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ABSTRACT

A numerical model of idealized, axisymmetric, rotating
sunspots is presented. The model contains a compressible
plasma described by the nonlinear MHD equations, with
density and temperature gradients simulating the upper
layer of the sun’s convection zone. The solution forms
a central flux tube in the cylindrical numerical domain,
with convection cells pushing the magnetic field to the
axis. When the numerical domain is rotated with a con-
stant angular velocity, the umbra rotates as a rigid body
while the surrounding convection cells show a swirling,
vortical flow. As a result, the azimuthal velocity and mag-
netic field have their maximum values close to the flux
tube, inside the innermost convection cell.

Key words: MHD; convection; Sun: magnetic fields;
sunspots.

1. INTRODUCTION

Photospheric white light measurements of rotating
sunspots (Brown et al., 2003) show a rotation of up to
200 degrees about the umbral centres over 3 to 5 days.
Sunspots have also been observed to undergo damped
oscillations (Kǔcera, 1982). Helioseismic measurements
below the surface (Zhao & Kosovichev, 2003) reveal that
at a depth of 0 to 12 Mm there is evidence of structural
twist. In addition, at a depth of 0 to 5 Mm there exist
subsurface horizontal vortical flows, while there are also
suggestions that below 9 Mm a vortical flow in the oppo-
site direction to the above may exist.

To investigate the physical processes associated with
rotating sunspots, a numerical model of an idealized
sunspot is presented. The sunspot is placed in an axisym-
metric cylinder with an aspect ratio (radius versus depth)
of 3, which is then rotated at a constant angular veloc-
ity. The model is described in Sections 2 and 3. Two sets
of results are discussed (Sections 4 and 5) that were ob-
tained with different temperature boundary conditions at
the bottom of the numerical domain. Finally, the effect of

the amplitude of the reference frame’s angular velocity is
discussed in Section 6.

2. MATHEMATICAL MODEL

The initial temperature and density profiles are

T = T0(1 + θz), (1)

ρ = ρ0(1 + θz)m, (2)

with the 0 subscript defining the quantity at the top of the
box (z = 0), θ the initial temperature gradient, andm
the polytropic index. Throughout we have usedT0 = 1,
ρ0 = 1, θ = 10 andm = 1. We solve the equations for
fully compressible, nonlinear axisymmetric magnetocon-
vection (Hurlburt & Rucklidge, 2000; Botha et al., 2006):
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−1
ρ
∇P +

σK

ρ
∇ · τ − σζ0K

2Q

ρ
j×B (4)

∂T

∂t
= −u · ∇T − (γ − 1)T∇ · u +

γK

ρ
∇2T

+
σK(γ − 1)

ρ

(
1
2
τ : τ + ζ2

0QK2j2

)
(5)

∂Aφ

∂t
= (u×B)φ − ζ0Kjφ (6)

∂Bφ

∂t
=

[
∇× (u×B)

]
φ

+ ζ0K∇2Bφ (7)

The vector potentialAφ gives ther and z components
of the magnetic field while the azimuthal component is
evolved explicitly, so that the magnetic field is given by

B = ∇× (φ̂Aφ) + φ̂Bφ. (8)

The velocity consists of three components, namelyu =
u(r, φ, z). We also use the auxiliary equations

∇ ·B = 0, (9)



P = ρT, (10)

j = ∇×B, (11)

and the following notation:τ is the rate of strain tensor;
γ the ratio of specific heats;σ the Prandtl number;K
the dimensionless thermal conductivity;ζ0 the magnetic
diffusivity ratio at z = 0; andQ is the Chandrasekhar
number. All the other symbols have their usual meaning.
The physical quantities are made dimensionless by scal-
ing length∝ depth; time∝ depth / (sound speed at top);
and temperature, magnetic field, density, and pressure all
proportional to their initial values at the top of the numer-
ical domain. The cylindrical reference frame is rotated in
the plane perpendicular to the axis at a constant angular
velocity Ω = (dφ/dt)ẑ, which results in two additional
terms in the Navier-Stokes equation (4).

