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The effect of sheared diamagnetic flow on turbulent structures generated
by the Charney–Hasegawa–Mima equation

G. J. J. Botha,a) M. G. Haines, and R. J. Hastie
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 18 May 1999; accepted 21 June 1999!

The generation of electrostatic drift wave turbulence is modeled by the Charney–Hasegawa–Mima
equation. The equilibrium density gradientn05n0(x) is chosen so thatdn0 /dx is nonzero and
spatially variable~i.e., v* e is sheared!. It is shown that this sheared diamagnetic flow leads to
localized turbulence which is concentrated at max(¹n0), with a largedv* e /dx inhibiting the spread
of the turbulence in thex direction. Coherent structures form which propagate with the localv* e in
they direction. Movement in thex direction is accompanied by a change in their amplitudes. When
the numerical code is initialized with a single wave, the plasma behavior is dominated by the initial
mode and its harmonics. ©1999 American Institute of Physics.@S1070-664X~99!00510-8#

I. INTRODUCTION

One of the first characteristics of the H~high! mode that
was discovered in tokamaks was the transport barrier at its
edge.1 Since then internal transport barriers have been mea-
sured in various machines.2–5 These barriers~both internal
and at the edge! are usually attributed to sheared (E3B)
flow.6 However, Shainget al.7 note that a sheared diamag-
netic flow can also suppress turbulence. In this paper, we
consider a sheared diamagnetic flow and consider its effect
on the turbulence. In order not to complicate our investiga-
tion, we choose to include the density profile which gener-
ates the diamagnetic flow and suppress other effects.

The numerical model used is the Hasegawa–Mima
model of two-dimensional electrostatic drift wave
turbulence.8,9 The model consists of the Charney–
Hasegawa–Mima~CHM! equation10–12 which evolves the
perturbed electrostatic potentialf1 while the unperturbed
densityn05n0(x) is fixed in time with characteristic length
Ln

215(1/n0)(dn0 /dx). Most numerical simulations~with a
few notable exceptions13,14! treatLn

21 as a constant and use
periodic boundary conditions in bothx and y directions on
the two-dimensional Cartesian plane. A general review by
Arter15 covers the modeling of drift-wave turbulence in to-
kamaks using the CHM equation. The present publication
considers numerically the influence of variousn05n0(x)
profiles on the turbulence generated by the CHM equation.
In particular,n0 profiles introducing a sheared diamagnetic
flow (v* e) are investigated.

Section II contains a short review of numerical simula-
tions which used the CHM equation. This is followed by
Sec. III stating the CHM equation and its two global con-
stants: the generalized energy and the generalized enstrophy.
The derivation of the equation and its two global constants,
the conditions under which the model is valid as well as the
effect of the chosen boundary conditions are discussed in an
appendix. In Sec. IV the numerical implementation of this
model is described and this is followed by a description of
the diagnostics used to present the results~Sec. V!. The re-

sults obtained in the numerical simulations are divided into
three main sections: Section VI describes the coherent struc-
tures in the plasma which form in the turbulence; Sec. VII
presents the spectra formed by the generalized energy and
enstrophy; and Sec. VIII investigates the influence of various
density profiles. A summary of all the results concludes this
paper.

II. NUMERICAL SIMULATIONS

Most numerical simulations in this field use slab geom-
etry and a two-dimensional regular grid to simulate the plane
perpendicular to a constant and uniform magnetic field. The
plasma inhomogeneity enters the CHM equation through
Ln

215(1/n0)(dn0 /dx) with n0 the equilibrium density. This
implies that whenLn

21 is zero, a constant or periodic, an
infinite plane can be simulated by choosing the boundary
conditions periodic in both thex and y directions. In the
literature,Ln

21 is treated almost exclusively as a constant16–27

or as equal to zero.23,28–33Here, we treatrsLn
21!1, where

rs5cs /Vci , cs being the ion sound speed andVci the ion
cyclotron frequency.

Double periodicity allows the numerical codes to be
treated spectrally. The modes in thex andy directions range
from 16316 modes28 to 5123512 modes.25,26 The existing
numerical codes can be divided into spectral
codes17,18,21,22,25,26,28,29 and pseudo-spectral
codes.16,19,20,23,24,27,30–34In the pseudo-spectral codes, it is
usually the linear terms which are calculated in Fourier
space, while the nonlinear term is calculated in coordinate
space using a finite difference scheme. A few authors have
extended this differentiated spatial treatment into the tempo-
ral treatment of the CHM equation,16,20,30using explicit time
steps to advance the linear terms and a split operator Lax–
Wendroff scheme35 for the nonlinear term.

In order to make the numerical simulations become more
realistic, the doubly periodic boundary condition needs to be
relaxed. Ingersoll and Cuong13 developed a code which is
periodic in they direction and has]f1 /]y50 along thex
boundaries, wheref1 is the field quantity evolved by the
CHM equation. Their code is spectral in both thex and y
directions withLn

2150. The nonlinear term is calculated us-
a!Now at Department of Pure and Applied Physics, Queen’s University,
Belfast BT7 1NN, UK.
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ing Arakawa’s scheme36 in coordinate space and the time
scheme uses centered time differences, with a forward inte-
gration every fifty time steps.

