17 Running Title: Prescottia equi gen. nov., comb. nov.
Prescottia equi gen. nov., comb. nov.: a new home for an old pathogen

Amanda L. Jones ${ }^{1,2}$, Iain C. Sutcliffe ${ }^{1}$ and Michael Goodfellow ${ }^{2}$ UK
${ }^{2}$ School of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK +44(0)191-2273519; E-mail: Amanda.L.Jones@northumbria.ac.uk

Subject category: New Taxa; Actinobacteria.
Kunning itte: Prescoltla equi gen. nov., como. nov.
${ }^{1}$ School of Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST,

Author for correspondence: Amanda L. Jones. Telephone: +44(0)191-2274895; Fax:

Abstract

: The taxonomic status of Rhodococcus equi, originally isolated from foal specimens, has been the subject of discussion for a number of years. The chequered history of the taxon has prompted this polyphasic analysis of R. equi strains, close members of the genus Rhodococcus and representatives of other genera classified in the order Corynebacteriales, to establish the taxonomic position of this taxon. Thirty one R. equi strains, including the type strain, were examined for genotypic and numerical taxonomic properties. The resultant data are consistent with their classification in the order Corynebacteriales, but the R. equi strains formed a distinct phyletic clade away from representatives of other members of the genus Rhodococcus in the 16S rRNA gene tree. Representatives of this clade shared their highest pairwise 16 S rRNA gene sequence similarities with the type strain of Rhodococcus kunmingensis (95.2 to 98.1\%). However, the R. equi taxon was readily distinguished from R. kunmingensis and from the other members of the order Corynebacteriales using a combination of genotypic, chemotypic and phenotypic properties. On the basis of these data the R. equi strains are considered to represent a new genus. The name proposed for this taxon is Prescottia gen. nov., with Prescottia equi comb. nov. as the type species containing the type strain, C 7^{T} (=ATCC $25729^{\mathrm{T}}=\mathrm{ATCC} 6939^{\mathrm{T}}=\mathrm{CCUG}$ $892^{\mathrm{T}}=$ CIP $\quad 54.72^{\mathrm{T}}=\mathrm{DSM} \quad 20307^{\mathrm{T}}=\mathrm{HAMBI} \quad 2061^{\mathrm{T}}=$ NBRC $14956^{\mathrm{T}}=\mathrm{JCM} 1311^{\mathrm{T}}=\mathrm{JCM} 3209^{\mathrm{T}}=\mathrm{LMGG} 18452^{\mathrm{T}}=\mathrm{NBRC} 101255^{\mathrm{T}}$ $=\operatorname{NCTC} 1621^{\mathrm{T}}=\mathrm{NRRL} B-16538^{\mathrm{T}}=\mathrm{VKM} \operatorname{Ac}-953^{\mathrm{T}}$).

Introduction

In 1923, Magnusson isolated a strain of the primary causal agent of equine pneumonia and classified it in the genus Corynebacterium as Corynebacterium equi (Magnusson 1923). Subsequently, following a somewhat turbulent taxonomic history (Barton and Hughes 1980; Goodfellow and Jones 2012), a study by Goodfellow \& Alderson (Goodfellow and Alderson 1977) led to the species being transferred to the genus Rhodococcus as Rhodococcus equi. The organism, a facultative intracellular parasite of macrophages, is an important pathogen of foals; it causes fatal lymphadenitis and ulcerative enteritis in 3 to 5 month old foals (Meijer and Prescott 2004; Giguere et al. 2011a; Giguere et al. 2011b; Prescott 1991).

More recently, R. equi has been recognised as an opportunistic pathogen of humans, especially immunocompromised patients; necrotizing pneumonia is the most common disease manifestation although the organism also causes extra-pulmonary infections (Kedlaya et al. 2001; Yamshchikov et al. 2010; Takai et al. 1994; Prescott 1991). Misidentification of R. equi strains in animals and humans as mycobacterial infections (Meijer and Prescott 2004) delays correct treatment of patients thereby causing relapses and fatalities, with mortality rates between $50-55 \%$ in patients with HIV, 20$25 \%$ in those with non-HIV compromised immunity and 11% in immunocompetent patients (Kedlaya et al. 2001). The importance of R. equi as a multihost pathogen has led to extensive studies of its virulence (von Bargen and Haas 2009; Giguere et al. 2011a) and to sequencing of the whole genome of a pathogenic strain (Letek et al. 2010).

The genus Rhodococcus currently encompasses 33 species with validly published names. Previous studies have shown that members of the genus can be assigned to three 16 S rRNA gene clades which fall within the evolutionary radiation of the order Corynebacteriales (Jones and Goodfellow. 2012; Goodfellow and Jones 2012), namely the R. equi, Rhodococcus erythropolis and Rhodococcus rhodochrous clades (Goodfellow et al. 1998; McMinn et al. 2000; Jones et al. 2004; Jones and Goodfellow. 2012); the taxonomic integrity of these taxa are supported by specific 16S rRNA gene sequences (Goodfellow et al. 1998; Gurtler et al. 2004). The aim of the present polyphasic taxonomic study was to establish whether strains falling within the R. equi clade merit generic status.

Materials and methods

Thirty one R. equi strains, 15 strains representing other Rhodococcus species, along with representatives from the related mycolic acid containing genera Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia, Tsukamurella and Williamsia, including 59 type strains, were obtained from either private or public culture collections (Table S1). The organisms were maintained on glucose-yeast extract agar (GYEA; Gordon and Mihm 1962) at room temperature and as glycerol suspensions $(20 \%, \mathrm{v} / \mathrm{v})$ at $-20^{\circ} \mathrm{C}$. Fifteen strains were randomly selected as duplicates to establish test error in the numerical taxonomic and molecular fingerprinting studies.

Extraction of chromosomal DNA from each of the 129 isolates was carried out using the method of Kim et al. (1998). The strains were the subject of a composite DNA fingerprinting analysis based on two different repetitive DNA elements (rep-PCR; Versalovic et al. 1994) using BOX A1R (Pathom-aree et al. 2006) and ERIC (Versalovic et al. 1991) primer sets, and three individual amplified 16S ribosomal DNA restriction studies (ARDRA; Vaneechoutte et al. 1995) that used the restriction enzymes Alu I, Hpa II and Cfr I31.

