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 Abstract 

 

Domain-specificity in the acquisition of non-adjacent 

dependencies 

 

 

At the forefront of investigations into the cognitive underpinnings of language 

acquisition is the question of domain-specificity, i.e. whether the processes involved 

in learning language are unique to language. Recent investigations suggest that the 

mechanisms employed in language learning are also involved in sequential learning 

of non-linguistic stimuli and are therefore domain-general.  

Non-adjacent dependencies are an important feature of natural languages. 

They describe relationships between two elements separated by an arbitrary number 

of intervening items, and thus potentially pose a challenge for learners. As a 

hallmark of natural languages they are ubiquitous, an example from English being 

subject-verb agreement: The socks on the floor are red. Here, learners are required to 

track the dependencies amongst the two underlined elements across an intervening 

prepositional phrase. Importantly, it has been shown that non-adjacent dependencies 

can be learned in the linguistic (Gómez, 2002) and non-linguistic (Creel, Newport & 

Aslin, 2004) domain.  

The majority of work presented in this thesis is based on Gómez’s (2002) 

artificial language learning experiment involving non-adjacent dependencies, 

adapted to directly compare adults’ learning in the linguistic and non-linguistic 
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domain, in order to build a comprehensive map showing factors and conditions that 

enhance/ inhibit the learnability of non-adjacencies. Experiment 1 shows that the 

Gestalt Principle of Similarity is not a requirement for the detection of non-adjacent 

dependencies in the linguistic domain. Experiment 2 aims to explore the robustness 

of the ability to track non-adjacent regularities between linguistic elements by 

removing cues that indicate the correct level of analysis (i.e. interword breaks). 

Experiments 3 and 4 study domain-specificity in the acquisition of non-adjacencies, 

and show that non-adjacent dependencies are learnable in the linguistic and non-

linguistic domain, provided that the non-linguistic materials are simple and lacking 

internal structure. However, language is rich in internal structure: it is combinatorial 

on the phonemic/ orthographic level in that it recombines elements (phonemes/ 

graphemes) to form larger units. When exposed to non-linguistic stimuli which 

capture this componential character of language, adult participants fail to detect the 

non-adjacencies. However, when exposed to non-componential non-linguistic 

materials, adult participants succeed in learning the non-adjacent dependencies. 

Experiment 5 looks at modality effects in the acquisition of non-adjacent 

dependencies across the linguistic and non-linguistic domain. Experiment 6 provides 

evidence that high familiarity with componential non-linguistic patterns does not 

result in the correct extraction of non-adjacencies in sequence learning tasks 

involving these patterns. 

Overall, the work presented here demonstrates that the acquisition of non-

adjacent dependencies is a domain-general ability, which is guided by stimulus 

simplicity.  
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Chapter 1 

 

Introduction 

 

Die Umgangssprache ist ein Teil des menschlichen Organismus und nicht weniger 

kompliziert als dieser. 

 

As part of our being, language is no less complicated than we are. 

 

Ludwig Wittgenstein 

 

 

Language is a truly intriguing human capacity. It comes naturally to humans; it 

emerges as a defining feature in humans regardless of their intellectual abilities and 

despite the lack of parental reward (Chomsky, 1965). At the same time, the 

grammatical structure underlying natural languages is immensely complex. This 

leads to a conundrum: How do infants acquire their native language with relative 

ease despite this complexity? There are two opposing approaches toward solving this 

conundrum. On one hand, the nativist view involves a specialised system within the 
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human brain, whose one purpose is that of language acquisition. On the other hand, 

the empiricist approach argues for language being subserved by a set of general-

purpose learning tools, which also operate across other cognitive domains, outside of 

language.  

In this thesis, the acquisition of one particular structural complexity 

ubiquitous in natural languages will be investigated in detail: Non-adjacent 

dependencies. Non-adjacent dependencies are regularities between two elements 

separated by an arbitrary number of intervening elements. A frequent example found 

in English is that of subject-verb agreement, as in the sentence The socks on the floor 

are red. The underlined units represent the non-adjacent dependency, which in this 

case operates across the plural subject (The socks) and the verb to be, as these need 

to agree in number. If the verb did not agree with the subject, and was in the singular 

form, then this would produce the ungrammatical sentence *The socks on the floor is 

red
1
. As the units involved in non-adjacent dependencies are interrupted within the 

linguistic sequence, in this case by the prepositional phrase on the floor, their 

acquisition might be expected to pose a challenge for learners. The experimental 

work presented in this thesis will investigate the acquisition of non-adjacent 

dependencies, with specific focus on whether they are learnable across domains and 

across different perceptual modalities, and whether additional (non-linguistic) cues 

facilitate their detection.  

In this chapter, it will be argued that non-adjacent dependencies form an ideal 

test case for investigations into human language learning abilities as they represent 

an important structural complexity in natural languages. Further, two formalisms for 

                                                           
1
 Asterisks indicate ungrammaticality. 
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representing grammars will be introduced, one of which (Finite State Grammar) is 

not powerful enough to do the complexity of natural languages justice, specifically 

non-adjacent dependencies. Next, the nativist view on language acquisition will be 

contrasted against the empiricist view, and finally, language will be discussed in 

light of domain-specificity. 

 

1.1 Non-adjacent dependencies as a defining feature of language 

Non-adjacent dependencies are ubiquitous in natural languages. Seven examples of 

frequently found non-adjacencies in English are listed below. In all of them, the 

underlined elements are the ones forming the regularities. 

 

(1) The socks on the floor are red. 

(2) John will buy either red socks or green socks. 

(3) If John won five pounds, then he would buy red socks. 

(4) John is buying red socks. 

(5) John is buying socks, isn‟t he? 

(6) What did John buy _? 

(7) John seems   to like socks. 

 

Sentence (1) is the example of subject-verb agreement introduced above. The 

plural noun phrase The socks must agree in number with the verb to ensure 

grammaticality. In example (2) Either must be proceeded by the conjunction or. 

Thus, on hearing either, the listener expects or to occur at some point later on in the 
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sentence. Example (3) shows the frequently-found non-adjacent regularity between 

the subordinate conjunction If and then. In (4) the non-adjacent dependency operates 

between the auxiliary is and the suffix –ing in order to indicate progressive aspect. 

The dependency in this case is separated by the stem of the main verb buy. The non-

adjacent dependency in the tag question in (5) holds between the subject John and 

the pronoun in the tag as they need to agree in order to render the question 

grammatical. Examples (6) and (7) illustrate that non-adjacencies do not exclusively 

function between overt elements. (6) is a wh-dependency or filler-gap construction, 

in which the regularity holds between the underlined wh-word and a syntactically 

corresponding gap at the tail end of the question. Hearing the word What thus 

initiates a search for the gap. The nature of this gap is heavily disputed. In 

mainstream generative grammar, this gap represents the extraction site, i.e. the wh-

word originated in this position and was fronted in order to form the question. If 

movement is not considered a possibility, then the gap nevertheless is syntactically 

related to the wh-word as it indicates a position which can be occupied by wh-words 

(as in John bought what?). In either case, a non-adjacent relationship holds between 

the two underlined elements. Crucially, one of the elements receives a null-spellout, 

meaning that it is neither aurally nor visually perceived (Radford, 1997). In sentence 

(7), John is analysed as the subject of the subordinate clause. As in the wh-

dependency (6), under a movement analysis, the non-adjacency in this case holds 

between a moved element and the corresponding extraction site. The trace left at the 

extraction is again neither heard nor seen, receiving a null spellout. 

Non-adjacent dependencies are viewed as a defining feature of natural 

languages based on the fact that they are a diagnostic of Phrase Structure Grammars. 

The following two sections will introduce two formalisms for representing grammars 
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and explain that a Phrase Structure Grammar is better suited to describing natural 

languages than a Finite State Grammar, as the latter cannot adequately capture non-

adjacent dependencies.  

 

1.1.1 Finite State Grammars 

It would seem plausible to assume that words are strung together, one after the other 

to create sentences. Finite State Grammars (FSGs) do precisely that (Chomsky, 

1956). FSGs can be specified entirely by the transitions from one state to the next. 

The system produces one symbol for each transition. Although this is a very simple 

grammar using a finite number of states, it is nevertheless capable of generating an 

infinite number of sentences, by including loops between states.  For illustration 

purposes, again consider the sentence (1) below: 

 

(1) The socks on the floor are red.  

 

A FSG would produce this sentence by creating a chain of words with a flat, 

linear structure, as shown in Figure 1.1. 

 

 

 

red are floor the on socks The 

Figure 1.1: A simple FSG that can only generate the sentence The socks on the floor are red. 
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wardrobe in 

FSGs are perfectly capable of generating a more varied set of sentences as 

shown below (Figure 1.2).  

 

 

 

 

 

The FSG in Figure 1.2 can capture two sentences that differ in terms of the 

prepositional phrase (PP): The socks on the floor are red and The socks in the 

wardrobe are red. Importantly, however, FSGs cannot adequately capture non-

adjacent dependencies. In this sentence, the subject The socks is separated from the 

verb are by an intervening PP on the floor or in the wardrobe. The subject and the 

verb need to agree in number, and since the subject in this case is plural, the verb 

must also be plural. In order to generate fully-fledged human languages, the human 

mental grammar must be capable of capturing non-adjacencies, i.e. regularities 

between separated elements, efficiently while still allowing for an infinite number of 

new sentences. The following problem quickly arises: 

 

 

 

 

on the floor are red socks The 

the 

The red 

are 

floor the on 

socks 

sock is 

Figure 1.2: A more complex FSG that is capable of generating two separate grammatical 

sentences. The prepositional phrase on the floor can be exchanged for in the wardrobe. 

Figure 1.3: An attempt to design an efficient FSG capable of generating two grammatical 

sentences that merely differ in terms of their subject-verb agreement fails since it also 

generates ungrammatical sentences.  
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are 

floor the on 
socks 

is 

floor the on 

sock 

Although the FSG above (Fig. 1.3) can account for the singular and plural 

version of the same sentence, it also generates the two ungrammatical sentences 

*The socks on the floor is red and *The sock on the floor are red. In both these 

sentences the subject-verb agreements are being violated. The only way to overcome 

this problem using a FSG is to create a much larger system, such as the one shown 

below (Fig. 1.4): 

 

 

 

 

 

 

This illustrates the problem of scaling up a FSG to capture non-adjacent 

dependencies. The grammar shown in Figure 1.4 is capable of generating exactly 

two sentences of English, and already it is fairly large. In addition to this, it is 

redundant and inefficient as the only true difference between the two sentences lies 

with the verb to be, and yet the entire PP has is replicated in order to avoid 

ungrammaticality. Thus, while FSGs are perfectly capable of generating sentences 

with flat structures, their inefficiency in handling complex linguistic structures that 

are frequently found in natural languages, such as non-adjacent dependencies, 

demonstrate that the mental grammar that allows humans to acquire and use natural 

language so effortlessly cannot be satisfactorily specified in terms of a FSG. A much 

The red 

Figure 1.4: Accounting for both grammatical sentences The socks on the floor are red and 

The sock on the floor is red without creating grammatical violations, consequently involves 

FSGs becoming very large. This FSG generates exactly two sentences and already requires 

twelve separate transitions from one state to another. 
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are floor the on socks 

V Adj Det 

more powerful system, which can describe the structural complexities found in 

natural languages, is therefore presented in the following section. 

 

1.1.2 Phrase Structure Grammars 

Words in natural languages are not simply strung together one after the other in order 

to create sentences. Rather, lexical items are grouped together to form phrases, and 

phrases are then organised to form sentences. As a result, sentences exhibit a 

hierarchical phrase structure, they follow phrase rules, and they can be generated by 

Phrase Structure Grammars. For illustration purposes, consider sentence (1) again:  

 

 

 

 

 

 

 

 

 

 

 

The red 

N 

NP VP 

PP 

Figure 1.5: Syntactic tree structures clearly illustrate the hierarchical structure underlying 

natural language. The noun phrase (NP) contains the PP on the floor. The structure shows 

that non-adjacent dependency between the subject and the verb of this sentence are adjacent 

on a higher level of the hierarchy as the sentence S constitutes an NP and a verb phrase VP 

(S  NP VP). 

N‟ 

S 
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The syntactic tree structure in Figure 1.5 exhibits the hierarchical 

organisation typical of language. The subject, determiner (Det) The and noun (N) 

socks, feeds into a larger unit, i.e. the noun phrase (NP) that contains the string The 

socks on the floor. For this reason, the non-adjacent dependency between the NP and 

the verb phrase (VP) are red are in fact adjacent further up in the hierarchy: number 

features are checked for higher up in the hierarchy, and therefore number agreement 

is in fact an adjacent relationship between the NP and VP, rather than a non-adjacent 

relationship between words. 

The phrase structure rules in Table 1.1 complement the tree structure in 

Figure 1.5, and dictate that a syntactically well-formed sentence contains an NP 

followed by a VP, which must agree in number (indicated here by the subscript X).  

 

 

 

S  NPX VPX 

NPS  DetS NS (PP) 

NPP  DetP NP (PP) 

PP  P NP 

VPX  VX Adj 

DetS  {the} 

DetP  {the} 

NS  {sock, floor} 

NP  {socks} 

P  {on} 

VS  {is} 

VP  {are} 

Adj  {red} 

 

 In addition to forming the plural version of the sentence shown in Figure 1.5, 

the PSG shown in Table 1.1 is powerful enough to generate additional sentences, 

Table 1.1: These phrase structure rules are capable of generating the sentence shown in the 

syntactic tree structure (among others) in Figure 1.5. The arrow () should be read as 

“contains”. Curly brackets contain all possible elements per category. Parentheses indicate 

optional constituents. The agreement problem between N and Det and especially between N 

and V can be easily solved by specifying the number constraint. Thus, a plural NP (NPP) can 

only take a plural verb (VPP), whereas a singular NPS can only take a singular VPS. 
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which are all grammatically sound, for example the singular version The sock on the 

floor is red. PSGs are thus an efficient way of capturing the complexities found in 

natural languages, most notably non-adjacent dependencies. PSGs rather than FSG 

are therefore considered to be the adequate formalism to describe natural languages. 

 Importantly, non-adjacent dependencies are diagnostic of PSGs, and as such 

they make a good test case for investigations into the human language capacity. For 

this reason, they have been chosen for the present thesis to investigate domain-

specificity in language learning. 

 

1.2 Language Acquistion 

As outlined by Bates (1994), after a phase of initial babbling, children are believed to 

show first signs of word comprehension between the ages of 8 – 10 months. Speech 

production starts at about 12 months, with the single-word stage lasting for 

approximately 8 months, followed by the telegraphic speech phase, during which 

children produce simple strings of two lexical items. By the time they reach their 

third birthday, children will have a fairly sophisticated knowledge of complex 

grammar and an extensive lexicon. Although it is argued that this linguistic 

knowledge is acquired not by reinforcement or extensive training but by mere 

exposure to the target language (Chomsky, 1965), language acquisition always takes 

place in a social context (Clark, 1977). It crucially depends on how adults 

communicate with infants, e.g. by getting the infant‟s attention by touching them or 

using a certain tone of voice, and by talking about something relevant to the infant, 

such as a certain toy (Clark, 1977).  
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Tomasello (2008) points to the importance of common ground and shared 

intentionality in language acquisition, also clearly placing language learning in a 

social context. Evidence for this, so he argues, comes from the fact that with human 

infants one crucial aspect of language learning, namely word learning, begins at 

around 12 months of age – no sooner, no later. This coincides with the emergence of 

shared intentionality itself, at somewhere between 9 and 12 months of age. The 

importance of shared intentionality, for example, was revealed in an experiment run 

by Tomasello, Strosberg and Akhtar (1996). In this design, an adult participants and 

an 18-month-old infant engaged in a finding game, in which the adult was required 

to express a clear intention, such as finding a toma within an array of entirely novel 

objects. The adult subsequently went through all novel objects until she found the 

toma, which she indicated by smiling and ending the search. This behaviour alone 

was sufficient for the infant to acquire the novel word toma, showing awareness of 

the adult‟s intentions.  

The fact, however, still remains that human infants acquire language fairly 

effortlessly and within a short period of time. The following sections will focus on 

two alternative hypotheses why this might be the case. 

 

1.2.1 The innate language learning device 

Section 1.1.2 illustrated (some aspects of) the complex structure underlying 

language. However, despite this complexity, by the time children reach their third 

birthday, they will have a fairly sophisticated knowledge of complex grammar and 

an extensive lexicon (Bates, 1994). From a nativist perspective, this knowledge is 
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acquired with the help of a very specialised mechanism. This view, along with the 

main supporting arguments, is presented here. 

As Chomsky (1988) points out, the input from which the target language is to 

be acquired by each infant is impoverished in nature. This argument from the 

poverty of stimulus (PoS) highlights that children are neither exposed to the full 

richness and complexity of language, nor is every instantiation of the input 

grammatically sound, and yet they acquire the correct cognitive representation of the 

relevant grammar in its entirety. This apparent disparity between the ease of 

language acquisition on the one hand, and the imperfect exposure on the other has 

led to a number of theories regarding the cognitive tools available to human infants 

to assist in this task. Famously, Chomsky (1965, 1988) assumes that children tackle 

this challenge with an intuitive understanding of language already in place, the 

Language Faculty. 

A well-known example Chomsky (1986) uses to construct the PoS argument 

deals with anaphoric reference. Anaphors are constrained by the “binding theory” (p. 

8), meaning that they are structurally dependent on an antecedent.  

 

(8) I wonder who [the men expected to see them] 

(9) [the men expected to see them] 

 

The pronoun them is interpreted differently in the two examples. In (8) it is 

referentially dependent on the preceding NP the men, whereas in (9) this 

interpretation is not possible. According to Chomsky, during language acquisition 
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children are rarely exposed to instances of anaphoric reference as shown in examples 

(8) and (9), yet despite this, the correct interpretation of the pronominal anaphor is 

identified fairly effortlessly. In line with the PoS argument, Chomsky maintains that 

this linguistic knowledge (in this case: selecting the correct antecedent for the 

anaphora) despite the impoverished input (in this case: lack of exposure to these 

structural complexities) is achieved with assistance from an innate Language 

Faculty. 

The Language Faculty is a cognitive system, which – on exposure to the 

primary linguistic data – allows the child to construct a theory of the target language. 

Once the mature linguistic state has been reached, the language learner will be able 

to understand and produce language based on these internal representations. 

Chomsky (1988) visualises this model of language acquisition in the following way 

(Fig. 1.6): 

 

data                                            language               structured expressions 

 

 

Chomsky claims that this language-specific learning tool forms part of our 

biological endowment as humans. As a logical consequence, due to the fact that the 

Language Faculty must be able to form a language based on any human language as 

input, a set of universal principles is required. Chomsky calls these principles of 

Universal Grammar (UG). UG thus represents the state of the Language Faculty 

before exposure to the linguistic input, and the grammar of the target language (e.g. 

Language Faculty 

Figure 1.6: Illustration of Chomsky‟s language faculty. The target language (data) serves as 

input, the language faculty then uses this input to create a representation of the language, which 

in turn results in structured expressions. Taken from Chomsky, 1988. 
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English) represents the Language Faculty in its mature state. UG provides the 

language learner with an algorithm for forming a grammar based on experience. The 

principles of UG must, as a consequence of being universal, be able to constrain 

every single grammatical operation possible in every human language.  

This innate algorithm for language acquisition must be complemented by a 

set of parameters that will adapt according to language-specific variation: Since 

natural languages vary along certain dimensions, e.g. positioning of heads, these 

aspects must be parameterised. As an analogy, the set of parameters can be seen as a 

huge switch box. Each switch can take only one of two values. Taking the head 

position parameter as an example, a child learning English as a native language, will 

specify this parameter as head-first (i.e. flick the switch towards the head-first value 

due to English being a head-first language), whereas a child exposed to Korean will 

push the switch in the opposite direction, giving it the head-last value. Thus, within 

the Chomskyan framework learning a language, or rather acquiring grammatical 

structure, is facilitated by an innate set of universal principles plus parameters which 

are assigned values based on environmental influences, i.e. the primary linguistic 

input. According to Chomsky then, the challenges children face during language 

acquisition are limited due to the uniquely human Language Faculty.  

A logical consequence of the fact that all humans are, so claims Chomsky, 

equipped with the same Language Acquisition Device (LAD) is that all languages 

are similar. As Chomsky (1980) says: 

I have not hesitated to propose a general principle of linguistic structure on 

the basis of observation of a single language. (...) Assuming that the 

genetically determined language faculty is a common human possession, we 

may conclude that a principle of language is universal if we are led to 

postulate it as a “precondition” for the acquisition of a single language. (p.48) 
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The human capacity for language is frequently used as a prime example of 

domain-specificity. The view that the human mind is organised into specialised, 

domain-specific systems has been maintained from different perspectives. The 

following section will therefore focus on the main arguments for domain-specificity. 

 

  1.2.2 Modularity and domain-specificity 

One influential accounts of domain-specificity comes from Fodor (1983), who 

described the cognitive organisation of the human mind as modular, arguing that 

individual, identifiable cognitive systems underlie human behaviour. According to 

this Modularity Thesis, in order to count as a module, a cognitive system must fulfil 

the majority or all of the following nine criteria shown in Table 1.2. 

 

1 Domain-specificity 6 Shallow output 

2 Mandatory processing 7 Fixed neural architecture 

3 Limited central access 8 Specific breakdown patterns 

4 Speed 9 Specific pace and processing 

5 Encapsulation   

 

Domain-specificity is thus, according to Fodor a feature of modularity, 

describing how modules process information. Fodorian modules operate 

automatically, with other cognitive systems having limited access to the internal 

computations of modules (criteria 2 and 3); modules are fast (criterion 4), they 

cannot draw on information from other systems or modules (criterion 5), and they do 

Table 1.2: Fodor‟s (1983) nine requirements for modularity. 
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not provide information about the intervening levels of interaction leading to the 

output (criterion 6). Criteria 7 – 9 concern the architecture of modules. In accordance 

with Fodor, modules are represented by identifiable neural structures (criterion 7), 

they show patterned breakdown characteristics such as aphasia (criterion 8), and they 

develop in predetermined fashion with regard to pace and sequence (criterion 9). 

Most importantly for this thesis, however, is the first requirement: Domain-

specificity. Fodor reasons that modules are domain-specific and are thus “special-

purpose” (p.51) mechanisms, dealing only with stimuli of a certain type. He uses the 

human capacity for language as an example to strengthen the case for domain-

specificity, arguing that the linguistic universals found across languages reflect 

language-specific learning biases. This clearly demonstrates the intrinsic relationship 

between innateness and domain-specificity that many people see. The human ability 

to acquire language so effortlessly is therefore, in line with Fodor, due to a domain-

specific, isolated learning mechanism aimed at processing linguistic stimuli only. 

Although Chomsky‟s view does not explicitly involve encapsulation of the LAD, 

Fodor and Chomsky‟s approaches are nevertheless similar.  

Domain-specificity is then, in the Fodorian framework, a feature of 

modularity: Modularity includes domain-specificity. Definitions of modularity, and 

to what extent modules fulfil the requirements Fodor (1983) stipulated are heavily 

discussed and vary hugely. Many views of modularity or the organisation of the 

human mind support a much weaker version of the Fodorian Modularity (Carey & 

Spelke, 1994; Carruthers, 2006; Cosmides & Tooby, 2006).  

Similar to Pinker and Bloom (1990), evolutionary psychologists such as 

Carey and Spelke (1994) and Cosmides and Tooby (1994, 2006) argue for the 
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human mind as an adaptation to the environment, evolved under selective pressures 

much like any other organ. Carey and Spelke (1994) as well as Spelke and Kinzler 

(2007) assume a suite of core principles, and domain-specific knowledge to be 

arranged around these principles. For the human capacity of language, this core set is 

instantiated as the principles of UG. In their view then, the human mind is not made 

up of exclusively encapsulated modules in the Fodorian sense, and neither is it 

organised in a completely general-purpose fashion. They do, however, assume 

specialisation of cognitive systems to some extent, and explicitly so for the human 

language capacity.  

Tooby and Cosmides (1992) view the mind similarly encapsulated. In line 

with Fodor, who views encapsulation as a defining feature of modularity, Tooby and 

Cosmides consider encapsulation to be a key argument in ruling out domain-

generality. According to Tooby and Cosmides, cognitive mechanisms must be 

informationally encapsulated in order for them to function efficiently. If this 

requirement was not met, perceptual mechanisms would have to check with an 

extraordinarily large amount of cognitive resources that might all be relevant to the 

processing of an incoming signal. This would therefore not allow for time-efficient 

computations. In their evolutionary-based view, specific adaptive problems can only 

be confronted by specialised mechanisms since “generality can be achieved only by 

sacrificing effectiveness” (Cosmides & Tooby, 1994, p.89), and domain-specific 

mechanisms “systematically outperform (...) more general mechanisms” (p.89). 

A weakened version of Fodorian modules are also claimed by Carruthers 

(2006). Carruthers argues for massive modularity, meaning that the entire mind is 

made up of distinct components, each of which is responsible for a very specific 
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task. However, Carruthers‟ modules are not exclusively domain-specific, do not have 

shallow outputs and need not be very fast, unlike Fodor‟s, as they include conceptual 

beliefs and thoughts. Carruthers‟ modules are therefore weaker than the Fodorian 

modules, and thus do not fulfil the nine properties listed above. However, 

considering the sheer amount and variety of stimuli people are faced with on a day-

to-day basis, Carruthers finds it hard to assume a domain-general mechanism would 

be able to process them. He thus finds it much more likely that individual 

components display a certain amount of task-specificity.  

The Fodorian Modularity Thesis has also been explicitly challenged. By 

criticising each of Fodor‟s nine principles in turn, Prinz (2006) concludes that 

modularity is an inadequate view of the human mind, particularly modularity in the 

Fodorian sense. Rather, the mind should be viewed as a “network of interconnected 

systems and subsystems” (p.33). This shows that his main criticisms regard 

encapsulation and domain-specificity. Prinz argues against domain-specificity, 

although he acknowledges that supposed modules might well have domain-specific 

components. In language, for example, highly localised dedication to tasks, such as 

conjugating irregular verbs, might well fall within alleged modules, but this by no 

means implies language as a whole is a domain-specific module in the strict sense. 

Prinz is, however, not as adverse to massive modularity, which is by its very 

definition a less encapsulated perspective on modularity. Thus, Prinz‟s approach to 

the non-modular organisation of the mind acknowledges that associated systems and 

subsystems will nevertheless allow for high task-specificity.  

There are thus a number of different views of modularity and of domain-

specificity, and all the in-principle approaches discussed thus far assume that the 
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human mind may be to an extent specialised, and a key argument for this seems to be 

the fact that domain-general mechanisms are assumed to be inefficient (Cosmides & 

Tooby, 1994). Applying this to the human language abilities, this would support 

Chomsky‟s view of a domain-specific device, whose sole purpose is language 

acquisition. There is, however, an opposing view to the innate, language-specific 

learning device, which will be presented in the following sections. 

 

1.3 Is there a need for an innate language learning device? 

Assuming the existence of an innate Language Faculty bridges the gap between the 

limited input and the linguistic capacity of humans in the mature state. However, 

innateness and the idea of UG and LAD as put forward by Chomsky have been 

challenged from a number of different lines of research. Specifically, it has been 

questioned whether UG could have evolved in the first place (Christiansen & Chater, 

2008) whether all languages in the world are in fact similar (Evans & Levinson, 

2009), and whether the PoS is indeed a good enough argument for LAD (Kirby, 

Cornish & Smith, 2008; Pullum & Scholz, 2002; Smith, Brighton & Kirby, 2003; 

Smith, Kirby & Brighton, 2003). However, if the idea of an innate language learning 

tool in the Chomskyan sense is dismissed, as is suggested here, then the linguistic 

knowledge humans demonstrate must be achieved with assistance from efficient 

general-purpose learning tools (Elman, Bates, Johnson, Karmiloff-Smith, Parisi & 

Plunkett, 1996). 

 Recent years have seen an increase in artificial language learning (ALL) and 

artificial grammar learning (AGL) experiments, which have identified a number of 
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powerful cognitive tools that assist humans in language learning
2
. The main issue 

with examining language and language abilities in humans is that language 

acquisition itself starts at a very early age, possibly even in utero (e.g. DeCasper & 

Spence, 1986; Busnel, Granier-Deferre & Lecanuet, 1992). Thus, when taking part in 

experiments, even infants will already be equipped with prior linguistic knowledge 

to some extent. For this reason, most studies of this nature involve either an ALL or 

AGL paradigm, which can be designed by the researcher to replicate the linguistic 

structure that is to be examined. ALL/ AGL experiments are therefore an accepted 

method for investigating human linguistic abilities for two main reasons. Firstly, 

they allow for experimental control as the language/grammar can be designed 

specifically to target the phenomenon of interest, and secondly, it allows the 

experimenter to rule out the possibility of participants‟ previous exposure to the 

language/ grammar itself. ALL and AGL experiments usually involve a (more or 

less) implicit training phase, during which participants are exposed to instantiations 

of the target language/ grammar. This training is usually followed by a testing phase, 

in which the acquired knowledge is assessed. 

With the assistance of ALL and AGL paradigms, a number of domain-

general learning mechanisms have been exposed, which humans can employ in 

language acquisition as well as in other learning tasks, and which therefore represent 

a true alternative to an innate, language-specific acquisition device. It has been 

shown that infants are, from a very early age, sensitive to the statistical structure 

                                                           
2
 With regard to terminology, there is no real consensus in the research area on what experimental 

design constitutes an ALL and what paradigm constitutes an AGL experiment, and frequently both 

expressions are used synonymously. For the purposes for this thesis, however, experiments 

investigating language learning more broadly or how meaning is mapped onto words will be referred 

to as ALL experiments. AGL experiments are, in the present context, experiments investigating the 

acquisition or learnability of an underlying grammar (e.g. a FSG or a PSG), regardless of whether the 

grammar is realised as linguistic or as non-linguistic materials. 
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underlying a sequential input. Kirkham, Slemmer and Johnson (2002) demonstrated 

that 2 month-old infants are sensitive to shape-to-shape conditional probabilities. By 

the age of 8 months, infants can reliably identify words within the speech stream, 

relying solely on the co-occurrence of neighbouring syllables (Saffran, Aslin & 

Newport, 1996), and by 12 months, they are capable of extracting a FSG after 

minimal exposure (Gómez & Gerken, 1999).  Thus, by the time human infants reach 

the age of 1, they are adept at harnessing element-to-element transitions in order to 

make sense of sequential stimuli. However, as explicated in 1.1.2, natural languages 

exhibit hierarchical structure. Sensitivity to structural regularities, which are based 

on syntactic hierarchy, has been identified at a later stage in development. Gómez 

and Maye (2005) showed that, in an AGL paradigm, 15 month-old infants can 

successfully track non-adjacent dependencies between artificial words, whereas 12 

month-olds cannot. This reflects the addition cognitive challenge involved in 

tracking non-adjacent dependencies. These mechanisms will now be discussed in 

detail, with specific focus on the strategies used in order to identify words within the 

fluent speech stream (Section 1.3.1), to learn simple FSGs (Section 1.3.2), to abstract 

rules and apply them to novel instances of language (Section 1.3.3), and to learn 

non-adjacent dependencies (Section 1.3.4). 

 

1.3.1 Statistics and segmentation 

In spoken language, there are no obvious pauses between individual words (Saffran, 

Aslin and Newport, 1996). For this reason, one of the first challenges an infant faces 

in language acquisition is to identify individual words by breaking down the fluent 

speech stream into meaningful units. A number of techniques have been suggested, 
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which might assist infants in this task. Jusczyk (1999), for example, suggests that 

infants can pick up on allophonic cues or prosodic patterns of the target language to 

detect word boundaries. Jusczyk, Houston & Newsome (1999) found that infants as 

young as 7.5 months are sensitive to the strong-weak stress pattern found in English 

and are reliably able to use this regularity to segment bisyllabic words. Similarly, 

Mattys, Jusczyk, Luce & Morgan (1999) found that prosodic as well as phonotactic 

cues are available to 9-month-olds for the detection of word boundaries. 

In addition to showing sensitivity to these purely linguistic cues, infants are 

also sensitive to the statistical structure underlying the speech stream. Moreover, 

they are capable of harnessing this structure and using it to segment the fluent speech 

stream into words. This was demonstrated in a classic experiment conducted by 

Saffran, Aslin and Newport (1996). In their experiment, 8-month old infants were 

exposed to a 2 minute, aurally presented artificial language, which consisted of a 

total of four artificial words (bidaku, golabu, tupiro and padoti), strung together in 

random order. Importantly, the speech stream lacked prosodic cues or pauses to 

indicate word boundaries. Thus, the statistical structure of the speech stream was the 

only indicator of where one word ended and another began. The infants were aware 

of the syllable-to-syllable transitional probabilities of the briefly-presented language, 

and could subsequently differentiate between high- and low- probability transitions. 

This was assessed by measuring the infants‟ listening times during the test trials. 

Specifically, the infants were capable of harnessing the fact that the transitional 

probabilities within words, such as bi  da were p = 1.0, as these are neighbouring 

syllables in the word bidaku. By contrast, transitional probabilities spanning word 

boundaries were lower. For example, the two words bidaku and golabu strung 

together form the sequence bidakugolabu. Transitional probabilities between the 
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adjacent syllables ku  go was p = .33, as the word bidaku (and therefore the 

syllable ku) could have been proceeded by any one of three words (and therefore any 

one of three syllables). On test, the infants were capable of computing the 

transitional probabilities between adjacent speech sounds to differentiate between 

words and non-words (i.e. an entirely new combination of three syllables that were 

encountered during the training, e.g. tilado). Impressively, infants were also able to 

discriminate between and words and part-words. Part-words were three-syllable 

sequences, which were produced by proceeding the final syllable of one word with 

the two initial syllables of another word. Part-words, unlike non-words, occurred 

during the training, which demonstrates that the mechanism underlying this ability 

must be very sensitive. This type of statistical learning has also been demonstrated in 

adults (Saffran, Newport & Aslin, 1996). 

Tracking transitional probabilities is not a language-specific mechanism. 

Saffran, Johnson, Aslin and Newport (1999) conducted a series of experiments to 

test whether this mechanism is also accessible in the non-linguistic domain. To do 

this, the sequences of the artificial language from their previous studies were 

translated into musical tones: each artificial word corresponded to a „tone word‟ in 

that each syllable from the AL was matched with a specific tone. Thus, the syllable 

bu, for example, was substituted with the tone D. Their results indicate that adults as 

well as 8-month old infants can reliably extract the tone-to-tone transitional 

probabilities to segment the tone stream.  