Su, Horton, and Morrison14 published results using a nu-
merical code which is periodic only in they direction.Ln

21

5Ln
21(x) implies that the diamagnetic velocityv* e

52cTeLn
21/(eB) is sheared. They calculated the nonlinear

term in Fourier space and evolved the CHM equation in a
space that is spectral iny and finite differenced inx.

Prakash, Chu, and Hasegawa37 considered a regular grid
which is periodic iny and hasf150 on thex boundaries.
The nonlinear term was calculated in coordinate space using
Arakawa’s scheme36 and the CHM equation was time inte-
grated using the Euler scheme for the first time step and the
leapfrog scheme for successive time steps. They used a con-
stantLn

21 ~i.e. not a function of time or space! and termi-
nated the numerical run atTfin55Vci

21 , whereVci is the ion
cyclotron frequency. Such a short run does not allow for the
drift-wave turbulence to evolve fully. After reproducing
some of their results~Sec. VIII! we extended the duration of
our numerical runs to a few characteristic time lengths~Sec.
IV !.

The duration of the numerical runs varies over a wide
range in the published literature. Some simulations are of the
order of 1022 uLnu.cs

21 , while others have a duration of up
to23,20,31 600 uLnu.cs

21 , 1220 uLnu.cs
21 and 2000uLnu.cs

21 .
Our numerical runs have durations between 20uLnu.cs

21 and
67.4 uLnu.cs

21 which in each run is enough time for the rel-
evant physics to evolve.

In the literature the following physical effects have been
added to the CHM equation: an electron temperature
gradient;14,18,34 a nonlinear term originating from the (E
3B) velocity;27 electron dissipation;18 nonadiabatic
electrons;22 sources and sinks.22,23,28,31,33Kawaharaet al.24

modified the CHM equation by simplifying the nonlinear
term, while many numerical papers included
hyperviscosity.17,25–28,31,32The accuracy of most numerical
codes is measured in terms of conservation of the CHM
equation’s global constants: the generalized energy and the
generalized enstrophy.

All the publications which have been considered in this
section, have used Cartesian coordinates with a regular, rect-
angular numerical grid. This, however, is not the only geom-
etry which is used in the literature. Marcus38 used plane cy-
lindrical coordinates on an annular grid to study vortex
behavior, in order to compare his numerical results with cy-
lindrical laboratory experiments by Sommeriaet al.39

Williams40 used spherical coordinates on a spherical grid in
order to simulate Rossby waves in the Jovian atmosphere.
He included a force term to introduce vortices with isotropic
spectra at a fixed wavenumber.

The research interest of most of the publications can be
divided into two main groups: those which are interested in
the study of the behavior of coherent vortices in two-
dimensional turbulence13,14,16,17,20,21,23–25,30,31,33,34,38and
those papers which study two-dimensional turbulence
itself.18,19,22,27–29,32,37This paper presents the effects of a
sheared diamagnetic flow on the CHM turbulence and in

particular, on the behavior of the coherent structures.

III. THE MODEL

The equation evolved in this model is the Charney–
Hasegawa–Mima equation10–12

]
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which describes two-dimensional electrostatic turbulence8,9

on the (x,y) plane perpendicular to a constant and uniform
magnetic fieldB5Bẑ. Here,f1 is the perturbed electrostatic
potential,Te is the constant and uniform electron tempera-
ture,e is the electron charge, andc is the speed of light.Vci

is the ion cyclotron frequency andLn
215(1/n0)(dn0 /dx) is

the inverse characteristic length associated with the unper-
turbed density gradient. The notation@ , # represents the
Jacobian operator~also known as Poisson brackets!.

The Appendix contains a short description of the deriva-
tion and validity of the CHM equation and describes how to
obtain its two global constants: the generalized energyW and
the generalized enstrophyU, defined by

W5E
V

1

n0Te
F1

2

n1
2Te

n0
1

1

2
min0v

E
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S ¹3v

E

Vci
D 2GdV. ~3!

The influence of the boundary conditions and ofLn
21

5Ln
21(x) on W andU is discussed in the Appendix.

IV. THE NUMERICAL IMPLEMENTATION

The two-dimensional domain is divided into a regular
grid, the size of one cell~dimensionsDx andDy) being such
that Dx!Ln and alsoDx, Dy,rs wherers is cs /Vci . The
dimensions of the numerical domain are given byax anday

in the x andy directions, respectively.
The domain is periodic in they direction and reflecting

boundary conditions41 at x50 and x5ax are chosen with
f150. In order to prevent the reflecting boundaries from
polluting the numerical solution,¹n0 is chosen to be zero
next to thex boundaries. This results indf1 /dx50 near the
x boundaries which prevents reflection and helps with the
conservation of the generalized enstrophy.~The latter is dis-
cussed in detail in the Appendix.!