The rep-PCR amplifications were performed in a $25 \mu 1$ reaction mixture containing 1 $\mu \mathrm{l}$ template DNA (100ng), $1 \times$ PCR buffer, $4 \mu \mathrm{M}$ of primer BOXA1R (Pathom-aree et al. 2006) with $2 \mu \mathrm{M}$ of primers ERIC 1R and ERIC 2 (Versalovic et al. 1991), 100 mM DMSO, 6 mM MgCl 2 , 0.1 U BioTaq DNA polymerase and 1.24 mM of each of the four dNTPs. Amplification with the primers was carried under the following conditions: initial denaturation step at $95^{\circ} \mathrm{C}$ for 5 minutes, 30 cycles of $95^{\circ} \mathrm{C}$ for 1 minute, $52^{\circ} \mathrm{C}$ for 1 minute and $65^{\circ} \mathrm{C}$ for 8 minutes with a final incubation at $65^{\circ} \mathrm{C}$ for 18 minutes. PCR amplifications of 16S rRNA genes were carried out according to the method of Kim et al. (Kim et al. 1998), with each PCR product digested singly for 2 hours at $37^{\circ} \mathrm{C}$ in final reaction volumes of 10μ l, consisting of $8.5 \mu \mathrm{l}$ of PCR product, 1μ of $1 \times$ buffer $\mathrm{Y}^{+} /$Tango $^{\mathrm{TM}}$ and 0.5 U of restriction enzyme.

Cluster analysis of the rep-PCR fingerprints was based on band intensity using the unweighted-pair-group method with averages algorithm (UPGMA; Sokal and Michener 1958) and the Pearson's product-movement correlation coefficient (Pearson 1926). Each primer type was analysed separately. The similarity of the ARDRA band patterns generated by the digest with each restriction endonuclease were analysed separately using the UPGMA algorithm (Sokal and Michener 1958) and the Jaccard coefficient (Jaccard 1908). The rep-PCR and ARDRA fingerprint data were combined to give a consensus matrix.

The 129 strains and the 15 control duplicated cultures were examined for 96 unit characters (Table 2) using methods known to yield data of value for the classification and identification of mycolic acid-containing actinomycetes (Goodfellow and Alderson 1977; Goodfellow et al. 1998; Goodfellow et al. 1982a; Goodfellow et al. 1982b; Jones et al. 2008; Goodfellow and Jones 2012). Tolerance to antibiotics was
determined using antibiotic discs (Table 2; Oxoid Ltd., Wade Road, Basingstoke, UK) impregnated with specific concentrations of antibiotic in accordance with the British Society of Antimicrobial Chemotherapy (BSAC) guidelines (Andrews 2001). When zone sizes were equal to or greater than those specified by the BSAC guidelines, a negative (sensitive) result was scored; zone sizes measuring less than those specified by the guidelines were scored positive (resistant).

The test strains were also examined for their capacity to cleave a range of fluorogenic and chromogenic substrates (Table 2). The substrates were dissolved in double strength phosphate buffer to give a final concentration of 1 mM . Suspensions of two day old biomass cultured on GYEA were suspended to give a McFarland density of 3 . Equal volumes of each suspension and substrate solution were dispensed into microtitre wells. The plates containing the fluorogenic substrates were read for fluorescence at excitation 365 nm , emission 440 nm and sensitivity 28; the chromogenic substrates were examined for absorbance at the wavelength of 405 nm . The resultant readings were recorded as time zero and after two days incubation at $30^{\circ} \mathrm{C}$, the microtitre plates were read again at the same settings. Results of the tests were tabulated in the Microsoft Excel program (Microsoft Co., Seattle, USA) and transformed into two mutually exclusive states, scored positive (1) or negative (0), for the numerical taxonomic analysis. The tests were coded positive when the difference in fluorescent/absorbance intensities between the test and negative controls was more than $0\left[R_{P}=V_{r}-V_{c}-V_{a+b}\left(R_{P}\right.\right.$, positive result; V_{r}, resultant reaction between test strain and conjugated substrate; V_{c}, value of cell inoculum alone; $\mathrm{V}_{\mathrm{a}+\mathrm{b}}$, value of organism free control)].

Results

The results of the remaining phenotypic tests in the data matrix were converted to binary format (1/0) written to a NTS file using Programmer's File Editor (PFE) software. The final dataset was the subject of cluster analyses using the NTSYSpc program (version 2.0; Numerical Taxonomy and Multivariate Analysis System; Rohlf 1998). Similarity values were calculated using the S_{SM} coefficient and clustering accomplished with the UPGMA algorithm (Sneath and Sokal 1973); the results were presented as a dendrogram. Co-phenetic correlation values (Sokal and Rohlf 1962) were calculated using the NTSYS 'Coph' and 'Mxcomp' functions to estimate how well the structure inherent in the similarity matrix was preserved by the clustering procedure.

The phylogenetic positions of 26 R. equi isolates were determined in a 16S rRNA gene sequence analysis. PCR amplification and direct sequencing of the purified products were carried out using the method of Kim et al. (Kim et al. 1998) The almost complete 16 S rRNA gene sequences were aligned with corresponding sequences of representatives of genera classified in the order Corynebacteriales (retrieved from the DDBJ/EMBL/GenBank databases), using the CLUSTAL W alignment option and 16S rRNA secondary structural information held in the MEGA 5 program (Tamura et al. 2011). Phylogenetic trees were inferred using the neighbor-joining (Saitou and Nei 1987), least squares (Fitch and Margoliash 1967), maximum-parsimony (Kluge and Farris 1969) and maximum-likelihood (Felsenstein 1981) tree-making algorithms from the MEGA 5 program (Tamura et al. 2011) and evolutionary distance matrices prepared after Jukes and Cantor (1969). The resultant unrooted tree topologies were evaluated in a bootstrap analysis (Felsenstein 1985) based on 1,000 resamplings. Accession numbers for the sequences generated in this study are listed in Fig 1.

Heterogeneity within Rhodococcus was confirmed by comparison of 16S rRNA gene sequences. Almost complete 16 S rRNA gene sequences (1202 to 1518 nucleotides [nt]) were generated for 26 of the R. equi strains. The phylogenetic relationships between these organisms, the type strains of the other Rhodococcus species and representatives of the 15 other genera classified in the order Corynebacteriales are shown in Fig 1. The R. equi strains formed a distinct clade that was supported by all four tree-making algorithms and by a bootstrap value of 88%, a result that is in good agreement with corresponding data from previous studies (Goodfellow et al. 1998;

McMinn et al. 2000) and is underpinned by the study of Rainey et al. (Rainey et al. 1995), which also demonstrated the separation of R. equi from other members of the genus Rhodococcus. Nearly all of the remaining rhodococci were assigned either to the R. erythropolis or R. rhodochrous clades, a result in line with those from earlier studies (McMinn et al. 2000; Jones and Goodfellow. 2012; Goodfellow et al. 1998; Gurtler et al. 2004). The separation of the R. equi strains from these and related taxa is supported by specific nucleotide 16 S rRNA gene signatures (Table 3). All of these results are consistent with the view that R. equi merits generic status (Jones and Goodfellow. 2012).

