
Citation:  Harwood,  Laurence M.,  Lewis,  Frank,  Hudson,  Michael  J.,  John,  Jan  and  

Distler,  Petr  (2011) The separation  of americium(III)  from  europium(III)  by  two  new 

6,6’-bistriazinyl- 2,2’-bipyridines  in  different  diluents.  Solvent  Extraction  and  Ion  

Exchange, 29. pp. 551-576. ISSN 0736-6299

Published by: Taylor  &  Francis

URL: http://dx.doi.org/10.1080/10496475.2011.556989

This  version  was  downloaded  from  Northumbria  Research  Link:  

http://nrl.northumbria.ac.uk/10879/

Northumbria  University  has  developed Northumbria  Research  Link  (NRL)  to  enable 

users to access the University’s research output.  Copyright  © and moral  rights  for  items 

on NRL  are retained by the individual  author(s) and/or other  copyright  owners.  Single  

copies of full  items can be reproduced, displayed or performed, and given to third  parties  

in  any  format  or  medium  for  personal  research or  study,  educational,  or  not-for-profit  

purposes without  prior  permission  or  charge,  provided  the  authors,  tit le  and  full  

bibliographic  details  are  given,  as  well  as  a  hyperlink  and/or  URL  to  the  original  

metadata  page. The content  must  not  be changed in  any way.  Full  items must  not  be 

sold commercially  in  any format  or medium  without  formal  permission of the copyright  

holder.  The full  policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document  may differ  from the final,  published version of the research and has been 

made available online in  accordance with  publisher  policies. To read and/or cite from the  

published  version  of the  research,  please visit  the  publisher’s  website  (a subscription  

may be required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/9990617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


 1 

The Separation of Americium(III) from Europium(III) by Two New 

6,6’-Bistriazinyl-2,2’-bipyridines in Different Diluents 
 

Laurence M. Harwood,
*
 Frank W. Lewis, Michael J. Hudson 

 

School of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, 

Berkshire, United Kingdom 

 

Jan John,
*
 Petr Distler 

 

Centre for Radiochemistry and Radiation Chemistry, Czech Technical University in 

Prague, Břehová 7, 115 19 Prague 1, Czech Republic 

 

Address correspondence on ligand synthesis to Laurence M. Harwood, School of 

Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United 

Kingdom. Tel: +44 (0) 118 378 7417; Fax: +44 (0) 118 378 6121; E-mail: 

l.m.harwood@reading.ac.uk and extraction studies to Jan John, Centre for 

Radiochemistry and Radiation Chemistry, Czech Technical University in Prague, 

Břehová 7, 115 19 Prague 1, Czech Republic. Tel: + 420 224 358 228; Fax: + 420 

222 320 861; E-mail: jan.john@fjfi.cvut.cz   

 

(Received 20 July 2010; final version received 17 August 2010) 

 
The synthesis and extraction of americium(III) and europium(III) from aqueous nitric 

acid solutions by the new BTBP ligands 6,6’-bis(5,5,7,7-tetramethyl-5,7-

dihydrofuro[3,4-e]-1,2,4-triazin-3-yl)-2,2’-bipyridine (Cy5-O-Me4-BTBP) and 6,6’-

bis(5,5,7,7-tetramethyl-5,7-dihydrothieno[3,4-e]-1,2,4-triazin-3-yl)-2,2’-bipyridine (Cy5-

S-Me4-BTBP) is described. The affinity for Am(III) and the selectivity for Am(III) over 

Eu(III) of Cy5-S-Me4-BTBP were generally higher than for Cy5-O-Me4-BTBP. For both 

ligands, the extraction of Am(III) and Eu(III) from 3 M HNO3 into 3 mM organic 

solutions varied with the diluent used. The highest distribution ratios and separation 

factors observed were in cyclohexanone and 2-methylcyclohexanone, respectively. For 

Cy5-S-Me4-BTBP, there is a strong correlation between the distribution ratio for Am(III) 

and the permittivity of the diluent used. With 1-octanol as the diluent, low distribution 

ratios (D(Am) < 1) were observed for Cy5-S-Me4-BTBP although this ligand extracts 

Am(III) selectively (SFAm/Eu = 16-46 from 1-4 M HNO3). For Cy5-S-Me4-BTBP, Am(III) 

is extracted as the disolvate. The distribution ratios for Am(III), and the separation 

factors for Am(III) over Eu(III) are both significantly higher for CyMe4-BTBP than they 

are for Cy5-O-Me4-BTBP and Cy5-S-Me4-BTBP in cyclohexanone. Changing the diluent 

from cyclohexanone to 2-methylcyclohexanone leads to a decrease in D(Am) but an 

increase in SFAm/Eu for Cy5-S-Me4-BTBP.  

 
Keywords: americium(III), europium(III), separation, nitric acid, 1-octanol, kinetics, Cy5-O-

Me4-BTBP, SANEX process, Cy5-S-Me4-BTBP, cyclohexanone, 2-methylcyclohexanone, 

CyMe4-BTBP, extraction 

 

Introduction 

 

The presence of long-lived radionuclides in spent nuclear fuels is responsible for the 

long-term radiotoxicity of the nuclear waste arising from the PUREX process. The 

mailto:l.m.harwood@reading.ac.uk
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most important of these are the minor actinides (americium, curium and neptunium). 