By finite differencing in thex direction and using spec-
tral methods in they direction, the linear part of the CHM
equation may be written as a tridiagonal system describing
the evolution off1. By using the complex Fourier represen-
tation, a bi-tridiagonal system is obtained which evolves the
real and imaginary parts off1. This system is solved using
Von Rosenberg’s method.42 The numerical simulation is de-
aliazed by setting the top third of the Fourier spectrum to
zero. The upper boundary in Fourier space is reflective. The
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nonlinear term in the CHM equation is calculated using Ar-
akawa’s finite difference scheme for vector nonlinearities.36

The CHM equation is time advanced by means of a
modified Euler predictor corrector method. If the CHM equa-
tion is written symbolically as

]Y

]t
1X5Z, ~4!

whereX is the term containingLn
21 and Z is the nonlinear

term, then the time advancement scheme is written as

Y(p)1X(p)Dt5Y(t)1Z(t)Dt, ~5!

Y(t11)1X(t11)Dt5Y(t)1 1
2 @Z(t)1Z(p)#Dt, ~6!

where the superscripts indicate the iteration in time andDt
the time step. The final timeTfin and the time stepDt must
be chosen so thatv* eDt!1 and v* eTfin@1, wherev* e

5kv* e , i.e., the time step must be small enough to resolve
the physics and the duration of the numerical run must be
long enough to cover the time scales of interest. It is useful
to define the characteristic time as

1

kv* e
5

ay

mv* e
, ~7!

wherem is the initial mode in Fourier space.

V. DIAGNOSTICS

To obtain a measure of the fluctuations over the compu-
tational domain, the definition

S ef1

Te
D

rms

5A 1

M (
j 51

M Fef1~xi ,yj !

Te
G2

~8!

is used, where the summation is along they direction withM
the number of grid cells. (ef1 /Te)rms is a function ofx and
its x profile may be monitored as it evolves over time. This
diagnostic is helpful in observing the level and position of
fluctuations along thex axis.

The generalized energy and enstrophy are defined by
Eqs. ~2! and ~3!, respectively, and their conservation is the
prime indicator of the accuracy of this numerical code. If the
definition

u5
1

n0Te
S 1

2
min0v

E

2D1
1

2
S ¹3v

E

Vci
D 2

~9!

is used, then the generalized enstrophy@Eq. ~3!# can be writ-
ten as

U5E
V
udV. ~10!

The numerical code is spectral in they direction, which im-
plies thatu may be written as

u5 (
m52`

`

um~x!ei2pmy/ay. ~11!

The x dependence of Eq.~10! then becomes

Um5
1

ax
E

0

ax
um~x!dx ~12!

which allows the monitoring of the different modes of the
generalized enstrophy.

By defining

w5
1

n0Te
S 1

2

n1
2Te

n0
1

1

2
min0v

E

2D , ~13!

W5E
V
wdV, ~14!

w5 (
m52`

`

wm~x!ei2pmy/ay, ~15!

Wm5
1

ax
E

0

ax
wm~x!dx, ~16!

the generalized energy@Eq. ~2!# is monitored in a similar
way.

VI. COHERENT STRUCTURES

Experimental measurements indicate the possible exis-
tence of coherent structures in fusion plasmas.43,44By initial-
izing the numerical code with one wave as well with mul-
tiple waves in they direction different turbulent structures
are obtained.

The numerical code is initialized with an equilibrium
density profilen05n0(x) as shown in Fig. 1. This implies
that v* e is sheared along thex direction and is constant in
time. The initial perturbation

A~x!5
G0

A2ps2
expF2~x2ax/2!2

2s2 G , ~17!

f1~x,y!5A~x!cosS 2pmy

ay
D ~18!

is chosen and withs51 andG0 a constant, the maximum
values of (kLn)21 and ef1 /Te can be set to occur at the
same position on the numerical grid and both are equal to
1.4931022. Equation~A5! then implies that the terms in the
CHM equation are of comparable magnitude. Two numerical
simulations are performed: the first is initialized with a single
mode in they direction (m59), while the second has two
initial waves~modes 7 and 11!.

The resolution of the numerical grid is the same for both
these runs. They direction has 256 grid cells and a length of
ay /rs510/0.43;23, while 85 modes are allowed in Fourier
space. During the numerical run initialized with a single
mode ax;28rs with 300 grid cells in thex direction and
during the run with multiple modesax;46.5rs with 500
cells.

The duration of the simulations is chosen so that many
characteristic times@see Eq.~7!# are fitted into each run. The
final time for the simulation initialized with mode 9 isTfin

51.431024 s521uLnu.cs
2158 characteristic times. Here,

the minimum value ofuLnu has been used. The chosen time
step isDt5531029 s which givesDtv* e51.831023. The
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final time for the simulation with multiple initial modes is
Tfin54.531024 s567uLnu.cs

21 which is 20 characteristic
times when Eq.~7! uses mode 7 to calculate the characteris-
tic time andTfin is 32 characteristic times when mode 11 is
used. The time stepDt51028 s so thatDtv* e is of the same
order as during the simulation initialized with mode 9.