Furthermore, Kirkham, Slemmer and Johnson (2002) demonstrated that the 

same results obtain in the visual modality. In their experiment, 2-, 5- and 8-month 

old infants were familiarised with sequences made up of a total of six shapes 
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(turquoise square, blue cross, yellow circle, pink diamond, green triangle and red 

octagon). Each stimulus therefore differed from the next along the two dimensions of 

colour and shape. The shapes were presented individually on a computer screen for 1 

second, which replicates the sequential nature of the aurally presented language used 

by Saffran, Aslin & Newport (1996). Importantly, the sequences were structured 

based on the transitional probabilities of specific shape-pairs. The square was 

reliably followed by the cross with a transitional probability of p = 1.0, and the same 

was true for the shape pairs circle-diamond and triangle-octagon. There was thus a 

total of three shape-pairs, and therefore transitional probabilities spanning two pairs 

were at p = .33. On test, the infants viewed sequences of pairs that followed the 

pattern from the training, as well as sequences in which the shapes were randomly 

ordered. The infants showed a novelty effect with looking significantly longer at the 

novel sequences. This was true for each age group. Kirkham et al. therefore 

convincingly demonstrated that the capacity to calculate transitional probabilities 

between adjacent elements also operates in the non-linguistic domain. Similar 

findings by Kirkham, Slemmer, Richardson and Johnson (2007), and Fiser and Aslin 

(2002b) demonstrate infants‟ sensitivity towards adjacent relationships between 

elements in multiple locations and in multi-element scenes, respectively.  

Conducting an ERP experiment, Abla and Okanoya (2009) replicated 

Saffran, Johnson, Aslin and Newport‟s (1999) experiment by replacing each tone 

with a shape. Thus, each „shape word‟ in this experiment included three shapes, and 

six shape words were strung together in random order to form a sequence for the 

training phase. The test involved participants being presented with two three-shape 

strings: a shape word and a shape non-word. Participants were then required to 

decide which one was familiar to them. The results showed that participants here 
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were also capable of successfully segmenting the shape stream based on unit-to-unit 

transitional probabilities.  

Research into the statistical learning and grammar learning abilities of 

animals can provide additional insights into the issue of domain-specificity with 

regard to language learning. Natural language in all its complexity is only found in 

humans (Hauser, Chomsky & Fitch, 2002
3
). As a consequence, any sequencing 

capacities or learning abilities identified in non-human animals cannot be unique to 

human language, and thus not language-specific in this sense. For this reason, 

research on the cognitive abilities of non-human primates (Hauser, Newport & Aslin, 

2001) and birds (Takashi, Yamada & Okanoya, 2010; Ohms, Gill, Van Heijningen, 

Beckers & de Cate, 2010) can offer insights into the nature of human learning 

mechanisms. For the present context, research on non-human primates, specifically 

on stream segmentation is particularly relevant. 

Hauser, Newport and Aslin (2001) investigated speech stream segmentation 

in cotton-top tamarins (Sanguinus oedipus) by employing the materials and a similar 

experimental set-up as used by Saffran, Aslin and Newport (1996). Their findings 

show that tamarins are capable of harnessing the underlying statistical structure of a 

continuous speech stream to discriminate words from non-words and part-words, 

detecting word boundaries based on transitional probabilities much like human 

infants and adults. This suggests that tracking transitional probabilities for stream 

segmentation is not a mechanism unique to human language.  

                                                           
3
 Due to the allegations regarding M. Hauser‟s scientific misconduct, the retracted 2002 paper 

published in Cognition is not discussed in the present thesis. However, other research by Hauser will 

be considered where relevant. 
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However, it may be argued that statistical learning (by domain-general 

learning mechanisms) can only be employed for relatively low-level processes, and 

that higher-level processes required for language learning might nevertheless be 

supported by domain-specific learning tools. The following sections will address 

this, and demonstrate that this is not the case.  

 

1.3.2 Learning FSGs  

Language learning goes beyond identifying words within the speech stream and 

mapping meaning on to words. Thus, in order for humans to acquire fully-fledged 

natural languages, they must be capable of more than tracking statistics – they must 

also be able to learn and parse complex sequential structure.  

Using the headturn preference procedure (HPP), Gómez and Gerken (1999) 

showed that 1-year-old infants are capable of learning sequences generated by a 

FSG. The HPP (Kemler Nelson, Jusczyk, Mandel, Myers, Turk & Gerken, 1995) is a 

reliable tool to investigate infants‟ perception of aurally presented stimuli. Usually, it 

requires the infant to be seated on the caregiver‟s lap in a darkened booth. The 

infant‟s attention is initially drawn towards a flashing light opposite the infant. One 

additional light is placed at either side of the booth. Once the centre light stops 

flashing, one of the side lights starts flashing to indicate that the auditory stimulus 

will be presented shortly. When the infant directs his/her attention to the side light, 

the stimulus starts playing. The infants‟ looking times to each of the stimuli are then 

recorded and subsequently analysed. Gómez and Gerken first acquainted infants with 

instantiations of the FSG shown in Figure 1.7.  
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In subsequent tests, they showed that infants were reliably able to 

discriminate grammatical from ungrammatical sequences, regardless of whether the 

grammatical violation involved sequential endpoints or sequence-internal transitions 

from one word to the next. Moreover, Gómez and Gerken demonstrated that infants 

were able to abstract the FSG and apply that knowledge to instantiations of the same 

grammar with new vocabulary. 

This is an important step in language acquisition as language cannot be 

merely memorised, but rather infants must abstract the rules governing legal 

sequences and apply them to novel instances of the target language. Abstract rule 

learning is thus a crucial aspect in language acquisition and will be discussed in more 

detail in section 1.3.3. 

FSGs have also been shown to be learnable in the non-linguistic domain, 

with the grammar instantiated as just black (Conway & Christiansen, 2005) or 

coloured squares (Conway & Christiansen, 2006; Conway & Christiansen, 2009), 

tones (Conway & Christiansen, 2005; Conway & Christiansen, 2006; Conway & 

Figure 1.7: FSG (G1) used by Gómez & Gerken. G2 (also an FSG) used for the experiment is not 

depicted here.  
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Christiansen, 2009) and vibrotactile stimuli (Conway & Christiansen, 2005). Thus, 

learning a FSG grammar is not merely possible in the linguistic domain. 

Moreover, the ability to learn sequences generated by a FSG has been 

demonstrated in non-human primates. Fitch and Hauser (2004) investigated 

tamarins‟ ability to discriminate between grammatical and ungrammatical strings 

generated by either a FSG or a more complex PSG. In their experiment, both humans 

and tamarins were trained and tested on the same aurally presented materials. 

Subjects (tamarins and adult humans) were trained on either strings following a FSG 

or on strings generated by a PSG. In the FSG condition, the strings followed an 

(AB)
n
 grammar, and for the PSG grammar, the sequences took an A

n
B

n
 form. Each 

category (A and B) were instantiated as a CV syllables. In the FSG condition, 

therefore, each A syllable could be followed by any B syllable, and this could be 

repeated a number of times. The A
n
B

n
 grammar (PSG) generated centre-embedded 

sequences as n A syllables had to be followed by precisely n B syllables. This 

created sequences of the form A1A2A3B3B2B1, in which A3B3 is embedded within A2 

- B2, forming A2[A3B3]B2, which in turn is embedded in the outmost frame, forming 

A1[A2[A3B3]B2]B1. All syllables in category A were spoken by a female voice, 

whereas all syllables from category B were spoken by a male voice. Fitch and 

Hauser found that their human participants were reliably able to discriminate 

between grammatical and ungrammatical sequences on test in both the FSG and PSG 

condition. The tamarins, by contrast, successfully learnt the FSG, but failed to 

discriminate between grammatical sequences and strings containing violations when 

trained and tested on the PSG. Fitch and Hauser therefore argue that extracting a 

FSG is not a purely linguistic, and possibly not even a purely human, capacity.  
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1.3.3. Abstract rule learning 

Marcus, Vijayan, Bandi Rao and Vishton (1999) investigated abstract rule learning 

in the linguistic domain. In their experiments, 7-month-olds were tested using the 

HPP. Here, they were trained and tested on a simple ABA/ABB language, and each 

variable was instantiated as a CV „word‟. ABA strings thus took the form of ga ti ga 

or li na li, whereas ABB strings were instantiated as ga ti ti and li na na. The ABA 

grammar provided the ungrammatical test items for the ABB-trained infants and vice 

versa. Crucially, however, infants were tested on an entirely novel set of CV words, 

and were thus not able to use statistical learning mechanisms, such as transitional 

probabilities between specific elements, to identify grammatical sequences. The 

results indicate that infants can reliably discriminate between ABA and ABB 

patterns, and must therefore have internalised the abstract patterns embodied in their 

training data. 

Abstract rule learning across domains to date has rendered a mixed pattern of 

results. Marcus, Fernandes and Johnson (2007) showed that abstract rule learning, in 

the auditory modality, is not as easily accomplished in other domains, such as 

varying timbres, animal sounds and musical tones, unless infants are familiarised 

with linguistic instantiations of the patterns first.  In the visual modality, however, 

Saffran, Pollak, Seibel and Shkolnik (2007) showed that infants at 7 months of age 

are capable abstracting algebraic rules in non-linguistic sequences. In Saffran et al.‟s 

series of experiments, the non-linguistic materials were pictures of dogs and cats, 

and therefore familiar stimuli to the infants. In Marcus, Fernandes and Johnson‟s 

study (2007), by contrast, the infants were presumably not familiar with the non-

linguistic materials prior to taking part, which might have impacted on performance 
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in as much as that they might simply not have recognised the repeated items as 

instantiations of identical units (the issue of stimulus familiarity will be addressed in 

detail in Chapter 6). Thus, abstract rule learning, while not being an entirely domain-

specific ability, seems to subject to specific constraints, such as stimulus familiarity 

(Saffran, Pollak, Seibel & Shkolnik, 2007). 

Johnson, Fernandes, Frank, Kirkham, Marcus, Rabagliati and Slemmer‟s 

(2009) findings suggest a further difficulty in abstract rule learning in non-linguistic 

domains. In their experiments, both 8-month-old and 11-month-old infants find it 

hard to encode a non-adjacent repetition pattern, ABA, using coloured shapes as 

non-linguistic materials. Although ABA patterns have been shown to be acquired in 

the linguistic domain (Marcus et al., 1999), Johnson et al. point out that non-

adjacencies are generally considered to be a challenge for learners. This issue will 

therefore be dealt with in the following section. 

 

1.3.4 The acquisition of non-adjacent dependencies 

Johnson, Fernandes, Frank, Kirkham, Marcus, Rabagliati and Slemmer‟s (2009) 

experiments show that non-adjacent repetition patterns are not readily acquired in the 

non-linguistic domain. However, it is not the case that they are not acquired at all. 

They found that 8 month-olds trained on an ABB grammar were reliably able to 

discriminate an ABB from an ABA pattern on test. 11-month-olds trained on an 

AAB grammar, correctly discriminated AAB from ABA sequences, which 8-month-

olds failed to do. Crucially, when trained on an ABA grammar, neither age group 

was able to distinguish between ABA and ABB sequences during the testing phase. 

These findings indicate that infants are sensitive to repetition structure. Specifically, 
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infants are capable of distinguishing adjacent repetitions from non-adjacent 

repetitions, with 11-month-olds showing better awareness of the positioning of the 

repetition. When trained on non-adjacent repetitions, however, they fail to learn the 

pattern. As pointed out above, language learning involves more than tracking 

repetitions of identical elements. Crucially, non-adjacent dependencies (rather than 

repetitions) are a diagnostic of PSGs. 

The acquisition of non-adjacent dependencies has previously been found to 

be challenging. Whereas infants are competent at speech segmentation at the age of 

8-months (Saffran, Aslin & Newport, 1996), and capable of learning a FSG at 12-

months (Gómez & Gerken, 1999), they do not seem to be capable of learning non-

adjacent dependencies before they are approximately 15 months of age (Gómez & 

Maye, 2005
4
). Unlike in speech segmentation or in acquiring an FSG, tracking non-

adjacencies requires the learner to detect regularities between elements separated by 

an arbitrary number of intervening items, which is an additional cognitive strain and 

may therefore explain the relatively late acquisition.  

The acquisition of non-adjacent dependencies also seems to be subject to 

specific constraints. Santelmann and Jusczyk (1998) explored the ability of 18-

month old infants to detect non-adjacent regularities between the verb is and 

progressive –ing across a varied set of intervening elements. Employing the HPP, 

they tested infants‟ preference for grammatical sentences, such as The archaeologist 

is digging for treasures (note that the underlined elements indicate the non-adjacent 

dependency of interest) over sentences such as *The archaeologist can digging for 

treasures, in which a violation of the non-adjacency creates an ungrammatical 

                                                           
4
 See below for a description of Gómez‟s (2002) method, which is the same as used by Gómez and 

Maye (2005). 
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sentence. A crucial manipulation in their design involved the number of intervening 

elements. In the example above, the dependency is separated by the verb stem. 

However, Santelmann and Jusczyk additionally tested infants‟ ability to extract the 

non-adjacencies across a number of additional syllables, as in The archaeologist is/ 

*can energetically digging for treasures. They found that infants only track the 

dependency when the elements in question are separated by one syllable only. They 

argue that limited working memory capacities may affect the tracking of regularities 

over longer distances. Thus, the distance between relevant units of analysis, and 

limited processing capacity delay the acquisition of non-adjacent dependencies.  

The correct identification of non-adjacent dependencies has also been found 

to be challenging for adults. In 2002, Peña, Bonatti, Nespor and Mehler found that 

adult speakers of French can only extract non-adjacent dependencies in linguistic 

sequences when pause cues assist in their detection. Peña et al. designed an „AXC 

language‟, in which all variables were realised as CV syllables. Each syllable from 

category A reliably predicted a specific CV syllable from category C, with one 

intervening element X, thus creating one trisyllabic AXC word. For example, Ai was 

realised as [pu], and Ci as [ki]. The pu_ki frame could take any one of three syllables 

from category X, which produced the three distinct AXC words [puliki], [puRaki] 

and [pufoki]. There were two additional frames, namely Aj_Cj and Ak_Ck, 

instantiated as be_ga and ta_du. Each of these frames could also take any of the 3 X 

syllables, generating a total of nine artificial trisyllabic words. Participants were 

trained on aurally presented sequences involving all nine words. On test, participants 

were required to distinguish between words and part-words of the form CkAiX or 

XCiAj. Although participants correctly discriminated between words and part-words 

when tested on the training items, they failed to do so when the words in the testing 
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phase involved a novel X element. However, the novel X elements Peña et al. used 

were not entirely novel but rather, they were taken from the set of syllables from 

category A or C. To clarify, the “new” X syllables were realised as [be] or [ta], for 

example. Crucially, Peña et al. did not test for the acquisition of non-adjacent 

dependencies by including violations of the AXC form, such as AiXCj, in the testing 

phase. Rather, they tested for speech stream segmentation based on the transitional 

probabilities between non-adjacent syllables. They conclude that their participants 

failed to extract the underlying non-adjacent rule and apply it to words with a novel 

surface form. However, the inclusion of subliminal 25-ms pauses between individual 

words during training resulted in successful discrimination between words and part-

words, even when „new‟ X syllables were used. This series of experiments 

demonstrates the difficulty involved in processing non-adjacent dependencies as 

opposed to the relative easy with which adjacent regularities are computed.  

In a similar experiment involving stream segmentation, Newport and Aslin 

(2004) found that non-adjacent dependencies between similar elements are easier to 

detect. Their experiment involved three different types of AL. In the Syllable 

Language, the non-adjacent dependencies followed an AXB form and operated 

between two CV syllables across one intervening CV syllable. In the Consonant 

Language, the non-adjacencies held across consonants, skipping vowels, as in the 

artificial words dokube and pogute (the underlined elements represent the non-

adjacent dependencies). In the Vowel Language, the vowels formed the non-adjacent 

dependencies and they were interleaved by consonants, as in pagute and pogitae 

(again, the non-adjacencies are underlined). They found that their participants were 

only capable of acquiring the non-adjacencies in the Consonant and Vowel 
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Language, which they interpret in line with the Gestalt Principle of Similarity. For 

this reason, this will be explicated in detail in Chapter 2.  

Considering these findings, it would seem striking that humans so 

successfully acquire language, in which non-adjacencies are ubiquitous. However, in 

Peña et al.‟s design, their category X merely involved three CV syllables. In natural 

languages, non-adjacent dependencies occur over a much more varied set of 

intervening items. For example, the dependency between the two morphemes is and 

progressive –ing allows for any verb stem to be inserted in the intervening position, 

creating an extensive list of possible phrases of the form is singing, is thinking, is 

dancing, and so on. 

This high variability in the intervening position was explored by Gómez 

(2002). She showed that 18-month-old human infant and adult participants are 

capable of learning non-adjacent regularities in an AGL paradigm, provided that 

adjacent regularities are too unreliable to allow rule extraction. Her artificial 

language (AL) involved three-word sequences. The first word of each sequence 

reliably predicted the third word, whereas the intervening, second word varied freely. 

Thus, she investigated the acquisition of non-adjacent dependencies on the syntax-

level. Table 1.3 gives the grammar she used for both adult and infant participants.  

For adult participants, there were three different non-adjacent dependencies, 

pel X rud, vot X jic and dak X tood. The crucial manipulation involved the set sizes 

the intervening X elements were taken from: Set size X2 included the two artificial 

words wadim and kicey. Thus, adult participants trained and tested on set size X2, 

were exposed to the sequences pel wadim rud, pel kicey rud, vot wadim jic, vot kicey 

jic, dak wadim tood and dak wadim tood, with the non-adjacencies always holding 
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between a specific word in initial position and a specific word in final position. The 

largest pool was made up of 24 different words (see Table 1.3), which generated a 

total of 3 (dependencies) * 24 X words = 72 three-word sequences. 

 

 

adult participant infant participants 

Language 1 Language 2 Language 1 Language 2 

S1  aXd 

S2  bXe 

S3  cXf 

S1  aXe 

S2  bXf 

S3  cXd 

S1  aXd 

S2  bXe 

 

S1  aXe 

S2  bXd 

 

a  pel 

b  vot 

c  dak 

d  rud 

e  jic 

f  tood 

X2  {wadim, kicey} 

X6  {wadim, kicey, puser, fengle, coomo, loga} 

X12  {wadim, kicey, puser, fengle, coomo, loga, gople, tapsu, hiftam, deecha, 

vamey, skiger} 

X24  {wadim, kicey, puser, fengle, coomo, loga, gople, tapsu, hiftam, deecha, 

vamey, skiger, benez, gensim, feenam, laeljeen, chila, roosa, plizet, balip, malsig, 

suleb, nilbo, wiffle} 

 

In Gómez‟s experiment, participants were initially trained on the aurally 

presented AL shown in Table 1.3. Adults were subsequently asked to complete a 

testing phase, in which they were required to make grammaticality judgments for 

individual strings: Ungrammatical strings for participants trained on Language1 were 

taken from Language2, and vice versa. The grammatical violations within the 

ungrammatical strings were therefore quite subtle and merely involved replacing the 

final artificial word from one dependency with the final word from another. The test 

items for infant participants were generated in the same way, and they were tested by 

monitoring their looking behaviour using the HPP. The results show that the more 

variable the middle element (i.e. the larger the set size from which the X items were 

drawn), the more likely participants were to learn the non-adjacent dependencies. 

Table 1.3: Gómez‟s grammar (2002) for adult and infant participants, with lexical 

instantiations for categories a – d and X.  
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Gómez therefore suggests that people seek invariant structure in the input. High 

variability of the middle element disrupts reliability of transitional probabilities 

between adjacent words. Participants are then, with increasing set size, more inclined 

to reject adjacent regularities in favour of more constant ones, in this case non-

adjacent dependencies. Thus, the strategy employed by participants in this 

experiment is akin to the reduction of uncertainty hypothesis (Gibson, 1991): 

Learners will exploit the most reliable information available to them in the input.  

There have been further investigations into the effect of variability on the 

detection of non-adjacent dependencies (Onnis, Christiansen, Chater & Gómez 2003; 

Onnis, Monaghan, Christiansen & Chater, 2004). Interestingly, it has been shown 

that reversing variability of the middle element to the non-adjacent frame elements 

also result in successful acquisition (Onnis, Monaghan, Christiansen & Chater, 

2004). Specifically, Onnis et al. found that adults extracted the non-adjacencies 

shown in Table 1.3 (p.35) for a set size of 1 for the intervening X elements. Thus, in 

this design, there were three non-adjacent dependencies that could occur with only 

one middle item X. This extension of Gómez‟s (2002) experiment shows that as long 

as adjacent regularities are sufficiently unreliable, people‟s attention will be directed 

toward other, more informative regularities. Under these circumstances, non-

adjacent dependencies in the linguistic domain can thus be acquired.  

However, there are some shortcomings in the materials employed by Gómez 

(2002). Firstly, the testing phase involved grammatical sequences that were identical 

to the ones from the training and on ungrammatical sequences containing violations 

regarding the final element. Importantly, however, being able to make generalisation 

to new instantiations based on an extracted grammar is a necessity in language 
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learning. Yet, Gómez did not test this ability as she did not include novel X items in 

the testing phase. This will be rectified in the following chapter. Secondly, in 

Gómez‟s AL, the words participating in the non-adjacencies are shorter than the 

words in category X. These cues can be interpreted in terms of the Gestalt Principle 

of Similarity, which has also been suggested as a requirement for the detection of 

non-adjacent dependencies (see Chapter 2, and also Newport & Aslin, 2004).  

Domain-specificity with regard to the learnability of non-adjacencies has 

been addressed by Creel, Newport & Aslin (2004) as well as Gebhart, Newport and 

Aslin (2009), who investigated the acquisition of non-adjacent dependencies 

between non-linguistic sounds. Creel et al. explored adult participants‟ ability to 

segment a stream of musical tones based on transitional probabilities between non-

adjacent sounds, and found that the regularities were indeed detected if the relevant 

units were similar to each other in either pitch or timbre. Gebhart et al. used non-

musical sounds, and also found that non-adjacencies were detected. These 

experiments will be the focus and discussed in detail in Chapter 5.  

Moreover, the findings by Fitch and Hauser (2004) with regard to cotton-top 

tamarins‟ inability of extracting embedded structures of the form A
n
B

n
 in their AGL 

task is of crucial importance here, as this can be taken to show that these structures 

are simply too complex for tamarins to learn. In the A1A2A3B3B2B1 sequences, the 

outmost frame A1 – B1 as well as the first embedded pair A2 – B2 form non-adjacent 

dependencies, and are the equivalent to the English sentence The mouse [that the cat 

[that the dog chased] ate] was tiny. Importantly, tamarins failed to extract these 

regularities. This may thus seem to leave open the possibility of non-adjacencies 

being unique to humans, and therefore unique to human languages (Friederici, 2004). 
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Further, Friederici, Bahlmann, Heim, Schubotz and Anwander (2006) conducted a 

functional MRI experiment on the two grammars employed by Fitch and Hauser to 

explore which brain regions were engaged when processing a FSG ((AB)
n
) as 

opposed to a PSG (A
n
B

n
) in human adults. They found that the frontal operculum 

was activated when completing the FSG task and that Broca‟s area was responsible 

when processing the PSG. Most importantly, the frontal operculum constitutes a 

phylogenetically older part of the human brain. It is thus interesting that tamarins and 

humans are capable of processing sequences generated by a FSG, which can be 

defined entirely by transitional probabilities between adjacent elements, and that 

precisely these computations are subserved by a phylogenetically older part of the 

human neuroanatomy. Hierarchically structured sequences, by contrast, which – in 

Fitch and Hauser‟s experiment – are not learnable by tamarins, are processed in a 

comparatively younger part of the human brain. However, Friederici et al. very 

carefully interpret their results merely with regard to the neuroanatomical 

differentiation between the two systems. They also point out that it is too early to 

make hasty judgements with regard to which aspects are unique to humans based 

solely on these results. 

In light of these findings it is particularly interesting that non-adjacent 

dependencies have been found to be acquired by cotton-top tamarins under specific 

conditions. In an experiment by Newport, Hauser, Spaepen and Aslin (2004), the 

tamarins were familiarised with an aurally presented continuous stream of 

grammatical sequences based on non-adjacent regularities, and tested on 

grammatical and ungrammatical strings. They used the same three different types of 

an AL as Newport and Aslin (2004), i.e. a Syllable Language, a Consonant 

Language and a Vowel Language. Newport Hauser, Spaepen and Aslin showed that 
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the tamarins reliably differentiated between words and part-words when familiarised 

and tested on the Vowel Language and Syllable Language. Newport et al. argue that 

the reason for the tamarins failing to encode the regularities in the Consonant 

Language might be related to the fact that consonants are not as acoustically 

prominent as vowels and syllables, especially so for tamarins. Consonants might 

therefore not be sufficiently salient for tamarins to compute the relevant regularities. 

The most interesting finding, however, is that tamarins can segment a continuous 

stream based on non-adjacent syllables whereas humans cannot
5
 (Newport & Aslin, 

2004). Newport et al.‟s most convincing explanation for this result is that tamarins 

may have analysed the stimulus materials holistically, based on salient features, and 

thus detected the non-adjacent regularities between syllables and vowels. In the 

present context, however, Newport et al.‟s experiment is important with regard to 

domain-specificity: cotton-top tamarins are spontaneously capable of segmenting a 

continuous stream of speech based on transitional probabilities between non-adjacent 

elements. This result suggests that the mechanism underpinning this ability is 

therefore not restricted to human language. 

 

1.4 Re-visiting domain-specificity 

The experimental evidence for powerful domain-general learning tools is 

overwhelming and hugely reduces the need to hypothesise an innate LAD. However, 

not assuming innateness in the Chomskyan sense does not consequently mean that 

domain-specificity must also be dismissed. Although innateness and domain-

                                                           
5
 This will be discussed exhaustively in Chapters 2 and 3. 
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specificity are frequently viewed as inherently linked, there is no reason to assume 

that this is indeed the case (Khalidi, 2001) 

Section 1.2.2 showed that domain-specificity and encapsulation are 

frequently invoked as the only way to avoid inefficient processing. However, the 

view that domain-specificity is not necessarily related to encapsulation or to 

modularity is supported by Atkinson and Wheeler (2004), who carefully dissect 

arguments in support of domain-specificity. Crucially, they tackle the frame 

problem, which is used not only by Fodor (1983) but also by Tooby and Cosmides 

(1992) to rule out domain-general mechanisms as a genuine possibility. The frame 

problem refers to cognitive mechanisms (or modules) being encapsulated to ensure 

efficient processing. However, as Atkinson and Wheeler point out, assuming 

informationally encapsulated cognitive resources does not leave domain-specificity 

as the only option. In their view, it is entirely plausible that any domain-general 

mechanism shaped by evolution will and can only be informationally encapsulated to 

ensure efficiency. Thus, domain-specificity is not a logical consequence of 

encapsulation or the frame problem. The identification of domain-specific cognitive 

mechanisms therefore does not (as opposed to what Fodor would argue for) shed any 

light on the notion of modularity. 

For the purposes of the work presented in this thesis, domain-specificity will 

be considered in line Atkinson and Wheeler (2004). They outline that there are, in 

theory, four plausible options for explaining how the mind might processes stimuli 

(Table 1.4). 
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  Information 

 
 Domain-general Domain-specific 

Mechanisms 

Domain-

general 

1. Domain-general mechanisms 

coupled with domain-general 

information 

2. Domain-general mechanisms 

coupled with domain-specific 

information 

Domain-

specific 

3. Domain-specific mechanisms 

coupled with domain-general 

information 

4. Domain-specific mechanisms 

coupled with domain-specific 

information 

 

Firstly, general cognitive resources could be responsible for processing 

materials across a number of domains. Secondly, general cognitive resources could 

be recruited for the computation of domain-specific stimuli. Furthermore, domain-

specific mechanisms could be employed for both domain-general (option 3) as well 

as domain-specific (option 4) information. Whereas evolutionary psychologists, such 

as Tooby and Cosmides (1992), assume domain-specific mechanisms are associated 

with domain-specific information, Atkinson and Wheeler see no in-principle reason 

why options 2 and 3 are largely ignored in the literature.  

Importantly, Atkinson and Wheeler‟s more refined view of domain-

specificity emphasises a crucial point: Assuming a specific learning mechanism has 

been identified, which has been shown to operate both in the linguistic and in the 

non-linguistic domain, then there are two fundamentally different possible 

explanations for this finding. 1. There could be one underlying mechanism, which 

functions across domains (Atkinson and Wheeler‟s option 1). 2. It could be due to 

Table 1.4: The nature of the information (domain-general or domain-specific) considered in 

combination with the cognitive mechanisms (domain-general or domain-specific) leads to four 

potential information-mechanism pairings. Taken from Wheeler and Atkinson (2004). In the present 

context, the term „mechanism‟ refers to the learning device, and the term „information‟ regards the 

information the learning device draws from during analysis. 
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separate computational systems, which happen to be identical, yet are positioned in 

different domains. This is in line with Atkinson and Wheeler‟s option 3, where 

domain-specific mechanisms draw from domain-general information. So, if one 

system was replicated in another domain, then it would also come across as a 

domain-general ability. To make this point even clearer: The ability to track unit-to-

unit transitional probabilities is not domain-specific as it has been shown to operate 

in the linguistic (Saffran, Aslin & Newport, 1996) as well as in the non-linguistic 

domain (Kirkham, Slemmer & Johnson, 2002). In line with Atkinson and Wheeler, 

this could show that either a domain-general ability draws from domain-general 

information (option 1), or that the statistical learning tool has been replicated, and 

there are independently-functioning systems, which draw from domain-general 

information (option 3). There are thus different levels of explanation when it comes 

to domain-specificity. 

Since Atkinson and Wheeler‟s approach to domain-specificity allow for a  

more refined analysis, the findings on domain-specificity/ -generality in this thesis 

will be interpreted in line with the four possibilities presented above (Table 1.4) 

rather than in terms of encapsulation and modularity. This will be of specific 

importance in Chapters 5 – 7. 

 

1.5 Précis of the thesis 

The goal of the present thesis, goes beyond stream segmentation based on non-

adjacent regularities. Specifically, the experiments presented and discussed in 

Chapters 2 – 6 aim to explore the mechanisms employed in the detection of non-

adjacent dependencies on the syntax level (i.e. between words) and to investigate 
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whether and to what extent these mechanisms operate in the non-linguistic domain. 

To this end, the grammar employed by Gómez (2002), which is shown in Table 1.3 

(p.35), has been used as the basis for all AGL experiments throughout the empirical 

work presented here.   

Chapter 2 presents an experiment whose aim was to replicate Gómez‟s 

(2002) findings in the visual modality. Across two conditions the impact of the 

Gestalt Principle of Similarity is investigated, and the findings support the idea that 

featural similarity between relevant units is not a requirement for the detection of 

non-adjacencies in the linguistic domain. Chapter 3 explores whether this finding is 

robust enough to enable the identification of non-adjacencies across linguistic 

elements even when they are obscured. The results go against the general consensus, 

which claims that in an artificial language learning paradigm, non-adjacencies need 

to be highlighted in order to be learnt (Newport & Aslin, 2004).  

Chapter 4 focuses on domain-specificity by contrasting learnability of non-

adjacent dependencies across three non-linguistic conditions. In visually presented 

sequences, the internal structure of the non-linguistic materials was manipulated, 

allowing us to draw conclusions regarding stimulus simplicity. The results show that 

non-adjacent dependencies in non-linguistic sequences are detected when the 

relevant units of analysis are highlighted, i.e. the relevant units of analysis are 

instantiated as simple shapes. Crucially, when the non-linguistic materials are 

componential, i.e. designed to replicate the internal structure inherent to language, 

then non-adjacent dependencies are not learnt. The outcomes thus demonstrate that 

non-adjacencies are learnable across domains, but that language-specific 
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expectations that guide people‟s attention towards relevant regularities do not carry 

over into the non-linguistic domain. 

Since language is first and foremost an auditory signal, it has been suggested 

that sequence learning is facilitated in the auditory modality (Conway & 

Christiansen, 2005). Chapter 5 thus investigates modality effects in the acquisition of 

non-adjacencies by directly comparing performances in aurally presented linguistic 

and non-linguistic stimuli. The findings suggest that non-adjacencies in the linguistic 

domain are readily acquired in the auditory modality, yet their detection in the non-

linguistic domain poses a challenge. 

Chapter 6 offers further support for the notion of language-specific 

expectations identified in Chapter 4 by showing that pre-experimental familiarisation 

with componential non-linguistic patterns does not result in non-adjacencies being 

learnt in a subsequent grammar learning experiment. 

Finally, Chapter 7 will summarise the main findings across all experiments 

and the consequences of the findings for the acquisition of non-adjacencies. 

Interesting future directions will also be explored. 
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Chapter 2 

 

The acquisition of non-adjacencies in the linguistic domain 

 

At the very core of successful language learning lies the ability to make sense of the 

rich structure and regularities found in language. Acquiring language is much more 

than detecting word boundaries and being able to access the mental lexicon, it also 

involves the correct tracking of units over which regularities operate within the given 

input. Due to the hierarchical structure of language, these regularities frequently 

occur at a distance. The previous chapter discussed empirical evidence showing that 

the acquisition of these non-adjacent dependencies is especially demanding. For this 

reason, the aim of this chapter is to investigate one of the cues that has been 

suggested to govern the detection of non-adjacent dependencies: The Gestalt 

Principle of Similarity. The Gestalt Principle of Similarity is an organising principle 

(Wertheimer, 1938), which stipulates that people automatically tend to group 

together units that are perceptually similar. How this relates to language, and 
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specifically how this is relevant for the acquisition of non-adjacent dependencies will 

be discussed in detail below. 

 

2.1. Experiment 1 

As explicated in Chapter 1, non-adjacent dependencies describe regularities 

between elements separated by a number of intervening items. These dependencies 

are ubiquitous in natural languages, as illustrated by the subject-verb agreement 

below. 

(1a) The socks on the floor are red. 

(1b)*The socks on the floor is red. 

