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Abstract

Little is known about the frequency and potential mass balance impact of winter glacier melt

events. In this study, daily atmospheric temperature soundings from the Puerto Montt

radiosonde (41.43◦S) are used to reconstruct winter melting events at the glacier equilibrium

line altitude in the 38◦–42◦S region of southern Chile, between 1960 and 2010. The

representativeness of the radiosonde temperatures to near-surface glacier temperatures is

demonstrated using meteorological records from close to the equilibrium line on two glaciers

in the region over five winters. Using a degree-day model we estimate an average of 0.28 m of

melt and 21 melt days in the 15 June–15 September period each year, with high inter-annual

variability. The majority of melt events are associated with midlatitude migratory high

pressure systems crossing Chile and northwesterly flows, that force adiabatic compression and

warm advection, respectively. There are no trends in the frequency or magnitude of melt

events over the period of record, but the annual frequency of winter melt days shows a

significant, although rather weak and probably non-linear, relationship to late winter and early

spring values of a multivariate El Niño Southern Oscillation Index (MEI).

Keywords: glacier melt, climate change, southern Andes, ice-covered volcano, ENSO

1. Introduction

The study of glacier fluctuations in Chile is important for

several reasons. Glaciers are an important freshwater resource

for public supply, agriculture irrigation and hydropower

(Masiokas et al 2006); the Patagonian Icefields contribute

significantly to current global sea level rise (Rignot et al

2003, Willis et al 2012); and many glaciers are located

on active volcanoes, representing a significant flood (lahar)

hazard (Rivera et al 2006b). Most glaciers in Chile are

now in a state of retreat (Rivera et al 2006a, Carrasco

et al 2008), but the exact climatic controls on glacier

Content from this work may be used under the terms

of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain

attribution to the author(s) and the title of the work, journal citation and DOI.

behaviour are not well known. Better understanding is

hampered by the small number of glacier mass (Casassa et al

2006) and energy balance (Brock et al 2007) studies that

have been conducted in the region, and the lack of high

elevation meteorological station data representative of glacier

localities (Rivera et al 2005, Falvey and Garreaud 2009).

Transferring meteorological forcing variables in space can

create large errors in glacier ablation models (Charbonneau

et al 1981, Hock 2005, MacDougall and Flowers 2011).

This is a particular issue in Chile where contrasting temporal

temperature trends above and below about 500–1000 m

elevation, and strong temperature stratification in the lower

troposphere (Rosenblüth et al 1997, Bown and Rivera 2007,

Falvey and Garreaud 2009), largely invalidate the use of more

plentiful low-level meteorological station data for glacier

studies.
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In recent years, short-term investigations on glaciers in

Patagonia and southern and central Chile have improved

understanding of glacier–climate interactions during the

summer ablation period (Schneider et al 2006, Brock et al

2007, Pellicciotti et al 2008, Konya and Matsumoto 2010).

However, conditions and processes operating during the

winter remain largely unknown, due to the difficulty of

maintaining meteorological stations at high elevation under

extreme climatic conditions, which often lead to the damage

and burial of meteorological stations by snow (Brock et al

2007). In particular, the frequency and magnitude of winter

melting events are not recorded in current mass balance

observations using direct (Rivera et al 2005) and geodetic

remote sensing (Rivera et al 2006b) techniques, which

integrate their effects with snow accumulation over the

winter period. Elsewhere, short-term winter melt rates of

more than double the mean summer melt rate have been

recorded on the Franz Josef Glacier, South Island, New

Zealand (Marcus et al 1985). Better knowledge of winter

melting events in the similar maritime climate of southern

Chile, where sea level temperatures rarely fall far below

0 ◦C, could improve understanding of the impacts on glaciers

of both anthropogenic climatic warming and variability in

natural modes of atmospheric circulation such as the El Niño

Southern Oscillation (ENSO).