Their conversion to shorter-lived or stable radionuclides by nuclear reactions (eg: 

transmutation) is considered to be a key step in the future management and geological 

disposal of high-level waste issuing from the reprocessing of spent nuclear fuels.
[1,2]

 

However, this transmutation can only be achieved once these radionuclides have been 

separated (partitioned) from the bulk of the trivalent lanthanide ions which are also 

present in much higher quantities than the minor actinides in PUREX raffinate.
[3]

 

Currently, a two-step strategy is foreseen to perform this separation by liquid-liquid 

extraction; the minor actinides and lanthanides are first co-extracted from PUREX 

raffinate using hard O- donor ligands (eg: TODGA, DMDOHEMA)
[4,5]

 using the 

DIAMEX process
[6–8]

 and subsequently, the minor actinides could be separated from 

the lanthanides using softer N- or S- donor ligands in the SANEX process.
[9,10]

  

The separation of trivalent minor actinides from trivalent lanthanides has been 

a challenging problem to overcome because of the chemical similarity of the two 

groups of elements.
[11]

 However, Musikas
[12]

 and Nigond
[13]

 discovered that soft 

heterocyclic N- donor ligands were able to bind selectively to trivalent actinides and 

subsequently, research in Europe has focused on the development of ligands capable 

of separating actinides from lanthanides in a SANEX process.
[14–16]

 The 2,6-bis(1,2,4-

triazin-3-yl)pyridines or BTPs 1
[17–23]

, (Figure 1) discovered by Kolarik,
[24,25]

 were the 

first ligands to show both high affinities and high selectivities for americium(III) over 

europium(III) in contact with aqueous solutions of high acidity. Unfortunately, these 

ligands were not very resistant to radiolysis (with the exception of BzCyMe4-BTP)
[26]

, 

and, although actinide back-extraction (stripping) was possible with C3-BTP,
[27] 

in the 

case of CyMe4-BTP and BzCyMe4-BTP,
[26]

  actinide back-extraction from the loaded 
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organic phase could not be achieved owing to the irreversible metal binding of these 

annulated BTP reagents.  

Subsequently, the 6,6’-bis(1,2,4-triazin-3-yl)-2,2’-bipyridines or BTBPs 2 

(Figure 1) were developed.
[28–38]

 These ligands showed lower binding affinities 

towards americium(III) which allowed stripping to occur using either dilute nitric acid 

or glycolic acid. However, the 6,6’-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2’-bipyridines 

(Cn-BTBPs, n = 1-5) were subjected to both acidic hydrolysis and radiolytic 

degradation by removal of their labile benzylic hydrogen atoms by free-radical 

species.
[39]

 This led to the development of 6,6’-bis(5,5,8,8-tetramethyl-5,6,7,8-

tetrahydro-1,2,4-benzotriazin-3-yl)-2,2-bipyridine (CyMe4-BTBP) 3 (Figure 1) in 

which the benzylic hydrogens have been removed.
[40]

 To date this ligand is the most 

promising for use in a future SANEX process and in a counter-current ‘hot-test’ using 

laboratory centrifugal contactors, 99.9 % of the actinides were removed from the feed 

solution in a 16-stage flowsheet with very high decontamination factors for Am 

(7,000) and Cm (1,000).
[41,42]

  

Nevertheless, CyMe4-BTBP 3 does still have some drawbacks in the context 

of an industrial process. Firstly, the kinetics of extraction and back-extraction are 

rather slow and consequently, relatively long contact times (30-60 minutes for a 

solution of 3 in 1-octanol/TPH) are required to reach equilibrium, necessitating the 

use of a phase-transfer agent (eg: diamides such as DMDOHEMA, TODGA).
[4,5,40]

 

Secondly, the use of ammonium or sodium glycolate solution of approx. pH 4 was 

required for the efficient stripping of the actinides from the loaded organic phase. 

Thus the design and assessment of new N-donor ligands which show improved 

kinetics and back-extraction properties is on-going. To this end we wished to know 

how modifying the aliphatic part of the CyMe4-BTBP molecule 3 would affect the 
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solvent extraction properties of the resulting ligands. In this paper, we report the 

synthesis and selective extraction of Am(III) and Eu(III) from nitric acid solutions 

into organic solutions of the new BTBPs 6,6’-bis(5,5,7,7-tetramethyl-5,7-

dihydrofuro[3,4-e]-1,2,4-triazin-3-yl)-2,2’-bipyridine (Cy5-O-Me4-BTBP 4, Figure 1) 

and 6,6’-bis(5,5,7,7-tetramethyl-5,7-dihydrothieno[3,4-e]-1,2,4-triazin-3-yl)-2,2’-

bipyridine (Cy5-S-Me4-BTBP 5, Figure 1) which are derived from heterocyclic α-

diketones. A BTP derived from one of these diketones has been reported, although its 

properties with respect to the separation of actinides from lanthanides have not been 

disclosed.
[43]

 To allow for a meaningful comparison, the solvent extraction properties 

of the new ligands 4 and 5 are also compared to those of CyMe4-BTBP 3.  
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Figure 1. The structures of the BTP 1, BTBP 2, CyMe4-BTBP 3, Cy5-O-Me4-BTBP 4 

and Cy5-S-Me4-BTBP 5 ligands.  
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Melting points (Mp) were obtained on a Stuart SMP10 instrument and are 

uncorrected. IR spectra were recorded as Nujol
®

 mulls on a Perkin Elmer RX1 FT-IR 

instrument. 
1
H and 

13
C-{

1
H} NMR spectra were recorded using either a Bruker 

AMX400 or an Avance XXX400 instrument. Chemical shifts are reported in parts per 

million downfield from tetramethylsilane. Coupling constants (J) are quoted in Hertz. 