The underlined words, the subject The socks and the verb to be, need to agree 

in number, as in (1a). Since the subject of the sentence is plural, the verb too must 

take the plural form or it will result in an ungrammatical sentence (1b). Non-adjacent 

dependencies are a defining property of natural languages as they can only be 

adequately captured by a PSG. Phrase structure rules are based on a hierarchical 

combination of constituents: In natural languages, sentences are organised in a 

hierarchical fashion, in which words are combined to form successively larger units 

to form phrases. PSGs therefore allow for non-adjacent constituents to form 

dependencies across intervening constituents.  

Intriguingly, although non-adjacencies are a common feature of human 

languages, their acquisition has been shown to be governed by domain-general 

constraints, and one of these constraints seems to be the Gestalt Principle of 

Similarity (Gómez, 2002; Newport & Aslin, 2004). Newport & Aslin (2004) used an 
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AGL paradigm to explore the learnability of trisyllabic artificial words, whose 

structure was determined by either non-adjacent segments or non-adjacent syllables. 

Non-adjacencies between syllables were explored by using a Syllable Language, and 

non-adjacencies between segments were explored in two different Segment 

Languages. In their design, the Syllable Language followed an AXB pattern, with 

each category (A, X and B) containing CV syllables, where each CV syllable A 

reliably predicted a specific CV syllable B, with one intervening CV syllable X. For 

example, the A_B syllable pair ba_te could be completed by inserting the CV di 

from category X in the middle position, thus creating the artificial word badite. The 

additional intervening syllables ku, to and pa from the X category thus rendered 

bakute, batote and bapate, with the first and the third syllable representing the non-

adjacency. By contrast, in the Segment Languages the trisyllabic words were formed 

by interleaving a frame of three segments with three different segments. In one of the 

Segment Languages, a frame of three consonants was interleaved with three vowels. 

Thus, the non-adjacent consonant frame p_g_t_ could take one of two vowel fillers 

[_a] [_i] [_ae] or [_o] [_u] [_e] creating the two artificial words pagitae and pogute, 

with the underlined consonant segments representing the non-adjacent regularities. 

In the other Segment Language, the vowel frame, for example _a_u_e, took the 

consonant fillers [p_] [g_] [t_] and [d_] [k_] [b_], rendering pagute and dakube.  

In the initial training phase, participants were exposed to the artificial 

language, which was presented aurally as a continuous string with no cues to indicate 

word boundaries. For the testing phase, participants were required to discriminate 

words from partwords in a 2-alternative-forced-choice test. Newport and Aslin were 

therefore testing their participants‟ ability to segment the speech stream based on the 

transitional probabilities between non-adjacent units rather than their ability to learn 
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non-adjacent dependencies. Partwords in their design were generated by either 

combining the final syllable of one word with the first two syllables of another 

(BiAjX), or by merging the final two syllables of one word with the first syllable of 

another (XBiAj). Each partword had therefore been presented during training. 

Successfully discriminating between words and partwords thus reflects the ability to 

track transitional probabilities between non-adjacent units. Newport and Aslin found 

that their participants were able to make the correct distinction between words and 

partwords in the Segment Languages only. One potential explanation they put 

forward is the Gestalt Principle of Similarity.  

The Gestalt theory posits organising principles according to which people 

group together elements, the Principle of Similarity being one of them. In line with 

this law, stimuli are naturally grouped together according to featural proximity 

despite what their spatial or temporal relationship might be (Wertheimer, 

1938/1944). A classic example used to illustrate the power of this similarity principle 

is shown in Figure 2.1.  

 

 

 

 

 

 

Figure 2.1: The Gestalt principle of lightness similarity. The 

visual is organised into separate columns of dark and light 

squares by the perceiver. Taken from Quinn, Burke and Rush, 

1993. 
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Here, when perceiving the pattern in 2.1, people are guided by the Gestalt 

Principle of Similarity, specifically of Lightness Similarity, and they thus tend to 

group the squares together according to featural similarity (in this case lightness of 

the squares). For this reason the pattern is perceived as four columns: Two columns 

of white squares interleaved by columns of black squares (Quinn, Burke & Rush, 

1993).  

Applying this organising principle to their materials, Newport and Aslin 

(2004) argue that learners are more inclined to form associations between non-

adjacent segments since all vowels share common features, as do all consonants. 

Crucially, all vowels are sonorous sounds, which are produced with a more open 

vocal tract, whereas consonants are segments that are produced with a more 

restricted vocal tract (O‟Grady, Dobrovolsky & Katamba, 1996). Thus, the reason 

why people fail to learn the Syllable Language, according to Newport and Aslin, 

might be due to the non-existence of obvious similarities between the relevant units 

of analysis. 

A closer look at the stimulus materials used in Peña, Bonatti, Nespor and 

Mehler‟s (2002) experiment reveal they too harnessed the Gestalt Principle of 

Similarity, albeit in a more subtle manner: Their trisyllabic AXB words were 

instantiated by lexical items such as [puliki], [beRaga] and [tafodu]. As Newport and 

Aslin (2004) point out, all the CV syllables that occur in the non-adjacent A_B 

dependency used by Peña et al. start with a plosive, whereas all X syllables have 

either an initial liquid (/l/) or fricative (/f/, /R/). Syllables from categories A and B 

thus share more features than they do with any of the X syllables. Participants in the 
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Peña et al. experiment therefore might have exploited Gestalt cues in addition to the 

aforementioned pause cues (see Chapter 3) to learn the non-adjacencies.  

Onnis, Monaghan, Richmond and Chater (2005) replicated and extended 

Peña et al.‟s findings. Across six experiments, Onnis et al. additionally manipulated 

the statistical and phonological information available to learners. In all experiments, 

participants were exposed to a continuous stream of synthesised speech to 

investigate whether the stream could be segmented using reliable transitional 

probabilities between non-adjacent elements. Much like in Peña et al., participants 

here were trained on A1XB1 words, with the non-adjacency holding between 

categories A and B. Each category included 3 CV syllables. On test, participants 

were required to discriminate words of the form AiXBi from partwords, of the form 

BiAjX or XBiAj. Their results indicate that phonological processing is the key to the 

successful detection of non-adjacencies during word segmentation. Participants 

showed a bias towards plosives as word onsets and they mis-segmented the speech 

stream when this was not the case. This bias could, however, be overcome by 

making use of the Gestalt Principle of Similarity: Segmentation based on non-

adjacent dependencies was thus successful as long as the dependent syllables were 

phonologically similar. So in this case, even if they started with continuants (and not 

plosives), the non-adjacencies were learnable. 

In a somewhat different design, Gómez (2002) investigated the acquisition of 

non-adjacent dependencies between artificial words (as opposed to segments and 

syllables). However, she also facilitated the identification of non-adjacent 

dependencies by harnessing the Gestalt Principle of Similarity. In her AL, the words 

forming the dependencies were all monosyllabic, whereas the words from category 
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X were bisyllabic (see Table 1.3, p.35). In doing this, Gómez included an additional 

cue to highlight the relevant units of analysis, which participants could have used to 

identify the regularities in question.  

AGL work has also been carried out on the learnability of centre-embedded 

structures of the form A3A2A1B1B2B3 (Bahlmann & Friederici, 2006; Fitch & 

Hauser, 2004; Friederici, Bahlmann, Heim, Schubotz & Anwander, 2006). These 

A
n
B

n
 structures produce nested dependencies and consequently non-adjacent 

dependencies across an arbitrary number of elements. Importantly, each unit from 

category A predicts a specific unit from category B (as indicated by the subscripts). 

These experiments are particularly relevant in the present context due to the stimulus 

materials used.  

Specifically, as noted in the previous chapter, the CV syllables used by Fitch 

and Hauser (2004) for category A were perceptually distinct from the syllables used 

for category B as the A syllables were spoken by a female voice and syllables in 

category B were spoken by a male voice. Thus, all stimuli within the same category 

were perceptually similar. This therefore means that Fitch and Hauser included an 

additional cue into their experimental design: The crucial A and B elements were not 

merely defined in terms of the grammar, but also the similarity between syllables 

(female voice versus male voice), which might have assisted participants in the 

completion of the task. Specifically, rather than extracting the grammar underlying 

sequences, participants could have simply counted the syllables spoken by a female 

voice and by the male voice. For the FSG, then, all that was required was for each 

CVFEMALE to be followed by a CVMALE. For the PSG, it would have been sufficient 

for participants to realise that there had to be as many syllables spoken by a female 
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as spoken by a male (i.e. CVFEMALE - CVFEMALE - CVFEMALE - CVMALE - CVMALE - 

CVMALE). This point was also raised by Perruchet and Rey (2005), who replicated 

this study and found that participants on test could not discriminate between 

A1A2A3B3B2B1 and A1A2A3B3B1B2 when one of the non-adjacencies was broken 

and the categories were not flagged by pitch differences. Thus, the way this 

experiment was set up means that strategies other than grammar learning could have 

accounted for the results (de Vries, Monaghan, Knecht & Zwitserlood, 2008). 

The same is true for the materials used by Friederici et al. (2006), whose A-

syllables all involved front vowels and were instantiated as {de, gi, le, ri, se, ne, ti, 

mi}, whereas their B-syllables ended in back vowels and comprised {bo, fo, ku, mo, 

pu, wo, tu, gu}. In both cases, human participants learnt the centre-embedded 

structure successfully. Again, Gestalt Principle of Similarity may well have assisted 

participants in acquiring the structures. 

Marcus, Vijayan, Bandi Rao and Vishton‟s (1999) research on abstract rule 

learning of ABB, AAB and ABA patterns using synthesised speech involved non-

adjacent repetitions of the same element (ABA). Marcus et al. found that 7-month 

old infants are capable of abstracting a rule and applying it to novel sequences, 

which is a powerful tool for language learning. However, non-adjacent repetitions of 

an element can be seen as an extreme application of the Gestalt Principle of 

Similarity as the repeated elements are not only similar to each other but in fact 

identical to each other. So again, featural similarity (or in this case sameness) may be 

playing an important role in participants‟ ability to compute non-adjacencies. An 

issue with regards to abstract rule learning concerns the repetition of identical units. 

Gómez, Gerken and Schvaneveldt, (2000) showed that adult participants are only 
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capable of abstracting a FSG to new vocabulary when the grammar includes repeated 

items. Thus, so they argue, people struggle to abstract sequential relationships 

between elements, but excel at generalising repetition patterns. Yet in terms of 

language learning it is argued here that the latter ability is of limited use. Language 

involves a plethora of category repetitions, however, natural language very rarely 

involves meaningful repetition patterns of identical units.  

The Gestalt Principle of Similarity has thus been frequently employed in 

previous research investigating non-adjacencies of different types. As described in 

Section 1.1, there are a myriad of examples for non-adjacent dependencies in natural 

languages. As Newport and Aslin (2004) point out, non-adjacent dependencies 

between segments do occur in natural languages. For instance, regularities between 

segments within words are central to the morphology of semitic languages, such as 

Hebrew and Arabic. Similarly, vowel harmony (to be described in detail in the 

following chapter), constitutes a non-adjacent dependency between vowels within 

words in languages, such as in Finnish and Turkish. Thus, in these instances the units 

participating in the non-adjacent regularities are indeed linked by featural similarity. 

However, there are many more types of non-adjacent dependencies found in natural 

languages, as discussed in detail in Chapter 1. Importantly, non-adjacencies 

specifically on the syntax-level (i.e. regularities between words) are not usually 

highlighted by additional cues (such as Gestalt cues) in natural languages. For 

example, in (1) The socks on the floor are red, the dependency holds between the 

noun and the verb. The regularity here therefore operates between words from two 

different syntactic categories, and it has been shown that words from different 

syntactic categories systematically differ in their phonological properties (Farmer, 

Christiansen & Monaghan, 2006).  
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To illustrate the issue even further, consider the wh-dependency presented in 

Chapter 1: 

(6) What did John buy   ?  

In this case, the non-adjacency operates between the wh-word in the 

sentence-initial position, and its syntactically associated extraction site (see 

underlined elements). Here, one part of the regularity receives a null-spellout (i.e. is 

invisible/ inaudible). Although in accordance with Minimalism, it might be argued 

that the trace the moved wh-word leaves at its extraction site is in fact identical to the 

wh-word itself and therefore similar, it nevertheless goes against Newport & Aslin‟s 

(2004) argument. Newport and Aslin use the Gestalt Principle of Similarity to 

explain their results by arguing that phonological similarity facilitates the 

identification of non-adjacencies. However, assuming there is indeed a trace left 

behind at the extraction site of the moved wh-word in (6), this trace is silent, i.e. not 

given a spellout. Due to the null-spellout in (6), there is no phonological, audible 

similarity between the relevant constituents, which is problematic for theories which 

posit a crucial role for the Gestalt Principle of Similarity in the acquisition and 

processing of non-adjacent dependencies.  

Non-adjacent dependencies in natural languages are thus frequently acquired 

without assistance from the Gestalt Principle of Similarity. For this reason, 

Experiment 1 was aimed at answering the following two research questions: (1) Can 

non-adjacent dependencies be learnt without additional Gestalt cues to make the 

relevant units more salient? (2) Does the inclusion of Gestalt cues improve non-

adjacency learning? Since the identification of structural regularities goes beyond 

stream segmentation as investigated by Newport & Aslin (2004), the present 
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experiment employed an AGL paradigm closely modelled on that employed by 

Gómez (2002), with a training phase and a subsequent grammaticality judgment test.  

It is important to note that Gómez‟s experiment was conducted in the 

auditory modality, whereas Experiment 1 was carried out in the visual modality. 

There are obvious differences between language instantiated in the visual and 

language instantiated in the auditory modality. One crucial difference concerns the 

fact that speech is perceived, analysed and produced at a much earlier age than 

written language. Although the use of and ability for language itself is inherently 

human, language in its written form is not: the ability to read and write must be 

specifically taught and requires more deliberate effort than language acquisition 

itself (O‟Grady, Dobrovolsky & Katamba, 1987). From an historical perspective, 

writing, as a symbolic representation of language, is also a much more recent 

development than language itself (O‟Grady, Dobrovolsky & Katamba, 1987).  

However, whether the origins of language are to be placed in the visual or 

auditory modality is to date a point of debate. The origins of language may therefore 

be either gestural, and thus visual, or vocal, and thereby auditory. The gestural 

origins of language are supported by Tomasello (2008) and Corballis (2003). 

Corballis argues that during hominin evolution, bipedalism allowed our predecessors 

to use their hands for communicative purposes. In this scenario, vocalisations were a 

secondary development, which emerged at a later stage as a side-effect of facial 

gestures. These were, according to Corballis, used as an addition to manual gestures, 

and proved useful when the hands became more and more occupied with tools. A 

crucial piece of support for the gestural origins of language are in fact primate 

vocalisations as these seem to be predominantly involuntary used to signal warning 
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or mating (Corballis, 2003; Goodall, 1986). As such, from this perspective, the vocal 

origins of language seem inadequate to explain the emergence of language, an 

intentional communication tool.  Dunbar (2003) argues against the gestural 

hypothesis as the visual modality is more restricted than the auditory modality in as 

much as that gestural communication in the dark is impossible and reaches fewer 

individuals than vocal communication. According to Dunbar (2003) and Aiello and 

Dunbar (1993), the evolution of fully-fledged human language was a gradual 

process, which may have originated in contact calls that served to maintain social 

contacts between individuals in a similar way that primate grooming does. This 

therefore allowed individuals to communicate (and, in essence, groom) a number of 

individuals at the same time.  

Spoken and written language also differ significantly with regards to 

processing. The most crucial difference in the present context is the fact that speech 

is, by its very nature, a sequentially structured signal, whereas written language is 

not. Eye-tracking experiments have shown that during reading, people do not run 

their eyes smoothly over the text (Reichle, Rayner & Pollatsek, 2003). Rather, a 

combination of fixations and saccadic movements mean that readers tend to skip a 

number of characters or even words and pay more attention to specific lexical items. 

In reading English, people move their eyes from left to right most of the time, and 

fixate content words (Liversedge & Findlay, 2000). Importantly, 15% of the time, 

reading involves back-tracking and thereby moving the eyes from right to left when 

reading English, which can assist sentence comprehension (Liversedge & Findlay, 

2000). This is not possible in the auditory modality, where the stimuli must be 

processed instantaneously. For the present experiment, the materials were initially 

presented for the following two reasons: (1) the visual modality allows for direct 
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translation of the linguistic stimulus materials into the non-linguistic domain (this is 

particlualrly important for Chapter 4, and this will be discussed in detail in Chapter 

7), and (2) simultaneous visual presentation allows participants to process each string 

thoroughly by re-reading if necessary.  

Due to the obvious differences between written and spoken language discussed 

above, the issue of modality will be further investigated in Chapter 5. 

 

2.1.1 Method 

In order to determine the relevance of the Gestalt Principle of Similarity in 

the acquisition of non-adjacent dependencies, this AGL experiment included two 

conditions that differed with regards to available cues: The +Gestalt condition 

included a length cue in line with Gómez (2002), whereas the –Gestalt condition did 

not. The prediction was that including a Gestalt cue would facilitate the detection of 

the underlying grammar by highlighting the relevant units of analysis. However, it 

was also predicted that non-adjacent dependencies would be learnable in the absence 

of Gestalt cues as this is the case for many types of non-adjacent dependencies in 

natural languages. The grammar along with all lexical instantiations used can be 

found in Section 2.1.1.2. 

2.1.1.1 Participants 

A total of 56 adult participants were recruited from Northumbria University campus 

and from our research centre‟s pool of regular experimental participants. 24 of the 

participants were randomly assigned to the +Gestalt condition, and 32 to the –Gestalt 
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condition. All participants were native speakers of English, and they either received 

course credit or £4.50 for participating.  

2.1.1.2 Materials 

The ARC Nonword database (Rastle, Harrington & Coltheart, 2002) and the MRC 

Psycholinguistic database
66

were utilised to generate a large number of CVC 

nonwords. These nonwords (under the exclusion of slang words and colloquialisms) 

were then individually checked for the lowest possible frequencies via Google.co.uk. 

The artificial words that rendered the smallest number of hits (between 

approximately 6,000 and 300,000) were then filtered even further. Although it was 

impossible to completely avoid using phonological neighbours of English words, 

artificial words that only differed from English words by one phonetic feature were 

excluded, yet artificial words that form minimal pairs with English words were not. 

For example, lum, which forms a minimal pair with sum, was included, whereas 

zum, which only differs from sum in that the initial fricative is voiced, was not 

included in the final set of artificial words for the –Gestalt condition. Particular care 

was taken when deciding on the artificial words that were to form the dependencies. 

None of the relevant words form minimal pairs, and – unlike in Peña Bonatti, Nespor 

and Mehler‟s (2002) design – none of them start with the same consonant. For the 

+Gestalt condition, an additional VC suffix was attached to the present CVC words, 

again ensuring low frequencies via Google and avoiding very close phonological 

neighbours where possible. All artificial words for both conditions can be found in 

Section Tables 2.1 and 2.2.  

                                                           
6
 http://www.psy.uwa.edu.au/MRCDataBase/uwa_mrc.htm 
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The grammar for both conditions was based on Gómez‟s (2002) grammar for 

the largest set size of 24 (see Table 1.3, p.35), and is displayed in Table 2.1 below.  

 

S1 aXd 

S2  bXe 

S3  cXf 

-Gestalt condition +Gestalt condition 

L1 L2 L1 L2 

a lum 

b zel 

c vok 

d fip 

e pof 

f gam 

a nis 

b jad 

c fet 

d huk 

e zin 

f gos 

a lum 

b zel 

c vok 

d fip 

e pof 

f gam 

a nis 

b jad 

c fet 

d huk 

e zin 

f gos 

X  {fet, fub, fum, 

gos, huk, hup, jad, 

jeg, lek, lep, lig, 

lof, lud, nis, nug, 

nup, pif, pir, taf, 

vam, vek, zec, zin, 

zog} 

X  {fip, fub, 

fum, gam, hup, 

jeg, lek, lep, lig, 

lof, lud, lum, nug, 

nup, pif, pir, pof, 

taf, vam, vek, vok, 

zec, zel, zog} 

X  {fetac, fubal, 

fumox, goseg, 

hukig, hupet, jadif, 

jegin, lekiv, lepod, 

ligop, lofuz, ludem, 

nisur, nugom, 

nupaf, pifar, piruk, 

tafep, vamex, 

vekas, zecid, zinev, 

zogik} 

X  {fipul, fubal, 

fumox, gamuc, 

hupet, jegin, lekiv, 

lepod, ligop, lofuz, 

ludem, lumot,  

nugom, nupaf, 

pifar, piruk, pofus, 

tafep, vamex, 

vekas, vokaz,  

zecid, zelon, 

zogik} 

 

Both conditions included two Languages, L1 and L2, which differed in their 

assignment of words to categories in order to control for arbitrary preferences for 

specific lexical items. The artificial words forming the non-adjacent dependencies 

were all monosyllabic CVC words, and the non-adjacencies were identical across 

both conditions.  

Table 2.1: Underlying grammar for Experiment 1 (top). Lexical items used in L1 and L2 for both 

conditions are given below. 
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The crucial manipulation in this experiment involved category X. In the –

Gestalt condition, all 24 X items were instantiated as CVC words, thereby exhibiting 

no obvious featural differences that would distinguish them from the words making 

up the dependencies. The +Gestalt condition replicated Gómez‟s experiment by 

using bisyllabic X elements. An example string for the –Gestalt condition is lum fet 

fip, with all items being monosyllabic CVC words. The equivalent string in the 

+Gestalt condition is lum fetac fip. The bisyllabic words from the X category in this 

condition therefore represented instantiations of the Gestalt cue, which might 

highlight the non-adjacencies between monosyllabic elements.  

Stimuli in both conditions were presented visually, on a white computer 

screen. Since this experiment investigated non-adjacencies on the syntax-level, each 

CVC word within one sequence was separated from the next by a space. Each 

sequence was presented for 2500ms, with 1000ms pauses (blank screen) between 

each string (see Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

Time 

 

 

vok nis gam 

 

 

lum fet fip 

Figure 2.2: Schematic illustration of the simultaneously presented strings (black print on a 

white background), with each string being separated by a 1000ms presentation of a blank 

screen. 
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Since it has been shown that the acquisition of non-adjacencies in the 

linguistic domain can be challenging and subject to a number of different constraints, 

such as variability (Gómez, 2002; Onnis, Christiansen, Chater & Gómez, 2003; 

Onnis, Monaghan, Christiansen & Chater, 2004), pause cues (Peña et al., 2002) and 

processing space (Santelmann & Jusczyk, 1998; Höhle, Schmitz, Santelmann & 

Weissenborn, 2006), all three artificial words of each sequence for this experiment 

were presented simultaneously. 

Saffran (2002) proposed that simultaneous presentation of materials 

facilitates the detection of structural regularities, which therefore suggests that 

visual, simultaneous presentation should increase participants‟ chances of learning 

the non-adjacencies.  

The experiment was designed using the software package Slide Generator
7
.
7
 

2.1.1.3 Procedure 

In the initial training phase, which lasted approximately 20 minutes, 

participants were either exposed to L1 or L2 (with an equal number of participants 

taking part in both). In both languages, they viewed a total of 216 sequences, since 

each of the 24 X elements appeared in each of the three dependencies three times (24 

x 3 x 3). Sequences were presented in random order. Participants were merely asked 

to pay careful attention while a large number of sequences, consisting of three made-

up words, appeared on the computer screen. They were informed that the training 

would be followed by a test involving these sequences. There were two opportunities 

for participants to take a brief break during the training phase. 

                                                           
7
 http://www.psy.plymouth.ac.uk/research/mtucker/slidegenerator.htm 
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Before participants continued with the testing phase, they were told that the 

sequences from the training followed a specific rule, and that for each sequence that 

appeared on the screen during the test, they would have to decide whether or not it 

followed the same rule as the strings from the training. Responses were indicated by 

key press with their dominant index finger. The V and B keys on the keyboard 

served as “yes” and “no” keys and were therefore marked with either “Y” or “N”. 

Assignment of “Y” and “N” to the keys was counterbalanced across participants. 

Participants were advised to rest their finger on the table, at an equal distance to both 

the “Y” and “N” keys. Although participants had a total of 10s to make their decision 

for each string, they were advised to respond as quickly as possible. 

Gómez (2002) did not test to see whether her participants were able to apply 

the extracted grammar to sequences which were grammatical yet contained novel 

words: All test sequences in her experiment were either grammatical and familiar 

(i.e. presented during training), or ungrammatical and therefore novel. However, 

since generalising to sequences involving novel words is a defining feature of 

language and thus a crucial aspect of language learning, participants in the present 

experiment were tested on sequences containing both familiar and novel X items, 

much like in Onnis, Monaghan, Christiansen and Chater‟s (2004) design. Thus, in 

the present experiment, half of the X items participants were familiarised with during 

training were replaced with entirely unfamiliar X items, thereby eliminating the 

possibility of participants merely memorising individual sequences. In both 

conditions, L1 and L2 were divided into sub-groups, a and b. The sub-groups 

differed with regard to which X elements were replaced by novel ones, and with 

regard to the illegal endpoint for the grammatical violations (see Table 2.2, below, 
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for both sub-groups in the +Gestalt and –Gestalt conditions). Grammatical test 

strings followed the grammar shown in Table 2.1 (p.59). 

 

 

L1 L2 

Version a Version b Version a Version b 

*aXf 

*bXd 

*cXe 

*aXe 

*bXf 

*cXd 

*aXf 

*bXd 

*cXe 

*aXe 

*bXf 

*cXd 

X+Gest_fam  zinev, 

ligop, goseg, vamex, 

vekas, fetac, lekiv, 

nupaf, piruk, fubal, 

ludem, hukig 

 

X+Gest_nov  habec, 

natuf, jafen, zepak, 

jevat, pesir, hinug, 

jukel, rudil, zomun, 

noseg, vugap 

X+Gest_fam  nisur, 

lofuz, zokig, jadif, 

tafep, jegin, zecid, 

lepod, fumox, 

nugom, hupet, pifar 

 

X+Gest_nov  kamut, 

narel, larof, wemic, 

tegor, kebam, jufis, 

musov, dovad, 

vogud, gubip, gedok 

X+Gest_fam  ligop, 

lofuz, tafep, vekas, 

lekiv, nupaf, piruk, 

fubal, ludem, fipul, 

zelon, vokaz 

 

X+Gest_nov  habec, 

natuf, jafen, zepak, 

jevat, pesir, hinug, 

jukel, rudil, zomun, 

noseg, vugap 

X+Gest_fam  pifar, 

zogik, vamex, jegin, 

zecid, lepod, fumox, 

hupet, lumot, pofus, 

gamuc, nugom 

 

X+Gest_nov  kamut, 

narel, larof, wemic, 

tegor, kebam, jufis, 

musov, dovad, vogud, 

gubip, gedok 

X-Gest_fam  zin, lig, 

gos, vam, vek, fet, lek, 

nup, pir, fub, lud, huk 

 

X-Gest_nov  hab, nat, 

jaf, zep, jev, pes, hin, 

juk, rud, zom, nos, 

vug 

X-Gest_fam  nis, lof, 

zog, jad, taf, jeg, zec, 

lep, fum, nug, hup, 

pif 

X-Gest_nov  kam, 

nar, lar, wem, teg, 

keb, juf, mus, dov, 

vog, gub, ged 

X-Gest_fam  lig, lof, 

taf, vek, lek, nup, pir, 

fub, lud, fip, zel, vok 

 

X-Gest_nov  hab, nat, 

jaf, zep, jev, pes, hin, 

juk, rud, zom, nos, 

vug 

X-Gest_fam  pif, zog, 

vam, jeg, zec, lep, 

fum, hup, lum, pof, 

gam, nug 

X-Gest_nov  kam, nar, 

lar, wem, teg, keb, juf, 

mus, dov, vog, gub, 

ged 

 

Table 2.2: Grammatical violations used in the testing phase for versions a and b in both L1 and L2 

(top). Familiar (i.e. encountered in the training phase) and novel (i.e. never before seen) words for the 

+Gestalt and –Gestalt conditions. The same lexical items were used for both grammatical and 

ungrammatical sequences.  
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In the test, each of the three dependencies occurred with 12 familiar and 12 

novel X elements, as did each violated dependency, rendering a total of 144 test 

items ((3 dependencies + 3 violated dependencies) * 24 X elements).  

The testing phase usually lasted approximately 25 minutes. Importantly, the 

testing phase here was much more comprehensive than the testing phase in Gómez‟s 

design. For her experiment involving adult participants, the testing phase required 

them to make grammaticality judgements for a total of 12 strings, 6 grammatical and 

6 ungrammatical. The present experiment, with 144 test items would thus result in a 

much more reliable assessment of people‟s abilities with regard to the extraction of 

non-adjacent dependencies.  

 

2.1.2 Results 

Table 2.3 reports the mean percentage endorsements for grammatical and 

ungrammatical sequences, involving familiar and novel X words across the +Gestalt 

and –Gestalt condition.  

 

Condition Grammaticality Familiarity % endorsements SD 

+Gestalt 

grammatical 
familiar 74.65 20.07 

novel 62.38 25.56 

ungrammatical 
familiar 44.68 31.70 

novel 30.44 23.32 

-Gestalt 

grammatical 
familiar 67.80 16.39 

novel 51.65 23.75 

ungrammatical 
familiar 45.31 23.13 

novel 30.47 19.02 

 

Table 2.3: Mean percentage endorsements for grammatical and ungrammatical strings, involving 

familiar and unfamiliar X items, across both conditions. 



2. The acquisition of non-adjacencies in the linguistic domain 

 

 

65 

 

In order to check whether Subgroups (L1a, L1b, L2a, L2b) should be 

included as a factor in the subsequent analysis, two One-Way ANOVAs were 

conducted on the overall correct responses for both conditions. First, a One-Way 

ANOVA contrasting performances in L1a, L1b, L2a, L2b was carried for the 

+Gestalt condition. An alpha level of p < .05 was employed for this ANOVA and for 

all following analyses unless stated otherwise
8
.
8
Since no significant differences were 

found for correct responses, F(3, 20) = 1.29, p = .305, all +Gestalt sub-groups were 

pooled together for further analyses. Similarly, a One-Way ANOVA for the –Gestalt 

condition resulted in a non-significant effect, F(3, 28)  = .185, p =.906, and 

consequently all these sub-groups were combined for further analyses.  

A 2 x 2 x 2 ANOVA was carried out to contrast the percentage of test 

sequences participants endorsed across the +Gestalt and –Gestalt conditions, with 

Condition as a between-subjects factor, and Familiarity with X (familiar, novel) and 

Grammaticality (grammatical, ungrammatical) as within-subjects factors. The full 

ANOVA table can be found in Appendix B (Table 1). The analysis resulted in two 

main effects. 

The main effect for Grammaticality, F(1, 54) = 28.49, p < .001 is due to the 

fact that participants accepted significantly more grammatical (64.12%) than 

ungrammatical (37.72%) sequences, regardless of all other factors. This shows that 

overall, participants succeeded at extracting the non-adjacent dependencies (see 

Figure 2.3A).  

                                                           
8 

For the present ANOVAs, as for all subsequent ANOVAs presented in this thesis, should the 

assumption of equal variances be violated, the significant Levene‟s test will be reported along with 

the Welch F ratio. 
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The main effect for Familiarity, F(1, 54) = 48.54, p < .001, demonstrates that, 

regardless of the grammaticality of the sequences, participants favoured strings 

containing familiar X units as they endorsed 58.11% familiar sequences as opposed 

to 43.74% of strings with novel X elements (see Figure 2.3B). 

 

 

 

 

 

 

 

 

 

The overall ANOVA revealed no further significant effects or interactions. 

There was thus no significant between-subjects effect (i.e. no effect for Condition), 

F(1, 54) = 2.02, p = .161, indicating that the overall endorsement rates across both 

conditions do not differ significantly. Importantly, there was also no significant 

Grammaticality x Condition interaction (F(1, 54) = .85, p = .360). This, in 

combination with the main effect for Grammaticality shows that participants in both 

conditions successfully discriminated between grammatical and ungrammatical 

sequences and therefore successfully extracted the non-adjacent dependencies. As 

shown in Figure 2.4 (p.68), participants who received assistance from the Gestalt 

 
 

 

 

 
 

Figure 2.3: Main effect for Grammaticality (A) and Familiarity (B), with standard error bars 

(+/- 1 SE). The horizontal line indicates 50% chance performance. In both conditions, 

participants endorsed significantly more grammatical strings than ungrammatical strings 

(A), as well as significantly more familiar than unfamiliar strings (B).  
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Principle of Similarity accepted slightly more grammatical strings compared with 

participants who had no additional Gestalt cue, yet this difference (Grammaticality x 

Condition interaction) was non-significant.  

The overall analysis is aimed at determining whether the underlying grammar 

was learnt. In order to confirm the main effect for Grammaticality, two separate 

paired-samples t-tests were conducted to contrast percentage endorsements with 

grammatical strings against percentage endorsements with ungrammatical strings, 

separately for both conditions. Since two t-tests were conducted, a manually 

corrected alpha-level of α = .05/2 = .025 was employed. The results from the t-tests 

show that endorsement rates between grammatical and ungrammatical sequences 

differed significantly across both conditions (see Table 2.4).  

 

 

Condition Grammaticality % endorsements Statistic 

+Gestalt 
grammatical 68.51% (21.72 SD) 

t(23) = 3.83, p = .001 
ungrammatical 37.56% (26.23 SD) 

-Gestalt 
grammatical 59.72% (18.46 SD) 

t(31) = 3.61, p = .001 
ungrammatical 37.89% (19.75 SD) 

 

As a follow-up, it was important to ensure that endorsement rates for 

grammatical and ungrammatical were significantly different from chance, as this 

would further confirm that the underlying non-adjacencies were indeed extracted. 

Thus, one-sample t-tests were run on the endorsement rates with grammatical and 

ungrammatical sequences. Participants in the +Gestalt condition, t(23) = 4.18, p < 

.001 (68.52%, 21.72 SD), as well as in the –Gestalt condition, t(31) = 2.98, p = .006 

Table 2.4: Mean percentage endorsements for grammatical and ungrammatical strings, along 

with results from the paired samples t-tests, for sequences containing familiar and unfamiliar 

X items.  
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(59.72%, 18.46 SD) accepted significantly more than 50% of grammatical strings. 

Importantly, endorsements for ungrammatical strings were significanlty below 

chance performance in the +Gestalt, t(23) = 2.32, p = .029 (37.56%, 26.23 SD) and 

in the –Gestalt, t(31) = 3.47, p = .002 (37.89%, 19.75 SD).  These results therefore 

confirm that the underlying non-adjacencies were identified equally well in both 

conditions (see Figure 2.4). 