This letter aims to improve understanding of temporal

patterns in the frequency and magnitude of winter glacier

melt events, and their underlying causes, in an important

climatic transition zone. The study takes advantage of rare

winter meteorological records from two glaciers located in the

Chilean Lake District region (38◦–42◦S). As a first objective,

these short-term high elevation records are used to validate

the regional representativeness of tropospheric temperature

soundings from the Puerto Montt radiosonde, 41.43◦S. In

a second objective, winter melting events are identified in

the radiosonde record extending back to 1958, using a

temperature threshold of +1 ◦C at the approximate regional

equilibrium line altitude (ELA), and the ablation generated

is estimated using a degree-day model. As a final objective,

the winter glacier melt record, which is >80% complete

for most years since 1958, is analysed for temporal trends

and correlation with ENSO indices, and gridded climate data

are used to identify the patterns of atmospheric circulation

associated with high mid-tropospheric temperatures.

2. Study area, data sources and methods

The 38◦–42◦S region is located in the transition zone

between the wet-temperate and dry-Mediterranean climates

of southern and central Chile, respectively (figure 1).

The contrasting influences of the prevailing westerlies and

southern Pacific depression track, which dominate in the

winter, and the semi-permanent subtropical high pressure

area, which exerts a greater influence in the summer,

generate a strong seasonality in the climate. For example, at

Valdivia (39.63◦S, 73.08◦W, 19 m above sea level, a.s.l.), the

April–September (winter) precipitation is >2000 mm, while

the October–March (summer) precipitation is <650 mm.

Figure 1. Study area in southern Chile 38–42◦S, showing locations
of volcanoes (Vn), Temuco weather station and Puerto Montt
radiosonde.

In an analysis of radiosonde data, Falvey and Garreaud

(2009) found no significant temperature trends in the

low-mid-troposphere for the region in the last 50 years.

Significant trends of decreasing precipitation of up to

−15 mm year−1 between 1961 and 2000 (Bown and Rivera

2007) are thought to be the main reason that glaciers in the

region have been retreating during recent decades (Rivera et al

2002). While there has been a clear warming trend in Chile

north of 33◦S, more detailed research is required to separate

the anthropogenic and natural influences on climate change

in the study region and to uncover the underlying physical

mechanisms.

The Chilean Andes between 38◦ and 42◦S has over 50

glaciers covering an area of 140 km2 (Rivera et al 2012)

and the regional ELA is approximately 2000 m a.s.l. (Rivera

et al 2006b). There was a 34% reduction in ice-covered area

between 1961 and 2011, with frontal retreat rates of up to

150 m a−1 (Rivera et al 2012). Most glaciers are located on

active volcanic cones and tephra deposited during eruptive

activity can have an insulating effect on glaciers where the

cover is extensive and thick (Brock et al 2007). Fine ash

deposition from low-intensity activity or distal eruptions,

however, can dramatically enhance snow melt rates, through

albedo reduction (Rivera et al 2008).

As part of recent research projects investigating

glacier–climate–volcano interactions in southern Chile,

automatic weather stations (AWSs) were installed on the

2
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Table 1. Pearson’s correlation coefficient matrices between the daily mean temperature (T) at the Villarrica and Mocho–Choshuenco
volcano stations (VOL), the daily mean 1500–2500 m level Puerto Montt radiosonde temperature (PMR) and the daily mean temperature at
Temuco station (TEM) during the 2004, 2005, 2008, 2009 and 2010 winters. VOL data are from Villarrica station in 2004 and 2005 and
Mocho–Choshuenco station in 2008, 2009 and 2010. P is the significance level of the correlation. Days with VOL T > 1 ◦C are interpreted
as melt days at the regional glacier equilibrium line elevation (∼2000 m).

All days n = 368 Days with VOL T > 1 ◦C n = 60

VOL PMR VOL PMR

PMR 0.826 PMR 0.711
P = <0.000 P = <0.000

TEM 0.345 0.218 TEM −0.173 −0.105
P = <0.000 P = <0.000 P = 0.19 P = 0.43

glaciers of Villarrica Volcano (VAWS; 39.42◦S, 71.94◦W) and

Mocho–Choshuenco Volcano (MAWS; 39.73◦S, 72.03 ◦W)

(figure 1). These stations provide in situ temperature data used

in the study. The AWSs were installed at similar elevations

of 1890 m a.s.l. (VAWS) and 1966 m a.s.l. (MAWS), but

the available winter data cover different periods. The VAWS

has continuous data for 8 July–9 September in 2004 and 19

May–22 July 2005 only, while the MAWS has continuous data

since 2008. Both AWSs record air temperature and humidity

at approximately 2 m height in naturally ventilated radiation

shields, at hourly (VAWS) or 15 min (MAWS) intervals.