The accuracy of the numerical runs is measured by the
conservation of the generalized energy@Eq. ~14!# and the
generalized enstrophy@Eq. ~10!#. During the run initialized
with a single mode the change in the generalized energy is
less than 0.75%. The generalized enstrophy fluctuates during
this run but changes by less than 4%. The change during the
run initialized with multiple modes is 1.6% for the general-
ized energy, while the generalized enstrophy changes by
2.5%.

A. Single mode

Thev* e profile creates flows in they direction which are
sheared along thex direction ~Fig. 1! with the fastest flow
occurring atx56 cm. The effect of this sheared flow is
shown in Fig. 2. As early as 231025 s after initialization,
the numerical simulation evolves into the stable structure, as
shown in Fig. 2. During the measurement of Fig. 2 the
plasma structures atx58.2 cm moved in the negativey di-
rection at a speed of 1.26v* e . In contrast to this, the plasma
structures atx510 cm show very little movement. Although
the shapes of the different substructures change in time, the
shape of the main structure in Fig. 2 stays the same.

A Fourier analysis of the temporal fluctuations of
ef1 /Te at fixed positions on the numerical grid shows that
the frequencies of the faster flows are higher than the fre-
quencies of the slower flows45 ~as expected with the given
v* e profile!. It also shows that all measured frequencies are
of the same order asv* e/2p. The fastest moving plasma at
x56 cm has frequencies which are slightly higher than
v* e/2p. Closer to thex boundaries where the plasma moves
slower in they direction, the values of the measured frequen-
cies correspond more to their localv* e/2p. A Fourier analy-
sis of the spatial fluctuations gives spectra which show that
the initial modem59 dominates in all the flows alongy with
the higher harmonics ofm59 an order of magnitude
smaller.

B. Multiple modes

After 731025 s the numerical simulation initialized
with modes 7 and 11 has evolved into turbulence which con-
tains coherent structures formed by local maxima and
minima on the (x,y) plane. Figure 3 presents contours of
ef1 /Te on the (x,y) plane at five different times during the
numerical run and is representative of the turbulence from
731025 s toTfin . The spatial trajectories of the maxima and
minima may be followed as they evolve in time~Figs. 4 and
5, respectively!, as well as the time evolution of the ampli-
tudes of these structures~Figs. 6 and 7!.

The trajectories of the coherent structures show that the
main movement is in they direction with they velocities of
the same order as their localv* e . This implies that they
trajectories of the coherent structures are longer nearx
5ax/2 than near thex boundaries~Figs. 4 and 5!. Migration
in thex direction is more irregular and often accompanied by
amplitude changes. This is particularly noticeable for the
minima, with a few maxima also showing this behavior~e.g.,
maximum 3 in Figs. 4 and 6!. This behavior is ascribed to
the v* e5v* e(x) profile: x movement causes the coherent
structures to move through differentv* e flows and this
causes the amplitude to change. However, this is not the only
factor influencing the amplitude of the coherent structures:
movement and amplitude changes are influenced by nearby
neighbors as well~e.g., minimum 11 in Figs. 5 and 7!.

Although the coherent structures on the (x,y) plane were
followed for the duration of the numerical simulation, as
well as for simulations with different initial modes, no dis-
cernible pattern was observed. A minimum and a maximum
would join together to form a modon~a pair of extrema of
opposite sign! and modons would split up into their two
extrema seemingly at random. Sometimes two minima
would combine to create one minimum and the same is true
for the maxima.

VII. GENERALIZED ENERGY AND ENSTROPHY

The dual cascade model is well established in two-
dimensional fluid turbulence46 and the CHM equation which
links this literature with drift wave turbulence has made the

FIG. 1. x profiles ofn0 andv* e .
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dual cascade a compelling paradigm in plasma physics.47 For
the parameter space used in this publication, Terry and
Newman48 predict that more than 97% of the generalized
energy will cascade to larger scale lengths with the rest cas-
cading to smaller scales. At the same time more than 96% of
the generalized enstrophy will cascade to smaller scales with
the rest cascading to larger scales. These flows are observed

as well as the influence of condensation in the Fourier spec-
tra of the generalized energy and enstrophy. The results pre-
sented in this section are obtained with the same initializa-
tions as are used in Sec. VI: the first simulation is initialized
with mode 9 in Fourier space and the second simulation is
initialized with modes 7 and 11. The accuracy of Sec. VI is
maintained.