 

 

 

 

 

 

 

 

 

 The main effect for Familiarity clearly demonstrates the importance 

of including novel X elements in the test sequences. The present results indicate that 

familiarity with the surface form of the test items affects participants‟ ability to base 

their grammaticality judgements exclusively on the grammaticality of the test 

sequences. Abstracting the non-adjacency rule and applying it to novel test strings 

thus poses a genuine challenge for learners.  

 
 

 
 

Figure 2.4: Percentage endorsements for grammatical and ungrammatical sequences across 

both conditions, with standard error bars (+/- 1 SE). The horizontal line across indicates 

50% chance performance. Asterisks indicate performance significantly different from 

chance. 

* 

* * 
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2.1.3 Discussion 

The correct identification of units over which regularities operate is a crucial 

aspect of language learning. Regularities that hold between words separated by a 

number of intervening words are a defining feature of the hierarchical structure 

underlying natural languages. Yet despite this, the acquisition of non-adjacent 

dependencies has previously been found to be a challenge for language learners, and 

it has therefore been suggested that a number of additional cues may facilitate the 

detection of non-adjacencies, the Gestalt Principle of Similarity being one of them 

(Newport & Aslin, 2004).  

The purpose of this experiment was therefore to investigate the importance of 

the Gestalt Principle of Similarity in the acquisition of non-adjacent dependencies. 

Specifically, it aimed at investigating whether non-adjacent dependencies could be 

learnt without assistance from the Gestalt Principle of Similarity, and whether the 

Gestalt cue improves learning.  

If being able to track these regularities were indeed due to Gestalt cues, 

participants in the +Gestalt condition would be expected to significantly outperform 

participants in the –Gestalt condition. As illustrated in Figure 2.3A (p. 66) as well as 

by the absence of a significant Condition x Grammaticality interaction, this is not the 

case. Crucially, the absence of this interaction also demonstrates that Gestalt cues do 

not increase the learnability of non-adjacent dependencies between words. 

Participants in both conditions reliably distinguished grammatical from 

ungrammatical sequences (see Table 2.4, p.67), showing that the underlying 

grammar was detected in both conditions. Thus, the salient length cue as used by 

Gómez (2002) is not an essential constraint governing regularities between non-



2. The acquisition of non-adjacencies in the linguistic domain 

 

 

70 

 

adjacent words. The present findings therefore challenge previous assumptions that 

the detection of non-adjacencies is constrained by the Gestalt Principle of Similarity 

(Newport & Aslin, 2004). At the same time, however, these findings are perhaps 

unsurprising, given that, as discussed earlier, in natural languages, there are not 

always obvious Gestalt cues that assist learners in the detection of non-adjacent 

regularities between words, and thus assuming them to be a requirement seems 

counter-intuitive. 

There are two crucial differences between the present experiment and 

Newport and Aslin‟s as well as Peña, Bonatti, Nespor and Mehler‟s (2002). Firstly, 

the present experiment tested people‟s capacity to extract non-adjacent dependencies 

whereas Newport and Aslin‟s and Peña et al.‟s experiments were segmentation tasks. 

It is thus possible that the cognitive mechanism employed in learning non-

adjacencies is distinct from the one recruited for stream segmentation. Secondly, and 

more probably, Newport and Aslin and Peña et al. only used a very limited set size 

for their X items, which did not offer sufficient variability between adjacent 

elements to disrupt element-to-element transitional probabilities and consequently 

guide people‟s attention toward more reliable structures within the input, i.e. the 

non-adjacencies. Thus, additional salient cues, such as Gestalt cues, were required 

for participants to detect the underlying structure in their experiments. Non-adjacent 

dependencies in natural languages occur across a large variety of intervening words, 

and thus it seems reasonable to replicate this fact in the experimental design. Non-

adjacencies between words can be extracted when high variability of the intervening 

element is ensured (Gómez, 2002). 
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However, despite the grammar being learnt, the present findings further 

support the claim that non-adjacencies are difficult to detect. Participants viewed all 

three items for each sequence simultaneously, and there were obvious gaps between 

individual words. On the surface of it, this would seem to facilitate the detection of 

the non-adjacencies as this presentation immediately offers the correct level of 

analysis, i.e. regularities occurring between words. However, even with the inclusion 

of this gap cue, overall endorsement with grammatical strings in the +Gestalt 

condition was around 70%, and around 60% in the –Gestalt condition. Although 

these endorsement rates are significantly above chance level, they are not as high as 

in Gómez‟s experiment, who reports a mean percentage endorsements of 100 for 

grammatical strings for adult participants in set size 24. A possible explanation for 

the discrepancy found between endorsements with grammatical sequences in this 

experiment and Gómez‟s findings might be due to modality or mode of presentation. 

There is a possibility people might be equipped with particularly strong learning 

biases for aurally presented sequences, which do not carry over into the visual 

modality and simultaneous presentation. The issues of mode of presentation and 

modality-specificity are addressed in Chapters 4 (specifically Experiment 4) and 5.  

Furthermore, the introduction of novel X elements to the testing phase 

significantly affected performance. As can be seen in Figure 2.3B (p.66), participants 

were generally more inclined to endorse with familiar sequences. In the +Gestalt 

condition, people accepted grammatical strings approximately 30% more often than 

ungrammatical strings, regardless of whether the X item was familiar or novel (see 

Table 2.3, p.64). This pattern of results resembles the –Gestalt condition, where the 

difference between endorsements with grammatical and ungrammatical sequences 

also remains constant, at approximately 20%, regardless of familiarity with X. 
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Crucially, however, even under the best possible conditions, i.e. strings containing 

familiar X words in the +Gestalt condition, endorsements for grammatical test items 

still only reaches 75%. The inclusion of novel X items was thus an important 

manipulation as it aimed at testing participants‟ ability to extract the non-adjacent 

regularities and to apply the underlying grammar to unfamiliar sequences. What this 

manipulation revealed was that the acquisition of non-adjacencies in the present 

design truly was a challenge for the learners. These findings therefore show that in 

AGL experiments, testing people‟s ability to generalise to new instantiations is 

relevant to assessing their ability to extract the underlying grammar. 

 

2.2 Concluding remarks 

In conclusion, this experiment supports the view that the Gestalt principle of 

Similarity does not act as a constraint on non-adjacency learning in the visual 

modality, using linguistic stimuli. Non-adjacencies in natural languages can take 

many different forms, and hold between elements that do not display featural 

similarity on the phonetic level, and thus these findings conform with the 

expectations laid out earlier. The present experiment thus challenges findings on 

non-adjacency learning to date (Gómez, 2002; Newport & Aslin, 2004; Peña, 

Bonatti, Nespor & Mehler, 2002) as it found that (1) non-adjacencies between words 

can be acquired without assistance from the Gestalt cue, (2) Gestalt cues do not 

improve learnability of non-adjacent dependencies.  Experiment 1 also shows that 

tracking remote dependencies between words is a demanding task, specifically when 

participants are required to apply the learnt grammar to novel sequences.  
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However, since the visible gaps between individual words might have 

rendered the relevant units of analysis more salient in these experiments, thus 

reducing the need for a Gestalt cue, the following chapter will investigate people‟s 

ability to track on-adjacent regularities in the visual modality when there are no 

interword breaks. 
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Chapter 3 

 

The role of break cues in non-adjacency learning in the 

linguistic domain  

 

The previous chapter showed that regularities between non-adjacent monosyllabic 

words are reliably detected in simultaneously presented sequences in the visual 

modality. However, the materials in Experiment 1 displayed interword breaks. These 

breaks separated each CVC word from the next in each string, which could have 

acted as a helpful cue to participants on test. For example, in the sequence lum fet 

fip, the breaks between lum and fet and between fet and fip may have indicated that 

the relevant structures underlying the sequences are to be found between words (as 

opposed to between graphemes, for instance). Thus, the sequences in Experiment 1 

were presegmented in a way that may have assisted participants in determining what 

level of analysis the crucial units are on. The aim of this chapter is therefore to 

explore the limitations of the human capacity to detect non-adjacencies in the 

linguistic domain by manipulating these break cues. 
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As mentioned in the previous chapter, similarly to Saffran, Aslin and 

Newport (1996), Newport and Aslin (2004) also investigated adults‟ performance in 

discriminating words from partwords, yet with the underlying structural regularity in 

this case being non-adjacent dependencies. Their findings (non-adjacencies between 

segments within an artificial word are learnable, non-adjacencies between syllables 

of an artificial word are not learnable) are discussed in light of Gestalt cues in 

Experiment 1. This issue regarding the acquisition of non-adjacencies within words 

will be revisited in this chapter, and examined from a different perspective.  

 

3.1. Experiment 2 

Breaking the fluent speech stream into meaningful units is an enormous challenge 

for infants acquiring their native language or even for L2 learners. When exposed to 

an entirely novel language (as is the case for infants acquiring L1 and for L2 

learners), the absence of obvious pauses between words in speech obscures 

boundaries between individual elements, which makes the correct identification of 

words difficult.  As mentioned in Chapter 1, Saffran, Aslin and Newport (1996) 

showed that infants are capable of harnessing the statistical structure underlying an 

unsegmented, aurally presented AL to determine word boundaries. Transitional 

probabilities between adjacent speech sounds thus act as a reliable cue in word 

segmentation. Similarly, non-adjacent regularities between CV syllables can also be 

harnessed for speech stream segmentation (Onnis, Monaghan, Richmond & Chater, 

2005). 

However, the mechanisms involved in discriminating words from partwords 

based on probabilistic transitions between certain elements may be fundamentally 
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different from extracting non-adjacent regularities between specific units in an AGL 

paradigm. For one, speech stream segmentation is about identifying words, whereas 

the paradigms, such as the one employed in Experiment 1 and in the present 

experiment, investigate the extraction of non-adjacencies on the syntax-level. 

Moreover, for the stream segmentation tasks, participants are usually required to 

discriminate between words and partwords (or sometimes non-words). By contrast, 

the AGL paradigm used throughout this thesis involves extraction of dependencies 

between a total of 6 units, and this knowledge is then directly tested in the 

grammaticality judgments. Importantly, Experiment 1 (as all of the following AGL 

experiments presented in the following chapters) also tested participants‟ ability to 

abstract the internalised regularities to sequences containing novel X items, whereas 

segmentation tasks typically only investigate people‟s knowledge of the AL 

encountered during training.  

Despite these obvious differences, it is important to note that in segmentation 

tasks involving non-adjacencies, pause cues have been shown to play a significant 

role (Peña, Bonatti, Nespor & Mehler, 2002). Mueller, Bahlmann and Friederici 

(2008) further explored the Peña et al. finding by using ERPs. In an aural AGL 

paradigm, they trained and subsequently tested participants on AXB sequences. In 

this experiment, each category (A, B and X) contained artificial CVCV words, and 

on test participants were required to make grammaticality judgements on sequences 

of either the form AXB (grammatical) or AXX
99

(ungrammatical). In doing this, 

Mueller et al. investigated people‟s ability to identify structural, non-adjacent 

regularities between word-like units rather than people‟s ability to segment a 

linguistic stream based on non-adjacent regularities between syllables of one word as 

                                                           
9
 Note that these two X elements were not identical. 
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was done by Peña et al. A crucial manipulation in the Mueller et al. design involved 

pause cues, with one condition containing a 500ms pause between sequences, 

thereby clearly indicating the boundaries between each AXB string, and with one 

condition lacking pauses and thus consisting of one continuous stream. Their 

findings indicate that the pause cues were required for participants to fully acquire 

the non-adjacencies. So, in their experiment, it was not individual words that were 

highlighted by pause cues. Rather, Mueller et al. argue that people require some 

indication as to where phrase boundaries (i.e. boundaries between each AXB 

sequence) lie in order to correctly identify non-adjacent dependencies.  

Further evidence for the importance of pause cues comes from research on 

linguistic disfluencies. Silent pauses can have a number of physiological causes, but 

from a cognitive perspective, silences in speech production are frequently associated 

with problems of lexical retrieval (Butterworth, 1980; Kircher, Brammer, Levelt, 

Bartels & McGuire, 2004). However, silent pauses also have an effect on the 

listener‟s processing. Zellner (1994) suggests that silent pauses produced by fluent 

speakers will usually occur at prosodic or syntactic boundaries, and occupy a 

“beacon” (p.47) position within the speech stream. The purpose of these interword 

breaks would be to assist the speaker as well as the listener in segmenting the speech 

stream and thereby facilitating comprehension. Language, when presented aurally, is 

a temporally sequential signal, and silent pauses disrupt this temporal structure and 

disconnect the following word from the preceding context. Using an ERP paradigm, 

MacGregor, Corley and Donaldson (forthcoming) have shown the effects these 

disruptions have on listeners, and particularly two findings are relevant here: (1) 

silent pauses attenuate the N400 effect and (2) they boost recognition memory for 

words directly following the silences. The N400 effect refers to a brain signature, 
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which indicates the difficulty people face when trying to integrate an unpredictable 

word. MacGregor et al. hypothesise that silent pauses and the disruption to the 

speech signal cause the hearer to prepare for an unexpected target word and thereby 

reduced the N400. This demonstrates that pauses in the speech stream have 

significant consequences for the listener. 

Although pauses in the auditory modality differ perceptually from breaks in 

the visual modality, the interword breaks found in the materials for Experiment 1 

could nevertheless have been helpful to the participants. Not only could they have 

given an indication of the fact that the important regularities occurred on the phrase 

structure level (i.e. between words as opposed to between graphemes, for example), 

but also, in line with MacGregor et al., there is a possibility that these breaks 

increased the salience of the following word.  

The aim of the present experiment was therefore to explore the limits of non-

adjacency learning by specifically manipulating the break cues in the materials used 

for the –Gestalt condition in Experiment 1. In the One-word condition, interword 

breaks were eliminated, thus creating one CVCCVCCVC word (as opposed to a 

CVC CVC CVC string as in Experiment 1).  According to the literature discussed 

above, it would make sense to assume that eliminating the breaks would reduce 

people‟s ability to detect individual words as easily and consequently may affect the 

extraction of non-adjacencies, since the relevant units over which the non-

adjacencies operate are less obvious. The present experiment further included a 

Nine-letter condition, which involved equal breaks between each grapheme (i.e. C   

V   C   C   V   C   C   V   C strings). The materials in this condition also eliminated 

the helpful pauses found in the –Gestalt condition of Experiment 1, without making 
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the surface form of strings appear as single words. The research questions to be 

answered in Experiment 2 thus are: (1) Does the elimination of helpful interword 

breaks affect people‟s ability to extract non-adjacencies? and (2) Does the insertion 

of unhelpful inter-grapheme breaks make the detection of non-adjacent dependencies 

harder? 

 

3.1.1 Method 

3.1.1.1 Participants 

48 Northumbria University students participated in this experiment. The 39 adult 

females and 9 adult males were randomly assigned to one of two conditions (One-

word, Nine-letter), for later comparisons with the –Gestalt condition. All were native 

speakers of English, and they received either £4.50 or course credit for taking part.  

3.1.1.2 Materials 

For this experiment, the same underlying grammar was employed as in Experiment 

1, and the materials were based on the stimuli used for the –Gestalt condition. The 

crucial difference regarded the breaks between words. The helpful breaks between 

each CVC word from the –Gestalt condition in Experiment 1 were removed for the 

One-word condition, thereby forming CVCCVCCVC strings. For the Nine-letter 

condition, breaks were inserted between each grapheme. The non-adjacent 

dependencies still operated between the first and final CVC sequence of each string. 

Table 3.1 illustrates how materials for the One-word and Nine-letter conditions were 

derived from the –Gestalt condition.  
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Experiment 1 Experiment 2 

-Gestalt One-word Nine-letter 

lum fet fip 

*lum fet gam 

lumfetfip 

*lumfetgam 

l   u   m   f   e   t   f   i   p 

*l   u   m   f   e   t   g   a   m 

nis fet huk 

*nis fet gos 

nisfethuk 

*nisfetgos 

n   i   s   f   e   t   h   u   k 

*n   i   s   f   e   t   g   o   s 

fet taf gos 

*fet taf zin 

fettafgos 

*fettafzin 

f   e   t   t   a   f   g   o   s 

*f   e   t   t   a   f   z  i   n 

 

3.1.1.3 Procedure 

The procedure was identical to the one used in Experiment 1 in all respects except 

the stimulus materials. Participants were thus trained on 216 visually presented 

sequences of either the One-word or Nine-letter condition, and subsequently tested. 

To control for arbitrary preferences individual participants might have, they were 

randomly assigned to complete either Language 1 version a, Language 1 version b, 

Language 2 version a or Language 2 version b. See Tables 2.1 (p. 59) and 2.2 (p. 63) 

for lexical items used in these sub-groups. Again, the testing phase involved both 

50% familiar X elements, i.e. middle CVC sequences encountered during training, 

and 50% entirely novel X items, in order to rule the possibility of memorisation as 

an explanation for correct identification of non-adjacencies. As in Experiment 1, the 

sequences were displayed on a computer screen as black print on a white 

Table 3.1: Example sequences for the One-word and Nine-letter condition, and the –Gestalt strings 

that served as a basis. Ungrammatical sequences are indicated by an asterisk. In all three conditions 

the non-adjacent dependencies involve the first and third CVC passages, i.e. lum – fip, nis – huk, fet – 

gos and their equivalents. 
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background, each sequence was presented for 2500ms, and each string was separated 

from the next by a blank (i.e. white) screen, which was displayed for 1000ms. This 

experiment was also designed using Slide Generator. 

 

3.1.2 Results 

Table 3.2 reports the mean percentage endorsements for grammatical and 

ungrammatical strings, collapsed across sub-groups, for the One-word and Nine-

letter conditions.  

 

 

Condition Grammaticality Familiarity % endorsements SD 

One-word 

grammatical 
familiar 75.23 17.79 

novel 60.07 30.05 

ungrammatical 
familiar 42.13 29.11 

novel 25.00 21.71 

Nine-letter 

grammatical 
familiar 62.96 12.14 

novel 50.00 18.06 

ungrammatical 
familiar 58.22 15.06 

novel 41.09 18.31 

 

Initially, a one-way ANOVA was carried out in both conditions to compare 

correct responses across sub-groups. In the One-word condition, the Levene‟s test 

was significant (p = .003), and therefore the Welch F-ratio is reported. The ANOVA 

revealed that overall performance across all subgroups in the One-word condition 

(i.e. L1a, L1b, L2a, L2b) did not differ significantly, F(3, 8.93) = 2.47, p = .129. In 

the Nine-Letter condition, there was also no significant difference in performance 

Table 3.2: Mean percentage endorsements (and standard deviations) for grammatical and 

ungrammatical strings, containing familiar and novel CVC chunks as X items, across both conditions. 
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across the four subgroups, F(3, 20) = 1.39, p = .276, and for this reason the 

subgroups here were also collapsed for further analysis.  

Percentage endorsements were submitted to a 2 (One-word vs Nine-letter 

condition) x 2 (familiar vs unfamiliar X) x 2 (grammatical vs ungrammatical strings) 

ANOVA. For the complete results from this ANOVA, see Table 2 in Appendix B. 

The analysis revealed two main effects and one interaction.  

The two main effects here were the same as in Experiment 1. The main effect 

for Grammaticality, F(1,46) = 22.12, p < .001, is due to people‟s successful 

discrimination between grammatical (62.07%) and ungrammatical (41.61%) 

sequences (see Figure 3.1A). The main effect for Familiarity, F(1, 46) = 44.12, p < 

.001 (see Figure 3.1B) shows that participants overall endorsed with significantly 

more sequences containing familiar X chunks (59.64%) as opposed to sequences 

with novel X chunks (44.04%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

A B 

Figure 3.1: Main effect for Grammaticality (A) and Familiarity (B) and Grammaticality, with error 

bars (+/- 1SE). Horizontal lines indicate chance level performance (50%). Participants favoured 

grammatical strings over ungrammatical strings (Figure 3.1A) and strings containing familiar X 

sequences over strings involving novel X chunks (Figure 3.1B). 
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Importantly, there was also a Condition x Grammaticality interaction, F(1,46) 

= 9.82, p = .003 (see Figure 3.2), indicating that grammaticality judgments differed 

between the two conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

There were no other significant main effects or interactions. This Condition x 

Grammaticality interaction will be further explored shortly, when contrasted against 

performance in the –Gestalt condition in a series of follow-up t-tests.  

In order to determine to what extent break cues play a role in the detection of 

non-adjacent dependencies, the current findings were contrasted against the results 

for the –Gestalt condition from Experiment 1, which involved breaks between each 

CVC word. To this end, the percentage endorsements were submitted to a Stimulus-

type (One-word, Nine-letter, -Gestalt) x Grammaticality (grammatical, 

ungrammatical) ANOVA. This analysis resulted in a main effect for Grammaticality, 

 
Figure 3.2: Condition x Grammaticality interaction, with error bars (+/- 

1SE). Horizontal lines indicate chance level performance (50%). 

Asterisks indicate performance significantly different from chance. 

* 

* 

* 

n.s. 
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F(1, 77) = 33.86, p < .001, and a Stimulus-type x Grammaticality interaction, F = (2, 

77) = 4.41, p = .015. Again, the main effect shows that participants overall endorsed 

with significantly more grammatical (61.13%, 18.88 SD) than ungrammatical 

(40.12%, 20.62 SD) sequences. There were no other significant effects or 

interactions. The complete results of this 3 x 2 ANOVA can be found in Table 3 in 

Appendix B. 

To further explore both the Condition x Grammaticality interaction from the 

previous ANOVA as well as the present Stimulus-type x Grammaticality, a number 

of t-tests were conducted. As the key issue regards the acquisition of non-adjacent 

dependencies in each of the conditions (and thus for each of the stimulus types), two 

paired-samples t-tests comparing percentage endorsements for grammatical and 

ungrammatical strings across the One-word, Nine-letter and –Gestalt conditions were 

conducted (see Table 3.3).  

 

 

Stimulus-type Example string Grammaticality % endorsements Statistic 

-Gestalt lum fet fip 
grammatical 59.72 (18.46 SD) t(31) = 3.61, 

p = .001 ungrammatical 37.89 (19.75 SD) 

One-word lumfetfip 
grammatical 67.65 (22.77 SD) t(23) = 4.05, 

p = .001 ungrammatical 33.57 (23.49 SD) 

Nine-letter l   u   m   f   e   t   f   i   p 
grammatical 56.48 (13.28 SD) t(23) = 3.15, 

p = .004 ungrammatical 49.65 (15.38 SD) 

 

Due to the fact that three t-tests were conducted, a corrected alpha-level of α 

= .0167 was employed. The t-tests showed that the difference between percentage 

endorsements for grammatical and ungrammatical strings was significant for all 

three stimulus types. Experiment 1 already demonstrated that the non-adjacencies 

Table 3.3: Mean percentage endorsements for grammatical and ungrammatical strings, along with 

results from paired samples t-tests for the –Gestalt, One-word and Nine-letter condition.  
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were detected in the –Gestalt condition. The present results indicate that the 

underlying grammar was also identified in the One-word and Nine-letter conditions.  

Another crucial apsect to be explored regards the difference between 

endorsement rates for grammatical and ungrammatical sequences, since the larger 

the difference between accepted grammatical and accepted ungrammatical strings, 

the better the discrimination between sequences based on grammaticality. Thus, 

comparing difference scores (i.e. percentage endorsements with grammatical 

sequences – percentage endorsements with ungrammatical sequences) across the 

conditions gives a direct indication on how well the grammar was learnt for each of 

the stimulus types. For this reason, the differences scores were calculated and 

submitted to a Tukey post-hoc analysis. This analysis demonstrated that 

discrimination based on the grammaticality of the sequences in the One-word 

condition (34.09%, 41.29 SD) was significantly better than in the Nine-letter 

condition (6.63%, 10.62 SD), p = .011, but not better than in the –Gestalt condition 

(21.83%, 34.26 SD), p = .333. None of the other pair-wise comparisons were 

significant. 

In order to yet further investigate the Condition x Grammaticality (and 

simultaneously the Stimulus x Grammaticality) interaction, a number of separate 

one-sample t-tests were carried out in order to check whether endorsement rates 

differed significantly from chance. For the –Gestalt condition, this was done in 

Experiment 1, showing that percentage endorsements for grammatical strings were 

significantly above and for ungrammatical strings significantly below chance (see 

Figure 2.4, p. 68). The results here show that in both the One-word condition, t(23) = 

3.8, p = .001 (67.65%, 22.77 SD), and Nine-letter condition, t(23) = 2.39, p = .025 



3. The role of break cues in non-adjacency learning in the linguistic domain 

 
 

86 

 

(56.48%, 13.28 SD), participants endorsed with significantly more than 50% of 

grammatical sequences. Interestingly, however, only participants in the One-word 

condition successfully endorsed with less ungrammatical strings than would be 

expected by chance, t(23) = 3.43, p = .002 (33.56%, 23.49 SD). Participants in the 

Nine-letter condition, by contrast, failed to do so, t(23) = .111, p = .913 (49.65%, 

15.38 SD). 

The present results therefore show that participants successfully 

discriminated between grammatical and ungrammatical strings, and therefore 

extracted the non-adjacent regularities, in both the One-word and Nine-letter 

conditions much like in the –Gestalt condition (as indicated by the paired-samples t-

tests). However, participants‟ competence in identifying the non-adjacencies 

particularly in the One-word condition was superior to the Nine-letter condition, as 

indicated by the Tukey post-hoc analysis and people‟s chance-level performance on 

ungrammatical strings. This difference in ability to detect non-adjacencies across the 

One-word and Nine-letter condition therefore explains the interactions. 

 

3.1.3 Discussion 

The results from Experiment 2 show that the detection of non-adjacent dependencies 

in visually presented linguistic sequences does not need assistance from obvious 

break cues to highlight the correct level of analysis. In Experiment 1, helpful breaks 

between individual CVC words could have given participants an indication that the 

crucial regularity for each sequence is to be found between words. Experiment 2 

addressed this issue by manipulating the breaks in the sequences. The One-word 

condition investigated the learnability of non-adjacent dependencies within 



3. The role of break cues in non-adjacency learning in the linguistic domain 

 
 

87 

 

CVCCVCCVC words, where there were no obvious interword breaks. The Nine-

letter condition focused on the acquisition of non-adjacencies in C   V   C   C   V   C   

C   V   C strings, with equal breaks between each grapheme. Crucially, the paired-

samples t-tests indicated that the underlying grammar was acquired in both 

conditions (see Table 3.3, p.84). However, participants in the One-word condition 

significantly outperformed participants in the Nine-letter condition. This was shown 

by the Condition x Grammaticality interaction, and was further supported by the 

post-hoc analysis. Mean percentage endorsements between grammatical and 

ungrammatical sequences in the One-word condition differ by 34.09%, whereas 

endorsement rates for grammatical sequences in the Nine-letter condition were on 

average merely 6.63% above endorsements for ungrammatical sequences.  

A possible explanation for this result is that although materials in both 

conditions are linguistic, the One-word stimuli conform more with people‟s 

expectations of language. Specifically, people‟s (learnt) knowledge of language 

includes knowledge of affixes, and the knowledge that prefixes and suffixes can be 

attached to stems and thereby change the meaning and sometimes the category of a 

word. For example, the verb believe can be turned into an adjective by attaching the 

suffix –able, thus creating believable. The meaning of believable can be changed by 

attaching the prefix un- to form unbelievable. Moreover, in colloquial English, words 

can have infixes, such as in abso-flippin’-lutely (note that the hyphens here are 

inserted in order to highlight the infix flippin’). The final -lutely is dependent on the 

initial abso-, yet this regularity is disrupted by the intervening flippin’. It is possible 

that the knowledge of these regularities underlies participants‟ performance in the 

One-word condition. By contrast, the Nine-letter condition, and particularly the form 

the sequences took during the experiment may not immediately conform with what 
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people associate with language: In natural languages, regularities are not found 

between sequences consisting of single separated segments. It therefore seems 

reasonable to argue that it is for this reason that the non-adjacent dependencies in the 

Nine-letter condition were not detected to the same extent as in the One-word 

condition.  

 Importantly, the fact that the non-adjacent regularities were reliably detected 

in the One-word condition, and that performance in the One-word condition is on a 

level with performance in the –Gestalt condition (as indicated by the fact that the 

difference scores did not differ in the Tukey post-hoc) shows that obvious interword 

breaks to highlight the level of analysis are not required for the successful 

identification of non-adjacencies in visually presented sequences. Interestingly, these 

findings conflict with Newport & Aslin‟s (2004) results, as in the present One-word 

condition participants reliably detected non-adjacencies between syllables of one 

“word”. Although there are a number of differences between the present AGL 

paradigm and the design employed by Newport and Aslin, as outlined in section 3.1, 

the conflicting findings are most likely due to variability. Newport and Aslin did not 

ensure that sufficient variability between adjacent units directed people‟s attention 

onto non-adjacent regularities. In keeping with Gómez‟s (2002) paradigm, the 

present grammar involved 24 intervening X elements, making transitional 

probabilities between the first CVC element and the adjacent X item p = 0.0417. 

Newport and Aslin did not reduce transitional probabilities between adjacent units 

this far. For example, in their Syllable Language of the form AXB (with A and B 

representing the non-adjacent dependency between two CV syllables) transitional 

probabilities between A and X were p = 0.25. As argued in Chapter 2, it thus seems 

to be the case that in instances of insufficient variability between adjacent units, the 
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successful detection of non-adjacent regularities relies on additional cues. Newport 

and Aslin realised this by harnessing the Gestalt Principle of Similarity in their 

Segment Languages, in which the non-adjacencies were identified despite relatively 

high transitional probabilities between adjacent elements. 

 With regard to pause cues, Peña, Bonatti, Nespor and Mehler (2002) showed 

that these play a significant role in the detection of non-adjacencies. However, as 

pointed out in the previous chapter, Peña et al.‟s materials were flawed as they 

included Gestalt cues in addition to pause cues. The findings from both Experiment 

1 and 2 challenge these findings, and demonstrate that the extraction of non-adjacent 

dependencies in the linguistic domain is possible even when the relevant units are 

not made salient by additional cues, such as Gestalt cues or obvious interword 

breaks. 

Mueller, Bahlmann and Friederici (2008) also argue for the importance of 

pause cues. Yet interestingly, their behavioural results show that the non-adjacent 

dependencies were learnt even when there were no gaps between sequences. Still, 

the learning effect was much better (better by 30%) with pauses. However, once 

again, they included salient phonological cues in their materials. In their design, 

words that participated in non-adjacent dependencies only contained the vowels /i/ 

and /e/ whereas words in category X contained /ɔ/ and /u/. Since the test involved 

making grammaticality judgements on sequences of the form AXB versus AXX, 

participants could have based their decisions merely on whether the last CVCV word 

of the sequence contained an light vowel (/i/ or /e/) or a dark vowel (/ɔ/ or /u/). 

Alternatively, people might be noting the similarity between the first and the third 

word of each of the sequences, facilitated by the Gestalt principle of Similarity. The 
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AXX violations then would have violated the principle and thereby assisted people 

in making the correct discrimination. The question thus remains as to whether they 

actually tested participants‟ ability to reliably distinguish grammatical from 

ungrammatical sequences based on the acquisition of non-adjacent dependencies or 

whether their participants based their grammaticality judgements on salient Gestalt 

cues that allowed them to form a mapping between the first and the third elements. 

Certainly, the latter case cannot be excluded.  

Previous research on the detection of non-adjacent dependencies in the 

linguistic domain to date has focused on the role of pause cues or Gestalt cues. 

Experiments 1 and 2 provide convincing evidence showing that in visually presented 

sequences, and with sufficiently low transitional probabilities between adjacent 

elements, non-adjacent dependencies are reliably extracted without additional cues to 

highlight the relevant units. However, the Experiments 1 and 2 also demonstrate that 

people‟s prior knowledge of language might be of importance when extracting non-

adjacencies. Performance levels in the One-word and –Gestalt condition are equal, 

and, crucially, better than in the Nine-letter condition. The key difference between 

the three conditions is that non-adjacent dependencies in natural languages are found 

on the syntax-level (as in the –Gestalt condition) and on the word-level (as in the 

One-word condition). Yet non-adjacencies are not found between chunks within a 

sequence of separate segments. It is therefore argued that people‟s prior expectations 

of what regularities are found in language may have guided them toward detecting 

the non-adjacent dependencies in Experiments 1 and 2.  

However, a potential confound of the materials used in Experiment 2 has to 

do with the phonotactics of the English language. Phonotactics play an important 
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role in language learning as it has been shown to be used for speech stream 

segmentation by infants (Johnson & Jusczyk, 2001; Mattys & Jusczyk, 2001; 

Mattys, Jusczyk, Luce & Morgan, 1999). In the present context, specifically in the 

One-word condition, people‟s knowledge of phonotactically illegal chunks in 

English may have assisted them in segmenting the sequences into three CVC chunks. 

So, since the One-word condition involved CVCCVCCVC strings, CC clusters that 

are not found in English may have been taken to indicate word boundaries. For 

example, in the sequence lumfetfip, the CC cluster tf is illegal within words in 

English, and people may therefore have interpreted this as a word boundary. 

Segmenting the sequences into CVC chunks consequently could have led 

participants to extracting non-adjacencies between separate CVC passages much like 

in the –Gestalt condition. If participants indeed segmented the sequences in the One-

word condition, it is interesting that performance levels in the Nine-letter condition 

indicate that this string segmentation was not possible when inter-grapheme breaks 

were included. If anything, this confirms the importance of people‟s linguistic 

expectations as it demonstrates that phonotactically illegal CC clusters may have 

been regarded as word boundaries.  

 

3.2 Concluding remarks 

In sum, Experiment 2 showed that the acquisition of visually presented non-adjacent 

dependencies in the linguistic domain is sufficiently robust that it does not require 

helpful breaks between CVC chunks to indicate the correct level of processing. 

Moreover, the findings of Experiment 1 support the view that Gestalt cues are also 

unnecessary for the detection of non-adjacencies. Taken together, our findings thus 
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far illustrate that non-adjacent regularities between linguistic units can be detected 

even if they are not highlighted. As a next step, Chapter 4 will explore the role that 

highlighting the relevant elements of analysis plays in the non-linguistic domain. 
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Chapter 4  

 

The acquisition of non-adjacencies in the non-linguistic domain  

 

The previous two chapters have shown that people can identify non-adjacent 

relationships between linguistic elements in a visually presented AGL paradigm with 

and without assistance from additional cues. However, the findings thus far give no 

indication as to whether the mechanisms involved in the detection of non-

adjacencies are also recruited when the stimuli in question are non-linguistic in 

nature. The aim of Experiments 3 and 4 was therefore to test participants‟ non-

adjacency learning in the non-linguistic domain. 