Daily atmospheric soundings from the Puerto Montt

radiosonde (PMR, 41.43◦S, 73.1◦W; 1200 UTC, 0800 local

time in winter), approximately 200 km south of the MAWS,

were obtained from the Chilean Weather Service (DMC), for

the 1958–2010 period. These data provide vertical profiles of

air temperature and other atmospheric variables at standard

pressure levels. The data were linearly interpolated onto

20 m spaced heights. To generate daily air temperatures

representative of the regional glacier ELA, values in the

1500–2500 m elevation range were averaged (PMR 2000 m

temperature, hereafter). The representativeness of the PMR

2000 m temperature to near-surface air temperatures on

the volcanoes is investigated through comparison with the

volcano stations. We also make use of low elevation air

temperatures recorded at Temuco (38.75◦S, 72.63◦W, 114 m

a.s.l.; figure 1), the closest DMC weather station to the

volcanoes.

Gridded atmospheric data from the National Centers for

Atmospheric Prediction (NCEP) and the National Center for

Atmospheric Research (NCAR) reanalysis project (Kalnay

et al 1996) are used to examine patterns of sea level pressure,

and air temperature, horizontal wind vectors and vertical wind

velocity in pressure co-ordinate (omega) at the 775 hPa level,

both during melt events and under average winter conditions.

The 775 hPa height data were calculated as the average of

the 700 and 850 hPa values, to correspond approximately

with the regional ELA. Only data from 1980 onwards are

used in this study due to uncertainties in the reliability of

the data prior to the beginning of satellite data assimilation.

Finally, we analyse possible relationships between the pattern

of melt events and large-scale ocean–atmosphere oscillations

in the Southern Pacific using monthly values of the extended

reconstructed global sea surface temperature version 3 dataset

(ERSST.v3, Smith et al (2008)) and the multivariate ENSO

index (MEI) of Wolter and Timlin (2011).

3. Results

3.1. Identification of positive temperature events

Days with positive air temperatures at the glacier ELA

level occur frequently during all winters and the warmest

days have a mean temperature >10 ◦C (figures 2(a)–(e)).

Mean daily temperatures at the VAWS and MAWS

correspond very closely with the PMR 2000 m temperature

(figures 2(a)–(e)). In particular, the timing and magnitude

of positive temperatures at the volcano stations are matched

very closely in the PMR 2000 m temperature, indicating

that these events have a regional extent, covering at least

200 km in the meridional direction. The correlations between

daily mean temperatures at the volcano stations and the

PMR 2000 m level are positive and highly significant,

for both all winter days and days with temperature >1 ◦C

(left and right sides of table 1, respectively). Significant

positive correlations also exist between the glacier ELA

level (PMR 2000 m level and the volcano stations) and the

low-level Temuco station, for all winter days (left side of

table 1). However, these positive correlations become weak

and non-significant negative correlations during days with

temperature >1 ◦C (right side of table 1). In other words, as

positive temperatures increase at the ELA level, temperatures

decrease at Temuco, indicating slack temperature lapse rates

or inversions in the lower troposphere, which are evident

in the temperature graphs (figures 2(a)–(e)). The correlation

between mean daily temperatures at the volcano stations and

the PMR radiosonde is strong and positive for all levels of the

low-mid-troposphere, except for the lowest few 100 m where

it is weak (figures 3(a) and (b)). This illustrates the effect of

strong temperature stratification and inversions in the lower

troposphere, analogous to those documented for central and

northern Chile (Falvey and Garreaud 2009).

