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Theoretical mass sensitivity of Love wave and layer guided
acoustic plate mode sensors

G. McHale,a) M. I. Newton, and F. Martin
Department of Chemistry and Physics, The Nottingham Trent University, Clifton Lane,
Nottingham, NG11 8NS, United Kingdom

~Received 30 January 2002; accepted for publication 20 March 2002!

A model for the mass sensitivity of Love wave and layer guided shear horizontal acoustic plate
mode ~SH–APM! sensors is developed by considering the propagation of shear horizontally
polarized acoustic waves in a three layer system. A dispersion equation is derived for this three layer
system and this is shown to contain the dispersion equation for the two layer system of the substrate
and the guiding layer plus a term involving the third layer, which is regarded as a perturbing mass
layer. This equation is valid for an arbitrary thickness perturbing mass layer. The perturbation,Dn,
of the wave speed for the two-layer system by a thin third layer of density,rp and thicknessDh is
shown to be equal to the mass per unit area multiplied by a function dependent only on the
properties of the substrate and the guiding layer, and the operating frequency of the sensor. The
independence of the function from the properties of the third layer means that the mass sensitivity
of the bare, two-layer, sensor operated about any thickness of the guiding layer can be deduced from
the slope of the numerically or experimentally determined dispersion curve. Formulas are also
derived for a Love wave on an infinite thickness substrate describing the change in mass sensitivity
due to a change in frequency. The consequences of the various formulas for mass sensing
applications are illustrated using numerical calculations with parameters describing a~rigid!
poly~methylmethacrylate! wave-guiding layer on a finite thickness quartz substrate. These
calculations demonstrate that a layer-guided SH–APM can have a mass sensitivity comparable to,
or higher, than that of Love waves propagating on the same substrate. The increase in mass
sensitivity of the layer guided SH–APMs over previously studied SH–APM sensors is of
significance, particularly for liquid sensing applications. The relevance of the dispersion curve to
experiments using higher frequencies or frequency hopping and to experiments using thick guiding
layers is discussed. ©2002 American Institute of Physics. @DOI: 10.1063/1.1477603#

I. INTRODUCTION

Acoustic wave sensors work on the simple principle that
a surface is set into high frequency oscillation and interac-
tions with the environment close to the surface cause either
energy storage or energy loss. These effects are often ob-
served experimentally as changes in resonant frequency, rep-
resenting a shift in wave speed, and as a broadening of a
resonance frequency, representing changes in attenuation. In
Rayleigh surface acoustic wave~SAW! sensors, the substrate
particles execute a retrograde elliptical motion in the plane
described by the direction of propagation and the normal to
the surface.1 Rayleigh-SAWs are highly sensitive to depos-
ited surface mass but, due to the out-of-plane component of
their displacement have significant attenuation if the surface
supporting the wave~i.e., the sensing surface! is exposed to a
liquid. This is unfortunate since many applications of current
interest involve the deposition of mass from the liquid phase.
There are two types of approach to extending the use of
acoustic wave sensors to the liquid phase. The first is to use
a flexural plate wave which, although it has an out-of-plane
component of displacement, has a wave speed less than the

speed of sound in the liquid.2,3 Under these circumstances,
the wave can no longer generate compressional waves in the
liquid and so does not suffer a large attenuation. The second
approach is to use an acoustic wave mode that has surface
parallel displacements. Examples of such waves, in approxi-
mate order of mass sensitivity, include the thickness shear
mode of the quartz crystal microbalance,4,5 a shear horizontal
acoustic plate mode~SH–APM!,6–8 a shear horizontal sur-
face acoustic wave~SH–SAW!,9 a layer-guided SH–SAW,10

a surface transverse wave,11 or a Love wave,12–14which is a
SH mode with a wave guiding layer.15 The difference in the
sensitivity between these devices is enormous with the mass
sensitivity of Love waves, and more recently the layer
guided SH–SAWs, being several orders of magnitude greater
than that of SH–APMs. For this reason much recent experi-
mental work has preferred Love wave devices. However, a
problem with such devices is that the interdigital transducers
~IDTs! used to generate and detect the wave are located on
the same face of the substrate as the contacting liquid; this is
a problem not shared by the less sensitive SH–APM devices.
Locating IDTs on the same side as the liquid causes difficul-
ties because of the dielectric constant of the liquid and, de-
pending on the guiding layer’s dielectric constant, the need
to have liquid seals within the propagation path.

a!Author to whom correspondence should be addressed; electronic mail:
glen.mchale@ntu.ac.uk
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In this work, we develop a theoretical framework for
understanding the mass sensitivity of layer guided
SH–APM16,17 and Love wave sensors. In Sec. II, the propa-
gation of a shear horizontally polarized acoustic wave in a
three-layer system is considered and a dispersion equation is
derived. In Sec. III, the third layer is then regarded as a thin
mass layer that is to be sensed and a perturbation approach is
used to derive a mass sensitivity formula for the phase speed.
The basic sensor characteristics of a layer guided acoustic
wave device can be deduced from the dispersion equation
describing the substrate and wave-guiding layer. Section IV
develops, quantitatively, the interpretation of this dispersion
equation and introduces the idea of determining the mass
sensitivity from a numerically or experimentally determined
dispersion curve. In Sec. V, the consequences of the relation-
ship between the mass sensitivity and the dispersion curve
are derived for a device operated at either a higher frequency
or more than one frequency. The previous formulas are then
considered numerically and their predictions for sensors and
their consequences for current experiments are discussed in
Sec. VI. The relevance of the theory to Love wave sensors
working at multiple frequencies and to Love wave sensors
with thick wave-guiding layers with lossy materials is dis-
cussed. It is also suggested that the layer guided SH–APM
sensor will have a significantly enhanced mass sensitivity,
possibly exceeding that of a Love wave using the same sub-
strate and guiding layer. This suggestion alters the currently
accepted notions of the most sensitive type of device and
offers the advantage of a highly mass sensitive liquid phase
sensor with the transducers located on the opposite face to
the sensing surface.

