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ABSTRACT
A linear force-free field solution is presented in cylindrical coordinates, formulated in terms
of trigonometric and Bessel functions. A numerical exploration has revealed that this solution
describes magnetic field lines that meander in Cartesian space, as well as field lines that lie on
toroidal flux surfaces. These tori are in (or close to) the plane perpendicular to the cylindrical
axis. Nested tori, as well as tori with shells that have finite thickness, were found. The parameter
space of the solution shows that the tori exist within a bounded range of values.

Key words: magnetic fields – MHD – Sun: corona – solar wind.

1 I N T RO D U C T I O N

Magnetic fields and plasmas play a dominant role in the solar en-
vironment and interplanetary space (Phillips 1992; Aschwanden,
Poland & Rabin 2001). The plasma β, which is the ratio of the gas
over magnetic pressure, characterizes the physics that describes the
behaviour of the plasma. For low β plasmas, such as in the corona
(Golub & Pasachoff 1997) and parts of the solar wind (Osherovich,
Farrugia & Burlaga 1993; Hundhausen 1995), magnetic field effects
dominate. It is known that a plasma in a closed volume with per-
fectly conducting boundaries will relax to its minimum energy in
the presence of a small amount of diffusivity, under the constraint
that global helicity is conserved. This minimum state is given by lin-
ear force-free fields (Woltjer 1958; Chandrasekhar & Woltjer 1958;
Taylor 1974). This property of linear force-free fields ensures their
appeal when describing plasmas with low β values in a diverse
range of studies in solar physics, astrophysics, as well as laboratory
(fusion) plasmas (see Clegg et al. 2000a,b, and references therein).
It is difficult to find bounded solutions in R3 for linear force-free
magnetic fields, described by the equation

∇×B = k B, (1)

where B is the magnetic field and k is a constant. Only two solutions
have been identified in three-dimensional (3D) Cartesian space, both
of which are periodic in all three directions. The first was discovered
by Arnold (1965) and it is only recently that the integral of energy
for this solution was found (Evangelidis, Vaughan & Botha 2000). A
second solution was discovered by the present authors (Evangelidis
& Botha 2003), with its own integral of energy. So far, no other
bounded solutions are known in 3D Cartesian space which are not
trivially reduced to Arnold’s solution.

To find analytical solutions in more complicated geometries, it is
usual to impose some symmetry on the problem (Marsh 1996). In

�E-mail: gert@maths.leeds.ac.uk (GJJB); eevangel@env.duth.gr (EAE)

the case of cylindrical coordinates, the 2π periodicity of the poloidal
angle θ around the z-axis helps to simplify the mathematical expres-
sions. Cylindrical coordinates are a natural system to use as a first
approximation of coronal loops. Observations have shown that these
loops have axially uniform cross-sections (Bellan 2003). Their very
small inverse aspect ratios are often used to justify the neglect of cur-
vature and to model them as straight cylinders, which is known as the
thin flux tube approximation (see Zhugzhda 1996; Van der Linden
& Hood 1999; Lothian & Browning 2000, and references therein).
Coronal loops are line-tied to the photosphere (Berger 1991). As
such, boundary conditions at the ends of the cylindrical axis are
important, as the coronal physics are influenced by conditions at
the photosphere and chromosphere (Aschwanden, Nightingale &
Alexander 2000). As the solar wind moves away from the Sun, it
carries the coronal flux tubes along with it. More specifically, coro-
nal mass ejections (Low 2001) form solar flux ropes (also known
as interplanetary magnetic clouds) as they move in the solar wind
away from the Sun. Usually the plasma β � 1 for these flux ropes
(Burlaga 1988), and Shimazu & Vandas (2002) have shown that as
the flux ropes expand due to the ambient pressure decrease with
distance from the Sun, they maintain a force-free state. As such,
the flux ropes are modelled locally as infinitely long cylinders de-
scribed by linear force-free magnetic fields (Burlaga 1988; Lepping
et al. 2001; Berdichevsky, Lepping & Farrugia 2003). Cylinders
have also been used to describe linear force-free magnetohydro-
static equilibria in the small inverse aspect ratio limit of tokamak
plasmas (Lortz & Spies 1994). In this case, the imposed boundary
condition is periodicity along the z-axis.

