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Département de mathématiques et de statistique,
C.P. 6128, Succc. Centre-ville, Montréal, (QC) H3C 3J7, Canada
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Abstract

This paper is devoted to the extension of the recently proposed conditional symmetry
method to first order nonhomogeneous quasilinear systems which are equivalent to homoge-
neous systems through a locally invertible point transformation. We perform a systematic
analysis of the rank-1 and rank-2 solutions admitted by the shallow water wave equations in
(2 + 1) dimensions and construct the corresponding solutions of the rotating shallow water
wave equations. These solutions involve in general arbitrary functions depending on Riemann
invariants, which allow us to construct new interesting classes of solutions.

1 Introduction

In this paper, we use the conditional symmetry method in the context of Riemann invariants
(CSM) as presented in [9] to obtain conditionally invariant solutions of the rotating shallow water
wave (RSWW) equations with a flat bottom topography











ut + uux + vuy + ghx = 2Ωv, Ω ∈ R,

vt + uvx + vvy + ghy = −2Ωu,

ht + uhx + vhy + h(ux + vy) = 0,

(1.1)

where we denote by x = (t, x, y) and u = (u, v, h) the independent and dependent variables
respectively. Here, u and v stand for the velocity vector fields, h represents the height of the fluid
layer,g is the gravitational constant and Ω characterizes the constant angular velocity of the fluid
around the z-axis induced by a Coriolis force. It can be proved using the chain rule, see [3], that
if a set of functions u′(t′, x′, y′), v′(t′, x′, y′), h′(t′, x′, y′) satisfies the irrotational shallow water wave
equations (SWW)

∆′(x,u) :











u′
t′ + u′u′

x′ + v′u′
y′ + gh′

x′ = 0,

v′t′ + u′v′x′ + v′v′y′ + gh′
y′ = 0,

h′
t′ + u′h′

x′ + v′h′
y′ + h′(u′

x′ + v′y′) = 0,

(1.2)
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then the functions u(t, x, y), v(t, x, y), h(t, x, y) defined by

t′ = − 1

2Ω
cot (Ωt), x′ =

1

2
(y − x cot (Ωt)) , y′ = −1

2
(x+ y cot (Ωt)) ,

u′ = −1

2

(

u sin (2Ωt)− v(1− cos (2Ωt))− 2Ωx
)

,

v′ = −1

2

(

u(1− cos (2Ωt)) + v sin (2Ωt)− 2Ωy
)

, h′ =
h

2
(1− cos (2Ωt)),

(1.3)

form a solution of the RSWW equations.
The task of constructing invariant solutions of systems (1.1) and (1.2) using the classical Lie

approach was undertaken by several authors. A systematic classification of the subalgebras of the
symmetry algebra of the equations describing a rotating shallow water flow in a rigid ellipsoidal
bassin was performed in [12] and many invariant solutions were obtained. In [3], the author
introduced the transformation (1.3) to generate invariant solutions of (1.1) from known invariant
solutions of the homogeneous system (1.2), previously computed in [2] .

The CSM approach to be used in this paper was developed progressively and applied in [4,
9, 8] in order to construct rank-2 and rank-3 solutions to the equations governing the flow of
an isentropic fluid. The main feature of this approach, which proved to be less restrictive than
the generalized method of characteristics [9], is that the obtained rank-k solutions can depend on
many arbitrary functions of many independent variables, called Riemann invariants. Through a
judicious selection of these arbitrary functions, it is possible to construct solutions of the considered
homogeneous system which are bounded everywhere, even when the Riemann invariants admit a
gradient catastrophe [4]. Although the applicability of the CSM approach is technically restricted
to first order homogenous hyperbolic quasilinear systems, the objective of the present paper is to
apply it to the RSWW equations (1.1) through the transformation (1.3). Large classes of implicit
rank-k solutions are then constructed for the SWW and RSWW equations, including bumps, kinks
and periodic solutions.

The paper is organized as follows. We give in Section 2 the symmetry algebra of system (1.1) and
construct the point transformation (1.3) relating systems (1.1) and (1.2). Section 3 contains a brief
review of the conditional symmetry method in the context of Riemann invariants for homogeneous
systems and we present many interesting rank-1 and rank-2 solutions to the SWW-equations (1.2)
together with corresponding solutions to the RSWW equations (1.1). Results and perspectives are
summarized in Section 4.

2 The symmetry algebra

The classical Lie symmetry algebra admitted by system (1.1) is generated by vector fields of the
form

X = ξ1(x,u)∂t + ξ2(x,u)∂x + ξ3(x,u)∂y + η1(x,u)∂u + η2(x,u)∂v + η3(x,u)∂h. (2.1)

The requirement that the generator (2.1) leave system (1.1) invariant yields an overdetermined
system of linear equations for the functions ξi(x,u) and ηi(x,u), i = 1, 2, 3 [13]. Since this step
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is completely algorithmic and involves tidy computations, many computer programs have been
designed to derive these determining equations, see [10] for a complete review. The package
symmgrp2009.max [1, 11] for the computer algebra system Maxima has been used in this work
to obtain the determining equations of the RSWW equations (1.1) and solve them partially in
a recursive way. Solving them shows that the Lie algebra L of point symmetries of the RSWW
equations (1.1) is nine-dimensional and is generated by the following differential generators

P0 = ∂t, P1 = ∂x, P2 = ∂y, L = y∂x − x∂y + v∂u − u∂v,

G1 = − 1

2Ω
cos(2Ωt)∂x +

1

2Ω
sin(2Ωt)∂y + sin(2Ωt)∂u + cos(2Ωt)∂v,

G2 =
1

2Ω
sin(2Ωt)∂x +

1

2Ω
cos(2Ωt)∂y + cos(2Ωt)∂u − sin(2Ωt)∂v,

D = x∂x + y∂y + u∂u + v∂v + 2h∂h,

Z1 = sin(2Ωt)∂t + Ω [x cos(2Ωt) + y sin(2Ωt)] ∂x + Ω [y cos(2Ωt)− x sin(2Ωt)] ∂y

+ Ω [(2Ωy − u) cos(2Ωt)− (2Ωx− v) sin(2Ωt)] ∂u

− Ω [(2Ωx+ v) cos(2Ωt) + (2Ωy + u) sin(2Ωt)] ∂v − 2Ωh cos(2Ωt)∂h,

Z2 = cos(2Ωt)∂t + Ω [y cos(2Ωt)− x sin(2Ωt)] ∂x − Ω [x cos(2Ωt) + y sin(2Ωt)] ∂y

− Ω [(2Ωy − u) sin(2Ωt) + (2Ωx− v) cos(2Ωt)] ∂u

+ Ω [(2Ωx+ v) sin(2Ωt)− (2Ωy + u) cos(2Ωt)] ∂v + 2Ωh sin(2Ωt)∂h.

(2.2)

The geometrical interpretation of these generators is as follows. The system (1.1) is left invariant
by translations P0, P1, P2 in the space of independent variables since it is autonomous. The element
L generates a rotation of the whole coordinate system while G1 and G2 represent helical rotations.
The system is also left invariant by the dilation D and the two conformal transformations Z1 and
Z2.
The Levi decomposition L = F B N of the symmetry algebra L can be exhibited by considering
its commutation table (Table 1) in the following basis

Y1 = P2 − 2ΩG2, Y2 = −(P1 + 2ΩG1), Y3 = P1 − 2ΩG1, Y4 = P2 + 2ΩG2,

Y5 = −L, Y6 = D, Y7 = P0 − ΩL− Z2, Y8 = P0 − ΩL+ Z2, Y9 = − 1

Ω
Z1.