 

4.1 Experiment 3 

The question of whether the mechanisms underlying the human capacity for 

language are unique to language or whether they form part of a general-purpose 
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learning device is a fundamental one, and different theoretical approaches were 

discussed in Chapter 1. Chapter 1 also reviewed experimental evidence for powerful 

learning mechanisms that are available to humans during language acquisition and 

that also seem to be accessible in the non-linguistic domain, e.g. in stream 

segmentation (Saffran, Newport & Aslin, 1996; Saffran, Aslin & Newport, 1996; 

Abla & Okanoya, 2009; Kirkham, Slemmer & Johnson, 2002; Saffran, Johnson, 

Aslin & Newport, 1999) and ABA pattern learning (Marcus, Vijayan, Rao & 

Vishton, 1999; Saffran, Pollak, Seibel & Shkolnik, 2007). Some learning 

mechanisms employed during language learning are therefore also recruited for non-

linguistic learning
10

.
10

   

 Recent years have seen a notable increase of research into visual statistical 

learning. Fiser and Aslin (2002a) used the statistical structure underlying the 

linguistic sequences in Saffran, Newport & Aslin‟s (1996) classic experiment for 

their visual statistical learning tasks. Here, adult participants were shown an 

animation of a shape moving horizontally from one side of a PC screen to the other. 

Along its path, it disappeared behind a centrally located occluder, changing into a 

different shape every time it reappeared. The transformations that the shapes 

underwent were ordered as strings of specific triplets. So, for example one of the 

triplets was Shape A – Shape B – Shape C. Whenever Shape A disappeared behind 

the occluder, the next to appear was Shape B, which in turn changed into Shape C. 

This series of experiments revealed that adults show robust extraction of the 

temporally structured sequences. Fiser and Aslin (2002b) also showed that infants 

are capable of learning subtle spatial relationships between geometrical shapes in 

                                                           
10 

There is a possibility that these mechanisms are in fact unique to language, and that an identical but 

separate mechanism operates outside the domain of human languages. This point will be discussed in 

detail in Chapter 7. 
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multi-object scenes. In their experiment, 9-month old infants displayed high 

sensitivity toward co-occurrence of shape pairs as well as toward the probability with 

which individual elements of pairs co-occurred.  

Further investigating visual statistical learning, Turk-Browne, Jungé and 

Scholl (2005) demonstrated the robustness of this mechanism. Across three 

experiments, Turk-Browne et al. trained and tested adult participants on serially 

presented triplets. Of crucial importance in this context was the inclusion of non-

adjacent regularities in their visual learning task. Participants were exposed to 

sequences of shape-triplets taken from two separate sets. One set involved green 

shapes and the other involved red shapes. During training, the shape sequences from 

both sets were used in a randomly interleaved fashion. So although Red Shape1 

predicted Red Shape2, which in turn predicted Red Shape3 (and similarly for the 

green shapes), participants were exposed to sequences such as Red Shape1 – Green 

Shape1 – Green Shape2 – Red Shape2 – Green Shape3 – Red Shape3. By interleaving 

the two separate sets, Turk-Browne et al. tested the acquisition of non-adjacent 

dependencies in visually presented sequences. Their findings reveal that the shape-

triplets participants were informed to attend to (either green or red), albeit for a cover 

task, were indeed learned despite the intervening shapes. Turk-Browne et al. argue 

that this is not surprising as a visual statistical learning mechanism that cannot 

compute dependencies through noise would be of little use during every-day tasks 

such as driving. However, due to the experimental set-up, in which participants were 

informed to attend to merely one set of shapes, it is unclear whether participants 

were in fact learning the non-adjacent dependencies or whether they were merely 

ignoring the intervening shapes. Importantly, their findings reveal little about 
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people‟s ability to extract non-adjacent dependencies across domains as they did not 

directly contrast their non-linguistic experiment with a linguistic equivalent. 

 As the key issue addressed in this thesis regards the acquisition of non-

adjacent dependencies, the main aim of the present experiments is to explore the 

domain-specificity of non-adjacency learning in a visual AGL paradigm. Although 

the identification of non-adjacent dependencies has previously been investigated in 

both the linguistic (Gómez, 2002; Newport & Aslin, 2004) and the non-linguistic 

domain (Turk-Browne, Jungé & Scholl, 2005), these experiments are hard to 

compare directly as they differ along a number of dimensions. For example, Turk-

Browne et al. employed a cover task, and their non-adjacent regularities were 

separated by a variable number of intervening elements. This was not the case in 

either Gómez‟s or Newport and Aslin‟s experiments. For this reason, the present two 

experiments aim to directly contrast the acquisition of non-adjacent dependencies 

across the linguistic and non-linguistic domain. To this end, the identical 

experimental set-up as used in Experiments 1 and 2 was employed here, with non-

linguistic (Experiment 3), as well as linguistic and non-linguistic (Experiment 4) 

materials. The first research question to be answered by Experiments 3 and 4 is (1) 

Are non-adjacent dependencies in the non-linguistic domain equally learnable as in 

the linguistic domain when presented visually? 

 With regard to the visual non-linguistic materials used in previous 

experiments, the question arises whether these stimuli are adequate. To illustrate the 

point, consider the visual materials used to replicate Saffran, Aslin and Newport‟s 

(1996) experiment in the non-linguistic domain. Saffran, Aslin et al.‟s linguistic 

stimuli involve combinatorial reuse of consonants and vowels (e.g., golabu and 
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bidaku share the plosive b and two vowels). The discrete shapes used by Kirkham, 

Slemmer and Johnson (2002), and by Abla and Okanoya (2009) are non-

combinatorial, in that each word in the Saffran, Aslin et al. stimuli corresponds to a 

geometrical shape-pair or shape-word. These stimuli differ in both shape and colour 

(Kirkham et al.) or just shape (Abla & Okanoya) from the other shapes. So there is 

no re-use of smaller sub-elements corresponding to the re-use of segments in golabu 

and bidaku, and the non-linguistic materials are therefore less complex than the 

equivalent linguistic stimuli used by Saffran, Aslin et al. (1996). 

 An important aspect of language as put forward by Hockett (1960) is duality 

of patterning. This feature refers to the fact that language involves recombination on 

two levels.  On the phonemic level, phonemes can be combined in different ways to 

form larger linguistic units: /k/, /æ/ and /t/ can be combined to form the word cat and 

can then be recombined in a different order to create act. Thus, the same three 

elements are re-used to form two separate meaning-carrying units. On the syntactic 

level, words can be combined and re-combined in different ways to form sentences. 

Importantly, this duality of patterning highlights the fact that morphological units in 

natural languages contain internal structure and thus complexity. In the auditory 

modality the recombined units are phonemes, and in the visual modality they are 

graphemes. Crucially, the non-linguistic materials used in previous experiments (e.g. 

by Fiser & Aslin 2002a; Kirkham, Slemmer & Johnson, 2002; Turk-Browne, Jungé 

& Scholl, 2005) do not replicate this level of internal structure found in language, as 

their objects lack internal structure and, importantly, systematic re-use of individual 

components. This issue will be addressed in the present experiments. A further aim 

of Experiments 3 and 4 therefore is to address this issue by manipulating the internal 

complexity of the non-linguistic stimuli. Research question (2) therefore is: What 
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role does stimulus simplicity play in the detection of non-adjacent dependencies in 

the non-linguistic domain. 

 

4.1.1 Method 

4.1.1.1 Participants 

A total of 88 adult participants were tested, 69 females and 19 males, randomly 

assigned to one of three conditions. All participants were recruited from 

Northumbria University campus and the research centre‟s pool of regular 

experimental participants. 32 of the 96 participants took part in the Holistic 

condition, 32 participated in the Componential condition, and 24 in the Shape 

condition. They were all native speakers of English, and they received either £4.50 

or course credit for taking part.  

4.1.1.2 Materials 

The experiment consists of three conditions differing in materials. The grammar used 

for all conditions is the same as in Experiments 1 and 2 (see Table 2.1, p. 59), which 

again is based on Gómez‟s 2002 grammar (see Table 1.3, p.35). For the 

Componential condition, the AL used in the –Gestalt condition (Experiment 1) was 

translated into complex black and white matrix patterns, in which the internal 

structure of the non-linguistic patterns was matched with the orthography of the 

artificial words used in the –Gestalt condition. Thus, each grapheme from the AL 

corresponds directly to a specific sub-component of the Componential patterns. For 

example, every “l” from the AL was mapped onto a certain sub-pattern within the 

10x10 grid, as was every “u” and every “m”, creating a non-linguistic equivalent of 
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the artificial word lum. Figure 4.1 shows three examples of artificial words and their 

corresponding componential patterns.  

 

-Gestalt 

 

Componential 

          l                   u                 m 

   

lum 

 

-Gestalt 

 

Componential 

          f                  e                  t 

   

fet 

 

-Gestalt 

 

Componential 

          f                   i                 p 

   

fip 

 

 

 

 

 

By re-using sub-patterns to form larger patterns, the Componential stimuli 

replicate the two layers of patterning that represent a defining feature of natural 

languages (Hockett, 1960), and thus capture an important linguistic feature not 

previously used in non-linguistic AGL experiments.  

For the Holistic condition, every artificial word from the –Gestalt condition 

was mapped onto a distinct black and white matrix pattern. Compared with the 

Componential condition, the stimuli for the Holistic condition were thus generated to 

Figure 4.1: Design of the Componential patterns. Each sub-pattern in the Componential 

condition is mapped onto a grapheme in the –Gestalt condition, which results in each 

10x10 black-and-white matrix pattern containing a total of three sub-patterns, much like 

each artificial word contains three sub-elements (i.e. graphemes). 
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appear more like a single unit rather than one pattern containing three sub-

components, and crucially, they did not include systematic re-use of sub-

components. 

The materials for the Shape condition are more in line with materials used in 

previous non-linguistic sequence learning experiments (e.g. Abla & Okanoya, 2009; 

Fiser & Aslin, 2002a, Kirkham, Slemmer & Johnson, 2002). Again, each of the non-

linguistic stimuli corresponds to a specific word from the –Gestalt condition, and is 

instantiated as a coloured shape. Thus, each non-linguistic stimulus in the Shape 

condition differs from the others along two dimensions: shape and colour. Figure 4.2 

illustrates how the example string lum fet fip was translated into the three non-

linguistic conditions. All non-linguistic materials can be found in Appendix A. 

Research on visual scene perception is relevant in the present context for two 

reasons. Firstly, as suggested by Field (1987), visual environments exhibit statistical 

structure in as much as that pixel intensities in natural scenes are all patterned in a 

similar fashion. Adjacent pixels tend to have similar intensities, and the more 

intervening pixels there are, the more different the intensities become. Perception of 

visual scenes thus involves analysing the underlying statistical structure in a similar 

way to language. Secondly, high-level vision always involves acquiring information 

by mapping visual stimuli onto meaning, i.e. identifying relevant objects and scenes 

(Henderson & Hollingworth, 1999). In this way, visual scene perception is not 

entirely unlike language acquisition. Visual scene perception entails a combination 

of saccadic eye movements and fixations, whereby the acquisition of visual 

information can only take place during fixations (Henderson, 2007) as the anatomy 

of the human retina only allows for fixated areas to be processed in detail 
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(Hollingworth & Henderson, 2002). As fixation is then a requirement for 

information to be processed, a question of primary concern is what areas within 

visual scenes tend to be fixated. If this is done in a bottom-down fashion, then 

stimulus properties, for example colour or contrast, will attract the viewer‟s attention 

and thus result in fixation. From a top-down perspective, the gaze would be guided 

by prior knowledge of similar scenes or cognitively controlled due to the task 

demands (Henderson, 2007). Nuthman and Henderson (2010) propose that visual 

scene perception is most likely a result of both manners of processing. In their view, 

people will scan visual scenes and initially focus their attention on objects guided by 

their knowledge. Longer fixation and more detailed analysis of visual materials, 

however, is object-based.  Longer fixation and consequent acquisition of information 

is therefore based on whether the initial scene search resulted in the identification of 

an area, which was then deemed informationally meaningful and thus worth fixating. 

In Nuthman and Henderson‟s theory of scene perception, people tend to parse 

scenes, and subsequently select and analyse relevant objects. In the present AGL 

experiments, specifically in the Componential condition, correctly parsing the three-

element sequences resulting in the identification of the first and third pattern as 

highly meaningful, would result in acquiring the underlying grammar.  

In all three non-linguistic conditions (Experiments 1 and 2), the materials 

were presented visually, on a white computer screen. As in Experiment 1, each three-

element sequence was displayed for 2500 ms, all three elements of each string were 

presented simultaneously, and each presentation of a string was separated by a 1000 

ms display of a blank (i.e. white) screen. Again, the experiment was created using 

Slide Generator. 
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Condition Stimuli 

-Gestalt         lum                  fet                  fip 

Shape 

 

 

 

Holistic 

 

   

Componential 

 

   

 

 

 

 

4.1.1.3 Procedure 

The procedure for Experiment 3 was the same as for Experiments 1 and 2. Again, 

each condition consisted of four subgroups (Language 1a, Language 1b, Language 

2a and Language 2b, see Tables 2.1 (p.59) and 2.2 (p.63). Participants in each 

condition were trained on sequences generated by the PSG containing non-adjacent 

dependencies, and were required to make grammaticality judgments on individually 

presented strings in the subsequent testing phase. 50% of all sequences presented on 

test contained unfamiliar X elements, i.e. stimuli not encountered during training, to 

 
 

Figure 4.2: Design of all three non-linguistic materials based on the –Gestalt stimuli. In the Shape 

condition each shape corresponds to a specific artificial word, and in the Holistic condition each 

matrix pattern is also mapped onto a certain word from the –Gestalt materials. In the Componential 

condition, the materials are orthographically matched with the CVC words. This design resulted in 

an increase of internal structure and importantly, with the Componential stimuli being the closest 

non-linguistic match with the –Gestalt materials. 
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test participants‟ ability to extract the underlying grammar and apply it to sequence 

with a novel surface structure (see Table 2.2, p. 63).  

Before the training phase participants were told they were going to view a 

large number of sequences consisting of three shapes (in the Shape condition) or 

three black and white patterns (in the Holistic and Componential conditions). After 

training, participants were informed that all sequences followed a specific rule, and 

that the testing phase required them to decide whether the sequence presented on test 

followed the same rule or not. As in Experiments 1 and 2, they indicated their 

response by key press. 

 

4.1.2 Results 

Table 4.1 (p.104) reports mean percentage endorsement for grammatical and 

ungrammatical sequences, containing familiar and novel X items, across all three 

conditions. 

 Three separate independent-samples t-test were conducted to compare 

percentage correct responses between L1 and L2 in the three conditions
11

.
11

Levene‟s 

test for equality of variances was non-significant in all three t-tests (p > .130). The t-

tests revealed no significant differences between L1 and L2 in any of the three 

conditions (Shape: t(22) = .398, p = .694; Holistic: t(30) = .648, p = .522; 

Componential: t(30) = .068, p = .946), and therefore Language (L1 versus L2) was 

not included as a factor in the subsequent analysis. 

                                                           
11

 The non-linguistic materials for the Holistic and Shape conditions were randomly mapped onto 

artificial words from the –Gestalt condition from Experiment1, and the sub-patterns of the 

Componential condition were randomly matched with graphemes used for the –Gestalt condition. Due 

to this random assignment, the subgroups were not included as a factor in the following analysis as 

potential interactions would give no insight with regards to domain-specificity. 
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Condition Grammaticality Familiarity % endorsements SD 

Shape 

grammatical 
familiar 77.55 21.37 

novel 45.95 35.55 

ungrammatical 
familiar 45.37 34.26 

novel 24.88 28.26 

Holistic 

grammatical 
familiar 65.28 17.92 

novel 36.89 25.46 

ungrammatical 
familiar 55.56 21.97 

novel 27.52 17.98 

Componential 

grammatical 
familiar 54.08 13.20 

novel 42.88 15.13 

ungrammatical 
familiar 51.91 10.92 

novel 43.58 14.56 

 

 

Since the key issue of this chapter regards domain-specificity and the ability 

to track non-adjacencies across the linguistic and non-linguistic domain, the present 

results were analysed along with the previous results for the –Gestalt condition from 

Experiment 1. Therefore, an ANOVA on percentage endorsements across all non-

linguistic conditions and the –Gestalt condition was carried out, with Condition 

(Shape, Holistic, Componential, -Gestalt) as a between-subject factor, and 

Familiarity (familiar X item versus unfamiliar X item) and Grammaticality 

(grammatical versus ungrammatical) as within-subject factors. The complete results 

of the ANOVA can be found in Table 4 in Appendix B. The analysis resulted in two 

main effects and three interactions.  

As in Experiments 1 and 2, the present ANOVA revealed a main effect for 

Familiarity and for Grammaticality. The Familiarity effect, F(1,116) = 107.43, p < 

Table 4.1: Mean percentage endorsements (and standard deviations) for grammatical and 

ungrammatical strings with familiar and unfamiliar X items, across three conditions. 
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.001,  is due to the fact that across all conditions, people endorsed more with strings 

containing familiar X elements (57.86%) than with strings containing unfamiliar X 

elements (37.98%). The main effect for Grammaticality, F(1,116) = 25.82, p < .001, 

was due to participants overall favouring grammatical strings (55.26%) over 

ungrammatical strings (40.57%).  

Most importantly, there was a significant Grammaticality x Condition 

interaction, F(3,116) = 4.07, p = .009 (see Figure 4.3). To determine whether and to 

what extent the non-adjacent dependencies were detected across conditions, a series 

of paired-samples t-tests were carried out to contrast percentage endorsements for 

grammatical strings against percentage endorsements for ungrammatical sequences. 

As four of these t-tests were conducted, a corrected alpha-level of α = .0125 was 

employed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figures 4.3: Mean percentage endorsements for the Grammaticality x Condition 

interaction. Horizontal line across indicates chance level (50%). Asterisks indicate 

performance significantly different from chance level. 

* * 

* 
* 

* 

n.s. 
n.s. n.s. 
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Participants‟ ability to track non-adjacencies in the –Gestalt condition was 

established in Chapter 2. The present paired samples t-tests indicate that this ability 

also operates in the non-linguistic domain as people successfully discriminated 

between grammatical and ungrammatical sequences in the Shape condition (p = 

.010). For the Holistic and for the Componential conditions, the t-test resulted in a 

non-significant finding (see Table 4.2). The t-tests therefore clearly show that 

performances differed across the conditions. Yet to even further unpack the 

interaction, the difference scores (i.e. percentage endorsements with grammatical – 

percentage endorsements with ungrammatical sequences) for all four conditions 

were submitted to a Tukey post-hoc analysis. 

 

 

Condition Example string Grammaticality % endorsements Statistic 

-Gestalt lum fet fip 
grammatical 59.72 (18.46 SD) t(31) = 3.61, 

p = .001 ungrammatical 37.89 (19.75 SD) 

Shape 
 

grammatical 61.75 (23.75 SD) t(23) = 2.82, 

p = .010 ungrammatical 35.13 (28.00 SD) 

Holistic 
   

grammatical 51.09 (17.15 SD) t(31) = 1.89, 

p = .068. ungrammatical 41.54 (14.84 SD) 

Comp. 
   

grammatical 48.48 (12.52 SD) t(31) = .40,  

p = .695 ungrammatical 47.74 (11.44 SD) 

 

This analysis confirmed that participants in the Componential condition 

(.74%, 10.56 SD) were significantly outperformed by people in the –Gestalt 

(21.83%, 34.26 SD), p = .041, as well as by participants in the Shape condition 

(26.62%, 46.30 SD), p = .015, with regards to discrimination of strings based on 

grammaticality. Discrimination between grammatical and ungrammatical strings in 

Table 4.2: Mean percentage endorsements for grammatical and ungrammatical strings, along with 

results from paired samples t-tests for the –Gestalt (taken from Experiment 2), Shape, Holistic 

and Componential (Comp.) conditions.  
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the Holistic condition (9.55%, 28.59 SD) was not different from any of the other 

conditions. There were no other significant pair-wise comparisons. 

In line with previous analyses, endorsement rates for grammatical and 

ungrammatical sequences were also contrasted against chance performance (50%) in 

separate one-sample t-tests. The t-tests on grammatical sequences showed that 

participants performed significantly above chance only in the –Gestalt, t(31) = 2.979, 

p = .006 (as demonstrated also in Experiments 1 and 2), and in the Shape condition, 

t(23) = 2.42, p = .024. The t-tests resulted in non-significance for the Holistic 

condition, t(31) = .358, p = .723, and the Componential condition, t(31) = .686, p = 

.498. With regard to ungrammatical strings, the one-sample t-tests again showed that 

participants in the –Gestalt, t(31) = 3.47, p = .002, and Shape condition, t(23) = 2.60, 

p = .016, performed similarly in that they endorsed with significantly less 

ungrammatical strings than expected by chance. Participants in the Holistic condition 

also endorsed with significantly less than 50% of all ungrammatical sequences, t(31) 

= 3.23, p = .003. In Componential condition, however, the t-test resulted in a non-

significant finding, t(31) = 1.12, p = .273. All these follow-up t-tests therefore show 

that the Grammaticality x Condition interaction is due to participants extracting the 

non-adjacencies in the –Gestalt and Shape conditions. In the Holistic conditions, 

people have had some sensitivity towards the regularities, whereas the underlying 

grammar was not extracted in the Componential condition. 

Moreover, there was a significant Familiarity x Grammaticality interaction, 

F(1,116) = 5.72, p = .018 (see Figure 4.4).  
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As there were two t-tests, an alpha level of α = .025 was employed. The t-

tests show that for strings containing familiar as well as for strings containing 

unfamiliar X items, participants accepted more grammatical than ungrammatical 

sequences (see Table 4.3). 

 

 

X item Grammaticality % endorsements Statistic 

familiar 
grammatical 65.42 (18.79 SD) 

t(119) = 5.25, p <.001 
ungrammatical 49.81 (23.29 SD) 

novel 
grammatical 44.24 (25.50 SD) 

t(119) = 3.81, p <.001 
ungrammatical 32.06 (21.04 SD) 

 

As these t-tests did not adequately unpack the interaction, the difference 

scores were calculated (i.e. percentage endorsements for grammatical strings – 

Table 4.3: Results from paired samples t-tests for contrasting mean percentage endorsements for 

grammatical and ungrammatical strings based on familiarity with the X items.  

 
 

 
 

Figure 4.4: Mean percentage endorsements for the Familiarity x Grammaticality 

interaction, with error bars (+/- 1SE). Black line across indicates chance level 

performance (50%). 
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percentage endorsements for ungrammatical strings) for strings containing familiar 

and novel X elements. These were then submitted to a paired-samples t-tests, which 

revealed a significant difference, t(119) = 2.09, p = .039, between the difference 

scores for familiar strings (15.60%, 32.58 SD) and unfamiliar strings (12.18%, 35.02 

SD). This shows that participants were more likely to correctly discriminate 

grammatical from ungrammatical strings when they involved familiar X items as 

opposed to novel X items. However, this reveals nothing about the extraction of non-

adjacent dependencies across the different conditions.  

The final interaction was Familiarity x Condition interaction, F(3,116) = 

5.37, p = .002 (see Figure 4.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Mean percentage endorsements for the Familiarity x Condition interaction, 

with error bars (+/- 1SE). Black line across indicates chance level performance (50%). 

 



4. The acquisition of non-adjacencies in the non-linguistic domain 

 
 

110 

 

Of key interest with regard to this interaction is whether sequences 

containing familiar X items were reliably favoured over strings containing novel X 

items. For this reason, four paired-samples t-tests were conducted (see Table 4.4) to 

compare percentage endorsements for strings with familiar and unfamiliar surface 

forms, across all four conditions. Again, an alpha-level of α = .0125 was employed. 

The t-tests show that in all conditions, strings involving X items encountered during 

training are significantly favoured over strings containing novel X elements. 

 

 

Condition Example string Familiarity % endorsements Statistic 

-Gestalt lum fet fip 
familiar 56.55 (11.34 SD) t(31) = 5.94, 

p < .001 unfamiliarity 41.06 (11.16 SD) 

Shape 
 

familiar 61.46 (17.90 SD) t(23) = 4.48, 

p < .001  unfamiliarity 35.42 (19.04 SD) 

Holistic 
   

familiar 60.42 (14.10 SD) t(31) = 6.01, 

p <.001 unfamiliarity 32.20 (16.13 SD) 

Comp. 
   

familiar 52.99 (9.63 SD) t(31) = 5.53, 

p < .001 unfamiliarity 43.23 (13.75 SD) 

 

 

In order to further understand the interaction, the difference scores were 

calculated by subtracting percentage endorsements for ungrammatical strings from 

percentage endorsements for grammatical strings. This was done for all four 

conditions, and the values were subsequently submitted to a Tukey post-hoc test. 

This analysis showed that the difference scores in the Componential (9.77%, 

14.76 SD) were significantly lower than for the Shape (26.04%, 28.51 SD), p = .023, 

and Holistic condition (28.21%, 26.57 SD), p = .003. The difference score for the -

Gestalt (15.49%, 14.76 SD) was not different from any of the other conditions. None 

Table 4.4: Results from paired samples t-tests for contrasting mean percentage endorsements for 

familiar and unfamiliar strings for the –Gestalt, Shape, Holistic and Componential (Comp.) condition.  
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of the other pair-wise comparisons were significant. The most interesting aspect of 

the Familiarity x Condition interaction was therefore that although sequences 

containing familiar X items were favoured across all conditions, this effect was 

particularly strong in the Shape and Holistic conditions.  

There were no further main effects or interactions. 

   

4.1.3 Discussion 

The purpose of the present experiment was twofold: (1) to investigate domain-

specificity in the acquisition of non-adjacent dependencies; (2) to investigate the role 

of stimulus simplicity in non-linguistic materials. If the detection of non-adjacencies 

were indeed a completely domain-general ability, participants in all four conditions 

might have been expected to perform equally well. However, the findings here show 

that in visually presented sequences, participants only successfully identified non-

adjacent dependencies in the Shape condition.  

For the non-linguistic conditions, the materials used differed with regard to 

internal complexity. In the Componential condition, the patterns aimed to replicate 

the internal complexity of language in the non-linguistic domain. Specifically, 

language is combinatorial on the phonetic/graphemic level in that it re-uses 

phonemes/ graphemes to form words. This re-use of elements was employed in the 

design of the Componential condition, and in this respect the Componential 

condition is the closest match with the –Gestalt materials. Importantly, participants 

in the Componential condition were unable to extract the non-adjacent dependencies. 

A possible explanation for this finding is that participants were misled by the internal 
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structure of the Componential patterns, trying to find regularities within the 

structures themselves. Importantly, this was not the case in the linguistic domain. In 

the –Gestalt condition – and indeed in natural language more broadly - people do not 

get lost in the internal structure of the words. For instance, lum fet fip is an example 

string from the –Gestalt condition. Participants in this condition did not allow the 

internal structure of the words, i.e. the graphemes, guide their attention away from 

the regularities that governed the grammaticality of the sequences. So, for example 

the co-occurrence of the grapheme f in initial position of the second and third word 

in the sequence lum fet fip may well have initially struck participants as an important 

regularity. Crucially, however, the re-use and co-occurrence of specific graphemes 

was not a sufficiently reliable regularity for people to base their grammaticality 

judgements on. Instead, in the linguistic domain, people were sensitive to more 

consistent regularities, which in this case were the non-adjacent dependencies. In 

contrast to this, it is argued here that there is a possibility that the Componential 

equivalent sub-pattern of the grapheme f , which was repeated in the same way as f 

was repeated in lum fet fip, might have misdirected people‟s attention toward this re-

use of the same element. Thus, in the linguistic domain, people seem to know what 

regularities are important in determining grammaticality, whereas in the non-

linguistic domain people do not seem to have these prior expectations. People might 

be equipped with certain language-specific expectations. In other words: Duality of 

patterning is indeed a defining feature of language, and – crucially – if is replicated 

in the non-linguistic domain, people seem to struggle with identifying the relevant 

units of analysis. Therefore, the prior expectations people bring along when 

computing language is not automatically carried over into the non-linguistic domain. 

Importantly, this does not provide evidence for the innateness of these language-
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specific expectations. Participants here were all native speakers of English. In 

English, non-adjacent dependencies between segments (i.e. vowels or consonants) 

within words is not a crucial regularity. Thus, this presumably does not represent 

part of the present participants‟ linguistic knowledge. However, this is not the case 

for all languages. In Finnish, for example, the occurrence of vowels is subject to 

strict constraints. This is known as Vowel Harmony and dictates that none of the 

vowels within one word can be from opposing vowel sets. There are three vowel 

classes in total, namely front vowels /y, ø, æ/ , back vowels /u, o, a/ and neutral 

vowels /i, e/ (Suomi, McQueen & Cutler, 1997). Therefore, if the initial syllable of a 

Finnish word contains a front vowel, all following vowels must be either from the 

class of front vowels or of neutral vowels. Similarly, if the first vowel is a back 

vowel, then all other vowels must also be either back or neutral. Vowel Harmony 

found in Hungarian and Turkish operates in a similar fashion (Ohala, 1994). For 

native speakers of these languages, paying attention to sub-elements (i.e. segments) 

of words and non-adjacent relationships between them is presumably of high 

importance. Therefore, the linguistic knowledge displayed by participants in 

Experiment 3, which can be roughly formulated as a heuristic along the lines of 

“ignore the internal structure of each of the words as regularities between individual 

letters do not play an important role” may be learnt knowledge based on the 

linguistic input received during language acquisition.  

Further, this linguistic knowledge that allowed participants in Experiment 1 

to learn the underlying structure of the –Gestalt materials most likely feeds into a 

domain-general learning mechanism. Participants in the Shape condition 

successfully discriminated grammatical from ungrammatical strings on test, showing 

that the ability to detect non-adjacencies is not limited to the linguistic domain. In 
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line with the hypothesis presented above to explain the failure of participants to learn 

the non-adjacent relationships between Componential patterns, it is argued here that 

participants in the Shape condition succeeded at the task due to the fact that there 

was no internal complexity to the shapes that could have misdirected people‟s 

attention. Thus, eliminating the inner structure of the non-linguistic stimuli and 

creating simple non-linguistic materials highlighted the correct level of analysis. 

Specifically, the Shape condition only allows for regularities to operate between 

individual shapes, as there are no re-used sub-elements which could provide an 

alternative level of analysis. Additionally, the Shape materials contain redundant 

cues. Cue redundancy has been the topic of an extensive amount of research, with 

the main focus being on the processing of audio-visual redundant cues in infancy 

(Bahrick, Lickliter, Castellanos & Vaillant-Molina, 2010; Lewkowicz, 2000). For 

example, seeing a ball bounce up and down as well as hearing the ball bounce up and 

down provides synchronous information about a specific temporally structured 

sequence across the visual and auditory modality. The ability to integrate 

synchronous information across two modalities offers a much better understanding 

of the infants‟ surroundings, and in early development, infants seem to be more 

reliant on redundant cues than later on in life (Bahrick & Lickliter, 2000). For the 

present Shape materials, the redundant cues remain within the visual modality. 

Nevertheless, the coloured shapes allow participants to encode the shapes as well as 

the colours, which could both result in successful acquisition of the underlying 

grammar. 

The Holistic condition represents an intermediate stage as the materials 

contain some internal structure, but no systematic re-use of sub-patterns. Importantly 
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though, these materials were also too complex for participants and the non-adjacent 

dependencies were therefore not detected.  

Finally, Experiment 3, much like Experiments 1 and 2, also identified the 

importance of surface familiarity for grammaticality judgments. Participants clearly 

took the familiarity of the X items into consideration when accepting or rejecting 

sequences on test. The Familiarity x Condition interaction showed that specifically 

in the Componential condition, participants‟ familiarity with the X items had a 

smaller effect on endorsements. This may indicate that the Componential patterns are 

too complex, and not sufficiently distinguishable from each other. This issue will 

therefore be addressed in detail in Chapter 6. 

With regard to the research questions posed for Experiment 3, the present 

results suggest that the detection of non-adjacencies is a domain-general ability and 

therefore operates in both the linguistic and non-linguistic domain, as shown by 

performance levels in the –Gestalt and Shape conditions. However, stimulus 

simplicity plays a crucial role. The Shape condition highlights the relevant units of 

analysis by removing other potential levels of analysis (i.e. the sub-lexical level), 

thereby assisting people in the extraction of non-adjacencies. Thus, domain-specific 

expectations might play a role: Adults may be equipped with language-specific 

knowledge, which guides their attention toward the relevant units in linguistic 

sequence learning but not in non-linguistic sequence learning. 
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4.2 Experiment 4 

The sequences in Experiment 3 were presented simultaneously as it has been 

suggested (Saffran, 2002) that this makes the underlying regularities more salient. 

However, in order to reach a true account of the mechanisms involved in language 

learning, the manner of presentation must also be addressed. Although simultaneous 

presentation may remove or at least reduce working memory effects on 

grammaticality judgements as it does not require participants to store individual 

elements of each sequence, language itself is not always simultaneously presented. 

In fact, in the auditory modality language is a sequentially ordered signal. This issue 

will therefore be addressed in Experiment 4. 

 Experiments 1 and 3 showed that people can track non-adjacent dependencies 

in the linguistic domain without assistance from additional cues, and that non-

adjacencies in the non-linguistic domain are learnable as long as the stimuli used are 

simple in appearance. The working hypothesis is that this can be explained by 

language-specific knowledge, which feeds into a domain-general learning device. It 

could therefore be expected that the mode of presentation, whether simultaneous or 

sequential, should not result in a different pattern of findings. At the same time, due 

to the fact that language is primarily presented sequentially, there is a possibility that 

the learning mechanism underlying language learning is only available, or more 

likely to be used, when the materials are presented sequentially.  

Thus, Experiment 4 investigates the detection of non-adjacencies by carrying 

out visual sequence learning experiments on sequentially presented materials. 

Specifically, the research question here asks whether sequentially presented 

materials render the same pattern of results as simultaneously presented strings did in 
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Experiments 1 and 3. For this reason, Experiment 4 used materials from the 

+Gestalt, -Gestalt, Shape and Componential conditions. 