Lundquist (1950) was first to write a linear force-free solution in
cylindrical coordinates. His solution is given by

Br = 0, Bθ = AJ1(kr ), Bz = AJ0(kr ), (2)

where A is a constant and the k in the Bessel function arguments is
from equation (1). This solution describes a helical field, where the
field line pitch changes with radius r. It has been used extensively
in the literature (Farrugia, Osherovich & Burlaga 1995). Vandas &
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Romashets (2003) generalized the Lundquist solution for the case
of an oblate cylinder, writing the answer in terms of the even and
the modified even Mathieu function of order zero.

The non-linear, i.e. k = k(r ) in equation (1), force-free field of
Gold & Hoyle (1960) is the only non-linear solution we specif-
ically mention in this short overview of cylindrical solutions to
equation (1). The reason for this is the similarities it has with the
Lundquist solution. It is given by

Br = 0, Bθ = B0µr

1 + (µr )2
, Bz = B0

1 + (µr )2
, (3)

which satisfy equation (1) when k = 2µ/[1 + (µr )2]. This solution
is uniform in θ and z, and a field line remains at the same radial
distance r as in the Lundquist solution. However, in this case all the
field lines have uniform twist, in that each field line rotates through
the same angle θ per unit length along the axis. In the formulation
used here, the length along the z-axis for one rotation is 2π/µ, where
µ is a number. This field has been used and generalized subsequently
by Low (1977) and Low & Berger (2003).

The momentum equation of ideal magnetohydrodynamics
(MHD) can be written as

(∇×B) × B = µ0∇ p (4)

under static equilibrium conditions, where p is the gas pressure
and µ0 is the vacuum permittivity. In cylindrical coordinates and
assuming axisymmetry (∂/∂θ = 0), the magnetic field can be written
as rBr = −∂ψ/∂ z and rBz = ∂ψ/∂ r , where the flux function ψ

= r A, with A the θ component of the vector potential. Using this
magnetic field, equation (4) becomes (Nishikawa & Wakatani 1994)

	∗ψ + f
∂ f

∂ψ
+ r 2 ∂g

∂ψ
= 0, (5)

with

	∗ψ = ∂2ψ

∂z2
+ ∂2ψ

∂r 2
− 1

r

∂ψ

∂r
(6)

and where both f = f (ψ) and g = g(ψ) – the current and pressure
terms – are arbitrary functions of the flux function ψ = ψ(r , z).
Equation (5) is known as the Grad–Shafranov equation, with the
first two terms originating from the left-hand side of equation (4)
and the third term from the right-hand side of equation (4). The
Grad–Shafranov equation is a member of the family of Gegenbauer
equations (Evangelidis 1982). To solve it (usually numerically), we
have to define f (ψ) and g(ψ) and then solve ψ(r, z) as a boundary
value problem. Solutions of this equation show nested flux surfaces
that correspond to MHD equilibria, and it is used in the control of
plasma discharges in tokamaks during experiments (Ferron et al.
1998). By choosing g(ψ) = 0, i.e. ∇ p = 0 in equation (4), the
magnetic field becomes force free. Solving for different functional
forms of f (ψ) leads to different classes of linear and non-linear force-
free magnetic fields (Priest 1982; Martynov & Medvedev 2002).