3. NUMERICAL MODEL
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Figure 1. The 2D numerical domain (r, z) of an axisym-
metric cylinder with radiusΓ and withz = 0 at the top
of the box.

The computational domain is given in Figure 1. We re-
quire that all variables be sufficiently well-behaved at the
axis (r = 0) and that the differential operators in the
PDEs are non-singular. This implies that

∂ρ

∂r
= Ur =

∂Uz

∂r
= Aφ = Br =

∂Bz

∂r
= j =

∂T

∂r
= 0.

(12)
Terms likeu/r are evaluated using l’Ĥopital’s rule. In
the numerical simulations we use a fourth-order Bulirsch-
Stoer time integration, with sixth-order compact finite
differencing (Lele, 1992). The time step was limited by
the Courant condition (taking the maximum sound and
Alfv én speeds, as well as thermal diffusive limits into ac-
count), multiplied by a safety factor of 0.5. A uniform,
vertical magnetic field was used as initial condition, and
no perturbation was given to the plasma. The time evolu-
tion of the plasma is triggered by starting the quiet initial
state with the constant angular velocity|Ω| of the refer-
ence frame.

4. CONVECTION WITH CONSTANT T AT BOT-
TOM BOUNDARY

These results were obtained with Rayleigh numberR =
105, Q = 128, Ω = 0.1, σ = 1, ζ0 = 0.2, γ = 5/3

Figure 2. The radial profile of the azimuthal velocity sam-
pled from Figure 3. The solid line is sampled at depth
0.25, the dotted line at depth 0.5, and the dashed line at
0.75.

andΓ = 3. The solution is shown in Figure 3 when the
plasma is almost time independent. All the quantities in
the (r, z) plane show no time evolution, while the max-
ima of the azimuthal quantities are increasing at a very
slow rate.

The convection forces the magnetic flux to the central
axis where a strong flux tube forms (Hurlburt & Ruck-
lidge, 2000). Outside the region with strong magnetic
field two convection cells form, the inner cell rotating an-
ticlockwise, i.e. at the top towards the magnetic flux tube.
Inside the flux tube the density stratification stays as ini-
tialized due to the low level of convection there, while
outside the flux tube the density shows the effect of the
high levels of convection. The radial profile of the az-
imuthal velocity is presented in Figure 2, taken at dif-
ferent depths from the solution as shown in Figure 3. It
shows that the magnetic flux tube rotates as a solid body,
so that the maximum azimuthal velocity is reached just
outside the magnetic flux tube. Outside the flux tube the
velocity decreases in such a way that there exist a swirling
vortex around the magnetic flux tube. Figure 2 shows that
this is true at all depths in the numerical domain. The az-
imuthal magnetic field is situated mostly inside the inner
convection cell (Figure 3), so that its maximum is close
to the magnetic flux tube.

5. CONVECTION WITH CONSTANT ∂T/∂Z AT
BOTTOM BOUNDARY

This result was obtained with the same parameters that
were used in the case of a fixed temperature at the bot-
tom boundary (Section 4). The final state of the solution
is shown in Figure 4. Again there is little time evolution
present, with only the amplitudes of the azimuthal quan-
tities increasing at a very slow rate. The result shows
the influence of the choice of boundary conditions on the
configuration of the convection cells. The main differ-



               
 

 

 

 

 

 

Figure 3. The diagnostic is divided into five boxes. The top box on the left hand side shows the magnetic field lines as
calculated for a potential field. The middle layer on the left hand side shows the temperature in colour (blue is cold and
red is hot), the velocity field as arrows, and the magnetic field lines as contour lines. The bottom box on the left hand side
shows the azimuthal current in colour, the arrows are the magnetic field indicating size and direction, and the contour
lines represent the density. The top box on the right hand side shows the azimuthal velocity in colour (blue being negative
and red positive), while the bottom box on the right hand side shows the azimuthal magnetic field in colour and the current
in the(r, z) plane as arrows. The state of the plasma shown here was obtained with a constantT at the bottom boundary.
Its azimuthal velocity shows the rigid rotation of the magnetic flux bundle at the centre of the cylinder, as well as the
swirling flow outside the flux tube with the maximum azimuthal flow located in the anticlockwise convection cell next to
the flux bundle. The solution shows no time dependence in the(r, z) plane, with the azimuthal quantities increasing very
slowly in amplitude.