The 29 R. equi strains formed a distinct taxon based on the molecular fingerprint and numerical taxonomic data. The consensus dendrogram derived from the analyses of the rep-PCR and ARDRA fingerprint data (Fig 2) showed that the R. equi strains formed a distinct taxon that lay between corresponding groups encompassing members of the R. erythropolis and R. rhodochrous phyletic lines. All of these taxa were sharply separated from each other and from the representatives of mycolic acidcontaining bacteria classified in the genera Corynebacterium, Dietzia, Mycobacterium, Nocardia, Tsukamurella and Williamsia. Similarly, the R. equi strains formed a distinct cluster defined at the 84.5% similarity level in the complementary numerical taxonomic study (Fig 3). Once again, this taxon was distinct from members of the R. erythropolis and R. rhodochrous groups and from clusters composed of representatives of the other mycolic acid-containing genera. It is evident from both analyses that the genus Rhodococcus is a polyphyletic taxon, as highlighted in an earlier study (Rainey et al. 1995). Confidence can be placed in the present results as the duplicated Rhodococcus strains clustered together in the molecular fingerprint analysis while the test error recorded for these strains in the numerical taxonomic study was low (3.6%), a result well below the 10% cut off recommended previously (Sneath and Johnson 1972). The cophenetic correlation value obtained in the $\mathrm{S}_{\mathrm{SM}}{ }^{-}$ UPGMA analysis was high at 0.72 .

Discussion

Cumulatively, the chemotaxonomic, molecular systematic and numerical taxonomic data show that R. equi can be distinguished readily from other members of the genus

Rhodococcus and from the remaining genera classified in the order Corynebacteriales (Table 4). Consequently, we propose that R. equi be reclassified as a new genus, named Prescottia with Prescottia equi as the type species.

This change will still enable medical and veterinary clinical diagnosis to proceed with caution using the same diagnostic criteria as currently used for R. equi (Giguere and Prescott 1997; Prescott 1991). As R. equi is the only documented Rhodococcus species to contain the virulence plasmids which encode the VapA protein (in foal and some human isolates) or the homologous VapB protein (in porcine and human isolates) (Giguere et al. 2011a; Tkachuk-Saad and Prescott 1991; Giguere et al. 2011b), PCR amplification of the vapA gene for equine isolates (Giguere et al. 2011b) and/or of the vapB gene for isolates from human clinical sources are thus of major diagnostic importance. Moreover, the numerical taxonomic analysis revealed phenotypic characteristics of diagnostic potential for the recognition of R. equi strains (Table 5). All 31 R. equi strains, including the type strain, were positive in the forty two enzyme tests listed in Table 5 with the exception of strain N1310 which was unable to hydrolyse L-arginine-7AMC, L-glycine-7AMC-hydrogen bromide or L-ornithine-7AMC-dihydrochloride. Integration of the tests summarised in Table 5 into diagnostic keys should facilitate the improved recognition of this pathogen.

The degree of confidence that can be placed in a classification is reflected in the congruence found when the same strains are assigned to corresponding taxa based on different, but complementary, taxonomic criteria. It is, therefore, encouraging that in the present study that the R. equi strains were assigned to taxa distinct from other rhodococci based on both the molecular fingerprint and numerical taxonomic data (Figs 2 and 3). Excellent congruence was found between the composition of the two R. equi subgroups recovered in these analyses though an exception was R. equi N1310, which was recovered in subgroup 1 in the former analysis and in subcluster 2 in the latter one. However, in each analysis the type strain of R. equi and 15 related strains, including isolates from animal, human and environmental sources (Table S1), formed a homogeneous taxon, the taxonomic status of which is underpinned by pyrolysis mass spectrometric and previous numerical phenetic data (Goodfellow and Alderson 1977; Goodfellow et al. 1982a; Goodfellow et al. 1982b; McMinn et al. 2000).

It can be concluded from the genotypic and phenotypic data that the taxon containing isolate C 7^{T} corresponds to R. equi (Goodfellow et al. 1998; Magnusson 1923). It is, therefore, proposed that this species be recognised as the type species of the new genus Prescottia. However, additional work needs to be carried out to establish whether the subgroup 2 strains should be recognised as a second Prescottia species. Further work is also required to clarify the taxonomic status of R. kunmingensis DSM 45001^{T} which lies towards the periphery of the Prescottia 16S rRNA gene clade (Fig. 1). The type strains of R. equi and R. kunmingensis share a DNA:DNA relatedness value of $34.4 \pm 10 \%$ (Wang et al. 2008), a value well below the cut-off point recommended for the delineation of bacterial species (Wayne et al. 1987).

Description of Prescottia gen. nov.

Prescottia (Pres.cot'ti.a. fem. n. Prescottia) named after John Prescott to celebrate his many contributions towards unravelling the pathogenicity of Rhodococcus equi.

The description is based on data taken from this and previous studies (Collins et al. 1982a; Collins et al. 1982b; Collins et al. 1977; Collins et al. 1979; Collins et al. 1985; Cummins and Harris 1956; Goodfellow and Alderson 1977; Keddie and Cure 1977; Komura et al. 1975; Nishiuchi et al. 2000; Schleifer and Kandler 1972; Uchida and Aida 1977; Mordarski et al. 1980b; Mordarski et al. 1980a; Zakrzewska-Czerwinska et al. 1988) (Table 4).

Aerobic, Gram-positive, acid-alcohol fast, nonmotile, pleomorphic actinomycete which may show traces of elementary branching at early stages of growth. Wholeorganism hydrolysates are rich in 2, 6-diaminopimelic acid, arabinose and galactose. The peptidoglycan is of the A1 γ type. Muramic acid moieties are N -glycolated. Cells contain diphosphatidylglycerol, phophatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides as major polar lipids; complex mixtures of straight chain saturated, monounsaturated and branched chain fatty acids and dihydrogenated menaquinones with eight isoprene units as the predominant isoprenologue. Mycolic acids have 28 to 50 carbon atoms and up to four double bonds. The fatty acids released on pyrolysis gas chromatography of mycolic acid esters have 12 to 16 carbon atoms. The DNA G +C content ranges from $69-72 \mathrm{~mol} \%$. The genus Prescottia, as determined by 16 S rDNA gene sequence analyses, is a member of the order Corynebacteriales.

Isolated from soil and intestinal tracts and faeces of animal species. Causes equine pneumonia in foals and is an opportunistic pathogen of humans.

Description of Prescottia equi comb nov.

Prescottia equi (e'qui. L. n. equus horse; L. gen. n. of the horse).

In addition to the characteristics given in the genus description, the species has the following properties based on the results of this and previous studies (Barton and Hughes 1980; Goodfellow and Alderson 1977; Goodfellow et al. 1982a; Mordarski et al. 1980b; Mordarski et al. 1980a).