The rotation of equation (1) leads to the vectorial Helmholtz equa-
tion. Hansen (1935) gave its solution in terms of three linear in-
dependent vectors, and Chandrasekhar (1956) and Chandrasekhar
& Kendall (1957) used these expressions to write a solution for
equation (1) in spherical coordinates. In cylindrical coordinates the
solution takes the form

B = k−1∇ × M + M, with M = ∇ × ( f ẑ), (7)

where f satisfies the scalar Helmholtz equation. Choosing a
cos(nθ ± k 0z) dependence for f , the radial dependence of f is writ-
ten in terms of Bessel functions (Evangelidis & Botha 2001). A

cos [n(θ − k 0z)] dependence for f gives a radial dependence in
terms of modified Bessel functions (Barberio-Corsetti 1973).

We move away from cylindrical coordinates in order to mention
three important methods closely related to the above, which are
used in calculating linear force-free fields in the solar corona. The
photosphere is considered to be an infinite plane, and equation (7)
is written in Cartesian coordinates with the z-axis perpendicular to
the photosphere. Magnetograms of the photospheric magnetic field
are the boundary conditions for these calculations. Chiu & Hilton
(1977) derived the Green function for linear force-free fields by
writing the function f in equation (7) as an integral over the infinite
photospheric plane, containing the normal magnetic field and the
Green function. Today, the Green function methods are important
in modelling coronal field structures (Wang, Yan & Sakurai 2001;
Petrie & Lothian 2003). Fourier methods provide another class of
coronal magnetic field solutions. In this case f in equation (7) is
written as a Fourier expansion with an exp[ik⊥ · r⊥ − z

√
k2

⊥ − k2]
dependence, where k⊥ and r ⊥ are the wave and position vectors on
the photosphere and k is the parameter in equation (1) (Nagakawa &
Raadu 1972). A third class of methods involve writing equation (1)
in terms of Fourier transforms (Alissandrakis 1981). An overview of
these methods is provided by Sakurai (1989) and they are compared
and discussed by Gary (1989) and Aly (1992).

The Fourier method lends itself to solutions of equation (1) in
cylindrical coordinates, where the periodicity in θ leads to the nat-
ural choice of an exp(iθ ) dependence. Manheimer & Lashmore-
Davies (1989) assumed periodicity in the z-direction as well, and
showed that equation (1) gives the solution we use in this paper,
under the constraint of a divergence-free magnetic field. In the next
section, we present a short alternative derivation of that solution,
and discuss some of its properties. The paper continues with a nu-
merical investigation of the magnetic field lines and flux surfaces
generated by the solution. The field lines were traced using a stan-
dard Runge–Kutta integration routine. We found field lines that are
open as well as field lines lying on toroidal flux surfaces, as shown
in Section 3. In Section 4 we investigate these flux surfaces, before
concluding the paper with a short summary.

2 C Y L I N D R I C A L S O L U T I O N

The force-free magnetic field equation (1) is written in cylindrical
coordinates in the form

1

r

∂Bz

∂θ
− ∂Bθ

∂z
− k Br = 0, (8)

∂Br

∂z
− ∂Bz

∂r
− k Bθ = 0, (9)

1

r

∂

∂r
(r Bθ ) − 1

r

∂Br

∂θ
− k Bz = 0, (10)

with the magnetic field vector defined as B = (Br, B θ , Bz). We then
cross-differentiate the θ and z components of equations (9) and (10)
in order to eliminate Br, and obtain

∂

∂z

1

r

∂

∂r
(r Bθ ) − 1

r

∂

∂θ

∂Bz

∂r
− k

r

∂Bθ

∂θ
− k

∂Bz

∂z
= 0. (11)

Differentiating equation (8) with respect to z and multiplying equa-
tion (9) by k allows us to eliminate Br between them. This procedure
gives

∂

∂z

1

r

∂Bz

∂θ
− ∂2 Bθ

∂z2
− k

∂Bz

∂r
− k2 Bθ = 0. (12)