  

4.2.1 Method 

4.2.1.1 Participants 

24 adult participants took part in each of four conditions, rendering a total of 96 

participants. There were 64 females and 32 males. All participants were native 

English speakers and received either course credit or £4.50 for taking part. All 

participants in the –Gestalt condition and 15 participants in the Shape condition were 

recruited from Aberdeen University‟s Psychology undergraduate population, the 

remaining participants were recruited from Northumbria University campus.  

4.2.1.2 Materials 

The materials used for this experiment were identical to the ones used in 

Experiments 1 and 3. For the sequential +Gestalt and –Gestalt conditions, the AL 

from Experiment 1 was used, the +Gestalt condition thus involved the inclusion of 

the length cue to highlight the non-adjacencies (see Table 2.1, p. 59). The Shape and 

Componential materials used were identical to the ones from Experiment 3.  

Experiment 4 did not involve a Holistic condition as the previous experiment 

showed that the non-adjacent dependencies were not learnt in this condition of 

intermediate complexity. Importantly then, the present experiment was more focused 

on the difference in performance levels between non-adjacencies between simple 

shapes and non-adjacencies between Componential patterns. 
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In both the linguistic and non-linguistic conditions, the three elements for 

each sequence were presented one at a time. Before each string, a fixation cross 

appeared for 500ms. Each element of each string was presented for 833ms. As each 

string consisted of three units, this rendered 2499ms (3 * 833ms) total exposure time 

to each string. Exposure time was therefore very close to the 2500ms participants 

received for each string during simultaneous presentation. There were 200ms pauses 

(i.e. blank screen) between each element and 700ms pauses between strings.  

4.2.1.3 Procedure 

As in the previous experiments, this experiment involved a training phase followed 

by a testing phase. Initially, participants were informed that they were going to be 

exposed to a large number of sequences made up of three shapes (in the Shape 

condition), three black and white patterns (in the Componential condition) or three 

made-up words (in the +Gestalt and –Gestalt conditions), and that although they 

were only going to see one element on the screen at a time, each sequence was made 

up of three units. After the training, they were told that all the sequences they had 

seen followed a specific rule, and that they were required to decide, for each 

sequence presented during the test, whether that sequence followed the same rule as 

the training sequences. Again, 50% of all test items contained an unfamiliar X item 

to avoid participants merely memorising sequences. 

Unlike in the previous experiments, this experiment did not include any sub-

groups (i.e. versions a and b, see Table 2.2, p. 63) as this factor did not produce 

significant effects in Experiments 1 and 2. However, to control for potential biases 

people might have for certain elements, each of the conditions still contained two 

versions, L1a and L2a as shown in Table 2.1 (p.59).  
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4.2.2 Results 

 Table 4.5 (p. 119) shows mean percentage endorsements for grammatical and 

ungrammatical strings containing familiar and novel X items for all four conditions. 

 

 

Condition Grammaticality Familiarity % endorsements SD 

Shape 

grammatical 
familiar 86.81 20.12 

novel 68.52 35.37 

ungrammatical 
familiar 28.59 36.24 

novel 13.43 20.31 

+Gestalt 

grammatical 
familiar 73.15 25.15 

novel 67.59 29.87 

ungrammatical 
familiar 33.33 31.79 

novel 27.55 26.26 

-Gestalt  

grammatical 
familiar 71.30 21.29 

novel 57.52 29.58 

ungrammatical 
familiar 43.63 33.01 

novel 28.70 25.44 

Componential 

grammatical 
familiar 59.60 14.63 

novel 53.13 18.76 

ungrammatical 
familiar 51.04 18.68 

novel 45.49 13.15 

 

 First, an independent samples t-test was carried out to compare the 

number of correct responses between Aberdeen students and Northumbria students 

in the Shape condition in order to ensure there was no difference between the two 

student populations. It revealed that there was no significant difference in 

performance, t(22) = .842, p = .20, and this factor was therefore not included in the 

following analyses. Next, four separate independent t-tests were conducted to test 

Table 4.5: Mean percentage endorsements (and standard deviations) for grammatical and 

ungrammatical strings with familiar and unfamiliar X items, across all four conditions. 
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whether the percentage of correct responses differed between L1a and L2a in each 

condition. 

The results show that in the -Gestalt condition, there was a significant 

difference. As the Levene‟s test for equality of means was significant (p <.001), 

equal variances are not assumed, and therefore the corrected values are reported 

here: t(17.647) = 2.146, p = .046. This significant difference is due to participants in 

L2a (72.68%, 26.26 SD) giving a mean of 18.81% more correct responses than 

participants in L1a (53.88%, 15.23 SD). For this reason, Language (L1a, L2a) was 

included as a factor in the following analysis. 

A 4 x 2 x 2 x 2 ANOVA on percentage endorsements was carried out, with 

Condition (+Gestalt, -Gestalt, Shape and Componential) and Language (L1a and 

L2a) as between-subject factors, and Familiarity (familiar and unfamiliar X items) 

and Grammaticality (grammatical and ungrammatical) as within-subject factors. The 

complete results for the ANOVA can be found in Table 5 in Appendix B. The 

ANOVA resulted in two main effects and one interaction. 

As for Experiments 1 to 3, the ANOVA resulted in a main effect for 

Familiarity, F(1, 88) = 25.84, p < .001, and a main effect for Grammaticality, F(1, 

88) = 56.74, p < .001. The descriptive statistics reveal that participants generally 

tended to endorse with approximately 10% more familiar strings (55.93%) than 

strings containing a novel X element (45.24%). Familiarity therefore played a 

significant role in participants‟ acceptance of strings on test. The main effect for 

Grammaticality is due to the fact that, disregarding all other factors, participants 

were more likely to accept grammatical strings (67.2%) than ungrammatical strings 

(33.97%).  
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Importantly, there was a significant Grammaticality x Condition interaction, 

F(3, 88) = 5.35, p = .002 (see Figure 4.6). There were no further main effects or 

interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The interaction was followed up with a series of paired-samples t-tests to 

compare mean percentage endorsements for grammatical and ungrammatical strings 

across the four conditions (see Table 4.6). A corrected alpha-level (α = .0125) was 

employed. The results show that grammatical and ungrammatical sequences were 

reliably discriminated in both linguistic conditions as well as in the Shape condition. 

In the Componential condition, by contrast, discrimination between sequences based 

on grammaticality was non-significant, which accounts for the interaction. 

 

 

 
Figure 4.6: Grammaticality x Condition interaction. Mean percentage endorsements for 

all four conditions, with error bars (+/- 1 SE). The black bar across indicates chance 

performance (50%). Asterisks indicate performance significantly different from chance. 

* 

* 

* 

* 

* 

* 

n.s. 

n.s. 
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Condition Example string Grammaticality % endorsements Statistic 

+Gestalt lum fetac fip 
grammatical 70.37 (26.71 SD) t(23) = 3.844, 

p = .001 ungrammatical 30.44 (28.65 SD) 

-Gestalt lum fet fip 
grammatical 64.41 (22.58 SD) t(2.98) = 

2.98, p = .007 ungrammatical 36.17 (26.50 SD) 

Shape 
 

grammatical 77.66 (23.57 SD) t(23) = 5.86, 

p < .001 ungrammatical 21.01 (26.20 SD) 

Comp. 
   

grammatical 56.37 (15.42 SD) t(23) = 1.66, 

p = .111 ungrammatical 48.26 (14.37 SD) 

 

To further explore the interaction, the difference scores were calculated 

(percentage endorsements with grammatical – percentage endorsements with 

ungrammatical sequences) and submitted to a Tukey post-hoc analysis. The analysis 

revealed that discrimination between grammatical and ungrammatical sequences in 

the Shape condition (56.66%, 47.39 SD) was significantly better than in the 

Componential condition (8.10%, 23.98 SD), p = .001. The difference scores in the 

+Gestalt (39.93%, 50.89 SD) and –Gestalt (28.24, 46.41 SD) conditions were not 

significantly different from any of the other conditions. There were no further 

significant pair-wise comparisons. 

As in the previous Experiments, one-sample t-tests were carried out to 

contrast endorsement rates with grammatical and ungrammatical sequences in all 

conditions against 50% chance performance. The results show that in the Shape, 

t(23) = 5.75, p < .001, as well as in both linguistic conditions (+Gestalt: t(23) = 3.74, 

p = .001; -Gestalt: t(23) = 3.13, p = .005) participants accepted a significantly higher 

proportion of all grammatical sequences than expected by chance. In the 

Componential condition, the one-sample t-test resulted in a marginal significance, 

Table 4.6: Mean percentage endorsements for grammatical and ungrammatical strings, along with 

results from paired samples t-tests for the sequential +Gestalt,  –Gestalt, Shape and Componential 

(Comp.) conditions.  
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t(23) = 2.02, p = .055. For ungrammatical strings, participants in the +Gestalt, t(23) 

= 3.34, p = .003, -Gestalt, t(23) = 2.56, p = .018, and Shape condition, t(23) = 5.42, p 

< .001 accepted significantly less ungrammatical strings than would be expected by 

chance. In the Componential condition, by contrast, this was not the case, t(23) = 

.59, p = .56. This confirms that the grammar was learnt in the linguistic condition 

and the non-linguistic condition involving simple, unanalysed shapes. In the non-

linguistic condition involving componential patterns, the non-adjacent dependencies 

were not extracted.  

 

4.2.3 Discussion 

The aim of this experiment was to investigate the effect of sequential presentation on 

the detection of non-adjacent dependencies in the visual modality. In general, 

sequential presentation renders the same pattern of results as previously found in the 

simultaneous AGL experiments: Non-adjacent dependencies are learnable in both 

linguistic conditions (+Gestalt and –Gestalt) and in the non-linguistic condition 

involving simple shapes (Shape condition). However, participants in the 

Componential condition failed to extract the non-adjacent relationships. Thus, these 

findings are consistent with the hypothesis of a domain-general learning tool, which 

integrates language-specific information: Non-adjacencies between linguistic and 

between simple non-linguistic elements are learnable, whereas non-adjacent 

dependencies between non-linguistic units that correspond to language with regards 

to internal complexity cannot be extracted. The re-use of sub-elements in the 

linguistic domain does not misdirect people‟s attention onto irrelevant patterns, 

whereas in the non-linguistic domain this seems to be the case. However, removing 
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the internal structure of the complex materials eliminates the (spurious) sub-element 

– to – sub-element level of analysis in the non-linguistic domain: Under these 

circumstances, non-adjacencies between non-linguistic stimuli are learnable, as 

demonstrated by successful discrimination between grammatical and ungrammatical 

sequences in the Shape condition. 

 However, the question remains whether the mode of presentation matters to 

the learnability of non-adjacencies based on stimulus type. For this reason, a cross-

experimental analysis was carried out, in which endorsement rates for crucial 

stimulus types were submitted to an ANOVA.   

   

4.3 Cross-experimental analysis 

For reasons of clarity, Table 4.7 (p.125) summarises mean percentage endorsements 

with simultaneously and sequentially presented grammatical and ungrammatical 

sequences for Shape, +Gestalt, -Gestalt and Componential materials from 

Experiments 1, 3 and 4. 

In order to explore whether the mode of presentation had an effect on the 

acquisition of non-adjacencies, a 2 x 4 x 2 ANOVA was conducted on percentage 

endorsements, with Presentation Mode (simultaneous, sequential) and Stimuli Type 

(+Gestalt, -Gestalt, Shape and Componential) as between-subjects factors and 

Grammaticality as a within-subjects factor. The full ANOVA results are displayed in 

Table 6 in Appendix B. The ANOVA resulted in one main effect and two 

interactions. 
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Stimuli type Presentation mode Grammaticality % endorsements SD 

+Gestalt 

simultaneous 
grammatical 68.52 21.72 

ungrammatical 37.56 26.23 

sequential 
grammatical 70.37 26.71 

ungrammatical 30.44 28.65 

-Gestalt 

simultaneous 
grammatical 59.72 18.46 

ungrammatical 37.89 19.75 

sequential 
grammatical 64.41 22.58 

ungrammatical 36.17 26.50 

Shape 

simultaneous 
grammatical 61.75 23.75 

ungrammatical 35.13 28.00 

sequential 
grammatical 77.66 23.57 

ungrammatical 21.00 26.19 

Componential 

simultaneous 
grammatical 48.48 12.52 

ungrammatical 47.74 11.44 

sequential 
grammatical 56.37 15.42 

ungrammatical 48.26 14.37 

 

 The main effect for Grammaticality, F(1,200) = 97.12, p < .001, was due to 

more grammatical strings (63.41%) than ungrammatical strings (36.78%) being 

accepted on test. The two interactions were Grammaticality x Presentation Mode, 

F(1,200) = 5.96, p = .016 (see Figure 4.7), and Grammaticality x Stimuli Type, 

F(3,200) = 9.27, p < .001. There were no further main effects or interactions.  

The Grammaticality x Stimuli Type interaction was entirely expected, as the 

previous ANOVAs for the simultaneously presented as well as for the sequentially 

presented materials resulted in a Grammaticality x Condition interaction. The 

interaction is therefore due to successful discrimination between grammatical and 

ungrammatical strings for the linguistic materials and for the Shape stimuli, but not 

for the Componential patterns (see descriptive statistics in Table 4.7, p.125). 

Table 4.7: Mean percentage endorsements for grammatical and ungrammatical strings across all 

four conditions, organised according to mode of presentation. 
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Since the key issue is the discrimination of strings based on grammaticality, 

the significant Grammaticality x Presentation Mode interaction was further 

investigated in two paired-samples t-tests, contrasting mean percentage 

endorsements for grammatical and ungrammatical sequences across both 

presentation modes (see Table 4.8). A corrected alpha-level was employed (α = 

.025). 

 

 

Presentation mode Grammaticality % endorsements Statistic 

simultaneous 
grammatical 58.83 (20.17 SD) 

t(111) = 5.58, p < .001 
ungrammatical 40.04 (21.81 SD) 

sequential 
grammatical 67.20 (23.45 SD) 

t(95) = 7.03, p < .001 
ungrammatical 33.97 (26.14 SD) 

 

The t-tests show that in general, grammatical strings were favoured over 

ungrammatical sequences across both presentation modes. To further explore the 

 
Figure 4.7: Grammaticality x Presentation Mode interaction, with error bars (+/- 1 

SE). The black line across indicates chance level performance (50%).  

Table 4.8: Results from the paired-samples t-test contrasting mean percentage 

endorsements for grammatical and ungrammatical based on mode of presentation. 



4. The acquisition of non-adjacencies in the non-linguistic domain 

 
 

127 

 

interaction, the difference between grammatical and ungrammatical strings was 

computed separately for both modes of presentation. These difference scores were 

subsequently contrasted in an independent samples t-test, which resulted in a 

significant finding, t(176.84) = 2.54, p = .014 (equal variances not assumed as the 

Levene‟s test was significant, p < .001). Thus, participants exposed to sequentially 

(33.23%, 46.34 SD) presented materials were more likely to successfully detect the 

underlying grammar than participants exposed to simultaneously presented stimuli 

(18.79%, 35.64 SD). 

   

4.4 General discussion  

The cross-experimental analysis compared performances in the acquisition of 

linguistic and non-linguistic non-adjacent dependencies across two different modes 

of presentation: simultaneous and sequential. It has been previously argued that in 

sequence learning experiments, structural regularities are easier to identify when the 

strings are presented simultaneously (Saffran, 2002). However, the present 

experiments do not confirm this. The Grammaticality x Presentation Mode 

interaction demonstrated that presentation mode has a significant effect on 

participants‟ grammaticality judgments. Crucially, discrimination between sequences 

based on grammaticality was better in sequential as opposed to simultaneous 

presentation.  

Language is first and foremost instantiated as speech, and speech is a 

temporally ordered signal and by consequence sequential. Importantly, non-adjacent 

dependencies are a defining feature of natural languages (see Chapter 1). A potential 

explanation for the present finding is therefore that although the materials were 
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presented visually, sequential presentation may have activated the mechanism 

underlying the detection of non-adjacent dependencies. Sequentially ordered non-

adjacencies may thus be easier to detect due to the fact that language itself is 

sequentially ordered.  

Experiments 3 and 4 also provided evidence that the detection of non-

adjacent dependencies in the visual modality is – to a degree – a domain-general 

ability as the regularities between words as well as between shapes were reliably 

learnt, which is also consistent with the findings of Turk-Browne, Jungé and Scholl 

(2005), who also found that people are readily capable of detecting regularities 

between serially presented non-adjacent simple shapes. Although their participants 

were subjected to the additional cognitive strain of two sets of structurally dependent 

sequences (red and green) randomly interleaving each other and thus forming non-

adjacent dependencies, still they correctly identified approximately 77% of 

sequences they attended to during training (as opposed to approximately 49% of 

unattended sequences), which is comparable to the ~77% endorsement with 

grammatical sequences in the serially presented Shape condition in Experiment 4. 

People thus seem to be particularly adept at computing structural relationships when 

unanalysed shapes are used in the non-linguistic domain. 

 However, the present results suggest that the detection of non-adjacent 

dependencies is a domain-general ability which is modulated by domain-specific 

knowledge. This knowledge guides people‟s attention towards the regularities that 

matter in language, and crucially, this knowledge is not accessible (or at least not 

employed) in the non-linguistic domain. These findings show that the issue of 

domain-specificity requires refined investigations. In Chapter 1, theoretical 
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implications and different approaches to domain-specificity were discussed in detail. 

Based on the present findings, Atkinson and Wheeler‟s (2004) view is particularly 

pertinent. Reconsider Table 4.9.  

 

  Information 

  Domain-general Domain-specific 

Mechanisms 

Domain-

general 

1. Domain-general 

mechanisms coupled with 

domain-general 

information 

2. Domain-general 

mechanisms coupled with 

domain-specific 

information 

Domain-

specific 

3. Domain-specific 

mechanisms coupled with 

domain-general 

information 

4. Domain-specific 

mechanisms coupled with 

domain-specific 

information 

 

According to Atkinson and Wheeler, domain-specificity and domain-

generality can refer to the stimulus input as well as the mechanisms dealing with this 

input. They maintain that, in theory, there is no reason to assume that any 

mechanism, domain-general or domain-specific, can deal only with domain-general 

or domain-specific information.  

The present findings provide experimental support for Atkinson and 

Wheeler‟s more detailed approach to domain-specificity. Experiment 3 and 4 

showed that the cognitive mechanism underlying the successful identification of 

non-adjacent dependencies operates in the linguistic (+Gestalt and –Gestalt 

conditions) as well as in the non-linguistic domain (Shape condition). In accordance 

Table 4.9: In-principle information-mechanism couplings. Taken from Atkinson and Wheeler (2004). 
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with the four options that Atkinson and Wheeler put forward (see Table 4.9, p.129), 

this narrows potential information-mechanism couplings down to options 1 and 2 – 

i.e. a domain general mechanism, which might integrate either domain-general 

(option 1) or domain-specific (option 2) information. However, the non-adjacent 

regularities were not extracted when they were realised as Componential patterns in 

the non-linguistic domain. The hypothesis put forward was that of domain-specific 

knowledge, i.e. knowledge about language, and specifically knowledge about over 

which units non-adjacent dependencies (can) operate in language. This shows that 

the information the relevant learning tool draws from is specialised, or at least a 

subsystem within this learning mechanism seems to draw from domain-specific 

information. This specialised sub-mechanism can deal with highly complex 

linguistic stimuli, which exhibit combinatorial re-use of graphemes, yet it cannot 

analyse non-linguistic materials of comparable complexity. In line with Atkinson 

and Wheeler, it then seems that the cognitive mechanism underpinning the 

acquisition of non-adjacent dependencies in the visual modality may itself be 

domain-general, but it may nevertheless be capable of utilising domain-specific 

knowledge. This would then represent Atkinson and Wheeler‟s option 2. Domain-

specificity is a key aspect of this thesis, and will therefore be further discussed in 

Chapter 7. 

However, there are a number of further potential explanations for people‟s 

inability to track non-adjacent regularities between Componential patterns, which are 

not related to duality of patterning and domain-specific knowledge. The 

Componential patterns might be too similar and thus hard to distinguish from each 

other. This confusability would lead to poor performance during grammaticality 

judgements. Alternatively, Saffran, Pollak, Seibel & Shkolnik (2007) found that 
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stimulus familiarity influences infant rule learning of non-linguistic stimuli. In line 

with this finding, the unfamiliarity of participants with the Componential patterns 

could be the reason for the poor performance levels. These possibilities will be 

addressed in detail in Chapter 6. 

  

4.5 Concluding remarks 

This chapter aimed to investigate domain-specificity in visually presented non-

adjacent dependencies and found that the cognitive mechanism involved in the 

detection of non-adjacent dependencies is domain-general, but that stimulus 

simplicity plays a crucial role. Only when non-linguistic materials are designed to 

highlight the relevant units of analysis are the non-adjacencies identifiable. When the 

internal structure of language is replicated in the non-linguistic domain, the non-

adjacent dependencies are not detectable. This is evidence for a domain-general tool 

which accesses domain-specific knowledge. Furthermore, the mode of presentation 

matters. When the materials are presented sequentially, people are more likely to 

accept grammatical sequences. This may be due to the fact that language is first and 

foremost an auditory signal, and consequently sequentially ordered. The following 

chapter will therefore explore the acquisition of non-adjacent dependencies in an 

aurally presented AL.  
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Chapter 5 

 

Modality effects on the acquisition of non-adjacent 

dependencies 

 

The previous chapter investigated the acquisition of non-adjacent dependencies in 

the visual modality. However, language is, first and foremost, an aurally transmitted 

signal. To this end, this chapter will explore the acquisition of linguistic and non-

linguistic non-adjacencies in the auditory modality.  

 

5.1 Experiment 5 

There has been much research into modality constraints on how people process and 

perceive information. Of specific importance to sequence learning are modality 

effects on serial recall. The recency effect refers to people‟s ability to better recall 

the most recent, i.e. the final, element of a sequentially ordered list, and it has been 

shown to be strongest in the auditory modality (Glenberg & Fernandez, 1988) 
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compared with other modalities. By contrast, Beaman (2002) has demonstrated that 

the opposite, being able to better recall the initial element of a list, is particularly 

strong in the visual modality. Moreover, modality constrained learning effects have 

also been investigated within AGL paradigms (Conway & Christiansen, 2006), with 

research showing that a stronger recency effect in the auditory and a stronger 

primacy effect in the visual modality also exists when the sequences are generated 

by a FSG (Conway & Christiansen, 2009). Investigating sequence learning across 

three modalities, Conway and Christiansen (2005) found a number of different 

learning effects between the tactile, visual and auditory modality. Participants in 

their design were trained and tested on strings generated by a FSG, which were 

implemented in the tactile modality by vibrotactile pulses to specific fingers, in the 

visual modality by the sequentially ordered appearance of black squares on a 

computer screen, and in the auditory modality by strings of musical notes. Conway 

and Christiansen group the findings into quantitative and qualitative effects. 

Quantitatively, they found that sequence learning was best in the auditory modality 

compared with the tactile and visual modality. Qualitatively, the main finding was 

that, much like in serial recall tasks, there is an advantage of the auditory modality 

with regards to recency effects. 

These definite cross-modal variations show that each of the senses may be 

attuned to different features of a sequential input. This may mean that the findings of 

Experiments 1 – 4, and specifically the hypothesis regarding the role of language-

specific expectations in the detection of non-adjacencies, could be bound to the 

visual modality. In order to address this, the present experiment‟s aim is to explore 

non-adjacency learning in the auditory modality. 
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Much research on non-adjacent dependencies has focused on the auditory modality, 

both in the linguistic (Gómez, 2002; Newport & Aslin, 2004; Peña, Bonatti, Nespor 

& Mehler, 2002) and non-linguistic (Creel, Newport & Aslin, 2004; Gebhart, 

Newport & Aslin, 2009; Kuhn & Dienes, 2005) domain. In 2004, Creel, Newport 

and Aslin investigated the acquisition of non-adjacent dependencies in tone 

sequences across four experiments. In their design, non-adjacent dependencies were 

instantiated as musical tones organised as triplets. For example, the triplet F4_G4_D4 

represented a non-adjacent dependency to be detected as F4 reliably predicted G4, 

and G4 reliably predicted D4. There were two sets of triplets (“odd-numbered” and 

“even-numbered”, p.1122). During training, each triplet from one set was interleaved 

with a tone-triplet from the other set (here indicated by the underscores). Each tone 

was presented for 200ms to create a consecutive stream of the form 

AXBYCXDYEXFY…, with the subscripts indicating the two separate sets the triplets 

were taken from. The testing phases involved a 2AFC, in which one non-adjacent 

triplet was contrasted with a different non-adjacent triplet that appeared during the 

training but was scrambled for the test. For example, during their first experiment, 

the triplet F4_G4_D4 was contrasted against *C#4_G#4_B4 (which appeared in its 

grammatical form G#4_C#4_B4 during the training phase). Creel et al.‟s findings 

suggest that non-adjacent dependencies between tones can only be detected when the 

relevant tones exhibit featural similarity, which in their design was either pitch or 

timbre. In their experiment 2, for example, the triplets in one set were high in pitch 

and the triplets in the other set were low in pitch. The sequences thus had the form 

AHIGHBLOWCHIGHDLOWEHIGHFLOW. Creel et al. argue for the Gestalt Principle of 

Similarity underlying the detection of non-adjacencies as the perceptual cues (pitch 

or timbre) allow participants to group the relevant units of analysis more easily. 
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However, it has been shown that people have strong expectations regarding musical 

tones (Pearce & Wiggins, 2006) and the patterns they follow (Schellenberg, Adachi, 

Purdy & McKinnon, 2002). There is therefore a chance that these expectations might 

have interfered with participants‟ performances in the Creel et al. experiment. 

Moreover, similar to what was discussed as the issue of stimulus simplicity in 

Chapter 4, musical tones are also inadequate equivalents to linguistic materials as 

they are not sufficiently complex. Previous research has been undertaken to address 

the issue of stimulus adequacy in the auditory modality. Specifically, Wade and Holt 

(2005) designed a video game, which participants were trained on for 30 minutes.  It 

involved a number of different alien characters, which all required specific responses 

on behalf of the participants (e.g. evil aliens had to be shot, good aliens had to be 

captured). Crucially, each visual occurrence of a certain alien correlated with a 

specific auditory stimulus. Correct mapping of sounds onto aliens resulted in a better 

score during the video game as, in higher levels, the auditory sounds preceded the 

appearance of the aliens on the screen. This, assuming the participant correctly learnt 

the correlation between sound and alien, allowed the participant to prepare for the 

right reaction (e.g. shoot or capture) in good time. A similar experiment was 

conducted by Leech, Holt, Devlin and Dick (2009), who set out to investigate the 

role of expertise in a non-linguistic categorisation task similar to Wade and Holt 

(2005) using an fMRI design. Here, training on the video game lasted for a minimum 

of five hours, and participants‟ temporal lobe activation during the game was 

measured prior to training and again after training using fMRI.  The sounds used in 

this experiment were highly complex as they consisted of two spectral peaks layered 

on top of each other. In doing this, Leech et al. aimed to replicate the complexity 

inherent in aurally presented phonemes, and they found that neural activation in 
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speech sensitive areas of the temporal lobe post training differed significantly from 

pre-training. This demonstrates that experience of or expertise with non-linguistic 

materials drives neural activity in (supposedly) language-specific brain regions, 

which can be interpreted as evidence for domain-general cognitive capacities. 

However, Leech et al.‟s paradigm involved a categorisation task, which is 

fundamentally different from the present AGL experiments.  

Gebhart, Newport & Aslin (2009) improved this design by using non-musical 

sounds to investigate the acquisition of non-adjacent regularities. In their 

experimental design, there were two non-adjacent frames AXB and CXD, and there 

were two elements in category X, which resulted in transitional probabilities A  X 

and C  X equalling 0.5, whereas transitional probabilities between non-adjacent 

sounds (A 9 B and CD) remained reliably at 1.0. The question to be investigated 

was whether participants would be able to segment a continuous stream of sounds 

based on these statistics. In order to examine this, participants on test were required 

to discriminate triplets (AXB or CXD) from part-triplets (XDA or BCX). Based on 

their findings, Gebhart et al. argue that non-adjacencies between non-linguistic 

elements are only learnable when the relevant elements are perceptually similar, as 

their participants only successfully discriminated triplets from part-triplets when 

additional cues rendered the dependencies more salient. Specifically, in their third 

experiment, the non-adjacencies operated between two similar sounds (raspy) 

skipping a perceptually different sound (tonal). Only when this cue was included 

were their participants capable of stream segmentation. Gebhart et al. point toward 

Newport and Aslin‟s (2004) findings of non-adjacencies in the linguistic domain 

only being learnable between segments but not syllables, and therefore argue for the 

importance of similarity cues (or what was termed Gestalt cues in Chapter 2) in the 
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identification of non-adjacencies. However, although Gebhart et al. as well as 

Newport and Aslin have strong evidence for the Gestalt principle of similarity being 

a domain-general mechanism, operating in the linguistic and non-linguistic domain, 

it does not clearly show that it is a requirement for the successful detection of non-

adjacencies. Firstly, Chapter 2 demonstrated that Gestalt cues are not necessary for 

the acquisition of non-adjacent dependencies. Secondly, Gebhart et al. investigated 

non-linguistic stream segmentation rather than the extraction of non-adjacent 

dependencies. Instead of showing sensitivity toward non-adjacent dependencies, 

participants in their cued experiment could merely have learnt a raspy-tonal-raspy 

pattern, which can be generated by a simple FSG and would have resulted in the 

same findings. Moreover, the reason why participants in their uncued experiments 

did not exhibit the ability to segment the stream may well be related to the rather 

limited number of X elements. Gebhart et al.‟s design merely involved two X 

sounds. In line with Gómez‟s (2002) variability hypothesis, transitional probabilities 

between A and X (and between C and X) of 0.5 are much too high to disrupt 

adjacent regularities and guide the learner‟s attention toward the non-adjacent 

dependencies.  

 Thus, the aim of the present experiment was to remedy the issues of (1) using 

musical tones (as in Creel, Newport & Aslin), (2) employing stream segmentation to 

investigate the extraction of non-adjacencies and (3) having high transitional 

probabilities between adjacent elements (Gebhart et al.). For this reason, Experiment 

6 uses the same design and the same underlying grammar as Experiments 1 – 5 to 

investigate domain specificity in the acquisition of non-adjacent dependencies 

between sounds differing in timbre. Since domain-specificity remains a key issue for 

this thesis, the present experiment will also explore the learnability of non-adjacent 
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dependencies between words from the ALs used in Experiment 1. Specifically, the 

research question is whether the same pattern of results regarding domain-specificity 

found in the visual modality will hold for the auditory modality. 

 

5.1.1 Method 

5.1.1.1 Participants 

The participants were Northumbria University students who took part for either 

course credit or £4.50. They were all native English speakers, 20 males and 76 

females, and they were randomly allocated to one of four conditions. Therefore 24 

participants were tested per condition.  

5.1.1.2 Materials 

The experiment consisted of four conditions aimed to replicate the +Gestalt, -Gestalt, 

Shape and Componential conditions from previous experiments in the auditory 

modality. The grammar used for this experiment was thus the same one as used 

previously, which can be found in Table 2.1 (p. 59). In order to minimise the 

possibility of including unwanted prosodic cues, the materials for the linguistic 

conditions (which can be found in Table 2.2, p. 63) were generated using synthesised 

speech. Specifically, the Victoria voice on the Apple Mac OS X built-in speech 

synthesiser was employed to create the stimuli for the +Gestalt and –Gestalt 

conditions. Each of the monosyllabic artificial words was between approximately 

410ms and 580ms long, whereas the bisyllabic words tended to be longer (540 - 

876ms). 
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 The stimuli for the non-linguistic conditions were generated using 

Logic®
12

.
12

For the auditory Shape
1313

condition, each shape from the visual Shape 

condition was mapped onto a specific 600ms sound. For the auditory Componential 

condition, each matrix pattern from the visual Componential condition was 

translated into sounds. Each of the Componential stimuli was also 600ms long in 

total, but was composed of 3 different 200ms sounds. Therefore, each sub-pattern 

corresponded to a specific sound, and these sounds were combined to create the 

Componential stimuli. Crucially, all sounds used in this experiment differed in 

timbre and not in pitch. Thus, they were all C3 (middle C) notes instantiated as 

different instrumental plug-ins. The exact materials (phonetic transcriptions and 

notes) used for this experiment can be found in Appendix C
14

.
1314

 

 In all conditions, a fixation cross appeared for 500ms to indicate the start of a 

sequence. Each unit, i.e. a word for the linguistic conditions, an unanalysed sound 

for the auditory Shape condition and a componential sound for the Componential 

condition, was separated from the next unit of the same sequence by a 200ms pause. 

There was a pause of 700ms between the end of one string and the start of the 

following string. As in previous experiments, each of the present sequences lasted 

for approximately 2500ms. 

 

 

                                                           
12

 http://www.apple.com/uk/logicstudio/ 

 
13

 Note that the auditory Shape condition was termed as such as the materials used for this condition 

were the closest match to the visual Shape condition (this will be discussed in 7.2). As this experiment 

was conducted in the auditory modality, individual elements here were obviously instantiated as 

sounds rather than shapes. 

 
14

Additionally, the sound files for all conditions in the present experiment can be found on my private 

webpage: http://sites.google.com/site/jenniferasturm/ 

http://www.apple.com/uk/logicstudio/
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5.1.1.3 Procedure 

The procedure used in previous experiments was adapted for the present experiment. 

Thus, participants took part in a training phase followed by a testing phase. Before 

the training, they were informed that they were going to hear a large number of 

sequences consisting of three made-up words (in the +Gestalt and –Gestalt 

conditions), three sounds (in the Shape condition) or three sounds, which were 

themselves made up of three sounds (in the Componential condition). There were 

two opportunities for participants to take breaks during the training phase, which 

usually lasted for 20 – 25 minutes. Once participants had completed the training, 

they were told that all sequences they had been exposed to followed a specific rule, 

and that the testing phase required them to make a decision for individual sequences 

on whether or not the string followed this rule. Pressing “Y” indicated a yes-response 

and “N” indicated a no-response. Like in previous experiments, the V and B keys of 

the keyboards were marked as “Y” and “N”, counterbalanced across participants.  

To control for potential biases people might have for certain units, each of the 

conditions contained two versions, L1a and L2a as shown in Table 2.2 (p. 63). In 

both versions, each of the 24 X elements appeared with each of the non-adjacent 

dependencies three times, rendering a total of 216 (3 repetitions x 3 dependencies x 

24 X units) sequences during training. On test, participants had to make 

grammaticality judgments on a total 144 sequences, as each of the three 

dependencies appeared 24 times in its grammatical form and 24 times containing a 

grammatical violation. The ungrammatical strings used can be found in Table 2.2 (p. 