II. THEORETICAL FORMULATION

The problem of the response of a two-layer system of a
substrate and a waveguide to the deposition of rigid mass is
essentially the problem of the propagation of acoustic waves
in a three-layer system. For the finite substrate Love wave
and layer guided SH–APM sensors, we consider a substrate
of thickness,w, with a densityrs and Lame´ constantsls and
ms overlayed by a uniform mass layer of thickness,d, and
with a densityr l and Lame´ constantsl l andm l . In analogy
to Love wave theory, the uniform mass overlayer is referred
to as the guiding layer; this two-layer system is the bare
sensor and possesses a dispersion curve. In a previous
report17 we described how a dispersion equation can be de-
rived for this two-layer system and how that dispersion equa-
tion contains generalisations of Love waves from infinite
thickness substrates to finite thickness substrate and of
acoustic plate modes from nonguided to layer guided modes.
The present formulation uses the same approach, but intro-
duces into the system a third layer of thickness,h, with a
densityrp , and Lame´ constantslp andmp . This third layer
is referred to as a perturbing mass layer, although the disper-
sion equation derived in this section for the three-layer sys-
tem is in fact valid for an arbitrary thickness third layer.

Consider wave motion in an isotropic and nonpiezoelec-
tric material of densityr and with Lame´ constantsl andm.

The displacements,u j , are then described by the equation of
motion15

r
]2u j

]t2 5~l1m !
]S ii

]x j
1m¹I 2u j , ~1!

where the Einstein summation convention has been used and
the strain tensor,S i j , is defined as

S i j5
1

2 S ]u i

]x j
1

]u j

]x i
D . ~2!

The boundary conditions on any solution require consider-
ation of the stress tensor,T i j , which can be written in the
form

T i j5ld i jSkk12mS i j . ~3!

The upper surface of the substrate is taken to be in the
(x1 ,x2) plane and located atx350 ~Fig. 1!. The solutions of
the equation of motion are chosen to have a propagation
along thex1 axis with displacements in thex2 direction of
the sagittal plane (x2 ,x3). They must also satisfy the bound-
ary conditions on the displacementsuI and theT i3 component
of the stress tensors. These must both be continuous at the
interfaces between the substrate and guiding layer, and be-
tween the guiding layer and perturbing mass layer. TheT i3

component of the stress tensors must also vanish at the free
surfaces of the substrate and the perturbing mass layer at
x352w andx35(d1h), respectively.

In order to preserve the notational similarity with the
Love wave problem, a solution for the equation of motion is
sought by using displacements in the guiding layer,uI l , the
substrate,uI s , and the perturbing mass layer,uI p , of

uI l5~0,1,0!⌊A le
2 jT lx31B le

jT lx3⌋e j(vt2k1x1), ~4!

uI s5~0,1,0!⌊Cse
2Tsx31Dse

Tsx3⌋e j(vt2k1x1), ~5!

uI p5~0,1,0!@Epe2 jTpx31Fpe jTpx3#e j(vt2k1x1), ~6!

wherev is the angular frequency and the wave vector isk1

5(v/n)1/2 wheren is the phase speed of the solution.A l ,
B l , Cs , Ds , Ep , Fp , are constants determined by the
boundary conditions. A traditional Love wave solution oc-
curs when the substrate thicknessw→`, the shear speed of
the substrate,ns5(ms /rs)

1/2, is greater than the shear speed
of the layer,n l5(m l /r l)

1/2, and the wave vectorTs is real,
so that the substrate displacement,uI s , decays with depth. A
traditional SH–APM solution occurs whenw is finite, d
→0 and the wave vectorTs is purely imaginary, so that the
solution,uI s , may take on a standing wave~resonant! form.

FIG. 1. Definition of axes and propagation direction for shear horizontally
polarized waves in a three-layer system; the displacement is in thex2 direc-
tion.
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In the more general case under consideration here, bothT l

andTs may be complex rather than real and no restriction to
real is placed uponTp . The use of the exponentials with aj
factor in Eq.~4! and without aj factor in Eq.~5! is therefore
purely to enable the similarity with the Love wave theory to
be more readily noted. The choice of the exponential with a
j factor in Eq.~6! is to emphasize the notational similarity
with the guiding layer. One particularly simple limit of the
theory is to regard the perturbing mass layer as nothing more
than an extension of the guiding layer itself, by setting the
material properties to the same values.

Substituting Eq.~4! into the equation of motion describ-
ing the layers, i.e., Eq.~1! with the relevant layer parameters,
gives the equations for the wave vectorsTs , T l , andTp :

Ts
2
5v2S 1

v
2 2

1

vs
2D , ~7!

T l
2
5v2S 1

v l
2 2

1

v
2D , ~8!

Tp
2
5v2S 1

vp
2 2

1

v
2D . ~9!

To completely specify the problem the boundary conditions
are imposed and this defines the constantsA l , B l , Cs , Ds ,
Ep , andFp in Eqs.~4!–~6!. The first type of boundary con-
dition is continuity of the displacements at the interfaces
between the layers and these give

A l1B l5Cs1Ds , ~10!

A l exp~2 jT ld !1B l exp~ jT ld !

5Ep exp~2 jTpd !1Fp exp~ jTpd !. ~11!

The remaining conditions all relate to theT i3 component of
the stress tensor, which for this system using the form of the
solutions in Eqs.~4!–~6! can be written as

T i35d i2mS ]u2

]x3
D . ~12!