In smears cells often show a clumping or palisade arrangement or L- or V- shaped elements. Smears from liquid cultures sometimes show branching filamentous forms with swollen ends. Smooth, shiny, pale pink colonies with entire margins are produced on glucose-yeast extract agar; abundant slime which may drop onto the lids of inverted Petri dishes may be produced during incubation. Grows from 5 to $40^{\circ} \mathrm{C}$, optimally around $30^{\circ} \mathrm{C}$. Phosphatase positive but negative for arbutin and esculin hydrolysis. Reduction of nitrate to nitrite and hydrolysis of urea are variable. Degrades Tweens 20, 40, 60 and 80 but not arbutin, cellulose, chitin, guanine, hypoxantrine, Ltyrosine, uric acid or xanthine. Degradation of adenine is variable. Cleaves the following exopeptides: D-alanine-7-AMC trifluoroacetate, L-arginine-7-AMC, Lglutamate 7-AMC, L-glycine 7-AMC- hydrogen bromide, L-histidiine 7-AMC, L-isoleucine 7-AMC-trifluoroactetate, L-leucine-7-AMC, L-lysine 7-AMC-acetate, Lmethionine 7-AMC-acetate, L-ornithine-7-AMC dihydrochloride, L-phenylalanine 7-AMC-trifluoroacetate, L-proline-7-AMC hydrogen bromide, L-threonine 7-AMC, Ltyrosine 7-AMC and N-benzyloxycarbonyl glycyl-prolyl-7AMC. Cleaves the following glycosides: 4MU- α cetyl- β-D-glucosaminide, $4 \mathrm{MU}-\beta$-D-fucoside, $4 \mathrm{MU}-\beta$ -D-galactoside, 4MU- α-D-glucoside, 4MU- β-D-glucoside, 4MU- β-D-glucuronide, 4MU- α-D-mannopyranoside, 4MU- β-D-ribofuranoside and 4MU-B-Dxylanopyranoside. Cleaves the following inorganic esters: dihydroumbelliferone, 4-methyl-7-nitrocoumarin, 4MU-phosphate disodium salt, organic esters, 4MU-acetate, 4MU-butyrate, 4 MU -elaidate, 4MU-p-guanidinobenzoate, 4MU-heptanoate, 4MUlaurate, 4MU-nonanoate, 4MU-propionate and 4MU-stearate. In addition, the
chromogenic substrates o-nitrophenyl-myrisate, p-nitrophenyl- α-L-fucoside, p -nitrophenyl-phenylphosphonate, p-nitrophenyl-phosphorylcholine, p-nitrophenyl- α-Lrhannopyranoside and p-nitrophenol- α-L-xylopyranoside are cleaved.

Grows on adonitol, amygdalin, L-arabinose, cellobiose, erythritol, glycerol, glycogen, inositol, inulin, maltose, mannitol, α - and β-methyl-D-glucoside, raffinose, rhamnose, salicin, sorbitol, sucrose, trehalose and xylose as sole carbon sources but not on xylitol. Sensitive to ($\mu \mathrm{g} \mathrm{ml}$): cephalexin (30), clindamycin (2), colistin sulphate (25), cotrioxide (25), fusidic acid (10), nalidixic acid (30), novobiocin (5) and penicillin G, but is resistant to erythromycin (4), gentamicin (8), lincomycin (64), minocycline (0.125), neomycin (8), novobiocin (4), streptomycin (4) and tobramycin (8).

The DNA G + C content of the type strain is $70.4 \mathrm{~mol} \%$.

The type strain, C $7^{\mathrm{T}}\left(=\right.$ ATCC $25729^{\mathrm{T}}=$ ATCC $6939^{\mathrm{T}}=$ CCUG $892^{\mathrm{T}}=$ CIP $54.72^{\mathrm{T}}=$ DSM $20307^{\mathrm{T}}=$ HAMBI $2061^{\mathrm{T}}=\mathrm{NBRC} 14956^{\mathrm{T}}=\mathrm{JCM} 1311^{\mathrm{T}}=\mathrm{JCM} 3209^{\mathrm{T}}=\mathrm{LMG}$ $18452^{\mathrm{T}}=$ NBRC $101255^{\mathrm{T}}=$ NCTC $1621^{\mathrm{T}}=$ NRRL B- $16538^{\mathrm{T}}=\mathrm{VKM} \mathrm{Ac}-953^{\mathrm{T}}$) was isolated from a lung abscess of a foal.

Acknowledgements

Amanda Jones is grateful to the Freeman Hospital, Newcastle upon Tyne and to the School of Biology, Newcastle University, Newcastle upon Tyne for financial support. The authors are indebted to Dr Jean Euzéby for helping to name the new taxon, Prof. Arthur James for his expertise in fluorogenic and chromogenic substrates and Prof. John D. Perry for helping with the antibiotic tolerance studies.

References

Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, Kroppenstedt RM, Yokota A, Kasai H (2007) Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol 57 (Pt 2):297-301

Andrews JM (2001) BSAC standardized disc susceptibility testing method. J Antimicrob Chemother 48 Suppl 1:43-57

Barton MD, Goodfellow M, Minnikin DE (1989) Lipid composition in the classification of Rhodococcus equi. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 272 (2):154-170
Barton MD, Hughes KL (1980) Corynebacterium equi: a review. Vet Bull 50:65-80
Butler WR, Floyd MM, Brown JM, Toney SR, Daneshvar MI, Cooksey RC, Carr J, Steigerwalt AG, Charles N (2005) Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp. nov. and Segniliparus rugosus sp. nov. Int J Syst Evol Microbiol 55 (Pt 4):1615-1624

Collins MD, Goodfellow M, Minnikin DE (1979) Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 110 (1):127136

Collins MD, Goodfellow M, Minnikin DE (1982a) Fatty acid composition of some mycolic acid-containing coryneform bacteria. J Gen Microbiol 128 (11):25032509

Collins MD, Goodfellow M, Minnikin DE, Alderson G (1985) Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 58 (1):77-86
Collins MD, Jones D, Kroppenstedt RM, Schleifer KH (1982b) Chemical studies as a guide to the classification of Corynebacterium pyogenes and "Corynebacterium haemolyticum". J Gen Microbiol 128 (2):335-341
Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100 (2):221-230

Cummins CS, Harris H (1956) The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J Gen Microbiol 14 (3):583-600

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 (6):368-376

Felsenstein J (1985) Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39 (4):783-791
Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155 (760):279-284

Giguere S, Cohen ND, Chaffin MK, Hines SA, Hondalus MK, Prescott JF, Slovis NM (2011a) Rhodococcus equi: clinical manifestations, virulence, and immunity. J Vet Intern Med 25 (6):1221-1230. doi:10.1111/j.1939-1676.2011.00804.x

Giguere S, Cohen ND, Chaffin MK, Slovis NM, Hondalus MK, Hines SA, Prescott JF (2011b) Diagnosis, treatment, control, and prevention of infections caused by Rhodococcus equi in foals. J Vet Intern Med 25 (6):1209-1220. doi:10.1111/j.1939-1676.2011.00835.x