FIG. 2. Contour plots ofef1 /Te as it evolves in time for mode 9.
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A. Single mode

When the numerical simulation is initialized with mode
m59 in Fourier space, the initial mode dominates the Fou-
rier spectra of the generalized energy and enstrophy~Figs. 8
and 9, respectively!. The initialization first relaxes into a
state in which only harmonics ofm59 are present. Between
231025 and 1.0231024 s ~1.15 and 5.84 characteristic

times! a dual cascade involving only these harmonics, satu-
rates and the spectra ofWm and Um show stable behavior.
Figure 10 presents the spectra of the generalized energy and
enstrophy at 8.09131025 s and shows that the dual cascade
occurs only in harmonics of the initial modem59. In the
generalized energy spectrum, the energy has cascaded
mainly to lower mode numbers~larger scale lengths! and has

FIG. 3. Contour plots ofef1 /Te as it evolves in time for modes 7 and 11.
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condensed in modem50. In the generalized enstrophy spec-
trum the enstrophy has cascaded to higher mode numbers
~smaller scale lengths!, while the condensation of the gener-
alized energy atm50 causes the high amplitude ofm50 in
the generalized enstrophy spectrum. In the same way, the
condensation in the higher enstrophy modes is reflected in
the generalized energy spectrum~Fig. 8!. As can be seen in
Figs. 8 and 9, the harmonics ofm59 fluctuate in amplitude
during the numerical run until 9.76531025 or 1053(9.3
31027) s on the time axes of Figs. 8 and 9, after which the
stable multiharmonic structure is destroyed by numerical
noise. Prior to this transition all the harmonic modes in the
generalized enstrophy spectrum gained amplitude as the gen-
eralized enstrophy cascaded to higher mode numbers, while
the nonharmonic modes grow exponentially from noise until
they reach amplitudes comparable with the harmonic modes
at 1024 s. All the nonharmonic modes have the same growth
rate. A smaller separation between the harmonic modes in
the spectrum~e.g., by initializing withm53) or an increased
amplitude of the initial perturbation will increase this growth
rate. As soon as the nonharmonic and harmonic modes are of
comparable amplitude, the stable harmonic structure gives
way to turbulence with allm numbers present.

B. Multiple modes

When the simulation is initialized with modes 7 and 11,
the initial spectra of the generalized energy (Wm) and the
generalized enstrophy (Um) contain only these two modes.
Figure 11 shows the spectra att55.131025 s, which is
when the plasma enters saturated turbulence and the initial
conditions are destroyed. The generalized energy cascades
inversely to lower mode numbers, while the generalized en-
strophy cascades to higher mode numbers. Unlike the simu-
lation which is initialized with mode 9 only, the modes
which are generated do not belong only to the harmonics of
modes 7 and 11. Figure 11 also shows that the condensation
at the lower modes of theWm spectrum manifests in the high
amplitudes of the lower modes in theUm spectrum, while
Terry and Newman48 predict very little inverse cascading for
Um . The reason for this is that they assume no condensation
in the spectra.

After t55.131025 s the shapes of the spectra stay
largely the same until the end of the numerical run, while the
individual modes change as they evolve in time. In theWm

spectrum the lower modes grow. In contrast to this, the lower
modes in theUm spectrum diminish and all the higher modes

FIG. 4. Spatial trajectories of maxima ofef1 /Te in Fig. 3 as they evolve in
time. Each maximum is numbered and the numbers correspond to those in
Fig. 6.

FIG. 5. Spatial trajectories of minima ofef1 /Te in Fig. 3 as they evolve in
time. Each minimum is numbered and the numbers correspond to those in
Fig. 7.

FIG. 6. Time evolution of the amplitudes of the maxima ofef1 /Te . Each maximum is numbered and the numbers correspond to those in Fig. 4.
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increase in amplitude as the generalized enstrophy continu-
ously flows to higher modes. The upper boundary in Fourier
space is reflective to facilitate generalized enstrophy conser-
vation. This reflective boundary causes the growing ampli-
tudes ofUm for high m numbers, as the simulation progresses
in time.

The spectra at the end of the simulation (Tfin) are pre-
sented in Fig. 12. AtTfin modes 1, 2, and 3 dominate theWm

spectrum with modem52 having the largest amplitude.
Drift wave ordering@Eq. ~A2!# givesm5ay /(2prs);4 us-
ing the initialization values. None of this is reflected in the
Wm spectrum because the condensation in the lower modes

FIG. 7. Time evolution of the amplitudes of the minima ofef1 /Te . Each minimum is numbered and the numbers correspond to those in Fig. 5.

FIG. 8. Time evolution ofWm during
numerical run initialized with mode 9.
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dominates all other spectral structure. The finalUm spectrum
of the simulation is influenced by the finalWm spectrum in
that the same modes which are dominant inWm have the
largest amplitudes in theUm spectrum.

VIII. AMPLITUDE OF THE SHEARED DIAMAGNETIC
FLOW

In order to study the effect of the size ofdv* e /dx on the
plasma turbulence, the numerical code is initialized with dif-
ferent profiles ofn05n0(x).

A. The n 0 profile in Fig. 1

By choosing a spatially uniform and nonvariableLn
21,

the numerical results obtained with this code may be com-
pared to the results published by Prakash, Chu, and
Hasegawa.37 By considering the behavior directly after ini-
tialization, their nonlinear results which describe symmetric
propagation along thex direction of Wx are reproduced by
this numerical code—but not their asymmetric propagation
of the pulse. Our initial pulse propagates at equal rates to
bothx boundaries and when it reaches these boundaries, it is
reflected back towards the center of thex axis and in doing
so contaminates the numerical solution in the domain. This
reflection is eliminated by introducing anLn

215Ln
21(x) pro-

file ~Fig. 1! so thatv* e50 at thex boundaries and a maxi-

mum atax/2. This enables the duration of the numerical runs
to be lengthened while the turbulence is kept away from the
x boundaries. Again no significant asymmetry in the propa-
gation along thex direction is found.