Assignments were verified with 
1
H-

1
H and 

1
H-

13
C COSY experiments as appropriate. 

Quaternary carbons are indicated by the abbreviation ‘quat’. Mass spectra were 

obtained under electrospray conditions on a Thermo Scientific LTQ Orbitrap XL 

instrument. Elemental microanalyses were carried out by Medac Ltd., Brunel Science 

Centre, Surrey (UK). All organic reagents were obtained from either Acros or 

Aldrich, while inorganic reagents were obtained from either BDH or Aldrich and used 

as received. 

2,2'-Bipyridine-6,6'-dicarbohydrazonamide 6
[32,44,45]

 was obtained in 87 % 

yield by the reaction of 2,2’-bipyridine-6,6’-dicarbonitrile
[46,47]

 with excess hydrazine 

hydrate in ethanol for 14 days.
[48]

 2,2’-Bipyridine-6,6’-dicarbonitrile was obtained in 

79 % overall yield by the oxidation of 2,2’-bipyridine with hydrogen peroxide in 

acetic acid,
[49–51]

 followed by a Reissert-Henze reaction of the bis-N-oxide with 

trimethylsilyl cyanide (3 eq) and benzoyl chloride (3 eq) in DCM at reflux for 24 

hours.
[47,52–55]

 WARNING: trimethylsilyl cyanide is a volatile hydrogen cyanide 

equivalent. The heterocyclic α-diketones 7 and 8 were prepared according to literature 

procedures. 2,2,5,5-Tetramethylfuran-3,4(2H,5H)-dione 7
[56,57]

 was synthesized in 45 

% overall yield by the mercuric acetate-catalyzed cyclization of 2,5-dimethyl-3-

hexyne-2,5-diol in dilute aqueous sulfuric acid,
[58–60]

 followed by oxidation of the 

resulting dihydrofuranone with selenium dioxide in dioxane.
[61,62]

 2,2,5,5-

Tetramethylthiophene-3,4(2H,5H)-dione 8
[63]

 was obtained in 80 % yield by the 
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reaction of 2,5-dibromo-2,5-dimethylhexane-3,4-dione with sodium sulfide in 

methanol.
[64]

 2,5-Dibromo-2,5-dimethylhexane-3,4-dione
[63,64]

 was synthesized in 22 

% overall yield by the intermolecular acyloin reaction of ethyl isobutyrate with 

sodium and chlorotrimethylsilane in toluene,
[65]

 followed by oxidation with excess 

bromine in chloroform.
[64,66]

 6,6’-Bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-

benzotriazin-3-yl)-2,2’-bipyridine 3 (CyMe4-BTBP) was synthesized in 56 % yield as 

previously described
[40]

 with the modification that the condensation reaction with 

3,3,6,6-tetramethylcyclohexane-1,2-dione
[67,68]

 was performed in dioxane at reflux for 

24 hours. The syntheses of Cy5-O-Me4-BTBP 4 and Cy5-S-Me4-BTBP 5 are shown in 

Scheme 1. The new ligands Cy5-O-Me4-BTBP 4 and Cy5-S-Me4-BTBP 5 were 

synthesized by condensation of the dicarbohydrazonamide 6 with each of the 

diketones 7 and 8, respectively. The crude products obtained contained several 

additional impurities and extensive purification by chromatography and trituration 

was required to obtain pure samples of both ligands 4 and 5. In contrast, the synthesis 

of CyMe4-BTBP 3 produced no additional impurities other than some unreacted 

diketone which was easily removed by trituration with EtOH. 
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Scheme 1. The synthesis of Cy5-O-Me4-BTBP 4 and Cy5-S-Me4-BTBP 5.  

Synthesis of Cy5-O-Me4-BTBP 4 
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2,2'-Bipyridine-6,6'-dicarbohydrazonamide 6 (1.77 g, 6.58 mmol) was suspended in 

THF (100 mL) and 2,2,5,5-tetramethylfuran-3,4(2H,5H)-dione 7 (2.26 g, 14.48 mmol, 

2.2 eq) was added. Triethylamine (10 mL) was added and the suspension was heated 

under reflux for 26 hours. The solution was allowed to cool to room temperature and 

the solvent was removed in vacuo. The solid product was purified by 

chromatography, eluting with MeOH/DCM/Et3N (2.5 %:96.5 %:1 %) to afford the 

crude product as a yellow solid (0.82 g). This solid was again purified by 

chromatography, eluting with MeOH/DCM/Et3N (1 %:98 %:1 %) to afford the crude 

product as a yellow solid. This solid was further purified by trituration with hot 

MeOH (30 mL). The insoluble solid was filtered and washed with MeOH (20 mL) 

and ether (20 mL) and allowed to dry in air to afford the pure product 4 as a yellow 

solid (0.35 g, 10 %). Mp: above 300 
o
C (MeOH). Found: C, 65.46 %; H, 5.97 %; N, 

21.96 %; C28H30O2N8 requires C, 65.87 %; H, 5.92 %; N, 21.94 %. IR max (Nujol) 

2923, 1586, 1574, 1542, 1458, 1376, 1267, 1247, 1208, 1178, 1150, 1123, 1079, 983, 

914, 804, 741, 718, 699 cm
-1

. 
1
H NMR (CDCl3):  1.70 (s, 12H, 4 × Me), 1.74 (s, 

12H, 4 × Me), 8.11 (t, J 7.8, 2H, 4-H and 4’-H), 8.60 (dd, J 7.8 and 1.0, 2H, 5-H and 

5’-H), 8.93 (dd, J 7.8 and 1.0, 2H, 3-H and 3’-H) ppm. 
13

C NMR (CDCl3):  28.4 (4 × 

Me), 29.0 (4 × Me), 81.0 (2 × quat), 81.1 (2 × quat), 123.4 (C-3 and C-3’), 124.6 (C-5 

and C-5’), 138.1 (C-4 and C-4’), 152.4 (2 × quat), 156.1 (2 × quat), 162.9 (2 × quat), 

163.3 (2 × quat), 166.2 (2 × quat) ppm. HRMS (CI) m/z 511.2553: calculated for 

[C28H30O2N8 + H]
+
 511.2564.  