Giguere S, Prescott JF (1997) Clinical manifestations, diagnosis, treatment, and prevention of Rhodococcus equi infections in foals. Vet Microbiol 56 (3-4):313-334

Goodfellow M, Alderson G (1977) The actinomycete-genus Rhodococcus: a home for the "rhodochrous" complex. J Gen Microbiol 100 (1):99-122
Goodfellow M, Alderson G, Chun J (1998) Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 74 (1-3):3-20

Goodfellow M, Beckham AR, Barton MD (1982a) Numerical classification of Rhodococcus equi and related actinomycetes. J Appl Bacteriol 53 (2):199-207

Goodfellow M, Ferguson EV, Sanglier JJ (1992) Numerical classification and identification of Streptomyces species--a review. Gene 115 (1-2):225-233

Goodfellow M, Jones AL (2012) Order V. Corynebacteriales ord. nov. In: Goodfellow M, Kämpfer P, Busse H-J et al. (eds) Bergey's Manual of Systematic Bacteriology, vol 5. $2^{\text {nd }}$ edn. Springer, New York, pp 232-243

Goodfellow M, Weaver CR, Minnikin DE (1982b) Numerical classification of some rhodococci, corynebacteria and related organisms. J Gen Microbiol 128 (4):731-745

Gordon RE, Mihm JM (1962) Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98 (3):628-636

Gurtler V, Mayall BC, Seviour R (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28 (3):377-403

Hsu FF, Wohlmann J, Turk J, Haas A (2011) Structural definition of trehalose 6monomycolates and trehalose 6,6'-dimycolates from the pathogen Rhodococcus equi by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 22 (12):2160-2170. doi:10.1007/s13361-011-0240-7

Jaccard P (1908) Nouvelle researches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223-270

Jones AL, Brown JM, Mishra V, Perry JD, Steigerwalt AG, Goodfellow M (2004) Rhodococcus gordoniae sp. nov., an actinomycete isolated from clinical material and phenol-contaminated soil. Int J Syst Evol Microbiol 54 (Pt 2):407-411

Jones AL, Goodfellow. M (2012) Genus Rhodococcus (Zopf 1891) emend. Goodfellow, Alderson and Chun 1998. In: Goodfellow M, Kämpfer P, Busse H-J et al. (eds) Bergey's Manual of Systematic Bacteriology, vol 5. 2 edn. Springer, New York, pp 437-464

Jones AL, Koerner RJ, Natarajan S, Perry JD, Goodfellow M (2008) Dietzia papillomatosis sp . nov., a novel actinomycete isolated from the skin of an immunocompetent patient with confluent and reticulated papillomatosis. Int J Syst Evol Microbiol 58 (Pt 1):68-72. doi:10.1099/ijs.0.65178-0

Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism vol 3. Academic Press, New York, pp 21-132
Kämpfer P, Andersson MA, Rainey FA, Kroppenstedt RM, Salkinoja-Salonen M (1999) Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children's day care centre. Int J Syst Bacteriol 49:681-687

Keddie RM, Cure GL (1977) The cell wall composition and distribution of free mycolic acids in named strains of coryneform bacteria and in isolates from various natural sources. J Appl Bacteriol 42 (2):229-252
Kedlaya I, Ing MB, Wong SS (2001) Rhodococcus equi infections in immunocompetent hosts: case report and review. Clin Infect Dis 32 (3):E39-46
Kim SB, Falconer C, Williams E, Goodfellow M (1998) Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59-68

Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1-32.

Komura I, Yamada K, Otsuka S, Komagata K (1975) Taxonomic significance of phospholipids in coryneform and nocardioform bacteria. J Gen Appl Microbiol 21 (4):251-261

Lechevalier MP, De Bievre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249-260
Letek M, Gonzalez P, Macarthur I, Rodriguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon

D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vazquez-Boland JA (2010) The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genetics 6 (9):1-17. doi:10.1371/journal.pgen. 1001145
Magnusson H (1923) Spezifische infecktiose Pneumonie beim Fohlen. Ein neuer Eitererreger beim Pferd. Arch Wiss Prakti Tierheilk 50:22-38
McMinn EJ, Alderson G, Dodson HI, Goodfellow M, Ward AC (2000) Genomic and phenomic differentiation of Rhodococcus equi and related strains. Antonie van Leeuwenhoek 78 (3-4):331-340

Meijer WG, Prescott JF (2004) Rhodococcus equi. Vet Res 35 (4):383-396
Minnikin DE, Alshamaony L, Goodfellow M (1975) Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88 (1):200-204
Minnikin DE, Bolton RC, Hartmann S, Besra GS, Jenkins PA, Mallet AI, Wilkins E, Lawson AM, Ridell M (1993) An integrated procedure for the direct detection of characteristic lipids in tuberculosis patients. Ann Soc Belg Med Trop 73 Suppl 1:13-24
Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid containing bacteria. J Chromatogr A 188:221-233

Mordarski M, Goodfellow M, Kaszen I, Tkacz A, Pulverer G, Schaal KP (1980a) Deoxyribonucleic acid reassociation in the classification of the genus Rhodococcus Zopf 1891. Int J Syst Bacteriol 30:521-527

Mordarski M, Goodfellow M, Tkacz A, Pulverer G, Schaal KP (1980b) Ribosomal ribonucleic acid similarities in the classification of Rhodococcus and related taxa. J Gen Microbiol 118 (2):313-319
Nishiuchi Y, Baba T, Yano I (2000) Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Methods 40 (1):1-9

Pathom-aree W, Stach JE, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10 (3):181-189

Pearson K (1926) On the coefficient of racial likeness. Biometrika 18:105-117
Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev 4 (1):20-34

Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S, Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology-Uk 141:523-528
Rohlf FJ (1998) On applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst Biol 47 (1):147-158

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 (4):406-425

Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bact Rev 36 (4):407-477

Sneath PH, Johnson R (1972) The influence on numerical taxonomic similarities of errors in microbiological tests. J Gen Microbiol 72 (2):377-392

Sneath PHA, Sokal RR (1973) Numerical taxonomy the principles and practice of numerical classification. W H Freeman and Co., Baltimore

Soddell JA, Stainsby FM, Eales KL, Kroppenstedt RM, Seviour RJ, Goodfellow M (2006) Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56 (Pt 4):739-744

Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409-1438

Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon XI:33-40

Takai S, Sasaki Y, Ikeda T, Uchida Y, Tsubaki S, Sekizaki T (1994) Virulence of Rhodococcus equi isolates from patients with and without AIDS. J Clin Microbiol 32 (2):457-460

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 (10):2731-2739. doi:10.1093/molbev/msr121

Tkachuk-Saad O, Prescott J (1991) Rhodococcus equi plasmids: isolation and partial characterization. J Clin Microbiol 29 (12):2696-2700

