Time 

  

Routine sputum 
samples, 

NB, dilute 10 μl of 
sample into 5 ml 
water 

NP and ET 
secretions 

 

Blood 
agar 

 

35-37 5-10% 
CO2 

24-48 h 

 

Routine 
GP 
samples 
24 h 

 

Daily 
S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure growth may be 
significant. 

 CBAC 35-37 5-10% 
CO2 

24-48 h Daily Haemophilus sp 

Enterobacteriaceae 

Pseudomonads sp. 

Capnocytophagia 

Culture all samples even if mucoid from all FH, RVI Critical Care and CF patients. 
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Bronchiectasis sputum 

 

  

Clinical 
details/conditions 

Supplementary 
media 

Incubation Culture
s read 

Target organism(s) 

  Temp 
(
o
C) Atmos Time 

  

Dilution Chocolate agar 35-37 CO2 24-48 h Daily 
S. pneumoniae 

M. catarrhalis 

S. aureus 

Pseudomonas sp 

Neat culture Blood agar  35-37 CO2 24-48 h Daily 

 

S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure growth 
may be significant. 

 CBAC 35-37 CO2 24-48 h Daily 

 

Haemophilus sp 

Enterobacteriaceae 

Pseudomonads sp. 

Capnocytophagia 
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Cystic fibrosis sputum 

 

  

Clinical 
details/conditions 

Supplementary 
media 

Incubation Cultures read Target organism(s) 

  Temp 
(
o
C) Atmos Time 

  

Dilution Chocolate agar 35-37 CO2 24-48 
h 

Daily 
S. pneumoniae 

M. catarrhalis 

S. aureus 

Pseudomonas sp 

Neat culture Blood agar  

 

35-37 CO2 24-48 
h 

Daily 

 

S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure growth 
may be significant. 

 CBAC 

 

 

35-37 CO2 24-48 
h 

Daily 

 

Haemophilus sp 

Enterobacteriaceae 

Pseudomonads sp. 

Capnocytophagia 

 CLED 35-37 Air 24-48 
h 

Daily 

 

Enterobacteriaceae 

Pseudomonas sp 

 Sab 35-37 Air 5 days Daily Aspergillus sp. And other fungi 

Candida sp. 

 SAID 35-37 Air 24-48 
h 

Daily 

 

S. aureus 

 B. Cepacia 
media 

30 Air 5 
Days 

Daily 

10-day Terminal 
Read 

B. cepacia, B. gladioli 

 

Atypical Mycobacteria 
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Cough swabs 

Clinical 
details/conditions 

Standard 
media 

Incubation Cultures 
read 

Target organism(s) 

  Temp 
(
o
C) Atmos Time 

  

Cough swab 

Not cystic fibrosis 

Blood agar  

 

35-37 5-10% 
CO2 

24- 48 h Daily 
S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure growth may be 
significant 

 CBAC 

 

35-37 CO2 24-48 h Daily Haemophilus sp 

Enterobacteriaceae 

Capnocytophagia 

Pseudomonas sp. 

Cystic fibrosis Cepacia  
media 

30 Air 5 days 

10 day 
terminal 
read 

Daily B. cepacia 

B .gladioli 
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Pleural fluids 

* TB Sent only on request 

  

Clinical 

details/Conditions 

Supplementary 

media 

Incubation Cultures 

read 

Target organism(s) 

  Temp 

(
o
C) Atmos Time 

  

Centrifuge Saponise 
Chocolate agar 

Blood agar 

35-37 CO2 24-48 h Daily 
S. pneumoniae 

M. catarrhalis 

S. aureus 

Pseudomonas sp 

 
Blood agar 35-37 An 24-48 h Daily Anaerobes 

On request only 
Legionella plate 35-37 CO2 10 days Daily 

 

Legionella sp. 