The second type of boundary condition, continuity ofT i3 at
the substrate-layer interface, gives

2A l1B l5 j~Cs2Ds!j ~13!

and

2A l exp~2 jT ld !1B l exp~ jT ld !

5 ⌊2Ep exp~2 jTpd !1Fp exp~ jTpd !⌋jp , ~14!

wherej andjp have been defined as

j5

msTs

m lT l
~15!

and

jp5

mpTp

m lT l
. ~16!

The remaining two boundary conditions are vanishing of
stress at the two free surfaces atx35(d1h) and x352w,
and these give the equations

Ep exp@2 jTp~d1h !#2Fp exp@ jTp~d1h !#50 ~17!

and

Cs exp~Tsw !2Bs exp~2Tsw !50. ~18!

The six boundary conditions, Eqs.~10!, ~11!, ~13!, ~14!, ~17!,
and ~18!, define both a dispersion equation and the coeffi-
cients,A l , B l , Cs , Ds , Ep , andFp , in the solutions for the
displacements. After extensive algebraic manipulation we
find the dispersion equation

tan~T ld !5j tanh~Tsw !2jp tan~Tph !

3@11j tan~T ld !tanh~Tsw !#. ~19!

The second term on the right-hand side of Eq.~19!, which
involvesjp tan(Tph), is due to the presence of the third, per-
turbing, mass layer. Setting the thickness,h, of the perturb-
ing mass layer to zero recovers the dispersion equation for
the two-layer system of a substrate with a guiding layer.
When the substrate thicknessw→` with Ts real, so that the
tanh(Tsw)→1, Eq. ~19! gives the limit of a traditional Love
wave perturbed by an arbitrary thickness perturbing mass
layer. The layer guided SH–APMs correspond toTs5 jks

whereks is real.17

III. PERTURBATION THEORY

When operated as a sensor, a Love wave device has a
finite thickness wave-guiding layer; it is the finite thickness
which is responsible for the high mass sensitivity. The pres-
ence of a finite thickness wave-guiding layer means that the
wave speed for the Love waves is smaller than the substrate
shear speed. Similarly, the wave speed for the layer guided
SH–APMs are larger than the substrate shear speed. A third,
thin perturbing, mass layer therefore acts about a particular
operating point on the dispersion curve of the bare, two-
layer, system defined by

tan~T l
0d !5j0 tanh~Ts

0w !, ~20!

where the superscripts onT l
0 andTs

0 indicate the wave vec-
tors in Eqs.~7!–~9! are given by a solution to Eq.~20! for
n5n0Þvs ; the superscript onj0 indicates thatT l

0 and Ts
0

are used in Eq.~15!. The solutions for this system have been
discussed in detail in a previous report;17 it should be noted
that the limit of a vanishing wave-guiding layer has to be
handled carefully as this involves the conversion from layer
guided acoustic plate modes with an imaginary wave vector
to Love waves with a real wave vector.

Consider a perturbing third mass layer of thickness,h
5Dh. This perturbation of the two-layer system will result
in a decrease in the phase speed of the mode, irrespective of
whether that mode is a Love wave or a layer guided SH–
APM. The perturbation will cause changes in the phase
speeds and the wave vectors of the substrate and guiding
layers and we can therefore writeT l

0
→T l

0
1DT l , Ts

0
→Ts

0

1DTs andj0
→j0

1Dj where the superscript zero indicates
the values of the quantities whenDh50 @i.e., solutions of
Eq. ~20!#. The left-hand side of the three-layer dispersion
equation@Eq. ~19!# can then be written,
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tan~T ld !5

tan~T l
0d !1tan~DT ld !

12tanh~T l
0d !tan~DT ld !

. ~21!

The first term on the right-hand side of the three-layer dis-
persion equation@Eq. ~19!# can be written

j tanh~Tsw !5~j1Dj !F tanh~Ts
0w !1tanh~DTsw !

11tanh~Ts
0w !tanh~DTsw !

G
~22!

and the second term can be written to first order as

jp tan~Tph !@11j tan~T ld !tanh~Tsw̄ !#

'jp
0Tp

0Dh ⌊11j0 tan~T l
0d !tanh~Ts

0w !⌋. ~23!

The expansion inDj can be written in terms ofDT l andDTs

using Eq.~15! and both of these quantities can be related to
the change,Dn, in the wave speed,n0 , using Eqs.~7! and
~8!. Performing these manipulations and grouping terms, we
find that Eq.~19! gives the perturbation formula

Dn

n0
'S 12

np
2

n0
2D rpg~v,ns ,r l ,n l ,w,d !Dh, ~24!

where the functiong, is defined as

g~v,ns ,r l ,n l ,w,d !5

v2

r lT l
0n l

2 @11tan2~T l
0d !#

T l
0d

S n0
2

n l
2 21D

@11tan2~T l
0d !#2

Ts
0w

S 12

n0
2

ns
2D

@12tanh2~T l
0w !#1tan~T l

0d !F 1

S n0
2

n l
2 21D

2

1

S 12

n0
2

ns
2D G

~25!

and depends only on the operating frequency and properties
of the substrate and wave-guiding layer. These formulas are
only valid for perturbations about an operating point on the
two-layer dispersion curve that satisfiesn0Þns and n0

Þn l ; a discussion of the difficulties of perturbing the two
layer dispersion curve about the start of a Love wave mode,
or the so calledn50 SH–APM mode, has been given in
Ref. 17. It should be noted that due to the frequency depen-
dence ofT l

0 andTs
0 in the function,g, Eq. ~24! does not, in

general, predict a frequency-squared dependence for the frac-
tional shift in phase speed. The functiong determines the
mass sensitivity of the sensor device. The structure of the
formula in Eq. ~24! is entirely consistent with the result
given by Auld18

Dn

n0
'2

n0

4 S 12

np
2

n0
2D rpuU2u2Dh, ~26!

whereU2 is the normalized particle velocity displacement at
the surface. The combination,rpDh, of the density and
thickness of the perturbing mass layer gives the mass per
unit surface area,Dm, and we can therefore rewrite Eq.~24!
as

Dn

n0
'S 12

np
2

n0
2D g~v,ns ,r l ,n l ,w,d !Dm. ~27!