C© 2004 RAS, MNRAS 350, 375–384



Cylindrical linear force-free fields 377

In order to solve the system of equations (11) and (12), we assume
that B θ and Bz can be separated into a radial part and a second
function of (θ , z) only. The form of this function will be deter-
mined by the physics of the problem to be modelled, as well as the
desired mathematical properties of the solution. In the rest of this
paper, we employ a trigonometric dependence on θ and z. With the
assumptions

Bθ = f (r ) cos(k0z − mθ ), (13)

Bz = g(r ) cos(k0z − mθ ), (14)

equation (12) leads to the result

f = k

k2
0 − k2

(
∂g

∂r
− mk0

kr
g

)
. (15)

By substituting this, together with assumptions (13) and (14) into
equation (11), the Bessel equation is obtained for the radial depen-
dence of the function g, namely

∂2g

∂r 2
+ 1

r

∂g

∂r
+

(
κ2 − m2

r 2

)
g = 0, (16)

the solution of which is written in terms of Bessel functions,
g = ∑∞

m=0 Cm Jm(κr ), with κ2 = k2 − k2
0, and where Cm is the

constant of integration to be determined by the boundary values
of the problem. Substituting assumptions (13) and (14) into equa-
tion (8), and using result (15), we obtain an expression for Br. Thus,
the final expression for the magnetic field components can be written
as

Br = − k0

κ2

(
∂g

∂r
− mk

rk0
g

)
sin(k0z − mθ ), (17)

Bθ = − k

κ2

(
∂g

∂r
− mk0

rk
g

)
cos(k0z − mθ ), (18)

Figure 1. Two field lines showing two types of behaviour. The field line initialized at (r , θ , z) = (0.75, π, 0) remains on the surface of a torus. This field line is
drawn as a solid line, and it is followed for 3.5 revolutions in an anticlockwise direction around the z-axis. The second field line (dot-dashed line) is initialized
at coordinates (0.75, 0, 0) and is an open field line. It is drawn until it passes az in the z-direction.

Bz = g cos(k0z − mθ ), (19)

or in terms of Bessel functions

Br = − k0

κ

∞∑
m=0

Cm

[
m

κr

(
1 − k

k0

)
Jm − Jm+1

]
sin(k0z − mθ ),

(20)

Bθ = − k

κ

∞∑
m=0

Cm

[
m

κr

(
1 − k0

k

)
Jm − Jm+1

]
cos(k0z − mθ ),

(21)

Bz =
∞∑

m=0

Cm Jm cos(k0z − mθ ), (22)

where Jm = Jm(κ r ). Any combination of terms in this series solution
is a solution to the linear equation (1).

This model does not describe a finite flux tube: it has no outer
radial boundary. Even though this solution is well behaved when
r → ∞, it may be convenient to impose a radial boundary at a
finite distance ar. In this case we have to take extra precautions
to satisfy the physics (Salingaros 1990). In a laboratory plasma,
it is necessary to take into account the confining magnetic field,
as well as the physics at the scrape-off layer of the confinement
device (Stangeby 2000). For space plasmas the magnetic flux tube
is embedded in the surrounding plasma (Zhugzhda 1996). The usual
physical constraints are conservation of magnetic flux and pressure
balance across the radial boundary. Vandas, Romashets & Watari
(2003) balance the outside gas pressure with the total pressure inside
the tube, while Low & Berger (2003) embed a rope of helically
symmetric force-free magnetic fields in an external field such that
force balance is assured. Schönfelder & Hood (1995) placed a finite
flux tube in a potential field that is well behaved at infinity. As these
examples show, the matching at the free radial boundary of the linear
force-free field inside the cylinder with an equal field on the outside
is not a trivial problem (Low 1996), and we will not treat it here.

C© 2004 RAS, MNRAS 350, 375–384



378 G. J. J. Botha and E. A. Evangelidis

Figure 2. The field line on the toroidal surface in Fig. 1 revolves in an anticlockwise direction around the z-axis. Here it is followed for 103 revolutions, with
the (r, z) planes drawn at four different values of the angle θ .