Synthesis of Cy5-S-Me4-BTBP 5 

 

2,2'-Bipyridine-6,6'-dicarbohydrazonamide 6 (1.50 g, 5.55 mmol) was suspended in 

THF (100 mL) and 2,2,5,5-tetramethylthiophene-3,4(2H,5H)-dione 8 (2.10 g, 12.22 

mmol, 2.2 eq) was added. Triethylamine (10 mL) was added and the suspension was 
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heated under reflux for 24 hours. The solution was allowed to cool to room 

temperature and the solvent was removed in vacuo. The solid product was purified by 

chromatography, eluting with MeOH/DCM/Et3N (5 %:94 %:1 %) to afford the crude 

product as a yellow solid (2.24 g). This solid was again purified by chromatography, 

eluting with MeOH/DCM/Et3N (2.5 %:96.5 %:1 %) to afford the crude product as a 

yellow solid. This solid was further purified by trituration with hot MeOH (50 mL). 

The insoluble solid was filtered and washed with MeOH (50 mL) and ether (50 mL) 

and allowed to dry in air to afford the pure product 5 as a yellow solid (0.64 g, 21 %). 

Mp: 284 
o
C (MeOH). Found: C, 61.71 %; H, 5.53 %; N, 20.92 %; S, 11.58 %; 

C28H30N8S2 requires C, 61.97 %; H, 5.57 %; N, 20.64 %; S, 11.81 %. IR max (Nujol) 

2918, 1583, 1516, 1461, 1375, 1253, 1185, 1154, 1118, 1082, 1025, 993, 801, 740, 

699 cm
-1

. 
1
H NMR (CDCl3):  1.87 (s, 12H, 4 × Me), 1.92 (s, 12H, 4 × Me), 8.09 (t, J 

7.8, 2H, 4-H and 4’-H), 8.60 (dd, J 7.8 and 1.0, 2H, 5-H and 5’-H), 8.96 (dd, J 7.8 and 

1.0, 2H, 3-H and 3’-H) ppm. 
13

C NMR (CDCl3):  31.7 (4 × Me), 32.4 (4 × Me), 52.0 

(2 × quat), 52.4 (2 × quat), 123.3 (C-3 and C-3’), 124.5 (C-5 and C-5’), 138.1 (C-4 

and C-4’), 152.3 (2 × quat), 156.1 (2 × quat), 162.3 (2 × quat), 164.3 (2 × quat), 167.0 

(2 × quat) ppm. HRMS (CI) m/z 543.2097: calculated for [C28H30N8S2 + H]
+
 

543.2108.     

Solvent Extraction and Solubility Determination 

 

Solvent extraction studies were performed at the Czech Technical University in 

Prague, Břehová 7, 115 19 Prague 1 (Czech Republic). The aqueous solutions were 

prepared by spiking nitric acid solutions (0.001-4 mol dm
−3

) with stock solutions of 

241
Am and 

152
Eu tracers in nitric acid. The stock solution of 

241
Am in 0.5M HNO3 was 

prepared by dissolving americium oxide in 5M HNO3 and subsequent dilution with 

water. The stock solution of 
152+154

Eu (~1.5 MBq/mL) was prepared by appropriate 
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dilution of a commercial preparation (REu-2) supplied by Polatom (Poland). 

Solutions of each of the ligands 4 and 5 (0.005 mol dm
−3

) were prepared by dissolving 

in the appropriate diluent without an additional phase modifier. Prior to labelling, the 

aqueous phases were pre-equilibrated with the neat diluents by shaking them for 6 

hours at 250 min
−1

 and volume ratio of 1:1. Prior to contacting with the labelled 

aqueous phases, the organic phases were pre-equilibrated with the respective non-

labelled aqueous phases by shaking them for 6 hours at 250 min
−1

 and volume ratio of 

1:1. In each case, 1.2 mL of labelled aqueous phases were prepared from which 200 

µL standards were taken (to allow for mass balance calculations) prior to the contacts 

of the aqueous phases with the organic phases. Each organic phase (1 mL) was shaken 

separately with each of the aqueous phases for 6 hours at ambient temperature (ca. 25 

o
C, non-thermostatted) using an GFL 3005 Orbital Shaker (250 min

−1
). The contact 

time of 6 hours was sufficient to attain the distribution equilibrium. After phase 

separation by centrifugation, two parallel 200 µL aliquots of each phase were 

withdrawn for the analysis. The same procedure was used to investigate the kinetics 

of 
241

Am extraction. In these experiments, the contact time of the phases was varied as 

required and the separation of the phases performed as fast as possible. 