IV. MASS SENSITIVITY FROM THE DEVICE
DISPERSION CURVE

Experimentally, the significance of Eqs.~24! and~25! is
that if we can determine the sensitivity function,g, for any
perturbing layer, then it is the same function for any other
perturbing mass layer. Now consider a two-layer system and

imagine creating a thin third layer of the same material as the
wave-guiding layer. Writingx5d andDh5Dx, Eq. ~24! be-
comes

Dn

n0
'g~v,ns ,r l ,n l ,w,d !S 12

n l
2

n0
2D r lDx, ~28!

where the subscript zero indicates the value of the phase
speed at a thicknessx5d. Making the third layer infinitesi-
mally thin we may write the function,g, as

g~v,ns ,r l ,n l ,w,d !5

1

n0r l~12n l
2/n0

2!
S dn

dx D
x5d

. ~29!

Thus, the sensitivity function involves the slope of the phase
velocity dispersion curve with guiding layer thickness at the
guiding layer thickness operating point. Using Eq.~29! we
may simplify Eq.~24! to

Dn

n0
'

rp

r l
F12np

2/n0
2

12n l
2/n0

2G 1

n0
S dn

dx D
x5d

Dh ~30!

and this may be further simplified ifnp
2
!n0

2 and n l
2
!n0

2.
Equation ~30! can be rewritten using the perturbing mass
Dm5rpDh. Equation ~30! should be of particular use in
developing wave guide-based acoustic wave sensors, be-
cause it enables the mass sensitivity of a prospective device
to be assessed directly from the dispersion curve. Moreover,
this dispersion curve can be determined either numerically or
from experimentation by systematically increasing the thick-
ness of the wave guide layer. Whilst arguments based on
perturbation theory have been used in deriving Eq.~30!, the
formula itself is for a perturbation on top of a wave guide
layer of arbitrary thickness rather than of a vanishing thick-
ness. Defining a mass sensitivity function,Sm , we can write
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Sm5 lim
Dm→0

1

Dm S Dn

n0
D5

1

r l
F12np

2/n0
2

12n l
2/n0

2G 1

n0
S dn

dx D
x5d

~31!

or

Sm5

1

r l
F12np

2/n0
2

12n l
2/n0

2G S d logen

dx D
x5d

, ~32!

where the mass sensitivity function,Sm , is in units of
m2 kg21. Thus, the mass sensitivity of a Love wave or a
layer-guided shear horizontally polarized acoustic plate
mode device can be determined numerically from the disper-
sion curve. Whilst a relationship between the maximum
slope in a dispersion curve and the maximum mass sensitiv-
ity for surface acoustic wave sensors has been remarked
upon by some researchers,19 Eq. ~32! gives it an explicit
theoretical basis for Love waves and layer guided SH–
APMs.

It is interesting to note that an often drawn conclusion
from Auld’s result, Eq.~26!, is that the device sensitivity
increases asU2 at the sensing surface increases and that this
corresponds to a trapping of the acoustic energy to the sur-
face. If we assumenp'n l , then Eq.~32! only involves the
slope of the logarithm of the dispersion curve and, for Love
waves, this slope is a maximum at the transition from a wave
dominantly in the substrate to one dominantly in the wave
guide layer. At greater wave guide thicknesses the Love
wave mode is increasingly localized in the wave guide layer,
compared to the substrate, but this leads to lower mass sen-
sitivity rather than higher mass sensitivity; this conclusion
applies only when a particular Love wave mode is main-
tained throughout the increase in wave guide thickness.
Thus, to create a highly mass sensitive device the wave guide
layer thickness should be chosen such that the wave is close
to a transition between the two intrinsic wave speedsns and
n l . The wave guide layer and substrate materials should also
be chosen to obtain a sharp transition in the dispersion curve;
for high mass sensitivity the aim is not to fully confine the
wave to the guiding layer, but to place the operating point on
the transition point of the dispersion curve. This change of
emphasis in interpretation away from focusing onU2 is im-
portant in understanding the potential of the layer guided
SH–APM modes. The layer guided SH–APM modes have a
wave speed larger than the substrate speed,ns , but can still
possess a sharp transition~with guiding layer thickness! be-
tween two intrinsic plate mode speeds. Moreover, by arrang-
ing the substrate thickness appropriately, the two plate mode
speeds involved in the transition can be well-separated in
value so that the slope in the dispersion curve can be large
and the mass sensitivity can be high. In fact, the Love wave
case involves a transition betweenns and n l , and so the
change in speed due to the transition cannot be larger thanns

whereas no such restriction occurs for a layer guided SH–
APM sensor. It may therefore be possible to create a layer
guided SH–APM sensor using the same guiding layer and
substrate materials as a Love wave device, but with higher
mass sensitivity and with the advantage of being able to
excite the mode using transducers on the opposite side to the

sensing surface. This possibility is further investigated in
Sec. VI using numerical calculations for the dispersion
curves.