All samples from 

Freeman Wards 23 

and 28 

Pneumocoocal 

antigen testing 

    Forward sample to serology for 

testing. 
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Lung tissue samples, biopsy and PM materials, empyema 

  

Clinical 

details/Conditions 

Supplementary 

media 

Incubation Cultures read Target organism(s) 

  Temp 

(
o
C) Atmos Time 

  

Grind sample in 

tissue grinder as 

appropriate 

Choc 35-37 CO2 24-48 h Daily Haemophilus sp 

Enterobacteriaceae 

Pseudomonads sp. 

Capnocytophagia 

 
Blood agar 

 

35-37 CO2 24-48 h Daily 

 

S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure 

growth may be significant. 

 
Sab 35-37 Air 5 Days Daily 

 

Candida sp. 

Aspergillus sp. and other 

fungi. 

 
Blood Agar 

and FAA Neo 

+ Mz 5 discs 

35-37 An 5 Days After 48 hours in 

cabinet then at 5 

days 

 

Anaerobes 

 
Enrichment if 

required 

Robertsons 

Cooked Meat 

broth 

35-37 Air 48 hours Subculture at 48 

hours 

Anaerobes. 

Any other pathogenic sp. 

 
Legionella plate 

Not neonates 

35-37 CO2 10 days Daily Legionella sp. 

 
TB culture 

Not neonates 

    On Empyema samples on 

Medical Request only 

Empyema 
     Send to Serology for Pn 

Antigen 
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Lung abscess and aspiration pneumonia sputum 

  

Clinical 

details/conditions 

Standard 

media 

Incubation Cultures read Target organism(s) 

  Temp 

(
o
C) Atmos Time 

  

Culture Sample 

Neat 

Blood agar 

 

35-37 5-10% 

CO2 

24-48 h Daily 
S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure growth 

may be significant 

 CBAC 35-37 5-10% 

CO2 

24-48 h Daily Haemophilus sp 

Enterobacteriaceae 

Pseudomonads sp. 

Capnocytophagia 

Not required for 

aspiration 

pneumonia 

Sab 35-37 Air 5 Days Daily Candida sp. 

Aspergillus sp. and other fungi. 

 Blood Agar 

and FAA Neo 

+ Mz 5 discs. 

35-37 An 5 Days After 48 hours in 

cabinet then at 5 

days. 

Anaerobes 
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Transplant assessment and post lung transplant sputum 

 

Clinical 

details/Conditions 

Supplementary 

media 

Incubation Cultures 

read 

Target organism(s) 

  Temp 

(
o
C) Atmos Time 

  

Culture Neat 
CBAC 35-37 CO2 24-48 h Daily Haemophilus sp 

Enterobacteriaceae 

Pseudomonads sp. 

Capnocytophagia 

 
Blood agar 35-37 CO2 24-48 h Daily 

 

S. pneumoniae 

M. catarrhalis 

S. aureus 

Other organisms in pure growth 

may be significant 

 
CLED 35-37 Air 24-48 h Daily 

 

Use on CF only. 

 
Sab agar 35-37 Air 5 Days Daily Aspergillus sp and other fungi 

Culture dilute onto 
Chocolate agar 35-37 CO2 24-48 h Daily H. influenzae, S. pneumoniae 

 
      

If CF patient add in  

the following: 
B. cepacia 

Medium 

35-37 Air 5 days 

10-Day 

Terminal 

read 

Daily B. cepacia, B. gladioli 

 

Atypical Mycobacteria 

 
SAID 35-37 Air 24-48 Daily S.aureus  

If cystic fibrosis 

Tx Assessment 

TB culture     Forward to HPA Newcastle 

 

If cystic fibrosis 

TX assessment 

B. cepacia broth 35-37 Air Plate after 

48 hrs onto 

B. cep. 

media 

Read after 

72 hrs 

B. cepacia 
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Respiratory Sample Quick Guide 

CODE SPECIMEN BA CBAC CHOC CLED 
2D 

SAB 
5D 

SAB 
AN 
BA SAID CEP 

LEG 
Full 
plate 

5D AN 
(FAA/BA) ROB STB H.D.A COMMENTS 

R1 Sputum:- Routine Dil Dil              

                 