63). Moreover, 50% of all test items contained an unfamiliar X item to test whether 

participants would generalize the grammar to sequences with novel surface forms. 
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5.1.2 Results 

Table 5.1 shows mean percentage endorsements for grammatical and ungrammatical 

sequences containing familiar and novel X elements across the four auditory 

conditions. 

 

 

Condition Grammaticality Familiarity % endorsements SD 

+Gestalt 

grammatical 
familiar 71.64 15.12 

novel 50.23 24.71 

ungrammatical 
familiar 52.08 25.25 

novel 33.22 17.97 

-Gestalt 

grammatical 
familiar 66.90 25.1 

novel 58.80 26.26 

ungrammatical 
familiar 40.39 28.94 

novel 29.28 21.14 

Shape 

grammatical 
familiar 66.09 17.47 

novel 55.56 16.46 

ungrammatical 
familiar 55.79 16.09 

novel 48.84 15.97 

Componential 

grammatical 
familiar 58.22 14.34 

novel 57.87 12.06 

ungrammatical 
familiar 56.83 15.52 

novel 54.98 14.09 

 

First, four separate independent-samples t-tests were conducted to contrast 

percentage correct between L1a and L2a in the four conditions. The analysis showed 

that performance differed significantly in the Componential condition, t(22) = 2.348, 

p = .028, due to participants in L1a responding correctly (52.78%, 3.92 SD) more 

than participants in L2a (49.48%, 2.8 SD). For this reason, Language (L1 and L2) 

was included as a factor in the subsequent analysis. 

Table 5.1: Mean percentage endorsements (and standard deviations) for grammatical and 

ungrammatical strings, containing familiar and novel X items, across all four conditions. 
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Percentage endorsements in all conditions were submitted to a 4 (+Gestalt, -

Gestalt, Shape, Componential) x 2 (L1 vs L2) x 2 (familiar vs unfamiliar X 

elements) x 2 (grammatical vs ungrammatical strings) ANOVA. The full results of 

the ANOVA can be found in Table 7 in Appendix B. The analysis resulted in four 

main effects and two interactions.  

The main effect for Language, F(1,88) = 4.96, p = .029, is due to there being 

a higher percentage of endorsements in L2a (55.87%) than in L1a (51.22%). 

Although the mean difference of approximately 4.66% is significant, this finding 

gives no insight into the detection of the non-adjacencies as this factor was not 

involved in an interaction with Grammaticality. Further, there is no obvious reason 

why this effect goes in the same direction across linguistic and non-linguistic 

materials, as these are only arbitrarily linked. 

The main effect for Condition, F(3,88) = 3.51, p = .020, reflects the fact that 

overall percentage endorsements differed across conditions. A subsequent Tukey 

post-hoc contrasting percentage endorsements across conditions, revealed that 

participants in the –Gestalt condition accepted a total of 48.84% of all sequences, 

which is significantly less (p = .036) than participants in the Componential condition 

(56.97%). The difference between overall percentage endorsement between the -

Gestalt and Shape condition was marginally significant (p = .051), with participants 

in the Shape condition accepting a total of 56.57% of all strings. In the +Gestalt 

condition, participants‟ endorsements were at 51.79%, which was not significantly 

different from any of the other percentages. Again, this main effect for Condition 

gives no indication as to whether participants successfully discriminated 

grammatical from ungrammatical sequences. 
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There was a main effect for Familiarity, F(1,88) = 44.94, p < .001, which is 

due to the fact that participants, regardless of all other factors, endorsed more with 

strings containing familiar X units (58.49%) as opposed to novel X items (48.60%). 

Thus, as in the previous experiments, participants were more likely to accept strings 

with familiar surface forms.  

As in previous experiments, the main effect for Grammaticality, F(1,88) = 

21.87, p < .001, was due to participants overall accepting significantly more 

grammatical (60.66%) strings than ungrammatical (46.43%) sequences. Importantly, 

there was a significant Grammaticality x Condition interaction, F(3,88) = 3.46 p = 

.02 (see Figure 5.1). In order to further investigate this interaction, and to determine 

whether the discrimination between grammatical and ungrammatical strings was 

significant, a series of follow-up t-tests was conducted.  

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 5.1: Percentage endorsements for the Grammaticality x Condition 

interaction, with error bars (+/- 1SE). The horizontal line indicates chance level 

(50%). Asterisks indicate performances significantly different from chance. 

* 

* * 
n.s. 

* 
* 

n.s

.. 

* 



5. Modality effects on the acquisition of non-adjacent dependencies 

 
 

144 

 

First, paired-sample t-tests were carried out to explore whether participants 

successfully discriminated between grammatical and ungrammatical sequences in 

each of the conditions (see Table 5.2). A corrected alpha-level was employed (α = 

.0125). 

 

 

Condition Grammaticality % endorsements Statistic 

+Gestalt 
grammatical 60.94 (18.67 SD) 

t(23) = 2.51, p = .020 
ungrammatical 42.65 (20.22 SD) 

-Gestalt 
grammatical 62.85 (23.53 SD) 

t(23) = 3.21, p = .004 
ungrammatical 34.84 (23.44 SD) 

Shape 
grammatical 60.82 (15.75 SD) 

t(23) = 2.29, p = .032 
ungrammatical 52.31 (13.95 SD) 

Componential 
grammatical 58.04 (12.10 SD) 

t(23) = 1.31, p = .204 
ungrammatical 55.90 (13.65 SD) 

 

The t-tests show that discrimination between grammatical and ungrammatical 

sequences was only significant in the –Gestalt condition. With the corrected alpha-

level, discrimination between sequences based on grammaticality in the +Gestalt as 

well as in the Shape condition is non-significant. A follow-up Tukey post-hoc 

analysis was conducted to compare the difference scores (i.e. percentage 

endorsements with grammatical strings – percentage endorsements with 

ungrammatical strings) across the four conditions. This analysis showed that the 

difference scores in the –Gestalt (28.01%, 42.70 SD) were significantly higher than 

in the Componential condition (2.14%, 8.03 SD), p = .016. The difference scores in 

the +Gestalt (18.28%, 35.69 SD) as well as in the Shape (8.51%, 18.21 SD) 

condition do not differ significantly from any of the conditions. 

Table 5.2: Mean percentage endorsements for grammatical and ungrammatical 

strings, along with results from the paired samples t-tests, for sequences across all 

four conditions.  
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Furthermore, four one-sample t-tests were conducted on endorsement rates 

with grammatical strings against 50% chance performance. These resulted in a 

significant finding across all four conditions: +Gestalt (t(23) = 2.87, p = .009), -

Gestalt (t(23) = 2.68, p = .014, Shape (t(23) = 3.37, p = .003) and Componential 

(t(23) = 3.26, p = .003). Additional one-sample t-tests were conducted to contrast 

percentage endorsements for ungrammatical strings against chance performance. In 

the +Gestalt condition, participants did not perform significantly different from 

chance, t(23) = 1.78, p = .088. In the –Gestalt condition, however, participants 

accepted significantly less ungrammatical strings than would be expected by chance, 

t(23) = 3.17, p = .004. In the Componential condition, the analysis revealed that 

participants accepted more ungrammatical strings than would be expected by chance, 

t(23) = 2.119, p = .045. Thus, participants in the Componential condition generally 

accepted more than 50% of all strings, regardless of grammaticality. In the Shape 

condition, the t-test was non-significant, t(23) = .813, p = .425.  

The Grammaticality x Condition interaction therefore reflects the fact that the 

non-adjacent dependencies were reliably detected only in the –Gestalt condition. In 

+Gestalt and in the Shape conditions, people seem to have been sensitive to the 

regularities to an extent but failed to reliably discriminate between grammatical and 

ungrammatical sequences on test. In the Componential condition, however, there 

was no evidence of sensitivity to the non-adjacencies and certainly no evidence for 

the underlying grammar being detected. 

Furthermore, there was a significant Familiarity x Condition interaction, 

F(3,88) = 7.03, p < .001 (see Figure 5.2). This interaction was further unpacked with 

a number of paired-samples t-tests (see Table 5.3, p. 147). The paired-samples t-
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tests, along with the corrected alpha level of α = .0125, showed that including a 

novel X item on test had no effect on people‟s endorsements in the –Gestalt and 

Componential conditions. In the +Gestalt and in the Shape condition, sequences with 

familiar surface forms were preferred over sequences involving novel X items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A subsequent Tukey post-hoc analysis comparing the difference scores (i.e. 

percentage endorsements with strings containing familiar X item - percentage 

endorsements with strings containing unfamiliar X item) for each condition showed 

that the difference between endorsements with familiar and unfamiliar sequences in 

the +Gestalt (20.14%, 15.25 SD) condition was significantly larger than in the Shape 

(8.74%, 12.09 SD), p = .036, and Componential condition (1.10%, 8.83 SD), p < 

.001. All other pairwise comparisons were non-significant, demonstrating that the 

 

Figure 5.2: Percentage endorsements for the Familiarity x 

Condition interaction, with error bars (+/- 1SE). 

Familiarity had little effect on percentage endorsements in 

the Componential condition. 
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difference scores in the –Gestalt condition (9.96%, 19.22 SD) did not differ from any 

of the other conditions. 

 

 

Condition Familiarity % endorsements Statistic 

+Gestalt 
familiar 61.86 (9.99 SD) 

t(23) = 6.47, p <.001 
unfamiliar 41.72 (11.71 SD) 

-Gestalt 
familiar 53.65 (16.28 SD) 

t(23) = 2.45, p = .022 
unfamiliar 44.04 (10.54 SD) 

Shape 
familiar 60.94 (13.75 SD) 

t(23) = 3.54, p = .002 
unfamiliar 52.20 (12.70 SD) 

Componential 
familiar 57.52 (14.23 SD) 

t(23) = .61, p = .548 
unfamiliar 56.42 (11.71 SD) 

 

The Familiarity x Condition interaction is thus due to the familiarity with X 

items having a significant effect on sequence endorsements in the +Gestalt 

condition. Familiarity with X elements had a much weaker effect on people‟s 

acceptance rates in the Shape condition, and no effect in the –Gestalt and 

Componential conditions. 

There were no further main effects or interactions. 

5.1.2.1 Cross-modal comparisons 

It has been argued that there are definite modality effects, and specifically that 

sequence learning in the auditory modality results in superior performance compared 

with the visual modality (Conway & Christiansen, 2005). For this reason an 

additional ANOVA was carried out to compare performance between the present 

Experiment 5 and the results from Experiment 4, in which visual strings were 

presented sequentially. The materials used for Experiment 5 were as closely matched 

Table 5.3: Mean percentage endorsements for familiar and unfamiliar strings, along 

with results from the paired samples t-tests, for sequences across all four conditions.  
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as possible with the stimuli used for Experiment 4. The full results can be found in 

Table 8 in Appendix B. Mean percentage endorsements for grammatical and 

ungrammatical sequences across the visual and auditory modality for all four 

conditions can be found in Table 5.4.  

  

 

Condition Modality Grammaticality % endorsements SD 

+Gestalt 

auditory 
grammatical 60.94 18.67 

ungrammatical 42.65 20.22 

visual 
grammatical 70.37 26.01 

ungrammatical 30.44 28.65 

-Gestalt 

auditory 
grammatical 62.85 23.53 

ungrammatical 34.84 23.44 

visual 
grammatical 64.41 22.58 

ungrammatical 36.17 26.50 

Shape 

auditory 
grammatical 60.82 15.75 

ungrammatical 52.31 13.95 

visual 
grammatical 77.66 23.57 

ungrammatical 21.01 26.20 

Componential 

auditory 
grammatical 58.04 12.10 

ungrammatical 55.90 13.65 

visual 
grammatical 56.37 15.42 

ungrammatical 48.26 14.37 

 

 

The 2 x 4 x 2 ANOVA, with Modality (auditory and visual), Condition 

(+Gestalt, -Gestalt, Shape and Componential) and Grammaticality (grammatical, 

ungrammatical) as factors, resulted in two main effects and three interactions. There 

was a main effect for Grammaticality, F(1,184) = 78.25, p < .011 due to the fact that 

grammatical sequences were accepted more (63.93%) than ungrammatical sequences 

(40.20%). The was also a main effect of Modality, F(1,184) = 4.37, p = .038, as 

Table 5.4: Mean percentage endorsements (and standard deviations) for grammatical and 

ungrammatical strings, for the auditory and visual modality, across all four conditions. 
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percentage endorsements were higher in the auditory modality (53.55%) than in the 

visual modality (50.59%). However, neither of these main effects reveal anything 

about the detection of non-adjacencies across modalities. 

The first interaction, Grammaticality x Condition, F(3,184) = 5.47, p = .001, 

was expected as the previous ANOVAs for Experiment 4 and Experiment 5 showed 

that the underlying grammar was detected in the +Gestalt, -Gestalt and Shape 

conditions when materials were presented visually, and were reliably identified in 

the -Gestalt condition when presented aurally.  

The more interesting interactions are the significant Grammaticality x 

Modality interaction, F(1,184) = 12.53, p = .001 (see Figure 5.3), and 

Grammaticality x Condition x Modality, F(3,184) = 3.99, p = .009.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3: Grammaticality x Modality interaction. Mean percentage endorsements for 

the auditory and visual modality, with error bars (+/- 1 SE). The horizontal line 

indicates chance level performance (50%). 
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The Grammaticality x Modality interaction was examined first by conducting 

paired-samples t-tests to contrast endorsements for grammatical and ungrammatical 

sequences across the visual and auditory modality (see Table 5.5). 

 

 

Modality Grammaticality % endorsements Statistic 

visual 
grammatical 67.20 (23.45 SD) 

t(95) = 7.03, p < .001 
ungrammatical 33.97 (26.14 SD) 

auditory 
grammatical 60.66 (17.80 SD) 

t(95) = 4.54, p < .001 
ungrammatical 46.43 (19.83 SD) 

 

Since these within-modality comparisons failed to reveal the source of the 

interaction (participants in both modalities successfully differentiated grammatical 

from ungrammatical sequences), the interaction was further investigated by 

contrasting the difference scores (i.e. percentage endorsements for grammatical 

sequences – percentage endorsements for ungrammatical sequences) for the visual 

and auditory modality in an independent-samples t-test. The Levene‟s test for 

equality of variances was violated (p < .001) and therefore the corrected values are 

reported. The t-test showed that discrimination between strings in the visual 

modality (33.23%, 46.34 SD) was better than in the auditory modality (14.24%, 

30.70 SD), t(164.95) = 3.35, p = .001. 

In order to further illuminate the Grammaticality x Condition x Modality 

interaction, a number of individual 2 x 2 ANOVAs were conducted. The full 

ANOVA tables can be found in Appendix B (Tables 9 - 12). First a 2 (Modality) x 2 

(Grammaticality) ANOVA was carried out to compare percentage endorsements 

between sequentially presented non-adjacencies in the +Gestalt materials in the 

Table 5.5: Mean percentage endorsements for grammatical and ungrammatical 

strings, along with results from the paired samples t-tests, for sequences across both 

modalities. 
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visual modality (from Experiment 4) and in the auditory modality (from Experiment 

5). The same was done for the –Gestalt stimuli type. For the +Gestalt materials, the 

ANOVA resulted in a main effect for Grammaticality, F(1,46) = 21.05, p < .001, as 

participants endorsed significantly more grammatical (65.65%, 23.29 SD) than 

ungrammatical (36.55%, 25.30 SD) sequences, regardless of the modality of the 

input. Importantly, there was no significant Grammaticality x Modality interaction, 

F(1,46) = 2.91, p = .10.  There were no other significant effects or interactions. The 

same pattern of findings was revealed for the –Gestalt condition, with a significant 

effect for Grammaticality, F(1,46) = 19.09, p < .001. This effect was due to higher 

acceptance of grammatical (63.63%, 22.83 SD) as opposed to ungrammatical 

(35.50%, 24.76 SD) strings, regardless of modality. Here, there were also no further 

significant effects or interactions. This indicates that in the linguistic domain, there 

are no superior auditory effects when it comes to extracting non-adjacent 

dependencies based on a PSG. 

Next, a 2 (Modality) x 2 (Grammaticality) ANOVA was carried out to 

compare percentage endorsements between sequentially presented non-adjacencies 

in the visual Shape condition (from Experiment 4) and auditory Shape condition 

(from Experiment 5). The analysis resulted in a main effect for Modality, F(1,46) = 

6.34, p = .015, and Grammaticality, F(1,46) = 39.55, p < .001, as well as in a 

significant Modality x Grammaticality interaction, F(1,46) = 21.59, p < .001 (see 

Figure 5.4).  
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Percentage endorsements were higher overall for the aurally presented 

sequences, with participants here accepting 56.57% of all sequences and thus 

approximately 7.24% more than participants in the visual-sequential task, who were 

at 49.33%. This explains the main effect for Modality, yet it reveals little about the 

acquisition of non-adjacencies. The main effect for Grammaticality is due to a higher 

percentage of acceptance for grammatical than for ungrammatical strings (69.24% 

vs. 36.66%), however, this gives little insight into the modality differences. 

Importantly, the interaction is due to participants in the visual-sequential task being 

significantly better than participants in the auditory condition at discriminating 

grammatical from ungrammatical sequences. This was shown in an independent-

samples t-test contrasting the difference scores (i.e. percentage endorsements with 

grammatical – percentage endorsements with ungrammatical sequences) for the 

Figure 5.4: Percentage endorsements for the Modality x 

Grammaticality interaction, with error bars (+/- 1SE). The 

horizontal line across indicates chance level performance (50%). 
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Shape conditions across the two modalities. Levene‟s test was significant (p < .001) 

and therefore the corrected values are reported. The t-test showed that in the visual 

modality, discrimination between grammatical and ungrammatical sequences was 

significantly better (56.66%, 47.36 SD) than in the auditory modality (8.51%, 18.21 

SD), t(29.65) = 4.65, p < .001. As illustrated in Figure 5.4, in the visual modality, 

participants accepted approximately 77.66% (23.57 SD) of all grammatical and 

merely 21.01% (26.20 SD) of all ungrammatical sequences, whereas in the auditory 

task overall percentage endorsements for grammatical strings was 60.82% (15.75 

SD) and thus 8.5% higher than for ungrammatical strings (52.32%, 13.95 SD). In 

fact, discrimination in the visual modality was more than six times better than in the 

auditory modality. This difference accounts for the interaction. 

Finally, the same 2x2 ANOVA was conducted on the Componential 

materials, contrasting performances in the visual and auditory modality. Here, the 

main effect for Grammaticality was marginally significant, F(1,46) = 3.94, p = .053 

due to percentage endorsements being slightly higher for grammatical (57.20%, 

13.74 SD) than for ungrammatical strings (52.08%, 14.39 SD). This may indicate 

that some participants might have shown sensitivity toward the regularities. 

Importantly, however, even if there was some sensitivity toward the non-adjacencies, 

the fact that the main effect was marginally significant demonstrates that the 

detection of the underlying grammar instantiated as Componential patterns is much 

harder. This ANOVA resulted in no further main effects or interactions. 

The cross-modal analysis found no further main effects or interactions. In 

general, the results suggest that modality only had a significant on the Shape 
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materials, and performance levels for all other stimuli types remained at the same 

level across modalities. 

 

5.1.3 Discussion 

The main aim of this experiment was to investigate whether the extraction of non-

adjacent dependencies in the auditory modality followed the same pattern as in the 

visual modality with regards to domain-specificity. The results suggest that this was, 

in general, the case.  

For the linguistic domain, however, the results do not paint a clear picture. 

The paired-samples t-test (see Table 5.2, p. 144) showed that in the +Gestalt 

condition, discrimination between grammatical and ungrammatical sequences in the 

auditory modality did not differ significantly when a strict correction for multiple 

comparisons was applied to the alpha-level. More importantly, however, the cross-

modal analysis revealed no significant Modality x Grammaticality interaction when 

contrasting performances in the two visual linguistic conditions and the two auditory 

linguistic conditions. This therefore suggests that adults‟ ability to extract non-

adjacent dependencies in the linguistic domain nevertheless operates equivalently 

across both modalities. Importantly, much like in visually presented sequences, 

people in the aural tasks were also reliably capable of tracking these regularities 

without assistance from the Gestalt Principle of Similarity. In fact, participants in the 

auditory –Gestalt condition reliably extracted the non-adjacencies (see Figure 5.1, 

p.143), and, interestingly, familiarity with the intervening X words had no significant 

effect on endorsement rates in this condition (see Table 5.3, p. 147). This therefore 
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demonstrates that when the underlying grammar is successfully acquired, 

generalisations to novel forms readily occur. 

 The underlying grammar governing the sequential input was not detected in 

the auditory Componential condition. In line with the visual materials, the 

Componential auditory stimuli were matched element-by-element with the auditory 

–Gestalt condition and therefore represented the closest non-linguistic equivalent. 

These findings are in keeping with the results from the previous chapter and are 

again consistent with the notion of language-specific expectations (not accessible in 

the non-linguistic domain) that direct learners toward the crucial regularities. 

Importantly, this domain-specific knowledge cannot be viewed as a fully 

encapsulated modular mechanism. The non-adjacent regularities between simple, 

unanalysed sounds were also detected in the auditory Shape condition (although not 

quite as readily as in the visual modality, which will be discussed shortly). Thus the 

general ability to track non-adjacent dependencies must be a domain-general ability, 

which taps into a domain-specific subsystem, i.e. language-specific knowledge.  

In addition to the findings regarding domain-specificity, the present 

experiment also challenges current accounts of modality-constrained sequence 

learning effects. Conway and Christiansen (2005) strongly argue for superior 

sequence learning performance in the auditory modality as participants in their 

auditory task outperformed participants in the visual task by 75% to 62% in the 

grammaticality judgments. However, in their auditory condition, they used different 

musical notes. Thus, each stimulus differed from the other along two dimensions: 

position within the temporal stream and quality of the note. However, in their visual 

task, participants were exposed to black squares that appeared in a specific order in 
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different locations on the screen. Importantly, every one stimulus in this condition 

was identical to the next and differed in terms of location and temporal order. The 

black squares were not qualitatively different from each other in the way the musical 

notes differed from each other. In contrast to this, the materials used for Experiments 

4 and 5 were qualitatively distinct i.e. they looked different and sounded different. 

For this reason, specifically the visual and auditory Shape conditions of Experiments 

4 and 5 might lend themselves more to cross-modal investigations than the materials 

used by Conway and Christiansen.  

However, the cross-modal analysis in 5.1.2.1 revealed that the non-adjacent 

dependencies in the aurally presented Shape condition were not as reliably detected 

as in the serially presented visual task, as shown in Figure 5.4 (p. 152). This 

demonstrates that modality-constrained learning effects require a refined approach 

and that auditory sequence learning does not necessarily result in better performance 

as argued by Conway and Christiansen. A potential explanation for Experiment 5‟s 

Shape participants‟ relatively poor performance is that the auditory stimuli used, 

although qualitatively distinct from one another, were not as distinguishable as the 

visual materials. The visual materials used in Experiment 4 were different with 

regards to shape and colour. There is a possibility that this allowed participants to 

not just encode non-adjacent regularities between shapes but also between colours 

(or both shape and colour). In the auditory modality, by contrast, participants in the 

Shape condition were required to extract the dependencies between sounds merely 

differing in timbre. In a similar way as Conway and Christiansen found better 

performance in aural sequence learning due to participants being able to extract more 

distinguishing features, there is a possibility that the cross-modal analysis between 
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Experiment 4 and 5 shows that participants here performed better in the visual 

modality due to there being more informative cues available.  

 It makes sense to assume that learners would extract all available cues in 

learning tasks. In a related line of research, infants have exhibited sensitivity to a 

number of different inputs, which they can use to make sense of the world. Frank, 

Slemmer, Marcus and Johnson (2009), for example, demonstrated that 5-month old 

infants only succeed at learning an abstract ABA/ ABB rule when instantiated as 

visually presented shapes and coordinated speech sounds, which shows that infants 

rely on two modalities, and also information from two domains for successful rule 

learning. Furthermore, research on spatio-temporal learning has also illustrated 

infants‟ ability to integrate multiple, perceptually different, cues (Kirkham, Slemmer, 

Richardson & Johnson, 2007). Across a total of four experiments, the authors 

investigated 11-month, 8-month and 5-month old infants‟ sensitivity towards 

statistically structured sequences of visual materials. They found that the youngest 

infants were sensitive to a combination of shape and colour cues but not to the 

sequential order of the stimuli. The oldest infants, by contrast, showed sensitivity 

only to the underlying statistics governing the sequences. Importantly, the 8-month 

old infants demonstrated the ability to extract the underlying statistical input of the 

sequences only when additional cues of colour and shape assisted them in this task. 

Kirkham et al. thus suggest that the statistics underlying non-linguistic spatio-

temporal sequences may be a cognitively demanding task and, and may not be 

informative to infants without additional cues until the age of approximately 11 

months.  
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 In a similar way, the detection of non-adjacent dependencies has been 

proposed to be a cognitively demanding task in the linguistic domain (Gómez & 

Maye, 2005; Newport & Aslin, 2004). Although specifically Experiments 1 and 2 

showed that non-adjacencies are learnable by adults without assistance from 

additional cues, Experiments 3 and 4 clearly demonstrated that in the non-linguistic 

domain, stimulus simplicity is a crucial factor in the detection of non-adjacencies. 

Taking all this evidence into account, a potential explanation for the discrepancy 

found between performance levels in the Shape condition of visually presented 

shapes (Experiment 4) and aurally presented sounds (Experiment 5) is that the 

extraction of non-adjacent regularities in the non-linguistic domain is a complex 

task. As such, it requires additional cues to guide people toward the relevant units. In 

the visual Shape condition, participants could have encoded the non-adjacent 

grammar, the colour of the shapes, the shapes or any combination of the three 

factors. In the equivalent auditory condition, by contrast, participants had less 

informative cues available to them: the underlying grammar and the timbre.  

 In sum, the present findings suggest that the detection of non-adjacent 

dependencies in the auditory modality is subject to the same constraints regarding 

domain-specificity as in the visual modality. The identification of non-adjacencies in 

the linguistic domain comes easily to participants regardless of the modality of the 

input as indicated by the non-significant Modality x Grammaticality interaction. In 

the non-linguistic domain, however, participants rely on additional guidance in order 

to track the correct regularities successfully. 
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5.2 Concluding remarks 

The present chapter investigated modality effects on the acquisition of non-adjacent 

dependencies, and found that the pattern of results in the auditory modality replicates 

the pattern of results in the visual modality. Thus, in both the visual and auditory 

modality, people are unable of tracking non-adjacent dependencies when the non-

linguistic materials are designed to replicate the internal structure of language, as 

was done in the Componential materials. Yet non-adjacencies that are instantiated as 

linguistic elements and simple non-linguistic elements (shapes or sounds differing in 

timbre) are detected. For this reason, the following chapter‟s aim is to further 

investigate the underlying reason for the poor performances in the Componential 

conditions. In doing this, the following chapter will focus on the visual modality. 
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Chapter 6  

 

The role of familiarity in the acquisition of non-adjacencies 

between complex patterns 

 

Experiments 1 to 5 have established that the extraction of non-adjacent dependencies 

is, to an extent, specific to language. In the linguistic domain, non-adjacent 

dependencies are reliably detected, regardless of the perceptual modality and even 

after the removal of additional cues such as Gestalt cues and breaks. By contrast, 

non-adjacent dependencies in the non-linguistic domain rely on stimulus simplicity. 

Experiments 3 to 5 showed that across both the visual and auditory modality, non-

adjacencies between complex non-linguistic materials are not learnable when the 

materials replicate the combinatorial re-use of graphemes/ phonemes found in 

language. This chapter will further investigate these results by focusing on the role 

stimulus familiarity plays in the detection of non-adjacent dependencies between 

componential patterns. 
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6.1 Experiment 6 

There are a number of possible explanations for  why the non-adjacent dependencies 

in Experiments 3 and 4 are not detected when the underlying grammar is instantiated 

as Componential black and white matrix patterns. In Chapter 5, the case was made 

for duality of patterning. Language is componential on the graphemic/phonemic 

level as well as on the higher morphosyntactic level, meaning that graphemes/ 

phonemes are combined to create morphemes or words, and these are then combined 

to form sentences. This crucial aspect of language was replicated in the non-

linguistic domain by designing the Componential materials, which in both the visual 

(Experiment 3 and 4) and auditory (Experiment 5) modality, were matched sub-

element by sub-element with the artificial language used for the –Gestalt stimuli 

throughout the work presented in this thesis. Importantly, it is in the Componential 

conditions that participants failed to extract the non-adjacent dependencies, 

regardless of the mode of presentation (simultaneous, serial) and modality (visual, 

auditory).  It was argued that language-specific expectations guide people‟s attention 

toward relevant units in the linguistic domain, yet fail to do so in the non-linguistic 

domain. Moreover, it was argued that this linguistic knowledge feeds into a domain-

general mechanism capable of tracking non-adjacent dependencies, as the underlying 

grammar was learnt in the non-linguistic domain as long as the stimuli were simple 

and unanalysed (i.e. the Shape conditions).  

However, there are other potential reasons to consider in explaining  people‟s 

inability to extract non-adjacencies between Componential patterns. One reason has 

to do with the matrix patterns themselves. The re-use of sub-patterns for the 

Componential materials results in complex stimuli. There is thus a possibility that 

participants struggle to differentiate between individual patterns, resulting in the 
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non-adjacencies not being detected. The fact that Experiment 3 showed that 

including novel X patterns in the testing phase has much less of an effect on people‟s 

acceptance rate
1515

may well indicate that they are not even aware of the novel X 

patterns. The novel items may thus be as unfamiliar to them as the X units 

encountered during the training. Most importantly therefore, participants‟ 

unfamiliarity with the Componential materials may have hindered the extraction of 

non-adjacent dependencies.  

In a related line of research, Saffran, Pollak, Seibel and Shkolnik (2007) 

examined infant rule learning in the non-linguistic domain across three experiments. 

It has been found that although infants are adept at abstract rule learning in the 

linguistic domain (Marcus, Vijayan, Bandi Rao & Vishton, 1999), this ability does 

not operate equally well in the non-linguistic domain when the rule is instantiated as 

looming shapes (Johnson, Fernandes, Frank, Kirkham, Marcus, Rabagliati & 

Slemmer, 2008) or non-linguistic auditory materials such as musical tones and 

timbres (Marcus, Fernandes & Johnson, 2007). Saffran et al. claim that materials 

used for non-linguistic rule-like learning in infants frequently exhibited low 

ecological validity. Specifically, they argue that the difference between performance 

in the linguistic and non-linguistic domain is due to familiarity. The non-linguistic 

materials used in previous rule learning studies are entirely novel to infants and are 

thus not as familiar and indeed meaningful to them as the linguistic materials. 

Although the linguistic materials used are artificial words and syllables, infants are 

nonetheless exposed to language on a daily basis and are thus familiar with a 

linguistic input. The novel materials are, so they maintain, harder to represent and 

                                                           
15

The Tukey post-hoc analysis showed that the difference between percentage endorsements with 

strings containing familiar X items and strings containing novel X items was significantly lower than 

for the other two non-linguistic conditions (Holistic and Shape), see p.106. 
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more difficult for infants to store in memory during rule learning tasks. Saffran et al. 

argue that unfamiliar stimuli may be encoded as tokens, i.e. as the specific elements 

used in the trials. Since individual tokens are not meaningful to the infants, they fail 

to place the tokens into categories, which in turn means they fail to encode patterns 

of types. To make their point clearer: If an infant encodes a sequence of shapes, for 

example triangle-circle-triangle, as a sequence of tokens, he/she will be unable to 

extract the underlying pattern of types, i.e. CategoryA-CategoryB-CategoryA, and 

thereby be incapable of applying this ABA rule to novel instantiations of the same 

rule. Saffran et al. addressed this problem by replicating the Marcus, Vijayan, Rao 

and Vishton (1999) experiments using non-linguistic stimuli that are familiar to 

infants, namely pictures of dogs and cats.  

In Saffran et al.‟s series of experiments, 7-month old infants were habituated 

to either an ABA or ABB rule using pictures of dogs (Experiment 1) or cats 

(Experiment 3), or an AAB or ABB rule using pictures of dogs (Experiment 2). On 

test, infants who were exposed to the ABA rule in Experiment 1 or 3, for example, 

viewed triads that followed this rule (50%) and triads that followed the ABB rule 

(also 50%). Across all three experiments, the authors found a novelty effect, with 

infants looking significantly longer at triads that followed the novel pattern. They 

conclude that abstract rule learning is a domain-general ability that operates across 

the linguistic and non-linguistic domain, and that stimulus familiarity is a crucial 

factor. They argue that using non-linguistic materials that are familiar and therefore 

meaningful to the infants allowed their infant participants to detect the underlying 

rule and abstract the rule to new instances on test.  

In the present context, the unfamiliarity with the Componential matrix 

patterns may play an important role in the detection of non-adjacencies. In 
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accordance with Saffran, Pollak, Seibel and Shkolnik‟s‟s findings (2007), it seems 

reasonable to assume that participants‟ unfamiliarity with Componential patterns 

may have hindered the identification of non-adjacencies in the AGL task . The aim 

of the present experiment was therefore to explore whether prior familiarisation with 

the Componential black and white matrix patterns would result in better performance 

in the detection of non-adjacent dependencies.  

Importantly, very closely related to this issue of familiarity is the issue of 

confusability. In the visual Shape conditions, for example, the non-linguistic stimuli 

were also unfamiliar to the participants in as much as they did not merely involve 

simple shapes, such as rectangles and circles, but the majority of the shapes were 

fairly abstract (see Table 1 in Appendix A for all the materials used). However, a 

crucial difference between the Componential materials and the Shape materials was 

that the shapes – due to the lack of internal, systematic structure – were less 

confusable and therefore easier to distinguish. By addressing familiarity of the 

Componential patterns, the present experiment also aimed at targeting the issue of 

confusability. 