Activity measurements of 
241

Am and 
152

Eu were performed with a γ-ray spectrometer 

EG&G Ortec (USA) with a PGT (USA) HPGe detector. The γ-lines at 59.5 keV, and 

121.8 keV were examined for 
241

Am, and 
152

Eu, respectively. From the measured 

count rates of the organic, Aorg, and aqueous, Aaq, phases, the distribution ratios, D, 

were calculated as: 

aq

org

A

A
D   

The errors given in the figures and/or throughout the text are 1σ and are based on 

counting statistics, only. Preliminary experiments have shown that the contribution of 
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chemical operations to the combined uncertainty of the results is about 5 %. The 

minimum detectable values of distribution ratios, Dmin, were calculated as:  

st

bgvzvz

A

ttTMt
D

)/()2(326.271.2
min


  

where Ast is the count rate of the initial standard sample, M is the number of channels 

in the evaluated peak (in the Region Of Interest), T is the gross area of a ROI set at the 

position of the respective peak in the background spectrum measured for the time tbg, 

and tvz is the time of measurement of the sample. This formula has been derived for 

90% probability of the right decision. For each sample, a recovery (mass balance) R 

for each of the radionuclides was calculated as: 

st

orgaq

A

AA
R


100  [%] 

 Only results with R  <90; 110> % were considered internally consistent and 

were further processed. The approximate solubilities of 4 and 5 were determined by 

stepwise dissolution of a known mass of the ligand in the appropriate solvent. The 

solvent was then added incrementally in 200 μL aliquots followed by ultrasound after 

each addition until a clear solution was obtained. The resulting solutions were used in 

the liquid-liquid extraction tests. The approximate solubilities of 4 and 5 are shown in 

Table 1. Ligand 5 was generally more soluble than ligand 4 in almost all diluents 

examined. This may be a consequence of the larger hydrophobic sulfur atom present 

in 5. The best diluent for both ligands 4 and 5 was tetrachloroethane although this 

diluent would be unsuitable in a separation process. The maximum solubilities of the 

ligands 4 and 5 in 1-octanol, which is the preferred solvent for a SANEX process, 

were < 3 and 5 – 10 mmol dm
−3

, respectively. This compares with a solubility of 

CyMe4-BTBP 3 of 10 mM dm
−3

 in the same diluent.
[40]

  

Table 1. The approximate solubilities of the ligands 4 and 5 in various diluents.  
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Solvent 
BTBP solubility (mM) at 25 °C 

 Cy5-O-Me4-BTBP 4  Cy5-S-Me4-BTBP 5  

1-octanol < 3 5 – 10 

Cyclohexanone 5 14 

Tetrachloroethane > 32 > 32 

Dichloroethane 6 – 7 > 32 

Toluene 2 – 3 16 – 32 

Nitrobenzene 2 – 3 > 32 

Cyclohexanol < 3 < 3 

Dipentyl ether < 3 < 3 

Chlorobenzene < 3 7 – 8 

 

Results and Discussion 

 

The distribution ratios and separation factors for the extraction of Am(III) and Eu(III) 

from 3 M nitric acid solutions into 3 mM organic solutions of each of the ligands 4 

and 5 are shown in Figure 2. For Cy5-O-Me4-BTBP 4, the highest distribution ratio 

observed was 0.043 in cyclohexanone and the highest separation factor observed was 

more than 8 in 2-methylcyclohexanone. To our knowledge, this is the first time that 2-

methylcyclohexanone has been studied as a potential diluent for the separation of 

An(III) from Ln(III). When compared with the extraction of Am or Eu by neat 

cyclohexanone in the absence of any ligand (Figure 2) it must be concluded that the 

diluent itself is responsible for much of the extraction observed in this diluent. With 

Cy5-S-Me4-BTBP 5, the extraction was found to depend more strongly on the diluent 

used and slightly higher distribution ratios and separation factors were observed than 

was the case with Cy5-O-Me4-BTBP 4. As with ligand 4, the highest distribution ratio 

observed was in cyclohexanone (0.247) and the highest separation factor observed 

was in 2-methylcyclohexanone (44.0). Clearly, the extraction of Am(III) and Eu(III) 

by cyclohexanone itself is significant and proceeds with little selectivity. This may 

explain the higher D values and the lower separation factors observed compared to the 

other diluents.  
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Figure 2. Extraction of Am(III) and Eu(III) from 3 M HNO3 by 3mM Cy5-O-Me4-

BTBP 4 (top) and 3mM Cy5-S-Me4-BTBP 5 (bottom) in various diluents (a = 

tetrachloroethane, b = dichloroethane, c = nitrobenzene, d = 2-methylcyclohexanone, 

e = cyclohexanone, f = cyclohexanone without ligand 4 or 5, g = toluene).   

 

We attempted to rationalise these results by looking for a correlation between the 

distribution ratio for Am(III) and the basic characteristics of the diluents used. The 

properties considered were permittivity, dipole moment and solubility parameter.  

The equation:  

      

  





2222 )()(

)()(

yynxxn

yxyxn
r  

 

where r is the correlation coefficient, n is the number of data points correlated, and x, 

y are variables (the value of the property and the distribution ratio, respectively), was 

used to evaluate the correlation. 

The only confirmed correlation observed was that between D(Am) and the 

permittivity
[69]

 of the diluent (Figure 3). For non-aromatic diluents (when 

nitrobenzene was omitted from the data), a high correlation coefficient of 0.93 was 

observed. One interpretation of this correlation is that the lipophilic ion pair 
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[Am(BTBP)2(NO3)3] is more soluble in polar diluents and thus more easily extracted 

into diluents of high permittivity.  
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Figure 3. Correlation of the distribution ratio for Am(III) for Cy5-S-Me4-BTBP 5 

with the permittivity of the diluent (x axis). (a = toluene, b = chlorobenzene, c = 

tetrachloroethane, d = dichloroethane, e = 2-methylcyclohexanone, f = 

cyclohexanone, g = nitrobenzene). Correlation coefficient = 0.93 (without 

nitrobenzene).  