3.2. Vertical structure of a high-temperature event

An example of the vertical tropospheric temperature structure

during a high-temperature event, which occurred between

7 and 10 August 2004, is shown in figure 4. This was a

3
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Figure 2. Comparison of daily mean temperatures at Villarrica automatic weather station (VAWS, 1890 m a.s.l., panels (a)–(b)),
Mocho–Choshuenco automatic weather station (MAWS, 1966 m a.s.l., panels (c)–(e)) and Temuco Station (TEM, 114 m a.s.l.), and the
daily mean of the 1500–2500 m level Puerto Montt radiosonde temperatures (PMR), during the: (a) 2004, (b) 2005, (c) 2008, (d) 2009 and
(e) 2010 winters. Note different date ranges in (a) and (b) are due to incomplete data in 2004 and 2005. See figure 1 for site locations.

very high-magnitude event, with daily average temperatures

at the VAWS between 6.7 and 13.0 ◦C over the 4 day period.

The atmospheric temperature profiles on the days before (6

August) and after (12 August) the event are close to the

environmental lapse rate (6.5 ◦C km−1). In contrast, the days

from 7 to 10 August 2004 had highly elevated temperatures

between 500 and 4000 m altitude, with strong inversions

below 500 m. The zero degree isotherm rose above 3500 m

elevation on 8–10 August, giving the potential for snow and

ice melt at all elevations in the region (highest point, Volcán

Lanı́n, 39.63◦S, 71.5◦W, 3747 m a.s.l.; figure 1).

3.3. Construction and analysis of a regional 50 year winter
glacier melt record from the Puerto Montt radiosonde

As shown in section 3.1, PMR 2000 m and volcano station

temperatures are strongly correlated. Furthermore, the mean

PMR 2000 m and volcano station temperatures are identical

for both all winter days and days with T > 1 ◦C (table 2, row

1). Slight differences between the PMR 2000 m and the

VAWS and MAWS mean temperatures (table 2, rows 2 and

3, respectively) reflect the small differences in the elevations

of the two stations. The root mean squared (RMS) differences

between daily PMR 2000 m level temperature and mean daily

4
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Figure 3. Pearson’s correlation between Puerto Montt radiosonde temperatures at 0–4000 m elevation levels and daily mean temperatures
at: (a) Villarrica weather station (1890 m a.s.l.) and (b) Mocho–Choshuenco weather station (1966 m a.s.l.). Data for 8 July–9 September in
2004 and 19 May–22 July in 2005 (Villarrica), and 15 June–15 September in 2008, 2009 and 2010 (Mocho–Choshuenco).

Table 2. Mean temperature (T > 1 ◦C) at the volcano (VOL) and Temuco (TEM) stations, and the mean 1500–2500 m level Puerto Montt
radiosonde temperature (PMR), during the 2004, 2005, 2008, 2009 and 2010 winters. Days with VOL T ◦C are interpreted as melt days at
the regional glacier equilibrium line elevation (∼2000 m).

All days
Days with VOL

T > 1 ◦C

VOL PMR TEM VOL PMR TEM

All years: n = 368 (all days), n = 60 (days with T > 1 ◦C) −2.4 −2.4 7.9 3.3 3.3 8.8
2004–05: n = 119 (all days), n = 26 (days with T > 1 ◦C) −1.3a −1.7 7.9 4.4a 4.2 8.7

2008–10: n = 249 (all days), n = 34 (days with T > 1 ◦C) −2.9b −2.6 7.8 2.5b 2.6 8.8

a VOL = Villarrica station in 2004 and 2005.
b VOL = Mocho–Choshuenco station in 2008–2010.

Figure 4. Vertical tropospheric temperature profiles recorded by
the Puerto Montt radiosonde between 6 and 12 August 2004. The 11
August 2004 trace has been removed for clarity.

volcano station temperatures are 2.2 ◦C for all winter days and

2.1 ◦C for melt days. Hence, PMR 2000 m temperatures can

be used as a reliable indicator of near-surface temperatures

at the regional glacier ELA. Integrated over a winter season,

the mean bias is zero (table 2, row 1), although for individual

events there is a mean error of approximately ±1 ◦C according

to the RMS difference.