V. MASS SENSITIVITY AND FREQUENCY
DEPENDENCE

In a two-layer system with a finite thickness substrate
and finite thickness wave-guiding layer, the frequency enters
the calculation of the wave speed,n0 , through the two di-
mensionless combinationsd/l l5d f /n l and w/ls5w f /ns .
When the substrate is infinitely thick the layer guided plate
modes are no longer possible and only Love waves can exist.
Moreover, on such an infinite thickness substrate the phase
speed for a Love wave depends on frequency only through
the dimensionless combination ofz5d/l l5d f /n l , so that a
change in guiding-layer thickness,d, is equivalent to a
change in operating frequency,f . Thus, Eq.~32! @or Eq.
~31!# can be used to assess the change in sensitivity that will
occur through a change in operating frequency, for a given
mass perturbation,Dm, on a particular device. The disper-
sion curve can be plotted using the dimensionless variable,z,
and the slope on this dispersion curve can be related to the
slope in the dispersion curve when plotted against guiding
layer thickness

S dn

dx D
x5x0

5

f 0

n l
S dn

dz D
z5z0

, ~33!

where the subscript o implies the values of the various quan-
tities at the operating point of the dispersion curve. The mass
sensitivity function, Eq.~32!, then becomes

Sm5

1

r l
F12np

2/n0
2

12n l
2/n0

2G f 0

n l
S d logen

dz D
z5z0

. ~34!

One immediate consequence of Eq.~34! is that for a given
Love wave mode the peak sensitivity~maximum value of
Sm! is directly proportional to frequency. This is because any
frequency increase can be accompanied by a corresponding
reduction in the value of the guiding layer thickness so as to
keep the value ofz constant at the appropriate operating
point for the maximum sensitivity of the dispersion curve;
neither the maximum value of the differential of the log, nor
n0 , at this value ofz change with frequency. The shift in
phase velocity~at fixed operating frequency! due to sensed
mass for a Love wave device will scale with the frequency,
provided the guiding layer thickness has been chosen to ob-
tain maximum sensitivity for that operating frequency and
the same Love wave mode is used at each operating fre-
quency. If the guiding layer thickness is different to the op-
timal one for maximum mass sensitivity then the gain in
phase velocity sensitivity would not scale withf . Also, if a
frequency change is made that takes a device from one Love
wave mode to another then the maximum gain in sensitivity
would be less than thef factor because the peak values of the
differential of the log term in Eq.~34! will be different. Love
wave devices are dispersive so that frequency shift, which is
measured in oscillator configurations, due to added mass is
given by D f / f 5(ng /n)(Dn/n), whereng is the group ve-
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locity. The ratio of group to phase velocity varies along the
dispersion curve and the translation of mass sensitivity from
the phase speed definition of Eq.~31! to D f / f therefore re-
quires care.

In previous work, we have reported that Love wave de-
vices can be designed with transducers that operate at har-
monic frequencies20 ~see also Weisset al.21!. This enables a
single device with a given guiding layer to be ‘‘hopped’’
from one operating frequency to another during the course of
a single sensing experiment. Thus, it is of particular interest
to know the change in mass sensitivity of a Love wave de-
vice that arises by changing frequency, whilst keeping the
wave guide thickness constant, so that the operating point on
the dispersion curve is altered. From Eq.~34!, the mass sen-
sitivity, S2 , at a frequencyf 2 compared to the mass sensitiv-
ity, S1 , at a frequencyf 1 , is given by

S25S 12np
2/n2

2

12np
2/n1

2D S 12n l
2/n1

2

12n l
2/n2

2D S f 2

f 1
DF S d logen

dz D
z5z2

S d logev

dz D
z5z1

G S1.

~35!

It should be noted that Eq.~35! is valid whether or not the
change in frequency leads to a Love wave of the same mode.
In a harmonic type device design the frequency change
would typically be a doubling or trebling and could therefore
involve a change of Love wave mode.

VI. NUMERICAL SOLUTIONS AND DISCUSSION

The numerical solution of the dispersion equation for the
two-layer problem of a finite thickness substrate covered by
a wave-guiding layer has previously been considered.16,17 In
general, for any given guiding layer thickness the phase
speed is multiple valued with both multiple layer guided
SH–APM modes and multiple Love wave modes. Solutions
with phase speeds greater than the substrate shear velocity,
ns , are layer-guided SH–APMs and solutions with phase
speeds less than the substrate shear velocity,ns , are gener-
alizations of Love waves to a finite thickness substrate. Fig-
ure 2 shows the dispersion curve diagram for an operating

frequency of f 5100 MHz on a substrate of thicknessw
5100mm and with density and substrate speed typical of
quartz ~rs52655 kg m23 and ns55100 ms21!. The wave
guide layer parameters arer l51000 kg m23 and n l

51100 ms21 and correspond to poly~methylmethacrylate!
~PMMA!. The horizontal axis has been plotted using a di-
mensionless parameter of the wave-guiding layer thickness
scaled byl l5n l / f . The solid circles on the curves indicate
thicknesses at which solutions have been determined analyti-
cally as well as numerically. In the simplest interpretation of
mass sensitivity Eq.~34!, suggests that the maximum sensi-
tivity occurs at the maximum slope of the curves. Figure 3
shows the modulus of the mass sensitivity,uSmu, calculated
from Eq. ~34! for the first three Love wave modes in Fig. 2.
The corresponding curves for the layer-guided SH–APM
modes are shown in Fig. 4. As anticipated the maximum
sensitivity occurs on the backslope of each mode in Fig. 2
which, for the parameter values used for the calculations, is
at a guiding layer thickness ofd;(2n11)l l/4 wheren is an
integer.

The numerical calculations of the mass sensitivity of the
layer-guided SH–APM modes can be compared to the ana-
lytical results for a bare SH–APM device perturbed by a thin
mass layer. Martin et al.7,22 give the formula Sm

521/(rsw) for the n.0 modes of a SH–APM device and
one-half this value for then50 mode. However, in our pre-

FIG. 2. Calculated dispersion curves as a function of normalized guiding
layer thickness (d/l l5d f /v l) for the two-layer system of a substrate and a
wave-guiding layer. The multiple modes of Love waves havev,vs and the
associated acoustic plate modes havev.vs . The solid circle symbols indi-
cate the analytical result for the start of each mode.