Uchida K, Aida K (1977) Acyl type of bacteria cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23:249-260
Vaneechoutte M, Riegel P, de Briel D, Monteil H, Verschraegen G, De Rouck A, Claeys G (1995) Evaluation of the applicability of amplified rDNA-restriction
analysis (ARDRA) to identification of species of the genus Corynebacterium. Res Microbiol 146 (8):633-641

Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucl Acids Res 19 (24):6823-6831

Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequenced-based polymerase chain reaction. Meth Mol Cell Biol 5:25-40
von Bargen K, Haas A (2009) Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 33 (5):870-891. doi:DOI 10.1111/j.1574-6976.2009.00181.x

Wang YX, Wang HB, Zhang YQ, Xu LH, Jiang CL, Li WJ (2008) Rhodococcus kunmingensis sp. nov., an actinobacterium isolated from a rhizosphere soil. Int J Syst Evol Microbiol 58 (Pt 6):1467-1471
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trűper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 (4):463-464
Yamshchikov AV, Schuetz A, Lyon GM (2010) Rhodococcus equi infection. Lancet Infect Dis 10 (5):350-359. doi:10.1016/S1473-3099(10)70068-2
Zakrzewska-Czerwinska J, Mordarski M, Goodfellow M (1988) DNA base composition and homology values in the classification of some Rhodococcus species. J Gen Microbiol 134 (10):2807-2813

Unit character

A. Biochemical tests (\%, w/v):

Aesculin (0.1)*, ${ }^{2}$
Arbutin (0.1)*, ${ }^{2}$
Nitrate reduction (0.1)
Nitrite reduction (0.1)
Urease production (2.0) ${ }^{2}$
B. Degradation tests (\%, w/v):

Adenine (0.4)*, ${ }^{\text {2 }}$
Casein (0.1)*, ${ }^{2}$
DNA (0.3)*, ${ }^{2}$
Guanine (0.4)*, ${ }^{2}$
Hypoxanthine (0.4$)^{*}$, ${ }^{2}$
RNA (0.3)*, ${ }^{2}$
Starch (0.1)*, ${ }^{2}$
Tributyrin (1.0 \% $)^{*}$, ${ }^{2}$
L-Tyrosine (0.5)*, ${ }^{2}$
Tween $20(1.0 \%)^{*}$, ${ }^{2}$
Tween $40(1.0 \%)^{*}$, ${ }^{2}$
Tween $60(1.0 \%)^{*}$, ${ }^{2}$
Tween $80(1.0 \%)^{*}$, ${ }^{2}$
Uric acid (0.5)*, ${ }^{2}$
Xanthine (0.4)*, ${ }^{2}$
C. Morphological tests

Growth on glucose-yeast extract agar:

Light orange*
Light yellow pink*
Pale orange yellow*
Slight yellow pink*
Very orange*
Very red*
Very yellow*
Yellow white*
Mucoid*
Rough*
Smooth*

Unit character

D. Enzyme tests

Cleavage of 7-amino-4-methylcoumarin substrates (7AMC):

Exopeptidases:
D-alanine-7AMC-trifluoroacetate ${ }^{3}$ L-arginine-7AMC ${ }^{3}$
L-asparagine-7AMC-trifluoroacetate ${ }^{3}$
L-aspartate-7AMC ${ }^{3}$
L-glutamate-7AMC ${ }^{3}$
L-glycine-7AMC-hydrogen bromide ${ }^{3}$
L-histidine-7AMC ${ }^{3}$
iso-L-leucine-7AMC-trifluoroacetate ${ }^{3}$
L-leucine-7 AMC^{3}
L-lysine-7AMC-acetate ${ }^{3}$
L-methionine-7AMC-acetate ${ }^{3}$
L-ornithine-7AMC-dihydrochloride ${ }^{3}$
L-phenylalanine-7AMC-
trifluoroacetate ${ }^{3}$
L-proline-7AMC-hydrogen bromide ${ }^{3}$
L-pyroglutamate-7AMC ${ }^{3}$
L-threonine-7AMC ${ }^{3}$
L-tyrosine-7AMC ${ }^{3}$
N-benzyloxycarbonyl-arginine-
7AMC-hydrochloride ${ }^{3}$
N-benzyloxycarbonyl-glycyl-prolyl$7 \mathrm{AMC}^{3}$

Cleavage of 4-methylumbelliferone substrates (4MU):

Glycosides:
4MU-N-acetyl- β-D-glucosaminide ${ }^{3}$
4MU- α-L-arabinopyranoside ${ }^{3}$
4MU- β-D-cellobioside ${ }^{3}$
$4 \mathrm{MU}-\beta$-D-fucoside ${ }^{3}$
4MU- α-D-galactopyranoside ${ }^{3}$
4MU- β-D-galactoside ${ }^{3}$
4MU- α-D-glucoside ${ }^{3}$

Unit character

p-np phenyl phosphonoate ${ }^{3}$
p-nitrophenyl phosphorylcholine ${ }^{3}$

E. Tolerance tests

Sensitivity to antibiotics ($\mu \mathrm{g} / \mathrm{ml}$):
Aminocoumarin:
Novobiocin (5) ${ }^{1}$
Cephalosporin:
Cephalexin (30) ${ }^{1}$
Fusidane:
Fusidic acid (10) ${ }^{1}$
Organic esters:
4MU-acetate ${ }^{3}$
4MU-butyrate ${ }^{3}$
4MU-elaidate ${ }^{3}$
4 MU -p-guanidinobenzoate ${ }^{3}$
4MU-heptanoate ${ }^{3}$
4MU-laurate ${ }^{3}$
4MU-nonanoate (genzyme) ${ }^{3}$
4MU-palmitate ${ }^{3}$
4MU-proprionate ${ }^{3}$
4MU-stearate ${ }^{3}$

Cleavage of nitrophenol (np):

Glycosides:
p-np- α-L-fucoside ${ }^{3}$
p-np- α-L-rhamnopyranoside ${ }^{3}$
p-np- α-L-xylopyranoside ${ }^{3}$
Inorganic esters:
o-np myrisate ${ }^{3}$
Glycopeptides and peptide:
Bacitracin (10) ${ }^{1}$
Macrolide:
Erythromycin (5) ${ }^{1}$
Penicillin:
Penicillin G (1) ${ }^{1}$
Polymyxin:
Colistin sulphate (25) ${ }^{1}$
Quinolone:
Ciprofloxacin (1) ${ }^{1}$
Nalidixic acid (30) ${ }^{1}$
Tetracycline:
Tetracycline hydrochloride (10) ${ }^{1}$
Miscellaneous:
Clindamycin (2) ${ }^{1}$
Cotrimaxazole (25) ${ }^{1}$

[^0]Table 3. Nucleotide signatures that separate R. equi from closely related Rhodococcus clades defined in the 16S rRNA sequence analysis ${ }^{a}$