Figure 13 contains thex distributions of (ef1 /Te)rms

and it shows that the initial perturbation is a Gaussian in the
middle of thex axis and away from thex boundaries. As time
evolves, the perturbation moves towards thex boundaries
and atTfin the perturbation is a distance 0.9rs away from
both x boundaries.

B. The n 0 profiles in Figs. 14 and 15

Different n05n0(x) profiles are used to initialize two
separate numerical simulations. One is in the form of a step
function ~Fig. 14! and the other of a top hat function~Fig.
15!. In both cases, the sharp edges are smoothed out and
dn0 /dx are finite. Thesen0 profiles will be referred to as the
‘‘step’’ and the ‘‘top hat’’ profiles, respectively. Figures 14
and 15 also present profiles ofukLnu21, wherek has been
calculated using Eq.~A2!. They show thatdn0 /dx50 for
xP(0,0.9rs), xP(32.6rs,51rs) and xP(82.8rs,83.7rs),
i.e., exactly in the middle of thex axis and at thex bound-
aries. The ukLnu21 profiles also indicate that two main
streams form in the plasma, flowing with the localv* e along
they direction. Table I presents a summary of these streams.

The resolution of the numerical grid is the same as dur-
ing the previous simulations. The length of thex axis is now
chosen to beax583.7rs and the number of grid cells in this
direction to be 900. The time stepDt57.531029 s and the
final time isTfin54.531024 s567uLnu.cs

21 calculated with
minuLnu. This gives 20 characteristic times for mode 7 and
32 characteristic times for mode 11 in each plasma stream.

The initial f1 perturbation is similar to Eqs.~17! and
~18! when multiple modes in Fourier space are used, except
that two normal distributions are fitted along thex direction:
each hass51 and their maxima are atx510 cm523.3rs

and x526 cm560.5rs . These maxima are therefore an
equal distance away fromax/2 as well as from thex bound-
aries. The sizes of the maxima are such that the linear and
nonlinear terms in the CHM equation are of comparable
magnitude@according to Eq.~A5!#.

With this initialization, a high level of accuracy is main-
tained during the numerical simulations. The generalized en-

FIG. 9. Time evolution ofUm during numerical run initialized with mode 9.

FIG. 10. Generalized energy and en-
strophy spectra att58.09131025 s,
which is 873(9.331027) s on the
time axes of Figs. 8 and 9.
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ergy shows a loss of 1% during both simulations while the
change in the generalized enstrophy is 1.4% and 2%, respec-
tively, when the step and the top hat profiles are used.

Figures 16 and 17 present thex distribution of
(ef1 /Te)rms as measured at different times during these nu-
merical simulations. The initial symmetry in thex distribu-
tion of (ef1 /Te)rms is largely maintained during the numeri-
cal simulation which uses the top hat profile~Fig. 16!. In
contrast to this, during the numerical simulation using the
step profile~Fig. 17!, a stronger perturbation moves from 10
cm into the region wheredn0 /dx50 than from 26 cm. This
is shown by the fact that the fluctuations in the region
xP~14 cm, 22 cm! are larger near 14 cm than near 22 cm.

From this observation it is deduced that the size of the
gradient ofv* e influence the spread of the perturbation in the
x direction. During the numerical run which uses the step
profile, thev* e flow at x528.9 cm is larger than the flow at
x57.3 cm~Table I!. This implies thatdv* e /dx is also larger
and this steeper gradient inhibits the spread of the turbulence
in the x direction in the stream atx528.9 cm more effec-
tively than in the case of the stream atx57.3 cm. This can
be seen in thex dependence of (ef1 /Te)rms measured att
5331024 s in Fig. 17: in the faster flowing stream, the
turbulence is still 1.2 cm away from thex536 cm boundary,

while the turbulence in the slower flowing stream is almost
at thex50 boundary. During the numerical run which uses
the top hat profile, the twov* e flows have the same size and
the fluctuations in both flows are the same distance away
from thex boundaries at timet5331024 s ~Fig. 16!.

This result is not inconsistent with Wakataniet al.47 who
had a resistive model which contained diamagnetic as well as
sheared (E3B) flows. They showed that it is mainly the
diamagnetic flow that is responsible for the level of saturated
fluctuations, while the sign of the (E3B) flow influences the
level of fluctuations during the growth phase. We find that a
sheared diamagnetic flowudv* e /dxu inhibits the spreading
of the saturated fluctuations in thex direction.

IX. SUMMARY

In this publication turbulence is generated using the
CHM equation withdLn

21/dxÞ0. As is expected from two-
dimensional turbulence, the spectra of the generalized energy
and enstrophy show that the generalized energy flows to
larger and the generalized enstrophy to smaller spatial struc-
tures. In all cases, the generalized energy condensates in the

FIG. 11. Generalized energy and enstrophy spectra att55.131025 s for the numerical runs initialized with modes 7 and 11.