3 F I E L D L I N E T R AC I N G

We define a cylinder, and then follow different field lines inside
it. For numerical purposes the radius of the cylinder is chosen as
ar = 4, and the length is considered from −az to az, where az =
4. We are using dimensionless quantities throughout this numerical
analysis. Using the solution (20)–(22) with a fourth-order Runge–
Kutta integration routine, we are able to trace different magnetic
field lines inside this cylinder. The cylinder can be made periodic
along the z-axis by choosing appropriate values of k 0. In this study
periodicity was not imposed, so that we have an infinite cylinder.

Fig. 1 shows two field lines, traced from θ = π and 2π on the z =
0 plane at radius r = 0.75. They were obtained with k 0 = 3π/2az,
k = 2.5, and Cm = 1 with m = 0, 1, 2, . . . , m top. For m top = 7 the
solution changes less than one unit of the fourth decimal place, and
for m top = 10 it changes less than one unit of the sixth decimal place.
All the numerical results of this paper were produced with m top =
10. The two field lines in Fig. 1 show different field topologies in
the cylinder. One field line lies on the surface of a torus that has its
major axis in the direction of the z-axis. The field line covers the
whole of the toroidal surface as it revolves around the z-axis. This is
illustrated in Fig. 2 where four (r, z) planes are drawn at angles θ =
0, π/2, π, 3π/2. It shows that the shape of the minor cross-section
of the torus is a function of the angle θ . This is especially clear when
comparing the shape at θ = 0 with that at θ = π. There is also a
suggestion that the shape of the minor cross-section precesses as
the field line moves around the z-axis, as can be seen by comparing
angles θ = 0, θ = π/2 and θ = 3π/2. The second field line in
Fig. 1 meanders around inside the cylinder and eventually leaves
this section of cylinder at z = az. All the field lines of solution (20)–
(22) can be classified as either lying on a toroidal surface or as open.
The term open is used advisedly; field lines will eventually close
on themselves in a periodic cylinder. In the remainder of this paper

we will concern ourselves with the field lines lying on a toroidal
surface.

4 F I E L D L I N E S O N C L O S E D
TO RO I DA L S U R FAC E S

Next we investigate the dependence of the toroidal surfaces on the
integration coefficients Cm in solution (20)–(22). The Cm were cho-
sen to be equal to produce Fig. 1. As m increases, the amplitude
of the Bessel functions becomes smaller, so that the values of Cm

are of less importance for high values of m. By doubling the value
of one coefficient at a time, we were able to trace the influence of
each term on the solution. For m � 5 the tori survive, but their size
and shape changes. The changes are more radical for lower m val-
ues. For m � 4 the tori are destroyed and we only found open field
lines. When all the integration coefficients have different values, the
tori exist provided that the Cm values do not vary more than Ck ±
0.5 for the lower values of m, where Ck is the mean value of the
coefficients.

By changing the value of k 0, we change the number of wave-
lengths fitted into the length az. Thus, we do not change the nature
of the solution – only its scale. Finn, Guzdar & Usikov (1994) have
shown that the solution of equation (1) in Cartesian coordinates,
with boundary conditions corresponding to the solar photosphere,
depends on the value of k; the kinking and knotting of the field lines
increase as k increases. It comes as no surprise that the existence of
the tori depends on the value of k. By integrating equation (1) over
a surface, it is easy to show that k is the ratio of the amount of mag-
netic field along a closed curve C, over the amount of field passing
through the surface bounded by C (Golub & Pasachoff 1997). Thus,
in a sense the constant k is an indicator of the twist in the field. The
k in our solution is linked to the value of k 0 through the relation
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Cylindrical linear force-free fields 379

Figure 3. The parameter space of κ . The values of k and k 0 (which define
κ) are plotted on the two axes, and the values of κ are represented by the
contour lines. For k < k 0 the value of κ is complex, which we have ignored
in this study. For real values of κ , the numerical runs where toroidal surfaces
were found are marked with black circles, and runs where no tori were found
are marked with open circles.