Position ${ }^{\text {b }}$	Nocardia spp.	R. corynebacterioides	R. equi	R. erythropolis	R. kunmingensis	R. rhodochrous
40-42	G:S	G:Y	G:S	G:C	G:S	G:C
43	K	G	G	G	G	G
44	Y	Y	U	U	U	U
64-65	W:R	A:A	A:A	A:G	A:G	A:R
70	H	W	U	U	U	U
75	S	-	C	C	C	C
78	Y	-	-	-	-	A
84-88	T:C	C:C	Y:G	K:Y	C:C	Y:B
102	C	U	Y	C	C	Y
122	C	A:C	A:C	A:C	C:N	A:C
127-139	Y:Y	G:C	K:C	G:C	G:C	G:C
182-185	-	C:U	G:C	-	G:U	-
191-196	-	C:U	G:G	-	U:G	-
199	K	G	U	G	U	G
207	D	A	G	R	A	R
216	R	A	A	A	A	W
217-218	Y:Y	U:C	C:U	Y:Y	Y:Y	Y:Y
223-224	Y:R	C:A	C:A	C:A	C:A	C:A
292	R	G	G	A	G	G
303	Y	C	Y	U	C	Y
380-384	R:C	C:C	A:C	R:C	C:C	M:C
459	H	Y	A	N	C	M
490	U	C	C	C	U	B
579	U	C	C	C	C	C
610-615	-	C:A	U:G	-	U:G	C:A
623-627	-	-	C:A	-	-	-
634	R	A	G	A	G	A
760	A	G	G	G	G	G
835-835	-	-	U:C	-	-	-
998	C	C	U	Y	C	Y
100-1008	C:Y	C:C	C:C	Y:Y	C:C	C:Y
1017-1023	R:Y	C:C	C:C	B:Y	C:C	R:Y
1040	-	G	A	R	G	R
1119-1121	Y:R	C:G	C:G	U:A	U:A	Y:R
1132-1139	R:Y	R:Y	G:C	R:Y	G:C	R:B
1150-1152	Y:R	C:G	C:G	U:A	U:A	Y:R
1335	Y	C	C	C	C	C

[^1]Table 4．Characteristics of wall chemotype IV genera classified in the order Corynebacteriales

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{18}{|c|}{Genera}

\hline \& \& \& $$
\begin{aligned}
& \text { n } \\
& \\
& \\
& 0
\end{aligned}
$$ \& 佱 \& \& \& \& \& $$
\begin{aligned}
& \text { N } \\
& \\
& 8 \\
& 8
\end{aligned}
$$ \& \& \& 皆 \& \& 新 \& $$
\begin{aligned}
& \text { N } \\
& \text { n } \\
& 0
\end{aligned}
$$ \& 皆 \& 正

\hline Cell morphology \& Rod－cocus growth cycle，with trace elements of branching \& Coccoid cells \& Pleomorphic rods，often club－shaped； commonly in angular and palisade arrangement \& Short rods and cocci \& Rods and cocci or moderately branching hyphae \& Coccoid cells occurring singly，in pairs，in tetrads or in small clumps \& Characteristic rudimentary right angled branching \& Rods， occasionally branched filaments which fragment into rods and coccoid \& Mycelium
which
fragments
into rods and
cocci \& Rods to
extensive
substrate
mycelium；the
latter fragments
into irregular
rods and cocci \& Rods \& Mycelium
resembling a
pine tree \& Coccoid cells \& Irregular rods that exhibit snapping division． coccoid rods apparent after prolonged \& Rods occur singly，in pairs or in masses； coccobacillar y forms occur \& Single cell， arranged in V－forms or palisades \& Thin
irregular
rods or cocci
occur singly
or in small
clusters

\hline Aerial hyphae
Growth of visible colonies \& Absent
1－2 \& Absent \& Absent \& Absent

$1-3$ \& Absent

1－3 \& ND \& Present \& \begin{tabular}{l}
elements

Usually absent

 \& Present \& Absent \& Absent \& Present but not visible to the naked eye \& Absent \&

culture

Absent
\end{tabular} \& Absent \& Absent \& Present

\hline Growth of visible colonies （days） \& 1－2 \& 1－2 \& 1－2 \& 1－3 \& 1－3 \& 1－3 \& 1－3 \& 2－40 \& 1－5 \& 1－3 \& 3－4 \& \& 7 \& ND \& 1－3 \& 1－2 \& 1－4

\hline Acid－fastness \& Acid－ alcohol－fast \& ND \& Sometimes weakly acid－ fast \& Not acid fast \& Partially acid－ alcohol－fast \& weakly acid－ fast \& Acid－alcohol－ fast \& Strongly acid－ fast \& Partially acid fast \& Partially acid－ fast at some stage of the growth cycle \& Acid－ alcohol－ fast \& Not acid fast \& ND \& ND \& Partially acid－ alcohol－fast \& ND \& ND

\hline Strictly aerobic \& ＋ \& ＋ \& － \& ＋ \& ＋ \& ＋ \& ＋ \& ＋ \& ＋ \& ＋ \& ＋ \& － \& ＋ \& ＋ \& ＋ \& ＋ \& ＋

\hline Fatty acid composition ${ }^{\text {a }}$ \& $$
\begin{gathered}
\mathrm{S}, \mathrm{U}, \mathrm{~T}, \\
\mathrm{~T} 16^{\mathrm{G}}
\end{gathered}
$$ \& S，U \& S， $\mathrm{U}^{\text {b }}$ \& S，U，T \& S，U \& S，U \& S，U，T \& S，U，T \& S，U，T

\hline Major menaquinone（s）${ }^{\text {c }}$ \& MK－8（ H_{2} ） \& \[
$$
\begin{gathered}
\text { MK-7, MK- } \\
8
\end{gathered}
$$

\] \& MK－8（ H_{2} ） \& MK－8（ H_{2} ） \& MK－9（ H_{2} ） \& MK－8 \& MK－8（ H_{2} ） \& MK－9（ H_{2} ） \& \[

\underset{cycll^{\prime}}{\mathrm{MK}-8\left(\mathrm{H}_{4}, \omega-\right.}

\] \& MK－8（ H_{2} ） \& ND \& \[

$$
\begin{gathered}
\text { MK-8(} \mathrm{H}_{4, \omega} \text { cyl) }
\end{gathered}
$$

\] \& SQA－8（ $\mathrm{H}_{4} \omega$ cycl）and SQB （ H_{4} dicycl） \& MK－9（ H_{2} ） \& MK－9 \& \[

$$
\begin{aligned}
& \text { MK-10, } \\
& \text { MK-11 }
\end{aligned}
$$
\] \& MK－9（ H_{2} ）

\hline Muramic acid type \& Glycolated \& ND \& Acetylated \& Acetylated \& Glycolated \& Acetylated \& Glycolated \& Glycolated \& Glycolated \& Glycolated \& ND \& Glycolated \& Glycolated \& Glycolated \& Glycolated \& ND \& Glycolated