(2.3)

Here F = {Y1, Y2, Y3, Y4, Y5, Y6} is a maximal solvable ideal and N = {Y7, Y8, Y9} is isomorphic to
the simple Lie algebra su(1, 1). Following the procedure presented in [6, 7], we introduce a set of
canonical variables associated with the abelian subalgebra {Y1, Y2, Y7} and defined by

Y7t
′ = 1, Y1t

′ = 0, Y2t
′ = 0,

Y7x
′ = 0, Y1x

′ = 1, Y2x
′ = 0,

Y7y
′ = 0, Y1y

′ = 0, Y2y
′ = 1,

Y7u
′ = Y7v

′ = Y7h
′ = Y1u

′ = Y1v
′ = Y1h

′ = Y2u
′ = Y2v

′ = Y2h
′ = 0,

(2.4)

to bring system (1.1) into an equivalent autonomous form. It turns out that the set of variables
(1.3) satisfies system (2.4) so that when expressed in these variables, the vector fields Y1, Y2, Y7 are
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rectified to the canonical form

Y7 = ∂t′ , Y1 = ∂x′ , Y2 = ∂y′ .

Moreover, using the chain rule, it is easily found that system (1.1) transforms to

u′
t′ + u′u′

x′ + v′u′
y′ + gh′

x′ = 0,

v′t′ + u′v′x′ + v′v′y′ + gh′
y′ = 0,

h′
t′ + u′h′

x′ + v′h′
y′ + h′(u′

x′ + v′y′) = 0,

which shows the equivalence between systems (1.1) and (1.2). The next section demonstrates
how the point transformation (1.3) can be used to construct implicit solutions of equations (1.1)
expressed in terms of Riemann invariants.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Y1 0 0 0 0 −Y2 −Y1 0 −2ΩY3 −Y1

Y2 0 0 0 Y1 −Y2 0 −2ΩY4 −Y2

Y3 0 0 −Y4 −Y3 2ΩY1 0 Y3

Y4 0 Y3 −Y4 2ΩY2 0 Y4

Y5 0 0 0 0 0
Y6 0 0 0 0
Y7 0 −4Ω2Y9 −2Y7

Y8 0 2Y8

Y9 0

Table 1: Commutation relations for the Lie symmetry algebra of the RSWW equations.

3 Conditionally invariant solutions of the SWW and RSWW

equations

We present in this section a brief description of the CSM approach developed progressively in [9]
and [8] and obtain several rank-1 and rank-2 solutions of the SWW equations in closed form. We
illustrate the process of construction of the corresponding solutions for the RSWW equations with
several interesting examples. The SWW equations (1.2) can be written in matrix evolutionary
form as

ut + a1(u)ux + a2(u)uy = 0, (3.1)

where a1, a2 are 3× 3 matrix functions given by

a1 =





u 0 g
0 u 0
h 0 u



 , a2 =





v 0 0
0 v g
0 h v



 .
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The objective is to construct rank-k solutions, k = 1, 2, of system (3.1) expressible in terms of
Riemann invariants. To this end, we look for solutions of (3.1) defined implicitly by the relations

u = f(r1(x,u), . . . , rk(x,u)), rA(x,u) = λA
i (u)x

i,

det
(

λA
0 I3 + a1(u)λA

1 + a2(u)λA
2

)

= 0, A = 1, . . . , k,
(3.2)

for some function f : Rk → R
3, where I3 is the 3 by 3 identity matrix. A solution of the form

(3.2) will be called a rank-k solution if rank(∂u) = k in some open set D ⊂ R
3 around the

origin, where ∂u stands for the Jacobian matrix of u in the original variables. The functions
rA(x,u) are called the Riemann invariants associated with the linearly independent wave vectors

λA = (λA
0 ,
~λA) = (λA

0 , λ
A
1 , λ

A
2 ), which are obtained by solving the dispersion relation of equation

(3.1) for the phase velocity λ0. This relation takes the form

det
(

λ0I3 + a1(u)λ1 + a2(u)λ2

)

= (λ0 + λ1u+ λ2v)(λ0 + λ1u+ λ2v +
√

gh)(λ0 + λ1u+ λ2v −
√

gh) = 0.
(3.3)

The wave vectors are thus of the entropic (E) and acoustic (S) type defined respectively by

i)λE = (−λ1u− λ2v, λ1, λ2),

ii)λSε = (−(λ1u+ λ2v + ε
√

gh), λ1, λ2), |~λ|2 = λ1
2 + λ2

2 = 1, ε = ±1.
(3.4)

We associate to each of them the corresponding Riemann invariant

i) rE = −(λ1u+ λ2v)t+ λ1x+ λ2y,

ii) rSε = −(λ1u+ λ2v + ε
√

gh)t+ λ1x+ λ2y, |~λ|2 = 1, ε = ±1.
(3.5)

The analysis of rank-k solutions for the cases ε = ±1 are very similar, hence we restrict ourselves
to the positive case.

It is convenient when studying solutions of type (3.2) to write system (3.1) in the form of a
trace equation,

Tr[Aµ(u)∂u] = 0, µ = 1, . . . , l, (3.6)

where Aµ(u) are now 3× 3 matrix functions of u, defined by

A1 =





1 0 0
u 0 g
v 0 0



 , A2 =





0 1 0
0 u 0
0 v g



 , A3 =





0 0 1
h 0 u
0 h v



 .

The construction of rank-k solutions through the conditional symmetry method is achieved by
considering an overdetermined system, consisting of the original system (3.1) together with a set
of compatible first order differential constraints (DCs),

ξia(u)u
α
i = 0, λA

i (u)ξ
i
a(u) = 0, a = 1, . . . , 3− k, A = 1, . . . , k, (3.7)
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for which a symmetry criterion is automatically satisfied. Here and throughout this work, we use
the summation convention over repeated indices. Introducing the functions

x̄1 = r1(x,u), . . . , x̄k = rk(x,u), x̄k+1 = xk+1, . . .

ū = u, v̄ = v, h̄ = h,
(3.8)

as new coordinates on R
3 × R

3 space, the Jacobi matrix ∂u now reads

∂u =
∂f

∂r

(

Ik − (η0t+ η1x+ η2y)
∂f

∂r

)−1

λ, (3.9)

where

λ = (λA
i ) ∈ R

k×3, r = (r1, . . . , rk) ∈ R
k,

∂f

∂r
=

(

∂fα

∂rA

)

∈ R
3×k,

ηa =

(

∂λA
a

∂uα

)

∈ R
k×3, a = 0, . . . , 2, (3.10)

so that system (3.6) is now expressed as

Tr

[

Aµ(u)
∂f

∂r

(

Ik − (η0t + η1x+ η2y)
∂f

∂r

)−1

λ

]

= 0, µ = 1, . . . , l. (3.11)

Requiring that system (3.11) be satisfied for all values of the coordinates (t, x, y), the following
result holds (see [9] for a general statement and a detailed proof).