κ2 = k2 − k2
0. We found it more appropriate to consider the param-

eter space of κ in order to investigate the existence of tori. Fig. 3
shows the parameter space of κ . For low values of k, we did not
find any field lines lying on toroidal surfaces. The field line struc-
tures closest to those lying on toroidal surfaces were lines that spiral
around the z-axis with varying radius r. The values of k 0 and k for
which we searched are indicated in Fig. 3 by the open circles for
κ � 0.619. The numerical search at these κ values was problematic,
because we were forced to use a very small integration step. It is
possible that we did not follow some of the field lines far enough to
be absolutely sure that they do not lie on toroidal surfaces. We did
find that the field lines are less kinked than for the high values of κ

(or equivalently k). For κ → 0 the solution (20)–(22) is dominated
by the r and θ components, each of which is dominated by the terms

Br ≈ − k0

κ2r

mtop∑
m=0

Cmm

(
1 − k

k0

)
Jm sin(k0z − mθ ), (23)

Bθ ≈ − k

κ2r

mtop∑
m=0

Cmm

(
1 − k0

k

)
Jm cos(k0z − mθ ), (24)

respectively. Thus, the field lines tend to move close to the (r, θ )
plane, apart from the few values of θ when Br vanishes. Then the
z component (22) has a small contribution. In contrast, when κ

is very large, the z component (22) dominates the solution. The
field lines then tend to move mainly in the z-direction, with small
contributions from the r and θ components. To obtain field lines
that lie on toroidal surfaces, the three components (20)–(22) have
to be of the same order, which would explain the range of κ values
in Fig. 3 where these toroidal surfaces occur. The topology of the
field lines changes as the value of κ changes. For a fixed value of
k 0, the number of tori found decreased with an increase in the value
of κ , until κ becomes so large that no tori exist. In order to show
these changes more explicitly, four magnetic field lines are traced,
starting on the plane z = 0 as shown in Fig. 4. This particular (r,
θ ) plane was chosen to place the starting points of the field lines in
the following figures at the centre of the cylindrical section under
consideration. Other values of z give similar results. Figs 5–11 show
the four field lines for different values of k (and hence κ).

Fig. 5 shows the field lines for a value of k = 2.3 or κ = 1.198.
The field line started at θ 0 = 0 leaves this section of the cylinder at

r

θ  = 0θ  = π

θ  = π/2

θ  = 3π/20

0

0

0

0

Figure 4. The initialization template on the plane perpendicular to the
z-axis, at z0 = 0. Field lines are traced starting at each of the black dots at
radius r 0 = ar/4, with k 0 = 5π/2az.

Figure 5. Initialization of Fig. 4 with k = 2.3, i.e. κ = 1.198.

z = az. The field line initialized at θ 0 = π/2 rotates twice around the
z-axis before it veers off. The field line at θ 0 = π lies on the surface
of a torus that has a minor radius of approximately 0.04 length units.
The field line initialized at θ 0 = 3π/2 does not rotate around the
z-axis, but follows the field line started at θ 0 = π/2 closely. By
increasing the value of κ , the shape of the four magnetic field lines
change as well. Fig. 6 shows the field lines for k = 2.5 and κ =
1.547. The field line initialized at θ 0 = 0 still leaves the cylindrical
section at z = az, and the line initialized at θ 0 = π lies on the surface
of a torus, which this time has a minor radius of approximately 0.1
length units. The field line initialized at θ 0 = π/2 rotates twice
around the z-axis before it veers off (as in Fig. 5), but the field line
initialized at θ 0 = 3π/2 now rotates 8.5 times around the z-axis
before it veers off in the same direction as the line initialized at
θ = π/2.