\hline Mycolic acid pattern ${ }^{\text {d }}$ \& Single spot \& None \& Single spot \& Single spot \& Single spot \& ND \& Single spot \& Multiple spots \& Single spot \& Single spot \& $$
\begin{aligned}
& \text { Multiple } \\
& \text { spots }
\end{aligned}
$$ \& Single spot \& ND \& ND \& Two spots \& None \& Single spot

\hline Mycolic acids： \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Overall size（number of carbons） \& 28－50 \& ND \& 22－38 \& 34－38 \& 46－77 \& ND \& 44－52 \& 60－90 \& 46－64 \& 30－54 \& ND \& 58－64 \& 43－49 \& 42－52 \& 62－78 \& ND \& 50－56

\hline Number of double bonds \& 0－4 \& ND \& 0－2 \& 0－1 \& 1－6 \& ND \& ND \& 1－4 \& 0－3 \& 0－4 \& ND \& 2－6 \& ND \& ND \& 1－7 \& ND \& ND

\hline Fatty acids released on pyrolysis \& 12－16 \& ND \& 8－18 \& ND \& 16－18 \& ND \& ND \& 22－26 \& 12－18 \& 12－16 \& ND \& 16－20 \& ND \& ND \& 22－26 \& ND \& ND

\hline Phosphatidylethanlamine present in polar lipid patterns \& ＋ \& ＋ \& － \& ＋ \& ＋ \& ＋ \& ＋ \& ＋ \& ＋ \& ＋ \& ND \& ＋ \& ＋ \& ＋ \& ＋ \& ND \& ＋

\hline | DNA G +C content |
| :--- |
| （ $\mathrm{mol} \%$ ） | \& 69－72 ${ }^{\text {h }}$ \& 60.04 \& 51－67 \& 66－73 \& 63－69 \& 49.3 \& 64.7 \& 57－73 \& 63－72 \& 63－73 \& 68－72 \& 67.5 \& 63.7 \& 69．3－71．6 \& 68－78 \& 65－72 \& 64－65

\hline
\end{tabular}

 g，carbon 16 version of 10 －methyloctadecanoic acid present in half of the Prescottia strains．h DNA G＋C content of P ．equi（Mordarski et al．1980b；Mordarski et al．1980a；Zakrzewska－Czerwinska et al．1988）

Table 5. Key Phenotypic Characteristics of R. equi strains from subclusters 1 and 2.

Tests	Subcluster 1 and 2 $\mathbf{N}=\mathbf{3 1}$
Biochemical:	
Arbutin	-*
Nitrite	-
Degradation:	
Casein	-
Guanine	-
Hypoxanthine	-
Tween 20	+
Tween 60	+
Tween 80	+
Xanthine	-
Enzyme tests:	
L-Arginine-7AMC	+*
L-Glutamate-7AMC	+
L-Glycine-7AMC-hydrogen bromide	+*
L-Histidine-7AMC	+
Iso-L-Leucine-7AMC-trifluoroacetate	+
L-Leucine-7AMC	+
L-Lysine-7AMC-acetate	+
L-Methionine-7AMC-acetate	+
L-Ornithine-7AMC-dihydrochloride	+*
L-Phenylalanine-7AMC-trifluoroacetate	+
L-Proline-7AMC-hydrogen bromide	+
L-Threonine-7AMC	+
L-Tyrosine-7AMC	+
Z-Glycyl-Prolyl-7AMC	+
4MU-N-acetyl-3-D-glucosaminide	+
4MU-ß-D-fucoside	+
4MU-3-D-galactoside	+
4MU- α-D-glucoside	+
4MU-3-D-glucoside	+
4MU-3-D-glucuronide	+
4MU- α-D-mannopyranoside	+
4MU-ß-D-ribofuranoside	+
4MU-3-D-xylopyranoside	+
Dihydroumbelliferone	+
4-methyl-7-nitrocoumarin	+
4mu-phosphate disodium salt	+
4mu-acetate	+
4mu-butyrate	+
4mu-elaidate	+
4mu-p-guanidinobenzoate	+
4mu-heptanoate	+
4mu-laurate	+
4mu-nonanoate (genzyme)	+
4mu-proprionate	+
4mu-stearate	+
p-np- α-L-fucoside	+
p-np- α-L-rhamnopyranoside	+
p-np- α-L-xylopyranoside	+
o-np myrisate	+
p-np phenyl phosphonoate	+
p-nitrophenyl phosphorylcholine	+
Tolerance tests:	
Penicillin	+
Clindamycin	+

Symbols: + , positive; -, negative; *, a single strain from subcluster 2 (N1310) produced the opposite result to that recorded.

Legend for Figures

Fig. 1. Neighbor-joining tree (Saitou and Nei 1987) based on a nearly complete 16 S rRNA gene sequences showing the position of the R. equi strains and representatives of genera classified in the order Corynebacteriales. Asterisks indicate branches of the tree that were also found with the leastsquares (Fitch and Margoliash 1967) maximum-likelihood (Felsenstein 1981) and maximumparsimony (Kluge and Farris 1969) tree-making algorithms; the symbols F, L and P indicate branches recovered using the least-squares, maximum-likelihood and maximum-parsimony methods, respectively. The numbers at the nodes indicate levels of bootstrap support based on a neighborjoining analysis of 1000 re-sampled datasets; only values above 50% are given. The scale bar indicates 10 substitutions per nucleotide position. ${ }^{\mathrm{T}}$, type strain.

Fig. 2. A consensus dendrogram of the representatives of genera classified in the order Corynebacteriales based on the Pearson-UPGMA (Pearson 1926) and $\mathrm{S}_{\mathrm{J}}-$ UPGMA (Jaccard 1908; Sokal and Michener 1958) analysis of the rep-PCR and ARDRA fingerprints showing relationships between the R. equi isolates and reference strains SMC, single-membered cluster.

Fig. 3. Dendrogram showing relationships between the R. equi isolates and the representatives of other mycolic acid containing taxa defined in the S_{SM}-UPGMA analysis.

[^0]: * Tests carried out using a multipoint inoculator (Goodfellow et al. 1992); Tests carried out using $0.5^{1} ; 2.5^{2}$ and $3.0^{3} \mathrm{McFarland}$ inoculum densities.

[^1]: ${ }^{a}$ Degenerate nucleotide codes: $\mathrm{R}(\mathrm{A}+\mathrm{G}), \mathrm{Y}(\mathrm{C}+\mathrm{T}), \mathrm{M}(\mathrm{A}+\mathrm{C}), \mathrm{S}(\mathrm{G}+\mathrm{C}), \mathrm{W}(\mathrm{A}+\mathrm{T}), \mathrm{B}(\operatorname{not} \mathrm{A}), \mathrm{N}($ any $), \mathrm{K}(\mathrm{G}+\mathrm{T})$.
 ${ }^{b}$ Numbering based on Escherchia coli.