Proposition 1 The nondegenerate quasilinear hyperbolic system of first order PDEs (3.1) admits
a (3 − k)-dimensional conditional symmetry algebra L, k ≤ 2, if and only if there exists a set of
(3− k) linearly independent vector fields

Xa = ξia(u)
∂

∂xi
, a = 1, . . . , 3− k, det

(

ai(u)λA
i

)

= 0, λA
i ξ

i
a = 0, A = 1, . . . , k,

which satisfy, on some neighborhood of (x0, u0) ∈ X × U , the trace conditions

k = 1 : i) tr

(

Aµ∂f

∂r
λ

)

= 0, µ = 1, . . . , 3, (3.12)

k = 2 : i) tr

(

Aµ∂f

∂r
λ

)

= 0, ii) tr

(

Aµ∂f

∂r
ηa

∂f

∂r
λ

)

= 0, a = 0, . . . , 2, (3.13)

where the relevant matrices are defined in (3.10). Solutions of the system which are invariant
under the Lie algebra L are precisely rank-k solutions of the form (3.2).

Note that the vector fields Xa, a = 1, . . . , 3 − k, are not symmetries of the original system.
Nevertheless, as we will show, they can be used to build solutions of the overdetermined system
composed of (3.1) and the differential constraints (3.7).
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To construct solutions of the RSWW equations, we assume that a solution of the SWW equa-
tions (1.2)

u = u(r), v = v(r), h = h(r) r = (r1, . . . , rk),

has been obtained from equations (3.12) or (3.13). Then the Riemann invariants rA can be ex-
pressed as a graph

rA = rA(x,u) = rA(x,Φ(r)) (3.14)

in the (r,x) space for some function Φ : R
k → R

q. The change of variables (1.3) induces a
transformation of the independent variables in this space,

t → − 1

2Ω
cot (Ωt), x → 1

2
(y − x cot (Ωt)), y → −1

2
(x+ y cot (Ωt)), (3.15)

and we denote by r̃ = (r̃1, . . . , r̃k) the resulting functions in the new variables. Then, according to
transformation (1.3), the functions

ũ = −u(r̃) cot (Ωt)− v(r̃) + Ω (y + x cot (Ω)) ,

ṽ = u(r̃)− v(r̃) cot (Ωt)− Ω (x− y cot (Ωt)) ,

h̃ = h(r̃) csc2 (Ωt),

(3.16)

form a solution of the RSWW equations (1.1). Even though tranformation (1.3) is singular at
every time t = π

2Ω
(2n + 1), n ∈ N, we show that it is possible to obtain implicit solutions defined

in a neigborhood of the origin t = 0.

3.1 Rank-1 solutions

The reduction procedure outlined above has been applied to obtain rank-1 and rank-2 solutions
of the SWW equations (1.2) and their corresponding solutions of the RSWW system (1.1). We
present here several rank-1 solutions, also called simple waves, associated with the different types
of wave vectors (3.4). Note that in the case where k = 1, the CSM and the generalized method of
characteristics agree [9].

i) Simple entropic-type waves are obtained by considering system (1.2) in the new variables

t̄ = t, x̄ = r(x,u), ȳ = y, ū = u, v̄ = v, h̄ = h,

where r(x,u) = −(λ1u + λ2v)t + λ1
1x + λ1

2y and the functions λi, i = 1, 2, are allowed to depend
on u, v, h. Following Proposition 1, we look for solutions invariant under the vector fields

X1 = λ1∂t + (λ1u+ λ2v)∂x, X2 = λ2∂t + (λ1u+ λ2v)∂y. (3.17)

The transformed system (3.12) reads as

gλ1hr = 0, gλ2hr = 0, (λ1ur + λ2vr)h = 0. (3.18)

To obtain a nontrivial solution, we must have h = h0 ∈ R
+ together with the relation

λ1ur + λ2vr = 0. (3.19)
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For example, if λ1 and λ2 are constant, we can express u in terms of v and obtain the explicit
solution

u = u0 −
λ2

λ1

v(r), v = v(r), h = h0, r = −u0λ1t + λ1x+ λ2y, λ1 6= 0, h0 ∈ R
+,

where λ2 is an arbitrary constant and v(r) is an arbitrary function.
When the λi are not constant, different choices can lead to solutions for the velocity vector

fields u(r) and v(r) which are of distinct nature. For example, consider the choice λ1 = u, λ2 = v,
leading to

uur + vvr =
1

2
(u2 + v2)r = 0 ⇒ u2 + v2 = C2, C ∈ R.

A periodic solution is obtained by choosing

u = C sin r, v = C cos r, h = h0, C ∈ R, (3.20)

where the Riemann invariant is given implicitly by

r = −C(Ct− x sin r − y cos r). (3.21)

When λ1 = v, λ2 = u, equation (3.19) implies

vur + uvr = (uv)r = 0 ⇒ v =
C

u(r)
, C ∈ R.

We then get the solution

u = u(r), v =
C

u(r)
, h = h0 ∈ R, r = −2Ct +

C

u(r)
x+ u(r)y, (3.22)

where u(r) is an arbitrary function of the Riemann invariant r.
ii) Similarly, simple acoustic-type waves are obtained by considering system (1.2) in the new

variables
t̄ = t, x̄ = r(x,u), ȳ = y, ū = u, v̄ = v, h̄ = h,

where r(x,u) = −(λ1u + λ2v +
√
gh)t + λ1

1x + λ1
2y, |~λ|2 = 1, and the functions λi, i = 1, 2, are

allowed to depend on u, v, h. Rank-1 solutions of this type are invariant under the vector fields

X1 = λ1∂t + (λ1u+ λ2v +
√

gh)∂x, X2 = λ2∂t + (λ1u+ λ2v +
√

gh)∂y. (3.23)

In this case, the transformed system (3.12) is

λ1

√

g

h
hr = ur, λ2

√

g

h
hr = vr, h(λ1ur + λ2vr) =

√

ghhr. (3.24)

The third equation is automatically satisfied whenever the first two are and |~λ|2 = 1. Note that
in order to obtain a solution for h(r), it is necessary that the relation

λ1(u, v, h)vr − λ2(u, v, h)ur = 0 (3.25)
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be satisfied. Considering different choices for the functions λi(u, v, h), we obtain several interesting
solutions, presented in Table 2.

For illustration, we now turn to the construction of the implicit solution of the RSWW equa-
tions corresponding to (3.20), (3.21) using transformation (1.3). We first transform the Riemann
invariant r to obtain an implicit equation for r̃,

r̃ =
C2

2Ω
cot (Ωt) +

C

2
[(y − x cot (Ωt)) sin r̃ − (x+ y cot (Ωt)) cos r̃] . (3.26)

Using equations (3.16), we obtain the implicit solution of the RSWW equations

u = −C cos r̃ − C cot (Ωt) sin r̃ + Ω(y + x cot (Ωt)) ,

v = C sin r̃ − C cot (Ωt) cos r̃ − Ω (y + x cot (Ωt)) ,

h = h0 csc
2 (Ωt),

(3.27)

where r̃ is the solution of the implicit equation (3.26). This solution has period π/Ω and goes to
infinity at every time t = kπ/Ω, k ∈ N. Nevertheless, due to the invariance of equations (1.1)
with respect to translations in time, it is possible to use a time shift t → t + t0 so that equations
(3.26) are well defined in a neighborhood of length π/Ω around t = 0. For example, the translation
t → t+ π

2Ω
gives the solution

u = −C cos r̄ + C tan (Ωt) sin r̄ + Ω(y − x tan (Ωt)) ,

v = C sin r̄ + C tan (Ωt) cos r̄ − Ω (y − x tan (Ωt)) ,

h = h0 sec
2 (Ωt),

(3.28)

where r̄ satisfies the equation

r̄ = −C2

2Ω
tan (Ωt) +

C

2
[(y + x tan (Ωt)) sin r̄ − (x− y tan (Ωt)) cos r̄] , (3.29)

which is clearly defined in the interval
(

− π
2Ω
, π
2Ω

)

. Note that this process can be applied to every
solution presented in Table 2 to generate local solutions of the RSWW equations defined around
t = 0.