               
 

 

 

 

 

 

Figure 4. The same diagnostic as was used in Figure 3. This result was obtained with a constant∂T/∂z at bottom
boundary of the numerical domain, while all the other parameters were kept the same as in Figure 3. The convection cell
closest to the magnetic flux bundle has changed direction, resulting in the magnetic flux bundle not being well confined
by the convection. The azimuthal quantities show rigid rotation in the flux bundle and a swirling vortical flow in the
convection cell. There is no time dependence in the(r, z) plane, with the azimuthal quantities increasing very slowly in
amplitude.



Figure 5. The magnetic flux tube rotates as a solid body.
Presented here is the angular velocity of the flux tube as
a function of the angular velocity (Ω) of the reference
frame, which is constant for any given solution. The mea-
surements were obtained with a constantT at the bottom
boundary, as shown in Figure 3.

ence compared to Section 4 (and Figure 3) is a clockwise
convection cell that dominates outside the flux tube. As a
result, the magnetic flux is not as confined to the central
axis as with anticlockwise convection and the azimuthal
magnetic field has changed direction.

In spite of the differences between Figures 3 and 4, the
magnetic flux tube rotates as a solid body while outside
the region with strong magnetic field the azimuthal con-
vection follows a swirling vortical motion as much as the
magnetic field configuration allows this to happen. As
a result, the maximum of the azimuthal velocity is next
to the magnetic flux tube. The azimuthal magnetic com-
ponent is distributed across the convection cell closest to
the magnetic flux bundle, as was the case in Section 5 and
Figure 3.

6. RIGID BODY ROTATION

The magnetic flux tube is well defined for simulations
with a constantT at the bottom boundary. This flux tube
rotates as a solid body around the axis. Although the flux
tube is less defined with a constant temperature flux as
bottom boundary condition (Figure 4 and Section 5), the
regions with strong field still rotate as a solid body. In
order to investigate the influence of the size ofΩ on the
angular velocity of the plasma, the solid body rotation of
the magnetic flux tube was monitored for the case of a
constantT at the bottom boundary (Figure 3 and Section
4.) Figure 5 shows that there is no direct relation be-
tween the angular velocityΩ of the reference frame and
the rotation of the magnetic flux tube. It seems that the
configuration and vigour of the neighbouring convection
cells have a larger influence on the rotation of the mag-
netic flux tube than the amplitude ofΩ. By increasing
the size ofΩ the strength of convection is increased, but

the configuration of the convection cells is dependent on
the bottom temperature boundary. An increasedΩ also
widens the magnetic flux tube at the centre. When it be-
comes wide enough, convection starts to form inside the
flux tube. In contrast, as the magnetic field strength (i.e.
Q) increases, the solid body rotation slows down. This
can be explained by the fact that a strong magnetic field
inhibits convection.

7. SUMMARY

Rotating sunspots were simulated by evolving a plasma
in an axisymmetric cylinder, with the cylinder rotating at
a constant angular velocityΩ. This Ω drives the veloc-
ity components of the plasma through the Navier-Stokes
equation (Eq. 4) and as such no initial perturbation of the
plasma was needed. Convection cells form in the solu-
tion that push the magnetic field towards the central axis
of the cylinder to form magnetic flux tubes. These flux
tubes display rigid body rotation while the plasma out-
side the tube experiences a swirling vortical flow. An
azimuthal magnetic field forms with a maximum in the
convection cell closest to the magnetic flux tube. By in-
creasing the amplitude ofΩ, the width of the magnetic
flux tube at the central axis increases, which allows con-
vection to form inside the flux tube in the lower local
magnetic field strength.
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