FIG. 3. Mass sensitivity,uSmu , in m2 kg21 for the three Love wave modes
shown in Fig. 2;vp5v l has been used in the calculation using Eq.~34!.

FIG. 4. Mass sensitivity,uSmu , in m2 kg21 for the layer guided SH-APM
modes associated with the three Love wave modes shown in Fig. 2;vp

5v l has been used in the calculation using Eq.~34!.
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vious work we demonstrated that under mass loading then
50 APM degenerates into a Love wave and the previously
quoted result for then50 mode does not therefore apply.17

We also derived the following more general result for the
perturbation of then.0 modes of a bare SH–APM device

Sm5S n l
2

ns
2D S 12

nm
2

n l
2 D S 1

rsw
D , ~36!

wherenm is the unperturbed SH–APM mode speed of the
bare device. For the calculations in Figs. 2 and 4 the SH–
APM modes have speeds of 5274.36, 5929.03, and
7918.88 m s21 compared to the substrate speed of
5100 m s21. The extra prefactors in Eq.~36! are therefore
important becausenm is not approximately equal to the sub-
strate shear speed,ns . Evaluating Eq.~36! gives mass sen-
sitivities of Sm53.85, 4.92, and 8.91 m2 kg21, respectively,
for the threen.0 SH–APM modes and these are in agree-
ment with the numerical values in Fig. 4 in the limitd→0.
From Fig. 4 it can be seen that the effect of the guiding layer
on the SH–APM device is to dramatically increase the mass
sensitivity by more than an order of magnitude. The greatest
gain in mass sensitivity is with the highest order SH–APM
mode. For the calculations in Fig. 2 the mass sensitivity of
the layer-guided SH– APMs becomes comparable, to within
an order of magnitude, of the mass sensitivity of the Love
wave modes.

Physically it is possible to understand the high mass sen-
sitivity that can be obtained in layer guided acoustic wave
systems by considering the change in the displacements as
the guiding layer thickness increases. Beginning with the
first Love wave mode and increasing the wave-guiding layer
thickness from zero, takes the displacement pattern from a
plane wave in the substrate and layer, to one with virtually
no displacement in the substrate, but a quarter-wavelength
type pattern in the guiding layer.17 Further increases in guid-
ing layer thickness will further confine the displacement to
the wave guide layer, but do not then correspond to higher
sensitivity. This increase in the wave guide layer thickness
corresponds to taking the Love wave speed from a value
equal to the substrate speed,ns , to a value close to the layer
speed,n l . Further increases in the wave guide layer thick-
ness do not significantly alter the wave speed of this Love
wave mode and so give poor mass sensitivity. However, in-
creasing the thickness of the wave-guiding layer does even-
tually gives rise to higher order Love wave modes which go
through similar changes in the wave speed~i.e., from ns to
n l!. In the case of the second Love wave mode the displace-
ment pattern begins as a plane wave in the substrate and a
half-wavelength type pattern in the guiding layer. This pat-
tern evolves until it becomes one with virtually no displace-
ment in the substrate, but with a three quarter-wavelength
type pattern in the guiding layer.17 In the Love wave mode
case, the maximum mass sensitivity occurs at the point of
transition of the Love wave from having properties similar to
those of a shear wave in the substrate to one with properties
similar to those of a shear wave in the layer. In a similar
manner, the layer-guided SH–APM modes change character
from one plate resonance to the next lower order plate reso-
nance as the wave guide layer thickness increases. For ex-

ample, a transition from a plate mode with a 3/2 wavelength
pattern in the substrate to one with a 1/2 wavelength pattern
in the substrate. The maximum mass sensitivity is when a
device is operated with a wave-guiding layer possessing a
thickness chosen so that the displacement pattern is at one of
these points of transition. This corresponds to the point on
the dispersion curve where the phase speed changes most
rapidly with guiding layer thickness.