 

We then carried out a detailed examination of the extraction of Am(III) and Eu(III) by 

the ligand 5 in 1-octanol which is the preferred diluent for a SANEX process. As the 

solubility of Cy5-O-Me4-BTBP 4 in 1-octanol was less than 5 mM (cf. Table 1), its 

extraction properties in this diluent were not studied. The distribution ratios and 

separation factors for Cy5-S-Me4-BTBP 5 as a function of the initial nitric acid 

concentration are presented in Figure 4. Distribution ratios for Am(III) were larger 

than those for Eu(III) at nitric acid concentrations of 1-4 M and the highest separation 

factor observed was 46 from 2 M HNO3. It is also apparent that the distribution ratio 

increases with increasing [HNO3] and this trend is also observed with CyMe4-BTBP 

3
[40]

 and the other BTBPs.
[28–38]

 The maximum D value observed was 0.46 from 4 M 

HNO3.  
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Figure 4. Extraction of Am(III) and Eu(III) by Cy5-S-Me4-BTBP 5 in 1-octanol (5 

mM) as a function of initial nitric acid concentration (▲ = D(Am), ● = D(Eu), ■ = 

SFAm/Eu).  

 

The dependence of D(Am) with time for Cy5-S-Me4-BTBP 5 in 1-octanol is shown in 

Figure 5. It is evident that the kinetics of extraction is rather slow and the equilibrium 

distribution ratio was only reached after approx. 6 hours of contact. No attempt to 

evaluate the effect of phase-modifiers (eg: TODGA, DMDOHEMA)
[4,5]

 on the 

kinetics of extraction was carried out in this study. The equilibrium distribution ratio 

remained largely constant over 168 hours of contact, indicating that Cy5-S-Me4-BTBP 

5 is stable and does not suffer from hydrolytic degradation.  
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Figure 5. Extraction of Am(III) from 4 M HNO3 as a function of time for Cy5-S-Me4-

BTBP 5 in 1-octanol (5 mM).  

 

Since cyclohexanone gave the most promising results for both ligands (cf. Figure 2), a 

detailed study of the extracting properties of ligands 4 and 5 was then carried out 

using this diluent. The D values and SFAm/Eu for Cy5-O-Me4-BTBP 4 as a function of 

the initial nitric acid concentration are presented in Figure 6. In 1-4 M HNO3,  D(Am) 

> D(Eu) and the highest separation factor observed was 5.8 in 2 M HNO3. Some loss 

of the diluent to the aqueous phase had occurred after contact as the volume of the 

organic phase had decreased and the volume of the aqueous phase had increased.  
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Figure 6. Extraction of Am(III) and Eu(III) by Cy5-O-Me4-BTBP 4 in cyclohexanone 

(5 mM) as a function of initial nitric acid concentration (▲ = D(Am), ● = D(Eu), ■ = 

SFAm/Eu).  

 

Slightly better results were obtained with Cy5-S-Me4-BTBP 5 in cyclohexanone 

(Figure 7). In this case the highest distribution ratio for Am(III) was 0.7 at 4 M HNO3 

and the highest separation factor observed was 22 at 2 M HNO3. Thus a higher 

distribution ratio and a lower separation factor were observed for this ligand in 

cyclohexanone than in 1-octanol (Figure 4). Once again, a decrease in the volume of 

the organic phase and an increase in the volume of the aqueous phase were observed 

after phase contact. These observations could be explained by the co-extraction of 

Am(III) and Eu(III) by the diluent itself (cf. Figure 2) and by the partial miscibility of 

cyclohexanone and water, respectively. 
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Figure 7. Extraction of Am(III) and Eu(III) by Cy5-S-Me4-BTBP 5 in cyclohexanone 

(5 mM) as a function of initial nitric acid concentration (▲ = D(Am), ● = D(Eu), ■ = 

SFAm/Eu).  

 

In order to verify this, the extraction of Am(III) and Eu(III) by cyclohexanone itself 

without the ligands 4 or 5 was then studied. The results are shown in Figure 8. Clearly 

the extraction of Am(III) and Eu(III), although small, is significant and increases as 

[HNO3] increases. When comparing the data in Figure 8 with those in Figures 6 and 

7, it can be clearly seen that no net extraction of Eu(III) by either of the ligands was 

observed at any HNO3 concentration – the D(Eu) values are practically identical in 

the presence and in absence of the ligands. However, both ligands extract Am(III) at 

HNO3 concentrations higher than 1 M. 

The diluent itself is also mildly selective for Eu(III) over Am(III) as separation factors 

of Am(III) over Eu(III) of less than 1 are obtained except in 4 M HNO3. Extraction of 

Eu(III) and Am(III) by the diluent may hence contribute to the lower separation 

factors obtained for Cy5-S-Me4-BTBP 5 in cyclohexanone than in 1-octanol. The 

mechanism of the extraction of both trivalent metal ions by cyclohexanone is unclear 

at this moment. This property of cyclohexanone causes this diluent to behave as a 

phase transfer agent for the M(III) ions, a phenomenon that was forecasted earlier by 
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Narbutt.
[37] 

Hence, the kinetics of extraction with this diluent should be much faster 

than with 1-octanol. 
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Figure 8. Extraction of Am(III) and Eu(III) by cyclohexanone itself as a function of 

initial nitric acid concentration (▲ = D(Am), ● = D(Eu), ■ = SFAm/Eu).   