3.2 Rank-2 solutions

The construction of rank-2 solutions is much more involved than in the case k = 1 since it requires
us to solve system (3.13), which is composed of at most twelve independent nonlinear partial
differential equations, compared to only three equations. However, we now show that the task is
undertakable and leads to interesting solutions. The results of this analysis are summarized in
Table 3 and 4.

i) We first look for rank-2 solutions resulting from the interaction of two entropic-type solutions.
They are invariant under the vector field

X = ∂t + u∂x + v∂y. (3.30)
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In the variables

t̄ = t, x̄1 = r1(x,u), x̄2 = r2(x,u), ū = u, v̄ = v, h̄ = h,

ri(x,u) = t− λi
1

λi
1u+ λi

2v
x− λi

2

λi
1u+ λi

2v
y, i = 1, 2,

(3.31)

equations (3.13 i) read as

λ1
1(λ

2
1u+ λ2

2v)hr1 + λ2
1(λ

1
1u+ λ1

2v)hr2 = 0, (3.32)

λ1
2(λ

2
1u+ λ2

2v)hr1 + λ2
2(λ

1
1u+ λ1

2v)hr2 = 0, (3.33)

(λ2
1u+ λ2

2v)(λ
1
1ur1 + λ1

2vr1) + (λ1
1u+ λ1

2v)(λ
2
1ur2 + λ2

2vr2) = 0. (3.34)

A solution to the first two equations exists if and only if

(λ1
1λ

2
2 − λ1

2λ
2
1)(λ

1
1u+ λ1

2v)(λ
2
1u+ λ2

2v) = 0 or h = h0 ∈ R
+.

The conditions on the functions λi
j imply either that the wave vectors are parallel or one of the

considered waves has zero velocity. From these conditions, we now show that no rank-2 solution
can be built from this type of interaction.

When ~λ2 = k~λ1, the Riemann invariants r1 and r2 are equal, hence the solution cannot be of
rank 2. Therefore we look for solutions with h = h0, a positive constant. Equation (3.34) implies
that

ur1 = − 1

λ1
1

λ1
1u+ λ1

2v

λ2
1u+ λ2

2v

(

λ2
1ur2 + λ2

2vr2
)

− λ1
2

λ1
1

vr1 . (3.35)

We then consider the linear combination

1

uv
Tr

[

A3∂f

∂r
(uη1 + vη2)

∂f

∂r
λ

]

= − 2

uv

(

λ1
1u+ λ1

2v
) (

λ2
1u+ λ2

2v
) (

λ1
1λ

2
2 − λ1

2λ
2
1

)

×
((

λ1
1u+ λ1

2v
) (

λ2
1ur2 + λ2

2vr2
)

vr2 +
(

λ2
1u+ λ2

2v
) (

λ1
1ur2 + λ1

2vr2
)

vr1
)

,

(3.36)

implying that a rank-2 solution must satisfy
(

λ1
1u+ λ1

2v
) (

λ2
1ur2 + λ2

2vr2
)

vr2 +
(

λ2
1u+ λ2

2v
) (

λ1
1ur2 + λ1

2vr2
)

vr1 = 0. (3.37)

When λ2
1ur2 + λ2

2vr2 = 0, equation (3.35) requires that

ur1 = −λ1
2

λ1
1

vr1 , vr2 = −λ2
1

λ2
2

ur2,

so that (3.37) becomes
1

λ2
2

(λ2
1u+ λ2

2v)(λ
1
1λ

2
2 − λ2

1λ
1
2)ur2vr1 = 0,

leading necessarily to a rank-1 solution. Hence we can solve (3.37) for vr2, and the expression
(3.35) for ur1 implies that

ur2

ur1
=

vr2

vr1
= −(λ2

1u+ λ2
2v) (λ

1
1ur2 + λ1

2vr2)

(λ1
1u+ λ1

2v) (λ
2
1ur2 + λ2

2vr2)
, (3.38)
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hence we must have v = F (u), for an arbitrary function F : R → R. But this implies that the
Jacobian matrix of the solution is of rank 1, since h = h0. Thus, no rank-2 solution of type E-E
exists. For example, consider the simplest case when λ1

1 = λ2
2 = 1, λ1

2 = λ2
1 = 0. The Riemann

invariants are then given by

r1 = t− x

u
, r2 = t− y

v
.

Equations (3.35) and (3.37) become

uvr2 + vur1 = 0, uvr2
2 + vur2vr1 = 0. (3.39)

Solving for vr1 and vr2, we obtain that the rank of the Jacobian matrix

J =
∂(u, v, h)

∂(r1, r2)
=







ur1 ur2

− v
u

u
r1

2

u
r2

− v
u
ur1

0 0






(3.40)

is equal to one. A particular solution of (3.39) is given by

u = (−1)msm, m 6= −1, s =
C1r

2 + C2

C3r1 + C4

, Ci ∈ R, i = 1, . . . , 5,

v = C5exp

(

C3

C1

ms

)

, h = h0 ∈ R
+,

(3.41)

which is indeed seen to depend on the single variable s.
ii) We now look for interactions of a solution of each type. This type of solution is invariant

under the vector field

X = δ∂t +
(

δu− λ1
2

√

gh
)

∂x +
(

δv − λ1
1

√

gh
)

∂y, δ = λ1
1λ

2
2 − λ1

2λ
2
1. (3.42)

Introducing the change of variables

t̄ = t, x̄1 = r1(x,u), x̄2 = r2(x,u), ū = u, v̄ = v, h̄ = h,

with

r1(x,u) = t− λ1
1

λ1
1u+ λ1

2v
x− λ2

1

λ1
1u+ λ1

2v
y,

r2(x,u) = t− λ2
1

λ2
1u+ λ2

2v +
√
gh

x− λ2
2

λ2
1u+ λ2

2v +
√
gh

y,

(3.43)

we show that rank-2 solutions can be built by setting λ2
1 = 1, λ2

2 = 0. Supposing that λ1
1, λ

1
2 6= 0,
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equations (3.13) require that

ur1 = − λ1
1
2 − λ1

2
2

λ1
2(λ

1
1
2
+ λ1

2
2
)
vr2 , vr1 = − 2λ1

1

λ1
1
2
+ λ1

2
2 vr2 ,

hr1 =

√
gh

λ1
2g

vr2, hr2 =

√
gh

λ1
2g

(λ1
2ur2 − λ1

1vr2),

(3λ1
2
2 − λ1

1
2
)((λ1

2
2 − λ1

1
2
)vr2 + 2λ1

1λ
1
2ur2) = 0,

((λ1
2
2 − λ1

1
2
)vr2 + 2λ1

1λ
1
2ur2)(

√

ghλ1
1,u + hλ1

1,h) = 0,

((λ1
2
2 − λ1

1
2
)vr2 + 2λ1

1λ
1
2ur2)(

√

ghλ1
2,u + hλ1

2,h) = 0.