FIG. 12. Generalized energy and enstrophy spectra atTfin for the numerical runs initialized with modes 7 and 11.
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lower part of its spectrum and this causes high amplitudes in
the lower part of the generalized enstrophy spectrum in spite
of the enstrophy flowing to higher modes.

When the numerical code is initialized with one har-
monic in they direction~i.e., a single mode in its generalized
energy and enstrophy spectra!, a stable structure temporarily
forms in the (x,y) plane. This structure consists of different
streams which flow in the direction of the diamagnetic ve-
locity, each flow corresponding to the localv* e and with a
spatial spectrum dominated by the initial mode.

For the single mode initialization, the spectrum of the
generalized energy shows that the energy flow to lower
modes is restricted at first to the initial mode and its harmon-
ics. Similarly, in the generalized enstrophy spectrum, the en-
strophy flows exclusively to modes that are higher harmonics
of the initial mode. After a significant number of character-
istic times this nonlinear state, which is dominated by its
initial conditions, is destroyed by growing nonharmonic
modes to evolve into a fully turbulent state with allm num-
bers present.

FIG. 13. x profiles of (ef1 /Te)rms at four different times during simulation when then0 profile of Fig. 1 is used.

FIG. 14. Unperturbed density profile which resembles a step function.
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When the numerical code is initialized with multiple
modes in they direction~i.e., multiple modes in its general-
ized energy and enstrophy spectra!, the two-dimensional tur-
bulence saturates shortly after initialization and local
maxima and minima form in the turbulence. These extrema
propagate mainly in the direction of the diamagnetic flow
with a speed of the same order as the localv* e . Some mi-
gration in thex direction is observed, which is accompanied
by changes in the amplitudes of the extrema. This is ex-
plained by the fact that the maxima and minima sample the
value of the localv* e5v* e(x).

For the multiple mode initialization, the generalized en-
ergy flows to lower modes utilizing all the modes in its
spectrum—irrespective of the initial condition. The same is
true for the generalized enstrophy spectrum where the enstro-
phy flows to higher modes.

The effect of the size ofdv* e /dx on the turbulence
generated by the CHM equation has been investigated. Al-
though¹n0 ~and hencev* e) is the source of the turbulence,
it is shown that the largerdv* e /dx is, the more the turbu-
lence is prevented from spreading in thex direction. This is
explained by postulating that the shear inv* e tears the tur-
bulence and thus inhibits its spread in thex direction. The
same mechanism may be at work in the measured transport
barriers in experiments: the sheared (E3B) flow breaks the
turbulence up and reduces the transport across these barriers.
Although no transport has been calculated in this publication,
it is hoped that by showing the influence ofv* e5v* e(x) on
electrostatic turbulence, we can contribute to the understand-
ing of the mechanism active in transport barriers.

APPENDIX A: THE FIELD EQUATION AND ITS
PROPERTIES

1. The field equation

The Hasegawa–Mima model for plasma turbulence8,9 is
a two-dimensional model describing turbulence on the (x,y)
plane perpendicular to a constant and uniform magnetic field
B5Bẑ. The electric field isE52¹f1, wheref1 is the per-
turbed electrostatic potential. The electrons have a constant
and uniform temperatureTe and are assumed to be in ther-
mal equilibrium along the magnetic field lines. Conse-

quently, the electron physics is described by the adiabatic
responsen1 /n05ef1 /Te along each magnetic field line,
wheree is the electron charge andn1 andn05n0(x) are the
perturbed and equilibrium densities. The ions are cold and
are described by the fluid equation of continuity which con-
tains only the (E3B) and the polarization velocities. Substi-
tuting the adiabatic response into the ion equation of conti-
nuity by invoking quasineutrality and using the orderings

ef1

Te
!1; rsLn

21!1 ~A1!

as well as the drift wave ordering

rsk;O~1!, ~A2!

the Charney–Hasegawa–Mima~CHM! equation10–12

]

]t S ef1

Te
2

1

Vci

c

B
¹

'

2f1D2
c

B
Ln

21 ]f1

]y

2
1

Vci

c2

B2
@f1 ,¹

'

2f1#50 ~A3!

is obtained, where

@f1 ,¹
'

2f1#5
]f1

]x

]¹
'

2f1

]y
2

]¹
'

2f1

]x

]f1

]y
. ~A4!

The notationrs5cs /Vci is used wherecs is the sound speed
as well asLn

215(1/n0)(dn0 /dx) which is the inverse char-
acteristic length associated with the unperturbed density gra-
dient.

When the linear term containingLn
21 is of the same size

as the nonlinear term in Eq.~A3!,

FIG. 15. Unperturbed density profile which resembles a top hat function.

TABLE I. Different streams flowing with velocityv* e .