In acoustic wave sensor research it is often quoted that
Love wave sensors have a higher sensitivity than SH–APM
sensors whilst SH–APM sensors have the advantage that the
transducers can be on the opposite face to that used for sens-
ing. In liquids, this latter property can be a significant advan-
tage. The comparison that leads to the belief that Love wave
sensors are more sensitive than SH–APM devices does not
account for the dispersion curves of the layer-guided SH–
APMs shown in Fig. 2. The usual comparison is between a
bare SH–APM device, which therefore corresponds on Fig.
2 to the slope of the dispersion curve with a zero thickness
wave-guiding layer, and a Love wave device chosen to have
a wave-guiding layer thickness corresponding to the maxi-
mum slope in the dispersion curve. Clearly, if a wave-
guiding layer is used for the SH–APM device, then an oper-
ating point corresponding to the maximum slope on the
dispersion curve can be chosen and the difference in mass
sensitivities is much less. In the case of the calculations in
Fig. 2 the maximum sensitivity of the highest mode layer
guided SH–APM is within a factor of 5 of that of the Love
wave. However, in general we would argue that a layer-
guided SH–APM device cannot only be of comparable sen-
sitivity, but may in fact be more sensitive than a Love wave
on a given substrate. This is because the maximum change in
wave speed for the Love wave is (ns2n l) and this occurs
over a small range of guiding layer thickness centred around
a thickness of (2n11)l l/4. In comparison, the substrate
thickness,w, can be chosen such that the change in speed for
the highest order layer-guided SH–APM can be far greater
than the difference (ns2n l); again this change will occur
over a small range of guiding layer thickness centred around
a thickness of (2n11)l l/4. To further illustrate this idea, we
have numerically calculated the mass sensitivity using the
same materials and operating frequency as in Figs. 2 and 3,
but with the substrate thickness modified to 77mm. In this
case the initial mode speeds for the SH–APMs without a
guiding layer are 5405, 6807, and 44825 m s21. This particu-
lar choice of substrate thickness creates a large difference in
speed between the top two modes and we therefore anticipate
that introducing a guiding layer will provide increased mass
sensitivity compared to the device on the 100mm substrate.
The numerical comparison between the mass sensitivity of
the Love wave and the associated highest order layer-guided
SH–APM for the first three Love wave modes is shown in
Fig. 5. The layer-guided SH–APMs are shown by the dotted
curves and the Love waves by the solid curves. The mass
sensitivity of the Love waves has not changed significantly
compared to Fig. 3, but that of the layer guided SH–APMs
has increased and now exceeds the mass sensitivity of the
Love waves. It is also evident that progressing through the
sequence of Love wave modes, the peak mass sensitivity of
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the highest layer-guided SH–APM mode associated with
each higher order Love wave mode suffer less of a drop than
that of the higher order Love wave modes~i.e., the sequence
of peak values of the dotted curves in Fig. 5 decreases less
rapidly than that of the solid curves in Fig. 5!. The particular
choice for the substrate thickness used in Fig. 5 was extreme
and fabricating devices to obtain this sensitivity may prove
difficult due to the high phase speed of the mode. However,
choosing substrate thicknesses to give a top SH–APM with a
speed of the order of 10 000 m s21 would still give mass
sensitivities comparable to Love wave devices. Thus, by us-
ing a layer-guided SH–APM it should be possible to recon-
cile the requirements for high mass sensitivity with that of
operating a device with transducers on the opposite face to
the sensing surface.

In sensors using quartz crystal microbalances and sur-
face acoustic waves, layer guided or otherwise, higher fre-
quency is usually believed to result in higher sensitivity.
Some aspects of this possible frequency enhancement of sen-
sitivity for Love waves on an infinite substrate have been
discussed in Sec. V where it was shown that the peak sensi-
tivity for a given Love wave mode can scale with frequency,
but that this requires a corresponding reduction in guiding
layer thickness. Figures 2 and 3 emphasize that increasing
frequency with a given device of fixed guiding layer thick-
ness below the peak in sensitivity will increase the value ofz
and so increase sensitivity. Since the dispersion curve for a
given mode is not linear, the frequency gain for such a de-
vice operating away from the peak sensitivity for the mode
will not be linear with frequency. To further understand the
frequency dependence, imagine a Love wave on an infinite
thickness substrate and with the guiding layer thickness op-
timized to give maximum sensitivity for the first Love wave
mode. The dispersion curve will look similar to the first Love
wave mode in Fig. 2 and the operating point will be at
aroundz5d/l l;

1
4 wherel l5n l / f . As shown in Sec. V, on

an infinite thickness substrate the frequency only enters the
calculation of the dispersion curve in combination with the
guiding layer thickness throughz5d/l l . Thus, if we keep
the guiding layer thickness,d, constant and increase the fre-
quency we will move the operating point along the horizon-

tal axis of the dispersion curve. The sensitivity at the new
operating point is related to the slope of the dispersion curve
and the frequency through Eq.~34! @or Eq. ~35!#. An imme-
diate conclusion from this viewpoint is that approximately
doubling the frequency will lead to either the same Love
wave mode, but with much lower sensitivity, or the next
higher Love wave mode, again with a much lower sensitiv-
ity. Alternatively, trebling the frequency will lead to either
the same mode, but then with low sensitivity, or a point close
to, but not exactly at, the optimum on the dispersion curve
for the second Love wave mode (z5d/l l;3/4). These con-
clusions are relevant experimentally as it is possible to de-
sign Love wave devices capable of hopping between several
frequencies during the course of a sensor experiment by fab-
ricating specific patterns of the interdigital transducers used
to excite Love waves.20

Figure 6 illustrates the effect of altering the initial fre-
quency,f 0 , by a factor of three to 3f 0 so that the operating
point moves from the first to the second Love wave mode.
The horizontal axis data for the higher frequency has been
plotted using the original coordinatez5d f 0 /n l so that a di-
rect comparison of the sensitivities at the two frequencies
can be made by reading at the same value on the horizontal
axis. Apart from the substrate thickness, which has been set
to infinite, the parameters in the calculation are the same as
in Fig. 2. A choice ofnp5n l has again been used to help the
comparison and physically this corresponds to mass sensitiv-
ity towards the same material as the guiding layer. Impor-
tantly, if the guiding layer thickness has been selected opti-
mally to give the maximum sensitivity of the first Love wave
mode at the operating frequency,f 0 , then increasing the fre-
quency by a factor of 3 does not result in a significant change
in sensitivity. However, it is more likely experimentally for a
wave-guiding layer thickness to be selected that is not quite
optimal for the maximum mass sensitivity in the first Love
wave mode. In this situation frequency hopping by trebling
the frequency could result in either a greater or smaller mass
sensitivity. It is possible to align the peak sensitivities be-
tween two frequencies that use mode 1 and mode 2 Love

FIG. 5. Comparison of the mass sensitivity,uSmu , in m2 kg21 for the three
highest layer guided SH–APM modes~dotted curves! associated with the
first three Love wave modes~solid curves! using a reduced substrate thick-
ness ofw577mm. All other parameters are the same as in Fig. 4.