(3.44)

It is easily computed from equations (3.44) that when (λ1
2
2 − λ1

1
2
)vr2 +2λ1

1λ
1
2ur2 = 0, the obtained

solution will be of rank 1. Thus, we must have λ1
1 = F1(u− 2

√
gh, v), λ1

2 = F2(u− 2
√
gh, v) where

F1, F2 are arbitrary functions. Equations (3.44) can be solved for specific choices of the arbitrary
functions F1, F2. Hence we consider the case where (λ1

2
2 − λ1

1
2
)vr2 + 2λ1

1λ
1
2ur2 6= 0, together with

the relation λ1
1 =

√
3ελ1

2, ε = ±1, which leads to

ur1 = − 1

2λ1
2

vr2 , (3.45)

vr1 = −
√
3ε

2λ1
2

vr2 , (3.46)

hr1 =
1

λ1
2

√

h

g
vr2 , hr2 =

√

h

g
(ur2 −

√
3εvr2), (3.47)

√

ghλ1
2,u + hλ1

2,h = 0. (3.48)

When λ1
2 is a function of v only, system (3.45) - (3.48) is compatible and can be integrated to yield

u =

√
3

3
εv(r1, r2) + F (r2), h =

1

4g

(

F (r2)− 2
√
3

3
εv(r1, r2) + h0

)2

, (3.49)

where v(r1, r2) is given implicitly by

v = G (s) , s = r2 −
√
3ε

2λ1
2(v)

r1, (3.50)

and G(s) is an arbitrary function of its argument. The Riemann invariants r1 and r2 then satisfy
the implicit relations

r1 = λ1
2(G(s))

((

2G(s) +
√
3εF (r2)

)

t−
√
3εx− y

)

, s = r2 −
√
3ε

2λ1
2(v)

r1, ε = ±1,

r2 =

(

3

2
F (r2) +

h0

2

)

t− x.

(3.51)
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Because of the nonlinear coupling of the Riemann invariants (3.51), this type of solution is said
to be scattering. For different choices of the function λ1

2 and the profile of v (i.e. G(s)), following
the construction presented in [4], it is possible to construct rank-2 solutions which are bounded
everywhere, for example bumps, kinks and periodic solutions, even when the Riemann invariants
admit the gradient catastrophe after a finite time. We present in Table 5 several solutions of the
SWW equations obtained in this way. According to equations (1.3), after a time shift t → t+π/2Ω,
the RSWW equations admit the following solution

u = −
(√

3

3
εG(s̃) + F (r̃2)

)

tan (Ωt)−G(s̃) + Ω(y + x tan (Ωt)), ε = ±1,

v =

√
3

3
εG(s̃) + F (r̃2)−G(s̃) tan (Ωt)− Ω(x− y tan (Ωt)),

h =
1

4g

(

F (r̃2)− 2
√
3

3
εG(s̃) + h0

)2

sec2 (Ωt),

(3.52)

where the functions r̃1, r̃2, s̃ now satisfy the implicit relations

r̃1 = λ1
2 (G(s̃))

(

− 1

2Ω
(2G(s̃) +

√
3εF (r̃2)) tan (Ωt)−

√
3

2
ε(y − x tan (Ωt)) +

1

2
(x+ y tan (Ωt))

)

,

r̃2 = − 1

4Ω

(

3F (r̃2) + h0

)

tan (Ωt)− 1

2
(y − x tan (Ωt)), s̃ = r̃2 −

√
3ε

2λ1
2 (G(s̃))

r̃1,

(3.53)

and G(s̃), λ1
2(G(s̃)) and F (r̃2) are arbitrary functions of their respective argument. Equations

(3.52) and (3.53) define a rank-2 solution in the interval
(

− π
2Ω
, π
2Ω

)

. From bounded solutions of the
SWW equations (see Table 5), one can then construct rank-2 solutions of the RSWW equations
which are bounded in this interval.

iii) We now turn to the analysis of the interaction of two acoustic-type solutions. Therefore,
introducing the change of variables

t̄ = t, x̄1 = r1(x,u), x̄2 = r2(x,u), ū = u, v̄ = v, h̄ = h,

with
ri(x,u) = −(λi

1u+ λi
2v +

√

gh)t+ λi
1x+ λi

2y, |~λi|2 = 1, i = 1, 2,

the system (3.13) is formed of twelve independent equations. Equations (3.13 i) are in this case

g(λ1
1hr1 + λ2

1hr2) =
√

gh(ur1 + ur2), (3.54)

g(λ1
2hr1 + λ2

2hr2) =
√

gh(vr1 + vr2), (3.55)

h(λ1
1ur1 + λ2

1ur2 + λ1
2vr1 + λ2

2vr2) =
√

gh(hr1 + hr2). (3.56)

A process of elimination of the derivatives of the functions λi
j(u, v, h) in (3.13ii), leads us to a

system composed of

(ur1 + ur2)(λ
1
2ur1 − λ1

1vr1 + λ2
2ur2 − λ2

1vr2) = 0,

(vr1 + vr2)(λ
1
2ur1 − λ1

1vr1 + λ2
2ur2 − λ2

1vr2) = 0,
(3.57)
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and a third complicated expression which takes a much simpler form depending on the branch of
solution chosen in (3.57).

a) If u(r1, r2) = F (r1 − r2) and v(r1, r2) = G(r1 − r2), then the last equation is automatically
satisfied. The solution is obtained from the system

(λ1
1 − λ2

1)F
′ + (λ1

2 − λ2
2)G

′ = 0, |~λi|2 = 1, h = h0 ∈ R
+. (3.58)

However, it should be noted that any solution built from this branch reduces to a rank-1 entropic-
type solution. Indeed, since h = h0, by equations (3.54) and (3.55), the Jacobian matrix of the
solution in the original variables reads as

∣

∣

∣

∣

∣

∣

F ′(r1 − r2)(r1t − r2t ) −F ′(r1 − r2)(r1x − r2x)
G′(r1 − r2)(r1t − r2t ) −G′(r1 − r2)(r1x − r2x)

0 0

∣

∣

∣

∣

∣

∣

,

which is manifestly of rank-1. Moreover, it can be easily seen that the resulting rank-1 solution
will be a solution of the first type. For example, choosing

λ1
1 = 1, λ1

2 = 0, λ2
1 =

1− u2

1 + u2
, λ2

2 =
2u

u2 + 1
,

we obtain the solution

v = v0 +
1

2
u2, h = h0,

where u = F (s) is an arbitrary function of

s = r1 − r2 = −F (F 2 − 2v0)

1 + F 2
t +

2F 2

1 + F 2
x− 2F

1 + F 2
y.

b) When λ1
2ur1 − λ1

1vr1 + λ2
2ur2 − λ2

1vr2 = 0, the last equation reduces to

[

2δ2 + (~λ1 · ~λ2)− 1
]

vr1vr2 = 0, δ =

∣

∣

∣

∣

λ1
1 λ1

2

λ2
1 λ2

2

∣

∣

∣

∣

, |~λi|2 = 1. (3.59)

The solution is necessarily of rank-1 if vr1 = 0 or vr2 = 0. We then suppose that v depends
essentially on r1 and r2, so the wave vectors ~λ1 and ~λ2 must satisfy the relations

2δ2 + (~λ1 · ~λ2)− 1 = 0, |~λi|2 = 1, i = 1, 2. (3.60)

Writing λ1
1 = sinϕ1, λ

1
2 = cosϕ1, λ

2
1 = sinϕ2, λ

2
2 = cosϕ2, equation (3.60) implies that the angle

ϕ = |ϕ1 − ϕ2| ∈ [0, 2π) between the wave vectors ~λ1 and ~λ2 has to satisfy

2 sin2 ϕ+ cosϕ− 1 = 0,

which can be written as

−2

(

cosϕ+
1

2

)