The daily PMR 2000 m temperature record between 1958

and 2010 was used as a basis for calculating winter daily

melt at the approximate level of the regional ELA. The winter

season was defined as 15 June–15 September. Winters which

had more than 20% of daily launches missing were considered

too incomplete and not used further in the analysis. Total

melt, M (mm), during each winter was estimated using the

degree-day model (Hock 2005):

n∑

i=1

M = DDF
n∑

i=1

T+
1d, (1)

where n = number of days, d, in a winter (93) and T+ is the

sum of positive degree days over the season. A degree-day

factor, DDF, of 3.5 mm d−1 K−1 was used, which is the mean

value for winter snow at the ELA of 60 glaciers reported by

Braithwaite (2008). A melt threshold temperature of +1 ◦C

was applied. The degree-day model is the simplest method

to estimate glacier ablation from meteorological data, and

relies on the high correlation between air temperature and

incoming (atmospheric) longwave radiation and the turbulent

heat fluxes, which normally provide the majority of latent heat

energy used in melting ice and snow in the winter (Ohmura

2001).

The reconstructed series of total winter melt at the

regional glacier ELA is shown in figure 5. The mean

winter melt is 0.28 m, giving a total of 14.28 m of

melt over the 51 winter series, with high inter-annual

variability (standard deviation = 0.12 m). The minimum and

maximum winter melt totals are 0.04 m (1967) and 0.58 m

(1979), respectively. These values are significant considering

measured annual net mass balances are in the −0.88 to

5
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Figure 5. Total melt at the regional glacier equilibrium line altitude
during each winter (15 June–15 September) between 1960 and 2010
estimated using a degree-day model and the daily mean of the
1500–2500 m level temperatures from the Puerto Montt radiosonde.
Years with less than 80% of daily observations (1958, 1959, 1970,
1982, 1984, 1985, 1986, 2003, 2009) are omitted.

+0.36 m range at Mocho–Choshuenco volcano (Rivera et al

2005, Bown et al 2007). There are on average 21 melt days

per winter, with a minimum of 5 (1967) and a maximum of 38

(1979). Temperatures of 10 ◦C or higher were recorded on 29

days, with a maximum of 16.3 ◦C on 30 July 1970.

There are no significant trends in total winter melt

(r = 0.05, P = 0.771) or winter melt day frequency (r =

−0.03, P = 0.84) over time. Similarly, correlations with sea

surface temperature anomalies across the tropical Pacific

north of 23◦S are weak and not significant (r values in the

range 0.1–0.2). However, both melt day frequency and total

winter melt show a significant positive correlation with winter

sea surface temperature anomalies in the subtropical Pacific

south of 23◦S (r > 0.40, P < 0.05). More interestingly, the

winter melt day frequency is also significantly positively

correlated with the August–September, September–October

and October–November bimonthly values of the MEI index

(r > 0.31, P < 0.04; figure 6), but not with the early

winter bimonthly values (r < 0.3, P > 0.05 for May–June,

June–July and July–August MEI values). The highest winter

melt day frequencies occur at neutral and low-positive

August–November MEI values, i.e. weak El Niño conditions,

with frequencies tending to decrease at extreme ENSO phases

(figure 6).

3.4. Analysis of regional atmospheric circulation during melt
events

This section examines the relationships between melt events

and regional circulation patterns based on sea level pressure,

and temperature, horizontal and vertical wind vectors at the

775 hPa level, across the southern Pacific and South America

(20◦–60◦S, 30◦–140◦W) using NCEP/NCAR reanalysis

project data (Kalnay et al 1996). The 775 hPa values are

calculated from the mean of the 850 and 700 hPa levels,

corresponding approximately with the regional glacier ELA.

Composites (figure 7) were generated using daily data in

the 15 June–15 September period between 1980 and 2010,

for: (a) all winter days; (b) all first days of melt events;

Figure 6. Relationship between the frequency of winter (15
June–15 September) melt days and the mean of the
August–November values of the MEI Index (Wolter and Timlin
2011) between 1960 and 2010 (44 data points). Winters with less
than 80% of daily radiosonde launches have been omitted.