R2 Sputum:- Routine Critical Care  Y Y            Y Use 1/4 HDA plate 

 All CC, ITU, HDU and PICU                

                 

R5 

SCIDS/Immunosuppressed 

Sputum/ETS/NPS etc 

RVI:- GNCH03, 04, 14, 35SCBU Y Y   Y          Use 1/4 SAB plate 

                 

R12 Sputum, Bronchiectasis Y Y Dil             

                 

R4 Sputum, CF Y Y Dil Y  Y  Y Y     CC Use 1/4 SCID plate 

                 

R12 Sputum, Post LTx Y Y Dil           Y  

R13 Sputum, Post LTx, CF Y Y Dil Y    Y Y     Y  

R11 Sputum, Tx Assessment Y Y Dil   Y        Y  

R4A Sputum, Tx Assessment, CF Y Y Dil Y  Y  Y Y    Y Y Add B.cepacia broth 
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R9 
Sputum, asp.pneumonia/lung 
abscess  Y Y    Y     Y   CC  

                 

R2 ETS/NPS Y Y            CC  

                 

R2 Cough Swab Y Y             Includes bronchiectasis 

R6 CF Cough swabs Y Y       Y      Use 1/4 CEP plate for C/S 

                 

R7 Pleural Fluid Y  Y    Y       CC < 18-John P. 

R10 Pleural Fluid, Empyema Y  Y   Y Y   Y Y  Y CC All get Pn Ag < 18-John P. 

                 

R14 BAL* Y Y    Y    Y   Y CC Gram: Donor/Recip Tx** 

R17 BAL*, CF Y Y  Y  Y  Y Y Y   Y CC Gram: Donor/Recip Tx** 

                 

R8 Lung biopsy/tissue Y  Y   Y    Y Y Y Y CC 10 day AN (Nali/BA) 

R18 Neonatal death tissue Y  Y    Y    Y     

R16 Anastomosis specimens/wash Y Y    Y        CC  

R2 Airways/bronchus swab Y Y            CC  
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*
 BALS from the same lung can be pooled, but BALs from different lungs must be processed separately. 

**
 Label hospital number as GDON + hospital No. and names as DONOR + surname of recipient. Inform Prof. Gould/Crit Care cover with 

Gram-stain result direct sens may be required. 
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Appendix 5: COPD cohort demographic data 

Phenotypic and conventional microbiology culture data 

Sample number Sex Age Height (m) FEV1% 
predicted 

GOLD 
stage 

Ex-smoker Current 
smoker 

BAL microbiology data
a
 

CS#1 M 71 1.58 43 III Y N Streptococcus pneumoniae 

CS#3 M 67 1.61 49 III Y N Candida spp., & Haemophilus influenzae 

CS#4 M 52 1.64 68 II Y N No pathogens isolated 

CS#5 M 63 1.73 39 III N Y No pathogens isolated 

CS#6 M 64 1.83 49 III Y N Chryseobacterium indologenes 

CS#7 M 63 1.83 60 II Y N No pathogens isolated 

CS#8 M 69 1.67 43 III N Y Moraxella catarrhalis & Haemophilus influenzae 

CS#9 F 73 1.22 65 II Y N No pathogens isolated 

CS#10 M 61 1.74 43 III N Y Moraxella catarrhalis 

CS#11 M 62 1.73 36 III Y N No pathogens isolated 

CS#12 F 70 1.61 57 II Y N No pathogens isolated 
a
 CS#11 culture data was based on a bronchial secretion sample as patient was unable to produce BAL sample. 

Abbreviations: BAL, bronchoalveolar lavage; CS#X, COPD subject number; FEV1% predicted, forced expiratory volume in one second 

percentage predicted; GOLD, Global Initiative for Chronic Obstructive Lung Disease.
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