FIG. 6. Comparison of the sensitivity,uSmu , in m2 kg21 for the mode 1
Love wave and the corresponding mass sensitivity for the mode 2 Love
wave obtained by increasing the frequency by a factor of 3 whilst maintain-
ing the guiding layer thickness constant; the substrate is assumed infinite
thickness. The horizontal axis for both data sets has been plotted using the
original coordinate before the frequency was increased.
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waves for the layer and substrate materials used in the cal-
culation of Fig. 6 by changing the frequency by a factor of
around 3.04; the ratio of peak sensitivites is then 1.51. Simi-
larly, frequency hopping by a factor of 5.08 will move the
peak sensitivity of mode 1 to the peak sensitivity of mode 3
and give a relative increase in sensitivity of around 1.77. A
change in frequency by a factor of 3.04 by frequency hop-
ping would not be difficult experimentally as typical trans-
ducers have bandwidths of a few percent. Aligning the peak
sensitivities of two modes when frequency hopping still does
not give the factor off gain in sensitivity that could be
expected by using two devices with their wave guide layer
thickness optimized for maximum sensitivity for Love wave
mode 1 at frequencies off and 3.04f , respectively. This is
because the peak value of thed logez/dz in Eq. ~34! is less at
the higher mode. It should also be emphasized that the com-
parison made in this section is for the sensitivity function,
which is the fractional change in phase speed rather than the
absolute change in phase speed.

A final point of interest to current experimental work
that arises from Fig. 3, is the manner in which the mass
sensitivity for Love waves changes with thick guiding layers.
Often, polymer materials, such as PMMA, are chosen as
wave guide layers even though such materials can have sig-
nificant attenuation for shear wave propagation. Therefore,
as such a wave guide layer becomes thicker it is expected
that the insertion loss of the Love wave device should sig-
nificantly increase. Experimentally, this can be preceded by
an initial improvement in insertion loss, if the substrate is
chosen to use a surface skimming bulk wave~SSBW! rather
than a pure SH–SAW mode. Thus, an optimized sensor usu-
ally involves choosing a wave-guiding layer thickness as a
compromise between the maximum phase velocity sensitiv-
ity ~i.e., maximum slope in the dispersion curve! whilst not
placing the operating point so far down the dispersion curve
for the first Love wave mode that the insertion loss is intol-
erable. It is easy to believe that once a guiding layer thick-
ness causes a large insertion loss, no reasonable sensor can
be obtained by further increases in the guiding layer thick-
ness. This is not, however, the case. Experimentally, it is
known that a relatively strong Love wave, with a relatively
acceptable insertion loss, can reoccur periodically, as the
guiding layer thickness is further increased;23 these corre-
spond to higher order Love wave modes. In our experimental
results using a polymer photoresist wave guide layer on a
SSBW device, we have seen more than seven such modes.
Figure 3 shows that the mass sensitivity of the higher order
modes is, to within a factor of 2–3, comparable to the first
Love wave mode. Physically, the start of each Love wave
mode corresponds to a displacement supported in the sub-
strate; for a finite thickness substrate these involve antinodes
at each of the free surfaces. This substrate displacement sup-
ports the wave despite the intrinsic loss of the polymer and it
is only as the polymer thickness is further increased, from
that corresponding to the start of the mode, that the substrate
motion is reduced and the wave more fully localized into the
guiding layer. Once the localization occurs, the damping of
the polymer becomes fully effective, the insertion loss rises
and the Love wave is damped. We would expect the layer-

guided SH–APM modes to have a similar behavior for the
insertion loss. An important conclusion from this interpreta-
tion is that it should be possible to use relatively thick wave-
guiding layers with these types of acoustic wave sensors
~Love waves and layer-guided SH–APMs! without com-
pletely sacrificing mass sensitivity. This should widen the
range of wave guide materials that can be used with layer-
guided acoustic wave sensors. Another consequence of the
relationship between insertion loss and localization of the
Love wave is that frequency hopping by a factor of 3 for a
device optimized for mass sensitivity in the first mode will
cause the operating point to move to the next mode rather
than a lower point on the same Love wave mode.

In this report, all derivations and calculations have re-
ferred to a third layer composed of rigid mass. However, the
method adopted could be extended to a third layer that is
either a liquid or a viscoelastic material by, for example,
introducing a Maxwell model with a relaxation time. Indeed,
we would anticipate that layer guided SH–APM sensors
would benefit from the same enhancement of sensitivity over
SH–APM modes when being used to determine liquid prop-
erties, such as a density-viscosity product, or the shear
modulus of a polymer.

VII. CONCLUSION

The concept of mass sensing using Love waves and
layer-guided shear horizontal polarized acoustic plate modes
on finite thickness substrates has been developed using a
dispersion equation for a three layer system. Formulas for
the mass sensitivity have been derived and the relative sen-
sitivity of Love wave and layer-guided SH–APM modes
considered. Numerical calculations of the formulas show that
the introduction of the guiding layer onto a SH–APM sensor
can increase the mass sensitivity by several orders of mag-
nitude and may even result in mass sensitivities exceeding
those of Love wave devices. It is predicted that layer-guided
SH–APM sensors having comparable or better sensitivity to
Love wave sensors, but having the advantage of transducers
on the opposite face to the sensing surface should be pos-
sible. The relationship between mass sensitivity and the
slope of the numerically or experimentally determined dis-
persion curve has been considered. The effect of changing
the operating frequency of a given Love wave device has
also been considered on the basis of the slope of the disper-
sion curve. It has been shown that peak sensitivity scales
linearly with frequency provided the Love wave mode does
not change, but that hopping the frequency so that the oper-
ating device changes Love wave modes will give a lower
increase in obtainable peak sensitivity. The mass sensitivity
of sensor devices with thick wave-guiding layers and the
relationship between insertion loss and multiple Love wave
modes has been elucidated.
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