(c) the warmest 5% of winter days (days with air temperature

> 6.7 ◦C at 2000 m); and (d) the 2 days preceding the

warmest 5% of winter days. In the left panels of figure 7 the

temperature and horizontal wind vectors give an indication of

horizontal heat advection, with arrows crossing from warmer

to colder regions suggesting a gain of heat energy and vice

versa. In the right panels of figure 7, positive (negative) omega

values are indicative of adiabatic warming (cooling) due to

downward (upward) air displacement. Sea level pressure in

the right panels characterizes the synoptic circulation.

The average winter climatological circulation is char-

acterized by westerlies along the midlatitudes, with zonally

oriented isotherms (figure 7(a)). Average winter temperatures

in southern Chile (38◦–42◦S) at 775 hPa, i.e. ELA level, are

between −1 and −3 ◦C. At the surface, the subtropical high

pressure system dominates from 35◦S to the north, while

south of 35◦S, upward (downward) motions are present along

the windward (leeward) side of the Andes, forced by the

westerlies interacting with topography (figure 7(b)). During

the first day of melting events widespread warming of up

to 3–4 ◦C at 775 hPa is noticeable across southern Chile

(figure 7(c)). This is associated with the presence of high

pressure over Argentina at subtropical and midlatitudes, and

downward air movement and northwesterly flows at 775 hPa

(figures 7(c) and (d)). Hence, both warm air advection and

adiabatic processes are likely to explain the warming in

southern Chile. During the warmest 5% of winter days, the

temperature increase of 5–7 ◦C at 775 hPa over southern

central Chile (figures 7(a) and (e)) seems to be exclusively

a consequence of strong adiabatic compression (figure 7(f)).

This is associated with the southward expansion and

intensification of the Argentinian high pressure which blocks

the prevailing westerlies (figures 7(e) and (f)). According to

Garreaud et al (2002), this anomalous circulation, with high

pressure to the south and low pressure off coast to the north,

forces easterly downslope flows and adiabatic warming. The

warmest events are preceded by the intensification of the

high pressure cell off the Chilean coast at midlatitudes and

6
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Figure 7. Atmospheric patterns across the South Pacific–South America–South Atlantic region, 20–60◦S, 140, 0–30◦W, NCEP/NCAR
reanalysis project data for 1980–2010. Left panels: air temperature (shaded) and wind vectors (arrows) at 775 hPa; right panels: vertical
velocity (shaded) at 775 hPa, and sea level pressure (lines). Composites for all winter days ((a) and (b)), for all first days of melt events ((c)
and (d)), the warmest 5% of winter days ((e) and (f)) and the 2 days preceding the warmest 5% of days ((g) and (h)).

adiabatic warming over southern Chile, concurrent with low
pressure off the northern Chile coast (figure 7(h)).

4. Discussion and conclusions

Differences between near-surface and free-air temperatures
at high elevation sites (Pepin and Seidel 2005) and the

development of relatively cold boundary layers over glaciers

(e.g. Oerlemans 2001) are well documented. In this context,

the close correspondence between PMR 2000 m temperatures

and 2 m air temperatures at the volcano stations (tables 1

and 2) seems surprising. The explanation probably lies in the

particular geometry of glaciers located on volcanoes, which

are essentially large conical structures protruding into the
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troposphere, with little topographic shelter from prevailing

winds. Under these conditions, a surface-adjusted boundary

layer is less likely to develop than on a mountain valley

glacier, particularly in a region characterized by a strong and

persistent wind regime. Hence, while successful in this study,

radiosonde temperatures may not be applicable to valley

glaciers elsewhere, without adjustment for boundary layer

effects.

Based on the RMS difference of ±1 ◦C between volcano

station and PMR 2000 m temperatures, and an average

frequency of 21 melt days per winter, there is an uncertainty

of ±0.074 m in the calculated annual winter melt total of

0.28 m. The actual error is likely to be lower, however, given

the mean bias difference of zero (table 2). The degree-day

factor of 3.5 mm ◦C−1 d−1 is a conservative value, given that

the majority of glaciers in the Braithwaite (2008) dataset are

from higher latitudes than southern Chile, with lower levels

of incoming shortwave radiation during the winter months.