 

To verify this assumption, the kinetics of the extraction of Am(III) by Cy5-S-Me4-

BTBP 5 in cyclohexanone were then studied. The extraction of Am(III) from 4 M 

HNO3 as a function of time is shown in Figure 9. The equilibrium D value was 

achieved after only 30 minutes of contact; a rate of extraction that is comparable to, 

but not as fast as that obtained with C5-BTBP in cyclohexanone.
[30,31]

 This rate of 

extraction is fast enough for an efficient separation process. In contrast, the same 

ligand 5 requires 6 hours of contact to reach equilibrium in 1-octanol (Figure 5). The 

faster kinetics observed in cyclohexanone can be attributed to the phase-transfer 

properties of this diluent which also gives faster kinetics with C5-BTBP.
[30,31]

 In 

comparison, CyMe4-BTBP 3 requires a phase-transfer agent (eg: TODGA, 

DMDOHEMA) to achieve comparable kinetics in 1-octanol.
[40]

 This result confirms 

the suggestion of Narbutt and Krejzler who concluded that “this quite well water-

soluble ketone should not be considered an inert solvent (diluent), but a reagent which 
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solvates the M(III) ions in the aqueous phase and acts as phase transfer reagent for An 

and Ln ions, greatly improving the kinetics of their solvent extraction using BTBP 

ligands”.
[37]
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Figure 9. Extraction of Am(III) from 4 M HNO3 as a function of time for Cy5-S-Me4-

BTBP 5 in cyclohexanone (5 mM). 

 

The relationship between the distribution ratio for Am(III) and the concentration of 

Cy5-S-Me4-BTBP 5 in cyclohexanone was then studied to establish the metal:ligand 

stoichiometry of the extracted species. It is known that the BTBPs can extract Am(III) 

into 1-octanol as both 1:1 and 1:2 species with the 1:2 species being more 

favoured.
[28–38]

 A plot of –log (D(Am)) v –log [Cy5-S-Me4-BTBP] gave a straight line 

with a slope of 1.83. However, this does not take into account the extraction of 

Am(III) by cyclohexanone itself. When the values of D(Am) are corrected for the 

extraction by the diluent itself (D – Do), a slope of 1.94 is obtained (Figure 10). This 

indicates that Am(III) is extracted as the 1:2 complex. From these results, the 

extraction of Am(III) by 5 proceeds by a solvating mechanism: 

Am
3+

aq + 3NO3
−

aq + 2BTBPorg → [Am(BTBP)2(NO3)3]org 
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These results suggest that the formation of less-hydrophobic 1:1 complexes is 

not responsible for the lower extraction efficiency of Cy5-S-Me4-BTBP 5 compared to 

CyMe4-BTBP 3.  
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Figure 10. Dependence of D(Am), corrected on the extraction by cyclohexanone 

itself (y axis), on the concentration of Cy5-S-Me4-BTBP 5 (x axis) in cyclohexanone 

(from 3 M HNO3). y = 1.94x – 4.23, R
2
 = 0.99.  

 

In order to allow for a detailed comparison of the ligands 4 and 5 with CyMe4-BTBP 

3, the extraction of Am(III) and Eu(III) by Cy5-O-Me4-BTBP 4, Cy5-S-Me4-BTBP 5 

and CyMe4-BTBP 3 in cyclohexanone was carried out. The extraction properties of 

the related ligand C5-BTBP in cyclohexanone have been studied previously.
[30,31]

 We 

thus studied the dependence of D(Am) and D(Eu) on [HNO3] for CyMe4-BTBP 3 

under the same conditions that were used for Cy5-O-Me4-BTBP 4 and Cy5-S-Me4-

BTBP 5 (Figures 6 and 7). The dependence of D(Am) on the initial nitric acid 

concentration for the three ligands 3, 4 and 5 in cyclohexanone is presented in Figure 

11. It is clear that the extraction of Am(III) by CyMe4-BTBP 3 is greater than by Cy5-

O-Me4-BTBP 4 and Cy5-S-Me4-BTBP 5 in cyclohexanone. The highest distribution 

ratio observed for 3 was 12.2 from 2 M HNO3. This compares with the maximum D 

values observed for ligands 4 and 5 of 0.12 and 0.72, respectively. The distribution 
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ratios also increase with increasing nitric acid concentration for all three ligands 

except for CyMe4-BTBP 3 where the maximum value is already reached at 2 M 

HNO3.  
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Figure 11. Comparison of the dependencies of the distribution ratios for 

americium(III) on initial nitric acid concentrations for Cy5-O-Me4-BTBP 4 (■), Cy5-

S-Me4-BTBP 5 (●) and CyMe4-BTBP 3 (▲) in cyclohexanone (5 mM for all ligands).  

 

The dependence of the separation factors of Am(III) over Eu(III) on the initial nitric 

acid concentration for the three ligands 3, 4 and 5 in cyclohexanone is shown in 

Figure 12. Once again CyMe4-BTBP 3 proved superior to both Cy5-O-Me4-BTBP 4 

and Cy5-S-Me4-BTBP 5. The separation factors for 3 were uniformly larger than those 

of ligands 4 and 5 over the range 0.1 – 4 M HNO3. For all three ligands, the 

separation factors first increase, then start to decrease as the nitric acid concentration 

increases. This effect can be attributed to the non-selective extraction of both Am(III) 

and Eu(III) by the diluent itself that increases with increasing nitric acid 

concentration. It should be noted that the separation factors discussed here describe 

the separation properties of the combinations ligand – cyclohexanone, not the 

separation properties of the ligands themselves. Since no net extraction of Eu(III) by 

either of the ligands 4 or 5 was observed at any HNO3 concentration after the 
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correction for the Eu extraction by the neat cyclohexanone, the only conclusion that 

can be made here is that it cannot be excluded that the ligands yield high separation 

factors. 