Fig. 7 shows the field lines for k = 3 and κ = 2.269. The field
line initialized at θ 0 = 0 still leaves the cylindrical section at z = az,
but the other three field lines change their behaviour dramatically.
In contrast to the previous figures, the field line initialized at θ 0 = π

now rotates only six times around the z-axis before veering off and
leaving the cylindrical section at z = az. The field lines initialized

C© 2004 RAS, MNRAS 350, 375–384
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Figure 6. Initialization of Fig. 4 with k = 2.5, i.e. κ = 1.547.

Figure 7. Initialization of Fig. 4 with k = 3.0, i.e. κ = 2.269.

at θ 0 = π/2 and θ 0 = 3π/2 both lie on the surface of tori, each with
a minor radius of approximately 0.25 length units.

By increasing the value of k further to 3.25 (Fig. 8), all the tori
formed by the field lines considered in the previous figures are de-
stroyed. The field lines initialized at θ 0 = π/2, θ 0 = π and θ 0 =
3π/2 all meander around in the section of the cylinder we are con-
sidering, following one another in close proximity. The field line
initialized at θ 0 = 0 leaves the cylindrical section at z = az. For
larger values of k we did not find any tori in the cylinder. Figs 9–11
show the paths of the field lines for k = 3.5, 3.75 and 4, respec-
tively. The different values of k lead to different paths for the four
field lines initialized as in Fig. 4. In Fig. 9 the field lines initialized
at θ 0 = π/2, 3π/2 and 0 all leave the cylindrical section at z = −az,
with lines θ 0 = π and θ 0 = 3π/2 so close together at z = −az that
they are indistinguishable on our plot. In Fig. 10 all four field lines
leave the cylindrical section at z = −az, and in Fig. 11 field lines
θ 0 = 0 and θ 0 = π/2 leave the cylindrical section at z = az, while
field lines θ 0 = π and θ 0 = 3π/2 leave the section of cylinder at
z = −az. The difference in the κ value used in Figs 8–11 is not large

Figure 8. Initialization of Fig. 4 with k = 3.25, i.e. κ = 2.59.

Figure 9. Initialization of Fig. 4 with k = 3.5, i.e. κ = 2.897.

Figure 10. Initialization of Fig. 4 with k = 3.75, i.e. κ = 3.195.
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Figure 11. Initialization of Fig. 4 with k = 4.0, i.e. κ = 3.485.

enough to show that the field lines become more kinked and knotted
as k increases. All we can say is that the toroidal surfaces, on which
some field lines lie for lower values of k, seem to disappear for these
higher values of k. The κ values of Figs 5 and 11 differ enough to
show the effect of the size of κ on the kinkedness and knottedness
of the field lines.

The magnetic field lines do not reconnect, which means that when
a field line lies on a toroidal surface, it effectively divides the coordi-
nate space into two parts. All the field lines inside the toroidal volume
remain there, while everything outside remains outside. This leads
to the phenomenon of nested tori. We have found several examples
of nested toroidal surfaces in our numerical scan of the cylindrical

Figure 12. Some field lines lie on nested toroidal surfaces. Here seven field lines were followed for 103 revolutions in an anticlockwise direction around the
z-axis. They lie on four nested toroidal surfaces, which are drawn on the (r, z) planes at angles θ = 0, π/2, π and 3π/2.

section, one of which is presented in Fig. 12. It was obtained with
values k 0 = π/2az, k = 1, κ = 0.92 and Cm = 1 for m = 0, 1, 2, . . . ,
10. The positions where field line tracing started are at r 0 = 2.25
and z0 = 0, and seven field lines were traced starting at different θ

angles. The field lines lie on four nested surfaces. Field lines started
at θ 0 = π/4 and 7π/4 lie on the outer toroidal surface, field lines
started at θ 0 = π/2 and 3π/2 lie on the next surface, field lines
started at θ 0 = 3π/4 and 5π/4 lie on the next inner surface, and the
field line started at θ 0 = π lies on the smallest toroidal surface. One
should not try to fit a pattern to the field line starting points and the
toroidal surface they lie on. As Fig. 12 shows, the toroidal surfaces
change shape and position as a function of the angle θ . It was purely
coincidence that we managed to choose (r 0, θ 0, z0) so that more
than one field line lie on a toroidal surface.