Furthermore, many glaciers in the study region are affected

by fine volcanic ash deposition, which enhances melt through

albedo reduction of snow surfaces (Rivera et al 2008). Hence,

the total amount of melt is probably underestimated in our

calculations.

Melting events are generated by horizontal heat advection

from the subtropical Pacific and/or adiabatic warming

associated with downslope flows. It is likely that most

winter melt events are associated with midlatitude migratory

anticyclones, and so the occurrence of melt days will be

sensitive to the frequency, directional track and developmental

stage of high pressure systems crossing Chile during the

winter months. Inter-annual variations in these parameters can

account for much of the high inter-annual variability in winter

melt totals (figure 5). Infrequent high-magnitude events are

associated with a well-developed coastal low in north-central

Chile, that is related to the eastward displacement of a strong

midlatitude high pressure system. During these events, the

study region is affected by intense adiabatic warming due to

easterly downslope flows. These events can lead to snow melt

rates of around 50 mm d−1 at the regional ELA, which are

more typical of summer conditions (Brock et al 2007).

The absence of trends in the frequency or magnitude

of winter melting events since 1960 corresponds with the

lack of a significant regional temperature trend over the

same period (Falvey and Garreaud 2009). A correlation

between subtropical sea surface temperatures and winter

melt would be expected, due to warm air advection. The

significant relationship identified between winter melt day

frequency and late winter and spring bimonthly values of

the MEI index is harder to explain. The MEI index is

comprised of 6 variables: sea level pressure, the zonal and

meridional components of the surface wind, sea surface

temperature, surface air temperature, and total cloudiness

fraction of the sky (Wolter and Timlin 2011). Given that

the winter melt frequency (June–September) correlates with

spring values of the MEI index (August–September through

to October–November) it is likely that the association is due

to the particular atmospheric circulation over the Pacific and

south America prior to, and during the onset of, spring ENSO

events, rather than raised sea and surface air temperatures.

This interpretation is supported by the observation that MEI

values correlate more strongly with winter melt day frequency

than total winter melt, and also that the correlations between

the mean temperature of melt days each winter and MEI

index values are very weak (r < 0.1). Other workers (e.g.

Vimont et al 2003, Chang et al 2007) have also identified links

between extratropical atmospheric circulation changes and the

onset of ENSO. The finding that a change in the frequency of

winter mid-troposphere high-temperature events in southern

Chile may pre-empt spring ENSO (El Niño or La Niña) events

is intriguing and warrants more detailed investigation.

In this study we have analysed tropospheric temperature

soundings at Puerto Montt, in conjunction with a degree-day

melt model, to reconstruct winter melting events on glaciers in

southern Chile, 38◦–42◦S, between 1960 and 2010. The main

conclusions are:

• Winter melt events occur frequently at the regional glacier

ELA, with an average of 21 melt days each winter. We

conservatively estimate an average of 0.28 m of melt per

winter, and a total of 14.28 m of winter melt over the

1960–2010 period. Thus, winter melting is significant to

glacier mass balance and snow hydrology in the region.

• The majority of melt events are associated with midlatitude

migratory high pressure systems crossing Chile, and

northwesterly flows at glacier equilibrium line elevation,

that force adiabatic compression and warm advection,

respectively. Infrequent high-magnitude events, when

2000 m elevation temperatures can reach +16 ◦C, occur

exclusively under strong eastward downslope winds

associated with migratory high pressure systems.

• There are no trends in the frequency or magnitude of

melt events over the study period, however, we identify

a link between winter melt day frequency and late winter

to spring values of the MEI ENSO index (Wolter and

Timlin 2011). Future work aiming to explain the links

between atmospheric circulation changes associated with

mid-troposphere high-temperature events in southern Chile

and the subsequent onset of ENSO events would be

valuable.

• Low-level station temperatures do not correlate with

2000 m temperatures during melt events, due to slack

lapse rates and inversions in the low to mid-troposphere.

Consequently, low-level station data are of little benefit

to glacier studies in the region. The paucity of high

altitude meteorological data is a significant hindrance

to understanding of glacier–climate interactions in Chile

and more permanent glacier stations, similar to the

Mocho–Choshuenco AWS are needed.
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