Profile Local maxuv* eu x position Flow direction

Step 6.0033104 cm s21 7.3 cm positivey axis
6.3333104 cm s21 28.9 cm positivey axis

Top hat 6.3333104 cm s21 7.1 cm negativey axis
6.3333104 cm s21 28.9 cm positivey axis
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FIG. 16. x profiles of (ef1 /Te)rms at
four different times during simulation
using top hat profile.

FIG. 17. x profiles of (ef1 /Te)rms at four different times during simulation using step profile.
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~kLn!21;
ef1

Te
~A5!

is obeyed. From Eqs.~A1! and~A2! it follows that the CHM
equation is valid only when (kLn)21!1. Equation~A5! is
therefore consistent with Eqs.~A1! and ~A2!. It should be
noted that these orderings have nothing to say about the
variation ofLn

215Ln
21(x). The scale at whichLn

21 changes
in the x direction ~i.e., dLn

21/dx) does not enter the deriva-
tion of the CHM equation and consequentlyd2n0 /dx2 is not
relevant when deciding the validity of the equation.

2. Constants of motion

To obtain the local conservation property of the CHM
equation, Eq.~A3! is written as

S ]

]t
1v

E
•¹ DF50, ~A6!

F5 ln n01
ef1

Te
2

1

Vci

c

B
¹2f1 . ~A7!

Thus, F ~known as the potential vorticity23! is conserved
along the trajectory of a fluid element. This local conserva-
tion property gives rise to an infinite family of invariants
which may be obtained by considering any function ofF
along the line of flow of a fluid element.

The CHM equation also possesses global integral invari-
ants which are not obtained from the conservation ofF.49 Of
all the invariants, only two of the non-F invariants are con-
served if the Fourier spectrum is truncated to a finite number
of modes: the generalized energy and the generalized enstro-
phy. These two global constants are the topic of the next
section.

3. Global constants

In contrast to the published literature where they usually
are derived withLn

2150 or constant, the generalized energy
and enstrophy will be derived withLn

215Ln
21(x).

The generalized energy is obtained by multiplying Eq.
~A3! by ef1 /Te and then integrating it over the volume.
This results in

]W

]t
1E

V

v* e

2

]

]y S ef1

Te
D 2

dV1E
S
J1•dS50, ~A8!

wherev* e is the electron density gradient drift~also known
as the diamagnetic velocity! and

W5E
V

1

n0Te
F1

2

n1
2Te

n0
1

1

2
min0v

E

2GdV, ~A9!

J15
21

Vci

ec

BTe
f1

]

]t
¹f11

1

Vci

ec2

TeB
2
f1¹

'

2f1

3~¹f13 ẑ!. ~A10!

Equation~A9! is identified as a generalized energy~consist-
ing of pressure and kinetic energy terms! and the third term

in Eq. ~A8! as an energy flux. The volume integral in Eq.
~A8! is a source or a sink of the generalized energy.

The generalized enstrophy is obtained by multiplying
Eq. ~A3! by c/(VciB)¹2f15rs

2¹2(ef1 /Te) and then inte-
grating it over the volume. This process results in

]U
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where
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Vci
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J25
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BTe
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]f1
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2
1

Vci
2

c3

B3

1

2
~¹2f1!2~¹f13 ẑ!. ~A13!

Equation ~A12! is identified as the generalized enstrophy
~consisting of a kinetic and a vorticity term! and the last term
in Eq. ~A11! as the generalized enstrophy flux. The volume
integral in Eq.~A11! defines a source or a sink.

4. Boundary conditions and the global constants

The geometry used in the numerical simulations is that
of a two-dimensional slab in Cartesian coordinates. The slab
is periodic in they direction and at the two boundaries atx
50 and x5ax the perturbed electrostatic potentialf150.
Here,ax is the length of the slab in thex direction.

Equation~A8! describes the evolution of the generalized
energyW. The periodicity iny makes the volume integral in
Eq. ~A8! identically zero, while the energy flux vanishes
under the influence of thex and y boundary conditions.
Equation~A8! therefore reduces to

]W

]t
50 ~A14!

which implies that the generalized energy is conserved by
these boundary conditions.

Equation~A11! describes the evolution of the general-
ized enstrophyU. The volume integral in Eq.~A11! vanishes
due to the periodicity iny. J2 consists of three terms, the first
two of which are periodic iny and vanish atx50 and x
5ax . As a result the first two terms in the surface integral of
Eq. ~A11! vanish. When the third term ofJ2 is written in
component form, it becomes clear that thex component van-
ishes due to the periodicity iny while the y component is
nonzero. Hence Eq.~A11! reduces to

]U

]t
1

1

Vci
2

c3

B3

1

2Ey
S ]2f1

]x2 D 2
]f1

]x

dy

ay
50 ~A15!

which means that the generalized enstrophy will be con-
served only when either
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]f1

]x
50 or

]2f1

]x2
50 ~A16!

at thex boundaries. Note thatLn
215Ln

21(x) does not influ-
ence the conservation properties of the generalized enstro-
phy. In this paper thex boundary condition isf150. At the
same timef1 is monitored so thatdf1 /dx50 near thex
boundaries. It follows that the generalized enstrophy is con-
served during the numerical simulations.
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