As was mentioned in the introduction, the solution of the Grad–
Shafranov equation (5) leads to nested surfaces in the equilibrium
MHD state. In cylindrical coordinates, these nested surfaces lie par-
allel to the cylindrical z-axis (Evangelidis 1981). Hu & Sonnerup
(2001) reconstructed magnetic flux ropes in the solar wind from
observational data using the Grad–Shafranov equation, and found
nested surfaces parallel to the cylindrical axis that have non-circular
cross-sections, as is the case in Fig. 12. In order to obtain nested flux
surfaces of the same orientation to the cylindrical axis as in Fig. 12,
we have to transform the coordinates from cylindrical to toroidal
coordinates (Nishikawa & Wakatani 1994). Toroidal flux surfaces
oriented perpendicular to the z-axis in cylindrical coordinates are
unique to the solution presented in this paper.

The thickness of the shell of a torus can vary as a function of
r and θ , as well as z. This occurred in a minority of cases that
we found. One example of this is drawn in Fig. 13. These plots
were produced with Cm = 1 for m = 0, 1, 2, . . . , 10, k 0 = 3π/2az

and k = 3, which means that κ = 2.759. When the shell has a
finite thickness, the magnetic field fills the shell as it rotates around
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Figure 13. Broadening of the shell of the torus. A field line, initialized at (r 0, θ 0, z0) = (1.75, 0, 0) is followed for 2000 rotations in an anticlockwise direction
around the z-axis. The Cartesian (r, z) planes are drawn at angles θ = 0, π/2, π and 3π/2.

Figure 14. Poincaré plots (r , ṙ ) and (z, ż) at the angles θ = 0 and θ = π/2 for the same plots as in Fig. 13.

the z-axis. We have found examples where the shell of the torus
becomes thick enough at certain values of θ , so that the whole of
the inside of the toroidal volume is filled by the magnetic field at
those angles. Figs 14 and 15 are Poincaré plots of the magnetic
field lines in Fig. 13 at the values of θ presented in Fig. 13. They
show that we can consider the thickening of the toroidal shell as
ergodic behaviour of the magnetic field lines. As in Cartesian space,

the boundary of the ergodicity changes as we move around the
z-axis.

5 C O N C L U S I O N

We investigated a cylindrical solution of the linear force-free
magnetic field, formulated in terms of Bessel and trigonometric
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Figure 15. Poincaré plots (r , ṙ ) and (z, ż) at the angles θ = π and θ = 3π/2 for the same plots as in Fig. 13.

functions. The z-axis of the cylinder can be treated as either peri-
odic or infinite, which allows modelling of low inverse aspect ratio
tokamaks as well as magnetic flux tubes in the solar wind.

The simplicity of the analytical solution hides a wealth of field
line topologies. By tracing the magnetic field lines numerically, we
have found field lines that meander in three-dimensional (3D) space,
as well as lines that remain on magnetic flux surfaces inside a finite
cylindrical radius. These surfaces form tori that lie on, or close to,
the (r , θ ) plane perpendicular to the cylindrical z-axis. A search
of the parameter space shows that these tori appear only within
certain values of k in the linear force-free field equation (1), and
that k is closely linked to the number of wavelengths k 0 chosen in
the z-direction along the cylindrical axis. A systematic scan of the
parameter values showed the existence of nested tori, as well as
tori where the shell thickness varies as a function of position in 3D
space.

We trust that the richness of the magnetic field structures will
make this description of a linear force-free field a convenient tool
in theoretical and numerical studies of magnetic flux tubes in space
and laboratory plasmas.
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