(cosϕ− 1) = 0.
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Therefore, excluding the case where ϕ = 0, we obtain

cosϕ = ~λ1 · ~λ2 = −1/2 ⇒ ϕ = |ϕ1 − ϕ2| = 2π/3, (3.61)

in accordance with results already obtained for an isentropic fluid flow [9, 14]. In this case, since
by (3.60) and (3.61) we must have δ = ε

√
3/2, ε = ±1, one can show that the system composed

of (3.54) - (3.57) becomes

ur1 = λ1
1

√

g

h
hr1 , ur2 = λ2

1

√

g

h
hr2 , vr1 = λ1

2

√

g

h
hr1 , vr2 = λ2

2

√

g

h
hr2 , (3.62)

and that the functions λi
j must satisfy the equations

λ1
1λ

2
1,u + λ1

2λ
2
1,v +

h√
gh

λ2
1,h = 0, λ2

1λ
1
1,u + λ2

2λ
1
1,v +

h√
gh

λ1
1,h = 0. (3.63)

Using (3.63) and writing h = H(r1, r2)2, the compatibility conditions of equations (3.62) yield the
relation

Hr1r2 = 0 ⇒ h(r1, r2) =
(

h1(r
1) + h2(r

2)
)2

. (3.64)

When the velocity vectors ~λ1 and ~λ2 are constant, integration of (3.62) then shows that the velocity
vector fields split as a linear sum. Hence, we obtain the nonscattering solution

u = u0 + 2
√
g
(

λ1
1h1(r

1) + λ2
1h2(r

2)
)

, v = v0 + 2
√
g
(

λ1
2h1(r

1) + λ2
2h2(r

2)
)

,

h =
(

h1(r
1) + h2(r

2)
)2

,
(3.65)

where the functions h1(r
1) and h2(r

2) are arbitrary functions of the Riemann invariants

r1 = −
(

λ1
1u0 + λ1

2v0 + 3
√
gh1(r

1)
)

t+ λ1
1x+ λ1

2y, λi
j ∈ R, |~λi|2 = 1,

r2 = −
(

λ2
1u0 + λ2

2v0 + 3
√
gh2(r

2)
)

t+ λ2
1x+ λ2

2y,
~λ1 · ~λ2 = −1/2,

(3.66)

so that the angle between the vectors ~λ1 and ~λ2 is fixed by relation (3.61). Once more, these
arbitrary functions can be selected as to ensure that the solution remains bounded everywhere, see
Table 5. By means of transformation (1.3), we obtain the solution of the RSWW equations (1.1)
corresponding to solution (3.65). It is given by

u = −(u0 + 2
√
g(λ1

1h1(r̃
1) + λ2

1h2(r̃
2)) cot (Ωt)− (v0 + 2

√
g(λ1

2h1(r̃
1) + λ2

2h2(r̃
2))) + Ω(y + x cot (Ωt)),

v = u0 + 2
√
g(λ1

1h1(r̃
1) + λ2

1h2(r̃
2))− (v0 + 2

√
g(λ1

2h1(r̃
1) + λ2

2h2(r̃
2))) cot (Ωt)− Ω(x− y cot (Ωt)),

h = (h1(r̃
1) + h2(r̃

2)) csc2(Ωt),

(3.67)

where the transformed Riemann invariants r̃1, r̃2 satisfy the implicit relations

r̃1 =
1

2

[

1

Ω
(λ1

1u0 + λ1
2v0 + 3

√
gh1(r̃

1)) cot (Ωt) + λ1
1(y − x cot (Ωt))− λ1

2(x+ y cot (Ωt))

]

,

r̃2 =
1

2

[

1

Ω
(λ2

1u0 + λ2
2v0 + 3

√
gh2(r̃

2)) cot (Ωt) + λ2
1(y − x cot (Ωt))− λ2

2(x+ y cot (Ωt))

]

.

(3.68)
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Again, it is interesting to note that due to the invariance of equations (1.1) with respect to
translations in time, it is possible to use a time translation t → t+ t0 so that equations (3.68) are
well defined for t = 0. For example, when functions h1(r

1), h2(r
2) are assumed to be hyperbolic

functions of their respective argument, i.e. h1(r
1) = sech2 (r1), h2(r

2) = sech2 (r2), and if we

choose ~λ1 = (1, 0) and ~λ2 = (−1/2,
√
3/2), then we obtain after a time shift t → t + π/2Ω the

singular bump-type solution

u =
(

u0 +
√
g(2 sech2(r1)− sech2(r2))

)

tan (Ωt)− (v0 +
√

3g sech2(r2)) + Ω(y − x tan (Ωt)),

v = (v0 +
√

3g sech2(r2)) tan (Ωt) +
√
g(2 sech2(r1)− sech2(r2))− Ω(x+ y tan (Ωt)),

h = (sech2(r1) + sech2(r2))2 sec2(Ωt) (3.69)

with

r1 =
1

2Ω

(

u0 + 3
√
g sech2(r1)

)

tan (Ωt) +
1

2
(y − x tan (Ωt)) , (3.70)

r2 =
1

2Ω

(

u0

2
+

√
3

2
v0 + 3

√
g sech2(r2)

)

tan (Ωt)− 1

4
(y − x tan (Ωt))−

√
3

4
(x+ y tan (Ωt)) .

Figure 1 illustrates the behavior of the height function h(t, x, y) defined by (3.69) and (3.70) .

Figure 1: Graph of the height function h(t, x, y) for the rank-2 solution of the SS type (3.69) at
times t = −π/5 and t = 0.

When the λi
j are not constant, equations (3.63) possess several classes of implicit solutions.

Supposing that

λ1
1 =

Ψ√
1 + Ψ2

, λ1
2 =

1√
1 + Ψ2

, (3.71)

for some function Ψ : R3 → R, equation (3.59) requires that

λ2
1 = −1

2

Ψ +
√
3√

1 + Ψ2
, λ2

2 =
1

2

√
3Ψ− 1√
1 + Ψ2

. (3.72)
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The system (3.63) then becomes

ΨΨu +Ψv +
h√
gh

√
Ψ2 + 1Ψh = 0,

− (
√
3 + Ψ)Ψu + (

√
3Ψ− 1)Ψv +

2h√
gh

√
1 + Ψ2Ψh = 0,

(3.73)

implying that Ψ must satisfy

(1 +
√
3Ψ)Ψu + (

√
3−Ψ)Ψv = 0. (3.74)

It is easy to show from (3.73) that Φ is either constant or depends essentially on all functions
u, v, h. Looking for a solution of the form Ψ = F (γ1(Ψ)u + γ2(Ψ)v − φ(h)), where φ(h) is some
function of h to be determined, we obtain that equations (3.73) possess the implicit solution

Ψ = F
(

(Ψ−
√
3)u+ (1 +

√
3Ψ)v − 2

√
1 + Ψ2

√

gh
)

, (3.75)

where F is an arbitrary function of its argument. Equations (3.73) also possess infinite classes of
solutions of the form

Ψ = F (s1, s2) , s1 = γ1(Ψ)u− 2
√

gh, s2 = γ2(Ψ)v − 2
√

gh. (3.76)

The compatibility relation (3.74) requires that

∂F

∂s1
=

(Ψ−
√
3)γ2(Ψ)

(1 +
√
3Ψ)γ1(Ψ)

∂F

∂s2
= G(s1, s2)