 It is clear that both the affinity for Am(III) and the selectivity for Am(III) over 

Eu(III) of both of the ligands 4 and 5 are lower than those for CyMe4-BTBP 3. One 

possible reason for this could be that the reduction in the ring size of the aliphatic part 

of the CyMe4-BTBP molecule 3, combined with the replacement of a CH2- group 

with a heteroatom (O- in 4 and S- in 5) produces a complex which is somewhat less 

hydrophobic than CyMe4-BTBP 3. Another explanation could be that the electron-

withdrawing inductive effect of the O- or S- heteroatom in 4 or 5 reduces the electron 

density in the triazine rings and weakens the coordinating ability of the 2-N donor 

atom.  
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Figure 12. Comparison of the dependencies of the separation factors for Am(III) over 

Eu(III) on initial nitric acid concentrations for Cy5-O-Me4-BTBP 4 (■), Cy5-S-Me4-

BTBP 5 (●) and CyMe4-BTBP 3 (▲) in cyclohexanone (5 mM for all ligands). 

 

With respect to the extraction of Am(III) and Eu(III) by Cy5-S-Me4-BTBP 5 in 2-

methylcyclohexanone, the separation factors in this diluent were greater than in 

cyclohexanone (cf. Figure 2). The dependence of the distribution ratios and separation 
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factors of Cy5-S-Me4-BTBP 5 on the initial nitric acid concentration in 2-

methylcyclohexanone is shown in Figure 13. The highest D value for Am(III) 

observed was 0.43 (from 4 M HNO3) and the highest SFAm/Eu observed was 31 (from 

4 M HNO3). These values are comparable to those obtained with ligand 5 in 1-octanol 

(cf. Figure 4). Thus there is a lower affinity of ligand 5 for Am(III) but a higher 

selectivity for Am(III) over Eu(III) in 2-methylcyclohexanone than in cyclohexanone 

(cf. Figure 7). At low acidities (0.1-0.5 M HNO3), there appeared to be an unexpected 

selectivity for Eu(III) over Am(III) (even though the error bars for D(Am) and D(Eu) 

practically overlap). This reversal in selectivity was not observed with ligand 5 in 

cyclohexanone.  
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Figure 13. Extraction of Am(III) and Eu(III) by Cy5-S-Me4-BTBP 5 in 2-

methylcyclohexanone (5 mM) as a function of initial nitric acid concentration (▲ = 

D(Am), ● = D(Eu), ■ = SFAm/Eu).  

 

Accordingly, we then studied the extraction of Am(III) and Eu(III) by 2-

methylcyclohexanone itself as a function of the initial nitric acid concentration. These 

results are shown in Figure 14. Generally, the distribution ratios for Am(III) and 

Eu(III) are lower than those observed in cyclohexanone (cf. Figure 8) and the highest 

values observed were D(Am) = 0.005 and D(Eu) = 0.007. For HNO3 concentrations 
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higher than 1 M, the data measured enable calculation of Am/Eu separation factors 

corrected for the contribution of 2-methylcyclohexanone to the extraction of metal 

ions. The corrected values, that characterise the separation properties of the ligand 5 

itself, are SFAm/Eu = 17 for 2M HNO3 and SFAm/Eu = 43 for 4M HNO3. 

The most notable difference between the extraction of Am(III) and Eu(III) by 

cyclohexanone itself and 2-methylcyclohexanone itself is that, for 2-

methylcyclohexanone, these values do not increase at higher acidities as was observed 

with cyclohexanone. There is also a slight selectivity for Eu(III) over Am(III) from 

0.1-2 M HNO3 as was the case with cyclohexanone. In addition, no observable mixing 

of the two phases had occurred and we observed no changes in the volumes of the 

aqueous and organic phases after 6 hours of contact with 4 M HNO3. Thus two of the 

principal disadvantages of cyclohexanone as a potential diluent have been eliminated 

by using 2-methylcyclohexanone. The extraction of both Am(III) and Eu(III) at higher 

acidities has been suppressed and no loss of the diluent to the aqueous phase has 

occurred. Further work is underway on the use of CyMe4-BTBP 3 with this diluent 

and various 2-, 3- and 4-alkylcyclohexanones in an effort to identify potential new 

diluents suitable for a separation process.  
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Figure 14. Extraction of Am(III) and Eu(III) by 2-methylcyclohexanone itself as a 

function of initial nitric acid concentration (▲ = D(Am), ● = D(Eu), ■ = SFAm/Eu).  

 

Conclusions 

 

It has been shown that the affinities for Am(III) and the selectivities for Am(III) over 

Eu(III) of both of the ligands Cy5-O-Me4-BTBP 4 and Cy5-S-Me4-BTBP 5 are lower 

than those of CyMe4-BTBP,
[40]

 indicating that the design of the aliphatic part of the 

BTBP molecule is very important in the context of the development of future ligands 

for the partitioning of actinides from lanthanides. The kinetics of extraction of 

Am(III) and Eu(III) by ligand 5 were faster in cyclohexanone than in 1-octanol due to 

the phase-transfer effect of cyclohexanone. In addition, 2-methylcyclohexanone has 

been introduced as a potential new diluent that has some desirable properties 

compared to cyclohexanone.  
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