∂F

∂s2
, (3.77)

for some function G(s1, s2). Equations (3.73) then become

γ1(Ψ)(
√
3Ψ2 − 2Ψ−

√
3) + γ2(Ψ)(Ψ2 − 2

√
3Ψ + 3) + γ1(Ψ)γ2(Ψ)

√
1 + Ψ2(

√
3−Ψ) = 0. (3.78)

For a selected function G(s1, s2), solving equations (3.78) and

G(s1, s2) =
(Ψ−

√
3)γ2(Ψ)

(1 +
√
3Ψ)γ1(Ψ)

gives the explicit expressions for γ1(Ψ) and γ2(Ψ) while integration of (3.77) gives the dependence
of F on s1 and s2. For example, when G(s1, s2) = 1, then Ψ = F (γ1(Ψ) + γ2(Ψ)− 4

√
gh), with

γ1(Ψ) = 2

√
3Ψ3 − 5Ψ2 +

√
3Ψ + 3

(
√
3Ψ2 − 2Ψ−

√
3)
√
1 + Ψ2

, γ2(Ψ) = 2
3Ψ4 − 4

√
3Ψ3 − 2Ψ2 + 4

√
3Ψ + 3

(
√
3Ψ3 − 5Ψ2 +

√
3Ψ + 3)

√
1 + Ψ2

, (3.79)

and F arbitrary.
From any explicit solution of (3.63) obtained by specifying the arbitrary function in (3.75)

or in (3.76) and (3.77) and using the relations (3.71), (3.72), the solution for the vector fields
u(r1, r2), v(r1, r2) is obtained by integrating system (3.62). However, since the resulting expressions
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are very involved even in the simplest cases, we will not present a solution of this type in closed
form.

iv) Finally, conducting an analysis similar to that of the previous case, we finally look for
linear interactions of two acoustic-type waves of constant direction for which we choose different
signs for ε in (3.4 ii). Suppose in this case that the Riemann invariants are given in the form

r1 = −(λ1
1u+ λ1

2v +
√

gh)t+ λ1
1x+ λ1

2y, λi
j ∈ R,

r2 = −(λ2
1u+ λ2

2v −
√

gh)t + λ2
1x+ λ2

2y, |~λi| = 1, i = 1, 2.
(3.80)

Writing λ1
1 = sinϕ1, λ

1
2 = cosϕ1, λ

2
1 = sinϕ2, λ

2
2 = cosϕ2, where ϕ1, ϕ2 are constant, we find that

a rank-2 solution invariant under

X = sin (ϕ1 − ϕ2)∂t +
(

sin (ϕ1 − ϕ2)u+ (cos (ϕ1) + cos (ϕ2))
√

gh
)

∂x

+
(

sin (ϕ1 − ϕ2)v − (sin (ϕ1) + sin (ϕ2))
√

gh
)

∂y
(3.81)

exists if and only if the angle between ϕ1 and ϕ2 satisfies

|ϕ1 − ϕ2| =
π

3
, (3.82)

in comparison with relation (3.61). This nonscattering rank-2 solution of the SWW equations can
be presented as

u = u0 + 2
√
g
(

λ1
1h1(r

1)− λ2
1h2(r

2)
)

, v = v0 + 2
√
g
(

λ1
2h1(r

1)− λ2
2h2(r

2)
)

,

h =
(

h1(r
1) + h2(r

2)
)2

, u0, v0 ∈ R,

where the functions h1(r
1) and h2(r

2) are arbitrary functions of the Riemann invariants

r1 = −
(

λ1
1u0 + λ1

2v0 + 3
√
gh1(r

1)
)

t + λ1
1x+ λ1

2y, λi
j ∈ R, ~λ1 · ~λ2 = 1/2,

r2 = −
(

λ2
1u0 + λ2

2v0 − 3
√
gh2(r

2)
)

t+ λ2
1x+ λ2

2y, |~λi| = 1, i = 1, 2.
(3.83)

so that the angle between ~λ1 and ~λ2 satisfies (3.82). The similarity with solution (3.65) is not

surprising. It can in fact be obtained by considering the wave vector ~λ2 in the opposite direction,
that is by setting ~λ2 → −~λ2 in expressions (3.61), (3.65) and (3.66). The computation of the
corresponding solution of the RSWW equations is done analogously to that of the previous case
and the result is included in Table 4.

4 Conclusion

In this work, we have extended the applicability of the conditional symmetry approach in the
context of Riemann invariants to a certain class of first order inhomogeneous quasilinear hyperbolic
system of the first order, namely those systems that are equivalent to a homogeneous one under
an invertible point transformation. Such classes of systems have been characterized recently in

18



the case of systems of two equations in two dependent and independent variables in [5] and an
algorithm to construct the appropriate point transformation was also given. The key element in
this analysis is the presence of an infinite dimensional Lie algebra admitted by every quasilinear
homogenous system in two variables. Although this is not true in general for multidimensional
systems, we have been able to show that such a transformation exists for the rotating shallow
water wave equations and after an analysis of the rank-k solutions of the SWW equations, we used
it to construct several of their implicit solutions expressed in terms of Riemann invariants. While
several classes of invariant solutions of the RSWW equations are known, these new conditionally
invariant solutions possess in general a considerable degree of freedom in the sense that they depend
on one or two arbitrary functions of the Riemann invariants. Although it is possible in the case
of a homogeneous system to select these arbitrary functions so as to obtain bounded solutions
for every value of the Riemann invariants, such solutions could not be constructed here since the
point transformation (1.3) is singular at times t = π

2Ω
(2n+1), n ∈ N. However, by using invariance

under time translation, we have shown that it is possible to construct solutions expressed in terms
of Riemann invariants defined in a finite interval around t = 0.

One may ask whether rank-k solutions of a given inhomogeneous system in the form (3.2) can
be constructed without relying on a point transformation bringing it to a homogeneous form. A
preliminary analysis shows that this type of solution would possess invariance properties similar
to those admitted by homogeneous systems, as expressed in Proposition 1. This study shall be
addressed in a future work.
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Canada. The author thanks Professor A.M. Grundland (Centre de Recherches Mathématiques at
the Université de Montréal and Université du Québec à Trois-Rivières) for helpful and interesting
discussions on the topic of this paper.
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Type Solution Riemann invariant Comments

1.E u = u0 − λ2

λ1

ϕ(r) r = −u0λ1t+ λ1x+ λ2y ϕ : R → R

v = ϕ(r) λi, u0 ∈ R

h = h0 h0 ∈ R
+

2.E u = C sin r r = C(−Ct + x sin r + y cos r) C ∈ R

v = C cos r h0 ∈ R
+

h = h0

3.E u = ϕ(r) r = −2Ct+ C
ϕ(r)

x+ u(r)y ϕ : R → R

v = C/ϕ(r) C ∈ R

h = h0 h0 ∈ R
+

4.S u = u0 + 2λ1
√
gϕ(r) r = −(λ1u0 + λ2v0 + 3

√
gh)t+ λ1x+ λ2y ϕ : R → R

v = v0 + 2λ2
√
gϕ(r) λi, u0, v0 ∈ R

h = ϕ(r)2

5.S u = u0 − 2
√
g cosϕ(r) r = −

(

u0 sin(ϕ(r)) + v0 cos(ϕ(r)) +
√
g(ϕ(r) + h0)

)

t ϕ : R → R

v = v0 + 2
√
g sinϕ(r) + sin(ϕ(r))x+ cos(ϕ(r))y u0, v0 ∈ R

h = (ϕ(r) + h0)
2 h0 ∈ R

+

6.S u = u0 +
√
2πgS

(

√

2ϕ(r)
π

)

r = −
(

sin(ϕ(r))

(

u0 +
√
2πgS

(

√

2ϕ(r)
π

))

ϕ : R → R
+

v = v0 +
√
2πgC

(

√

2ϕ(r)
π

)

+cos(ϕ(r))

(

v0 +
√
2πgC

(

√

2ϕ(r)
π

))

u0, v0 ∈ R

h = (
√

ϕ(r) + h0)
2 +

√
g(
√

ϕ(r) + h0)

)

t + sin(ϕ(r))x+ cos(ϕ(r))y h0 ∈ R
+

Table 2: Rank-1 solutions of the SWW equation (1.2). The functions S(·) and C(·) are the sine and cosine Fresnel integrals.
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Type Riemann invariants Solution Comments

ES r1 = λ1
2(v)

((

2G(s) +
√
3εF (r2)

)

t−
√
3εx− y

)

u =
√
3
3
εG(s) + F (r2) h0 ∈ R

+, ε2 = 1
r2 =

(

3
2
F (r2) + h0

2

)

t− x v = G (s) F,G : R → R

s = r2 −
√
3ε

2λ1

2
(G(s))

r1 h = 1
4g

(

F (r2)− 2
√
3

3
εG(s) + h0

)2

λ1
2 : R → R

SS r1 = −
(

λ1
1u0 + λ1

2v0 + 3
√
gh1(r

1)
)

t+ λ1
1x+ λ1

2y u = u0 + 2
√
g (λ1

1h1(r
1) + ελ2

1h2(r
2)) u0, v0, λ

i
j ∈ R, |~λi| = 1

r2 = −
(

λ2
1u0 + λ2

2v0 + 3ε
√
gh2(r

2)
)

t + λ2
1x+ λ2

2y v = v0 + 2
√
g (λ1

2h1(r
1) + ελ2

2h2(r
2)) h1, h2 : R → R

h = (h1(r
1) + h2(r

2))
2 ~λ1 · ~λ2 = −ε/2, ε2 = 1

Table 3: Rank-2 solutions of the SWW equations.

Type Riemann invariants Solution Comments

ES r1 = λ1
2 (G(s̃))

(

− 1
2Ω
(2G(s) +

√
3εF (r2)) cot (Ωt) u = −

(√
3

3
εG(s)+F (r2)

)

cot (Ωt)−G(s)+Ω(y+x cot (Ωt)) h0 ∈ R
+, ǫ2 = 1

−
√
3
2
ε(y − x cot (Ωt)) + 1

2
(x+ y cot (Ωt))

)

v =
√
3

3
εG(s)+F (r2)−G(s) cot (Ωt)−Ω(x−y cot (Ωt)) F,G : R → R

r2 = − 1
4Ω

(3F (r2) + h0) cot (Ωt)− 1
2
(y − x cot (Ωt)), h = 1

4g

(

F (r2)− 2
√

3

3
εG(s)+h0

)2

csc2 (Ωt) λ1
2 : R → R

s = r2 −
√
3ε

2λ1

2
(G(s))

r1

SS r1 = 1
2

[

1
Ω
(λ1

1u0 + λ1
2v0 + 3

√
gh1(r

1)) cot (Ωt) u = −(u0+2
√
g(λ1

1
h1(r1)+ελ2

1
h2(r2))) cot (Ωt), u0, v0, λ

i
j ∈ R,

+λ1
1(y − x cot (Ωt))− λ1

2(x+ y cot (Ωt))
]

−(v0+2
√
g(λ1

2
h1(r1)+ελ2

2
h2(r2)))+Ω(y+x cot (Ωt)) h1, h2 : R → R

r2 = 1
2

[

1
Ω
(λ2

1u0 + λ2
2v0 + 3ε

√
gh2(r

2)) cot (Ωt) v = −(v0+2
√
g(λ1

2
h1(r1)+ελ2

2
h2(r2))) cot (Ωt) ~λ1 · ~λ2 = −ε/2

+λ2
1(y − x cot (Ωt))− λ2

2(x+ y cot (Ωt))
]

+u0+2
√
g(λ1

1
h1(r1)+ελ2

1
h2(r2))−Ω(x−y cot (Ωt)) |~λi| = 1, ε2 = 1

h = (h1(r̃1)+h2(r̃2)) csc2(Ωt)

Table 4: Rank-2 solutions of the RSWW equations.
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No Riemann invariants Solution Comments

1. r1 = (2 tanh2 (s) +
√
3 tanh2 (r2))t−

√
3x− y u =

√
3
3
tanh2 (s) + tanh2 (r2) Anti-bump

r2 =
(

3
2
tanh2 (r2) + h0

2

)

t− x v = tanh2 (s)

s = r2 −
√
3
2
r1 h = 1

4g

(

tanh2 (r2)− 2
√
3

3
tanh2 (s) + h0

)2

2. r1 = (2 sech2 (s) +
√
3 sech2 (r2))t−

√
3x− y u =

√
3
3
sech2 (s) + sech2 (r2) Bump

r2 =
(

3
2
sech2 (r2) + h0

2

)

t− x v = sech2 (s)

s = r2 −
√
3
2
r1 h = 1

4g

(

sech2 (r2)− 2
√
3

3
sech2 (s) + h0

)2

3. r1 = −
(

u0 + 3
√
g sech2(r1)

)

t+ x u = u0 + 2
√
g
(

sech2(r1)− 1
2
sech2(r2)

)

Bump

r2 = −
(

−u0

2
+

√
3
2
v0 + 3

√
g sech2(r2)

)

t− 1
2
x+

√
3
2
y v = v0 +

√
3g sech2(r2) u0, v0 ∈ R

h =
(

sech2(r1) + sech2(r2)
)2

4. r1 = −
(

u0 +
3
√
gA1r

1√
1+B1(r1)2

)

t+ x u = u0 + 2
√
g

(

A1r
1√

1+B1(r1)2
− A2r

2

2
√

1+B2(r2)2

)

Kink

r2 = −
(

−u0

2
+

√
3
2
v0 +

3
√
gA2√

1+B2(r2)2

)

t− 1
2
x+

√
3
2
y v = v0 +

√
3gA2√

1+B2(r2)2
u0, v0, A1, A2 ∈ R

h =

(

A1r
1√

1+B1(r1)2
+ A2r

2√
1+B2(r2)2

)2

B1, B2 ∈ R
+

5. r1 = −
(

u0 +
3
√
gA1

℘(r1, 4
3
, 8

27
+ 4

3
A4

1)

)

t + x u = u0 + 2
√
g

(

A1

℘(r1, 4
3
, 8

27
+ 4

3
A4

1)
− 1

2
A2

℘(r2, 4
3
, 8

27
+ 4

3
A4

2)

)

Periodic

r2 = −
(

−u0

2
+

√
3
2
v0 +

A2

℘(r2, 4
3
, 8

27
+ 4

3
A4

2)

)

t− 1
2
x+

√
3
2
y v = v0 +

A2

℘(r2, 4
3
, 8

27
+ 4

3
A4

2)
u0, v0, A1, A2 ∈ R

h =

(

A1

℘(r1, 4
3
, 8

27
+ 4

3
A4

1)
+ A2

℘(r2, 4
3
, 8

27
+ 4

3
A4

2)

)2

Table 5: Examples of bounded rank-2 solutions of the SWW equations. The function ℘(·, g2, g3) is the elliptic Weierstrass
℘ function with invariants g2,g3.
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