In the present experiment, participants were therefore familiarised with the 

Componential patterns prior to completing the AGL task (from Experiment 3).The 

amount of familiarisation was manipulated in order to investigate whether the degree 

of familiarity with the matrix patterns affects the acquisition of the non-adjacent 

dependencies. The research questions for this experiment therefore were: (1) Does 

training on the vocabulary of the Componential materials result in higher familiarity 

with individual patterns? (2) Does increased familiarity with individual patterns 

result in the detection of non-adjacent dependencies in the AGL experiment? 
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6.1.1 Method 

6.1.1.1 Participants 

48 adult participants (eight males and forty females,) took part in one of three 

conditions, 16 participants in each of the 1-block and 4-block conditions, and 16 in 

the 8+2-block condition. All participants were native English speakers and they 

received either course credit or payment for participating. Depending on the 

condition, participants received either £4.50 (for the 1-block and 4-block conditions) 

or £10.50 (for the 8+2 condition).  

6.1.1.2 Materials 

The stimuli for this experiment were the Componential black and white matrix 

patterns used in Experiments 3 and 4.  

6.1.1.3 Procedure 

This experiment consisted of two major parts, the familiarisation task and the 

grammar learning task. There were three conditions due to the between-participants 

manipulation of familiarisation blocks. In the 1-block condition, participants 

received one block of familiarisation before moving on to the grammar learning task. 

The 4-block condition involved 4 blocks of familiarisation prior to the grammar 

learning task. The 8+2-block condition took place over two days. On Day 1, 

participants received 8 familiarisation blocks, and on Day two they received a further 

2 blocks of familiarisation and consequently progressed to the grammar learning 

task. 
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Time 

The familiarisation task was conducted on a PC and designed using Experiment 

Builder (see Figure 6.1 for a schematic illustration of the training and testing phase 

of the familiarisation task).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Participants viewed the entire vocabulary of the Componential language one 

item at a time, where a single exposure to a single matrix pattern lasted for 1500ms. 

Each pattern presentation was separated from the next by a blank screen (250ms). 

There were 30 patterns in total, made up of the 24 X elements and 6 elements 

involved in the three non-adjacent dependencies (see Table 1 in Appendix A for all 

the materials).  

During each familiarisation block, each of the 30 patterns was shown three 

times in random order. After the exposure to individual patterns, participants had to 

 

 

 

 

 

 

 

 

 

 

  

 

12 

 

 

Figure 6.1: Schematic illustration of the familiarisation task. A. Individual presentation of matrix 

patterns during the training phase. B. 2 AFC task, in which participants were required to click on 

the pattern they had seen during the training. 

A B 
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complete a two-alternative forced choice (2AFC) task involving the 30 patterns from 

the familiarisation block contrasted against 30 foils, which were entirely novel 

patterns based on new CVC words (see Table 3 in Appendix A for all the foils). The 

co-occurrence of foil and target pattern was randomised. Participants were required 

to use the mouse to click on the pattern they thought they had viewed during 

familiarisation. Importantly, for each decision they made, they received immediate 

feedback. They were shown the number of correct responses after each choice, 

which increased with every correct decision made. The 1-block condition ended after 

one cycle of familiarisation and one 2AFC test on all 30 items presented during 

familiarisation. Participants in the 4-block condition went through four 

familiarisation blocks and four 2AFC tasks, and participants in the 8+2-block 

condition through a total of ten familiarisation blocks, each followed by a 2AFC test, 

before moving on to the grammar learning task. 

 Before starting the experiment, participants were informed that they were 

going to be trained and tested on individual black and white matrix patterns, and that 

it was important for them to learn each pattern in preparation for a subsequent 

experiment involving sequences of these patterns. Moreover, they were informed 

that the training involved feedback, which was aimed at assisting them in learning 

the patterns. Participants were told that, after this training on individual patterns, 

they would move on to a subsequent experiment involving sequences of patterns.

 The grammar learning task was identical to Experiment 3 with regards to the 

training phase, method, materials and participant instructions. There was however, 

one difference: Rather than participants making grammaticality judgements on 144 

three-element sequences during the testing phase, these were randomly reduced to 72 
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sequences for 8+2-block condition of the present experiment in order to reduce 

overall duration of the experiment on Day 2. As in Experiment 3, the present 

experiment not only involved two separate Languages L1 and L2 to control for 

arbitrary preferences people may have for certain patterns, but also subgroups a and 

b, which differed with regard to the grammatical violations participants encountered 

on test (see Table 2.2, p.63).  

 

6.1.2 Results 

6.1.2.1 Familiarisation phase 

An illustration of mean percentage correct responses can be found in Table 6.1. 

 

 

Condition % correct SD 

1-block 65.78 5.41 

4-block 81.46 10.40 

8+2-block 90.63 9.68 

 

In order to gain an insight into what effect increased familiarisation has on 

participants‟ ability to discriminate between target pattern and foil, a One-way 

ANOVA was conducted on the percentage of correct responses on the final block of 

each condition (i.e. responses on the first block of the 1-block condition, on the 

fourth block of the 4-block condition and on the tenth block on the 8+2-block 

condition). Condition (1-block, 4-block and 8+2-block) was employed as a between-

subjects factor. The analysis resulted a significant effect, F(2,46) = 31.15, p < .001. 

A subsequent Tukey post-hoc analysis showed that percentage of correct responses 

Table 6.1: Discrimination of between target and foil patterns on 2AFC test. 

Percentage correct responses on the final block of each condition. 
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differed significantly between all three conditions as can be seen in Table 6.2. This 

therefore accounts for the significant effect. 

 

 

 

 1-block 4-block 8+2-block 

1-block - <.001 <.001 

4-block <.001 - .014 

8+2-block <.001 .014 - 

 

 

The ANOVA along with the post-hoc analysis therefore clearly demonstrate 

that the more training participants received, the more familiar they became with 

individual matrix patterns, as shown by the increased ability to successfully 

discriminate target patterns from foils. Even just after the minimal amount of 

familiarisation participants successfully distinguished between target and foil (see 

Figure 6.2).  This was shown in an additional one-sample t-test, which was carried 

out to compare performance in the 1-block condition to 50% chance performance 

and revealed a significant difference (t(14) = 11.29, p < .001. 

 

 

 

 

 

 

Table 6.2: Results of the post-hoc analysis showing that performance on the final 

2AFC test in each condition differed significantly. 
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6.1.2.2 Grammar learning phase 

Initially, three separate one-way ANOVAs were carried out to contrast percentage 

correct responses between the subgroups L1a, L1b, L2a and L2b in the three 

conditions. The Levene‟s test for the 1-block condition was significant (p = .044), 

and therefore the Welch F-ratio is reported. There was no significant effect of 

Subgroup on the percentage correct responses, F(3,6.38) = 4.19, p = .06. The 

ANOVA for the 4-block condition also revealed no significant difference between 

subgroups, F(3,15) = .087, p = .09, as did the ANOVA for the 8+2-block condition, 

F(3,15) = .889, p = .48. All subgroups were therefore collapsed for further analyses. 

The full ANOVA results can be found in Appendix B (Table 13). Table 6.3 shows 

mean percentage endorsements for grammatical and ungrammatical strings 

containing familiar and unfamiliar X patterns. 

 

 

 
 

 

 

 

 
 

Figure 6.2: Familiarity with Componential patterns increases with the more training 

blocks participants receive. 
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Condition Grammaticality Familiarity % endorsements SD 

1-block 

grammatical 
familiar 60.42 12.23 

novel 52.43 13.79 

ungrammatical 
familiar 57.63 7.89 

novel 49.31 12.36 

4-block 

grammatical 
familiar 58.68 14.30 

novel 49.31 13.05 

ungrammatical 
familiar 53.30 16.98 

novel 50.35 16.57 

8+2-block 

grammatical 
familiar 65.97 20.17 

novel 43.75 21.26 

ungrammatical 
familiar 60.76 24.47 

novel 44.44 25.26 

 

As a key aspect of the present experiment was to investigate the impact that 

prior training on the vocabulary of the patterns has on performance in the grammar 

learning task, data collected for the Componential condition in Experiment 3 were 

included in the present ANOVA.  

Importantly, the Componential condition in Experiment 3 differed from 

Experiment 6 with regard to the familiarisation prior to the AGL task (i.e. there was 

no familiarisation for participants in Experiment 3). For the present analysis, this 

data was included as the 0-block condition. An ANOVA was conducted on the 

percentage of endorsements, with Familiarity (old versus new X item) and 

Grammaticality (grammatical versus ungrammatical) as within-subjects factors and 

Table 6.3: Mean percentage endorsements for grammatical and ungrammatical strings, containing 

familiar and unfamiliar X items, across all three conditions. 
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Training (0-block versus 1-block versus 4-block versus 8+2-block) as a between-

subjects factor
16

.
16

The full ANOVA table can be found in Table 15 in Appendix B.  

The analysis resulted in one main effect and one interaction. The significant 

effect for Familiarity (familiar X versus novel X), F(1,76) = 30.52, p < .001, showed 

that overall participants were more likely to endorse strings containing a familiar X 

item (57.85%) as opposed to strings containing novel X units (47.01%). 

Additionally, there was a significant Familiarity x Grammaticality interaction, 

F(1,76) = 4.302, p = .041 (see Figure 6.3). There were no further significant effects 

or interactions.  

 

 

 

 

 

 

 

 

 

 

 

The interaction was further explored in two paired-samples t-tests, 

contrasting percentage endorsements for grammatical against percentage 

                                                           
16

 Note that the conditions also differed with regard to how many test items participants were exposed 

to during the testing phase. It can therefore not be ruled out that this may have impacted on the 

results. 

 
 

 
 

Figure 6.3: Familiarity x Grammaticality interaction, with error bars 

(+/- 1SE). The black line across indicates chance performance at 50%. 



6. The role of familiarity in the acquisition of non-adjacencies between complex patterns 

 
 
 

173 

 

endorsements for ungrammatical sequences, for strings containing familiar and novel 

X patterns separately. A corrected alpha-level (α = .025) was employed. 

 

 

 

 

 

 

 

The t-tests suggest that discrimination between sequences based on 

grammaticality was unsuccessful for strings containing familiar as well as for strings 

containing novel X items. Thus, in line with previous analyses, the difference scores 

(i.e. percentage endorsements with grammatical – percentage endorsements with 

ungrammatical sequences) were calculated along both levels of familiarity with X, 

and submitted to a paired-samples t-test. This t-test showed that discrimination 

between sequences based on grammaticality was significantly better for sequences 

involving familiar X patterns (3.54%, 18.11 SD) as opposed to novel X items (.00%, 

17.57 SD), t(79) = 2.08, p = .040. This difference therefore accounts for the 

interaction. However, since grammaticality judgements were unsuccessful for 

sequences with novel as well as with familiar surface forms, this interaction does not 

reflect a meaningful effect. 

Of particular importance is also the absence of a main effect for 

Grammaticality, F(1,76) = 1.12, p = .294, as well as the absence of a significant 

Training x Grammaticality interaction, F(3,76) = .08, p = .972, showing that 

Table 6.4: Mean percentage endorsements for grammatical and ungrammatical strings, along 

with results from the paired samples t-tests, for sequences containing familiar and unfamiliar 

X items.  

X item Grammaticality % endorsements Statistic 

familiar 
grammatical 58.65 (15.26 SD) 

t(79) = 1.75, p = .084 
ungrammatical 55.10 (15.48 SD) 

novel 
grammatical 46.25 (16.11 SD) 

t(79) = .00, p = 1.0 
ungrammatical 46.25 (17.25 SD) 
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performance based on the grammaticality of the sequences did not differ depending 

on the amount of training participants received. Thus, the underlying grammar was 

not identified in any of the conditions in this experiment. 

 

6.1.3 Discussion 

The aim of Experiment 6 was two-fold. Its first aim was to familiarise participants 

with the complex black and white matrix patterns used for the Componential 

conditions in experiments 3 and 4. The second goal of this experiment was to 

manipulate the amount of familiarisation the participants received in order to 

investigate whether this would impact on their ability to detect the non-adjacent 

dependencies during the subsequent grammar learning experiment. 

 The present findings indicate that the more familiarisation blocks participants 

received, the more likely they were to successfully discriminate between familiar and 

entirely novel patterns on test. There was thus a definite learning effect, and 

increased training duration lead to increased familiarity with Componential patterns. 

Furthermore, increased familiarisation also reduced confusability between complex 

patterns as people‟s performance on the 2AFC test increased from approximately 

65% correct responses (1-block) to approximately 80% (4-block) to around 90% in 

the 8+2-block condition.  

 However, people‟s competence at discriminating between target pattern and 

foil did not affect their performance during the AGL task. Here, participants failed to 

extract the non-adjacent dependencies and base their grammaticality judgements on 

the underlying PSG. The absence of a significant Training x Grammaticality 
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interaction showed that this was true even for participants in the 8+2-block 

condition, who were significantly more familiar with the patterns than people in the 

other two conditions. 

 In general then, this experiment provides evidence that the individual 

Componential patterns are learnable and distinguishable from one another. Yet 

participants are unable to learn the non-adjacent dependencies even when they are 

highly familiar with individual patterns. A potential explanation for the present 

findings might be that simultaneously presented sequences of three matrix patterns 

lead to a computational explosion, and participants were overwhelmed by the sheer 

number of potential part-to-part and whole-to-whole relationships available during 

each trial in the AGL task of the experiment. However, the main effect for 

Familiarity made clear that participants favoured familiar patterns, and thus must 

have recognised familiar patterns, even when they were exposed to sequences of 

three. Thus, they were capable of analysing the patterns on an individual basis and in 

sequences of three, yet they were unable to extract the underlying grammar 

generating the sequences.  

 With regard to the potential reasons why participants fail at learning non-

adjacent regularities between componential patterns as identified in the introduction 

of this chapter, the possibility of familiarity with the matrix patterns and 

confusability between matrix patterns can be, to an extent, excluded based on the 

present experiment. At the same time, however, all the participants in this 

experiment have had much more exposure to language than to the black and white 

matrix patterns. There is therefore still a possibility that further increasing the prior 
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familiarisation to the patterns before the AGL task would result in the non-

adjacencies being learnt. 

 The fact that the main effect for Familiarity revealed that participants base 

their grammaticality judgments on the surface form of the sequences during the AGL 

task is interesting. This may indicate that extensive exposure to Componential 

patterns leads to stimulus-specific knowledge. The emergence of knowledge of the 

specific experimental stimuli as opposed to knowledge of abstract representations 

underlying the stimuli has been found in previous work involving computational 

models (Christiansen & Curtin, 1999; Dienes, Altmann & Gao, 1999).  More 

recently, Johansson (2009) carried out three experiments to investigate this effect in 

an AGL paradigm. Of particular relevance in this context is Johansson‟s third 

experiment, in which he used only visual stimuli, specifically simultaneously 

presented sequences of abstract shapes or of different colours, generated by a FSG. 

Crucially, he manipulated the amount of training participants received so that one 

condition involved a short training phase and the other condition involved a long 

training phase. The results showed that participants with longer training phases and 

thus longer exposure to the visual stimuli based their grammaticality judgments more 

on the stimuli themselves than participants with shorter training phases. In a similar 

fashion, the preceding familiarisation with the Componential vocabulary in the 

present experiment resulted in good stimulus-specific knowledge in that the patterns 

themselves were learnt (or at least recognised). Even in the 0-block condition, the 

AGL paradigm involved a fairly extensive training phase, and sequences containing 

patterns were clearly favoured over sequences with novel surface structures (i.e. with 

novel X items). Importantly, this extensive exposure did not enable participants to 
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abstract the underlying grammar of the sequences, i.e. learn the grammar and apply it 

to novel instances. The present experiment therefore confirms that increased 

exposure results in stimulus-specific knowledge. 

 Thus, taken together, the present findings can be seen as supporting evidence 

for the language-specific knowledge posited in the previous two chapters, as non-

adjacent dependencies between Componential patterns are not learnable even after 

extensive prior familiarisation. The reason why the non-adjacent regularities are not 

acquired between Componential patterns may therefore be due to the inability to 

analyse two levels of encoding in the non-linguistic domain. In the linguistic 

domain, however, this duality of patterning is more readily acquired. The language-

specific knowledge, i.e. the knowledge of which regularities matter in language, 

which has been identified step by step throughout the work reported in this thesis 

may well represent a subsystem within a larger, domain-general system that 

subserves the acquisition of non-adjacent dependencies.  

The notion that certain cognitive processes, specifically within the area of 

sequence learning, are not guided by just one general-purpose mechanism is not 

entirely new. Conway and Christiansen (2006) argued for modality-specific 

representations on the basis that they found participants to be able to learn two 

separate grammars simultaneously only if they were instantiated by two different 

perceptual modalities. When the two grammars were represented by perceptually 

similar materials, then a learning effect was found only for one of the grammars. 

They conclude that statistical learning is closely associated with the modality of the 

input, and that separate modality-specific subsystems are capable of operating 

independently of each other (and thus learning two grammars across two modalities), 
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yet one of these subsystems is incapable of extracting two grammars simultaneously. 

This research along with the present findings highlights the possibility that different 

sequence learning abilities involve task-specific, stimulus-specific, modality-specific 

or domain-specific subsystems. These individual subsystems that lie at the core of 

learner‟s cognitive processes have also been suggested by Conway and Pisoni 

(2008), Conway and Christiansen (2005) and Goschke (1998). This issue will be 

discussed in further detail and related to the larger research area in the following 

chapter. 

 

6.2 Concluding remarks 

A very refined combination of global and local analysis is required in order to detect 

non-adjacencies between componential patterns: The sub-patterns matter to make the 

patterns distinguishable, yet the patterns matter for the acquisition of the non-

adjacent grammar. The present results show that people are capable of the local 

analysis, as there was a definite learning effect in the Familiarisation task, yet they 

still fail to detect the global regularities. Thus, when the internal structure of the non-

linguistic materials are designed to replicate a defining feature of language, as here 

with the Componential materials, then the non-adjacencies are not identified. The 

present findings were therefore interpreted as potential evidence for the language-

specific knowledge put forward in Chapter4 and 5. The overall findings of the entire 

series of experiments presented in this thesis are discussed in detail and related to 

other relevant literature in the following chapter. 
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Chapter 7 

 

General discussion 

 

Natural languages are structurally immensely complex and yet children acquire their 

native language with relative ease (Chomsky, 1965). Bridging this gap requires 

either the assumption of an innate LAD (Chomsky, 1965), which is designed 

specifically for language acquisition, or the existence of efficient domain-general 

learning tools that can be recruited for language learning. Recent AGL and ALL 

paradigms have identified a number of mechanisms employed for language learning 

(Section 1.3), and have explored to what extent these operate across domains 

(Sections 1.3.1 – 1.3.4).  
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7.1. Summary 

The aim of the present thesis was to investigate the acquisition of non-

adjacent dependencies. Non-adjacent dependencies represent a structural complexity 

frequently found in natural languages, and crucially, they are a diagnostic of PSGs. 

As such they form an excellent test case for investigations into the domain-

specificity of the human linguistic capacities. 

 With regard to the identification of non-adjacent dependencies in the 

linguistic domain, the work carried out for the present thesis does not confirm 

previous research, which suggest that non-adjacencies are unlearnable unless 

additional cues are provided. Specifically, Experiment 1 and Experiment 2 

investigated two types of cues. Previously, the Gestalt Principle of Similarity has 

either explicitly been proposed as a requirement for the successful detection of non-

adjacent regularities (Newport & Aslin, 2004) or has been inadvertently included in 

the stimulus materials (Gómez, 2002; Peña, Bonatti, Nespor & Mehler, 2002). The 

results from Experiment 1 do not corroborate these findings as it was shown that the 

Gestalt cue did not significantly enhance the extraction of the non-adjacent 

dependencies. As the Gestalt cue can be interpreted as a way of highlighting the 

relevant elements of analysis, Experiment 2 addressed a further cue, which could 

also have highlighted the crucial artificial words. Here, break cues were manipulated, 

and the results showed that neither the elimination of helpful inter-word breaks, nor 

the inclusion of unhelpful inter-grapheme breaks rendered non-adjacencies 

unlearnable. Thus, the acquisition of non-adjacent dependencies is not dependent on 

additional, domain-general cues (as in the Gestalt principle of Similarity) or non-

linguistic cues (as in the breaks). 
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 As the main focus of the thesis regards the extent to which the detection of 

non-adjacent dependencies is possible across domains, the remaining experiments 

focused on the contrasting performances in the linguistic and the non-linguistic 

domain. In general, the findings support the idea of language-specific expectations, 

meaning that people are guided by their prior knowledge of language when 

processing a linguistic input. Experiments 3 and 4 found that the non-adjacent 

dependencies in the non-linguistic domain were only learnable when the correct 

level of analysis was highlighted. This was achieved by using simple, unanalysed 

shapes as stimulus materials. Crucially, when the non-linguistic materials contained 

internal structure, and specifically exhibited systematic re-use of sub-units in a way 

that language does, then the non-adjacent dependencies were not detected. This was 

the case regardless of whether the sequences were presented simultaneously 

(Experiment 3) or sequentially (Experiment 4).  

 Experiment 5 investigated the domain-specificity of the acquisition of non-

adjacent dependencies in the auditory modality, and found that like in the visual 

modality, the non-adjacent dependencies between words were reliably detected in 

the linguistic domain. Interestingly, non-adjacencies were most reliably extracted in 

the –Gestalt condition, confirming that the Gestalt Principle of Similarity does not 

facilitate the detection of non-adjacencies. In the non-linguistic domain, the materials 

were instantiated as sounds differing in timbre as it was argued that the stimuli used 

in previous experiments (Creel, Newport & Aslin, 2004) may have interfered with 

people‟s expectations regarding musical tones. This, however, resulted in the sounds 

being less informative than in the visual modality, and this is presumably the reason 

for participants‟ relative poor performance in the auditory equivalent of the Shape 
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condition. Importantly, the regularities were not detected in the auditory 

Componential condition. 

 The final experiment ruled out the possibility of participants‟ unfamiliarity 

with the Componential patterns impacting on their ability to detect non-adjacent 

dependencies, as the learning effect found in the Familiarisation phase did not carry 

over into the AGL task. This is therefore interpreted as a confirmation for the 

existence of language-specific knowledge. It is argued that this language specific 

knowledge guides people toward the regularities that matter in language, and the 

present experiments seem to confirm that this knowledge does not operate (or is not 

used) in the non-linguistic domain. In this way, the work presented in this thesis is 

counter to the general consensus which argues for mainly domain-general 

mechanisms underlying the human capacity for language (Perfors, Tenenbaum, 

Regier, 2010). 

 The results suggested a need for a more refined view of the systems 

subserving the human language capacity. The results were therefore discussed in 

accordance with Atkinson and Wheeler (2004). It was argued that the mechanism 

recruited for the detection of non-adjacencies might be domain-general, as the non-

adjacencies were acquired in the Shape, +Gestalt and –Gestalt conditions. At the 

same time, this mechanism must be capable of drawing from language-specific 

knowledge, as the regularities were not extracted in the Componential conditions, 

which replicated the internal structure of language. These language-specific 

expectations, established throughout this thesis, therefore constitute the main 

theoretical contribution to the research area. It is argued that when exposed to 

linguistic stimuli, people‟s knowledge of what regularities matter in language will 
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guide their attention toward the relevant structural elements or level of analysis. The 

non-adjacencies in all linguistic conditions were reliably detected, as relationships 

between elements separated by intervening units are frequently found in English. 

When the internal complexity of language is mimicked in the non-linguistic domain, 

however, this knowledge is either not accessible or not used to analyse the input, 

which results in complex structural regularities, such as non-adjacent dependencies, 

not being detected. This was demonstrated in the Componential conditions, where 

participants were unaware of the regularities holding across the first and third 

patterns or sounds. However, the detection of non-adjacent dependencies is not 

unique to language, as participants successfully acquired the grammar in the visual 

Shape condition. Thus, when the internal complexity is removed from the non-

linguistic materials, and the relevant units of analysis are thereby highlighted, then 

people are capable of detecting non-adjacent dependencies in the non-linguistic 

domain. 

However, the present experiments cannot provide an entirely clear account of 

the correct level of explanation. To make the argument clearer, let‟s assume that the 

mechanism underlying the acquisition of non-adjacent dependencies is domain-

general (ignoring the language-specific expectations for a moment). This could mean 

either that one and the same mechanism operates across both the linguistic and non-

linguistic domain, or that one mechanism, say a language-specific mechanism, has 

been replicated and operates separately in the non-linguistic domain. Crucially, the 

present results can give no insights into which is the case. This will therefore be 

addressed in 7.3. 
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7.2 Methodological concerns 

From a methodological perspective, there were difficulties involved with conducting 

the present series of experiments. The first difficulty regards the adequate translation 

of stimulus materials from one modality to the other. As language can be easily 

instantiated as written text in the visual modality and as speech (or in this case as 

synthesised speech) in the auditory modality, translating the +Gestalt and –Gestalt 

stimuli from the visual to the auditory modality was fairly easy. For the non-

linguistic domain, however, these cross-modal investigations were much more 

difficult. Finding equivalent auditory stimuli for the visual Shape condition was 

particularly challenging. In the visual modality, the abstract shapes differed from 

each other along two dimensions (shape and colour), and were therefore very 

distinct. In the auditory modality, using sounds that differed merely in timbre may 

well have produced alien sounding stimuli. The sounds used for the auditory 

modality and the shapes used for the visual are therefore not adequate equivalents. 

Analysing sequences containing these sounds may thus well have resulted in much 

higher processing cost, and therefore inhibited the detection of non-adjacent 

dependencies. This highlights the difficulties involved in exploring domain-

specificity across modalities using an AGL paradigm. 

 Secondly, contrasting people‟s ability to extract non-adjacent dependencies 

across both modalities (visual and auditory) is in itself problematic as the modalities 

themselves are different. In practical terms this means, for example, that participants 

in the visually presented experiments had the opportunity of not paying attention 

during the training as they could have simply chosen not to look at the monitor. In 
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the auditory modality, by contrast, participants had no choice but to listen to the 

sounds.  

 Thirdly, the present experiments do not take into account individual 

differences. In normally developing adults, there are always differences with regards 

to their linguistic abilities, and it has been shown recently that this is also the case in 

AGL experiments (Misyak, Christiansen & Tomblin, 2010). By employing a novel 

experimental paradigm, which combines a standard AGL experiment with a serial 

reaction time task, Misyak et al. were able to measure online learning of non-

adjacent dependencies. Specifically, their participants were exposed to aural 

instantiations of Gómez‟s (2002) AL. On hearing each word from the AL, 

participants were required to use the mouse to click on to the corresponding written 

word on the computer screen. Each word appeared on the screen with a distractor 

word. In Gómez‟s design, as in the present experiments, the non-adjacent 

dependencies operated between the first and the third word of each sequence. 

Therefore the first word reliably predicts the third word. By measuring reaction 

times, Misyak et al. found that in their novel experimental set-up, good learners were 

quicker to click on the third word of each sequence than poor learners, since they had 

extracted the underlying rule better. On hearing the first word of each sequence, they 

were aware of what the third word for the same sequences would be, and this 

reduced the reaction times for clicking onto the third word. This provides strong 

evidence for definite individual differences in AGL experiments. 

 Furthermore, conducting Experiment 6 revealed two specific issues. Firstly, 

including an additional familiarisation phase prior to the AGL task resulted in a 

fairly long experiment. Although the testing phase at the end of the AGL task was 
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shortened in order to address this, the entire experiment – especially the 8+2-block 

condition, which stretched over two days – was fairly long. This might well have 

resulted in fatigue, boredom or reduced motivation on behalf of the participants, 

which in turn may have affected performance. The second issue regards the length of 

the familiarisation phases. Language is hugely overlearnt as people are exposed to it 

on a daily basis. People are thus highly familiar with processing a linguistic input. In 

Experiment 6, even the longest familiarisation phase, which involved a total of 10 

familiarisation blocks, will not have familiarised participants with the complex 

patterns to a level equivalent with language. Therefore the processing cost involved 

in analysing the sequences containing three complex patterns in the AGL task would 

still have been much higher than for the linguistic conditions. This may, in part, 

explain people‟s inability to extract the non-adjacent dependencies.  

 Conducting the present series of experiments thus involved a number of 

methodological concerns. However, the findings nevertheless form a solid basis for 

future research. This will be discussed in the following section. 

 

7.3 Future directions 

There are a number of different directions for the future. As pointed out in 

7.1, the present findings can only offer a limited insight into the correct level of 

explanation regarding domain-specificity. On the surface of it, experiments on 

transfer effects may seem to be an efficient way of tackling this issue. Dienes, 

Altmann and Gao (1999) note that transfer effects are due to participants abstracting 

the grammar learnt during the training phase of an AGL task, and applying this 
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grammar to novel instantiations. Thus, if the same general-purpose learning device 

operates across domains, then knowledge acquired in one domain should be easily 

transferable to another domain. If, however, two identical mechanisms operate 

independently in separate domains, then this transfer should be impossible. 

According to this, it might seem reasonable for future work on non-adjacent 

dependencies to focus on exploring transfer effects from the linguistic to the non-

linguistic domain and vice versa. Thus, participants would receive training in one 

domain, e.g. in the –Gestalt condition, and be tested on the underlying grammar in 

the non-linguistic domain, e.g. in the Shape condition. However, there is a difficulty 

with this design: Transfer effects have been shown to be carried by repetition 

structure (Brooks & Vokey, 1991; Gómez & Gerken, 2000; Mathews & Roussel, 

1997, Tunney & Altmann, 1999). Crucially, the PSG employed in the present series 

of experiments does not involve repetition structure as none of the elements was 

repeated within any of the sequences. The reason for this was that the present 

experiments explored the acquisition of non-adjacent dependencies between 

categories rather non-adjacent repetition of identical elements. Thus, investigating 

the acquisition of non-adjacencies on the syntax level, governed by a PSG, does not 

lend itself easily to transfer experiments as it does not include repetitions of specific 

elements. 

 A better way of taking the present results one step further and to explore the 

refined view of domain-specificity argued for here, are AGL experiments involving 

Event Related Brain Potentials (ERPs). Conducting ERP experiments in order to 

pinpoint functional areas underpinning language is difficult due to the sheer 

complexity of language, especially syntax (Pulvermüller, 2010). For this reason, 
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isolated linguistic computations, for example specific syntactic operations, have to 

be clearly identified prior to the ERP investigations. There are two typical brain 

signatures elicited during syntactic processing in natural languages. Firstly, there is a 

late positivity, the P600 effect, which is elicited when processing a range of syntactic 

anomalies, such as agreement violations (as in *The socks is) or category violations 

(as in *I like of) (Friederici, Pfeifer & Hahne, 1993; Hagoort, Brown & Groothusen, 

1993; Lau, Stroud, Plesch & Phillips, 2006). Secondly, the ELAN effect, which is an 

early left anterior negativity, is associated with a more restricted range of syntactic 

violations, and is thus elicited mainly due to category violations (Hahne & 

Friederici, 1999; Lau, Stroud, Plesch & Phillips, 2006). In an AGL experiment 

involving ERPs, Freiderici, Steinhauer and Pfeifer (2002) found that their 

participants exhibited similar patterns of brain activation as would be expected in 

natural language processing. Participants in their design, in contrast to the majority 

of AGL experiments, received extensive training on the AG over a number of 

sessions, with one session lasting up to five hours. Additionally, the training did not 

involve mere exposure to the grammar as in most other AGL experiments (including 

virtually all the experiments discussed in this thesis), but involved participants 

communicating and interacting with each other using the AL. Participants were 

tested on grammatical and ungrammatical sentences, the latter of which contained 

category violations only. Their results demonstrated that participants trained on the 

AG showed an ELAN signature as well as a P600 effect, as would have been 

expected in natural language processing. Similar results were found by Christiansen, 

Conway and Onnis (2007). This demonstrates that AGL paradigms can be combined 

with ERP experiments to investigate brain activation. In a related design, Baldwin 

and Kutas (1997) found that when trained and tested on a light moving around a 9-
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square grid in a predetermined fashion (governed by a FSG), their participants did 

not show an ELAN or a P600 effect. This may indicate that the neural circuits 

recruited for grammar learning in the linguistic domain are different to the ones 

recruited for the non-linguistic domain. However, since Friederici et al. and Baldwin 

and Kutas‟s experiments differ across a number of dimensions, most notably in the 

structure of the AG, no direct comparisons can be drawn. For this reason, an 

interesting future direction for this line of research is to adapt the present AGL 

experiments for an ERP experiment. This could give an indication as to whether the 

same neural mechanism is employed for the detection of non-adjacent across the 

linguistic and non-linguistic domain, or whether there are in fact two independent 

mechanisms, one for the linguistic and one for the non-linguistic domain.  

 Moreover, another potentially fruitful direction to take with this line of 

research is to study the acquisition of non-adjacencies in children and infants. All the 

experiments presented here were conducted on adult participants as the main focus 

here was domain-specificity. The findings for the linguistic conditions have shown 

that non-adjacencies between words are reliably detected, even without assistance of 

Gestalt cues. For this reason, it would be interesting to carry out a slightly adapted 

version of the present AGL experiments on infants. For the linguistic domain, the 

experiments would have to be conducted in the auditory modality. Gómez (2002) 

tested 18-month old infants on two dependencies (as opposed to three), and up to a 

set size of 24 X items. This age group would therefore be the ideal starting point to 

investigate whether the Gestalt cues, as included by Gómez, is indeed necessary for 

the detection of non-adjacencies in the linguistic domain. The AL would have to be 

reduced accordingly. The next step would then be to explore domain-specificity. For 
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the Shape condition, the visual modality would be preferable as the sounds used for 

the present auditory modality rendered unsatisfactory results, and because Kirkham, 

Slemmer and Johnson (2002) showed that infants as young as 2 months can 

successfully take part in a visual sequence learning task, by monitoring looking 

times. These experiments would give an insight into whether and to what extent non-

adjacencies are readily extracted during language acquisition. Based on Gómez‟s 

(2002) findings as well as the present results, the prediction would be that 18-month 

old infants would be able to extract non-adjacent dependencies in the –Gestalt 

condition, using 24 intervening X items. Particularly in the present auditory –Gestalt 

condition, adult participants reliably detected the regularities, and therefore a similar 

finding would be expected with 18-month olds. However, due to the fact that 

tracking non-adjacent dependencies is cognitively more demanding (Santelmann & 

Jusczyk, 1998), younger infants may well struggle. For the Shape materials, the 

prediction would not be as clear. Based on performance levels in the present visual 

Shape conditions, it might be expected that 18-month olds would be able to extract 

the regularities. However, Johnson, Fernandes, Frank, Kirkham, Marcus, Rabagliati 

and Slemmer (2009) found that 8- and 11-month old infants who were trained on an 

ABA pattern failed to detect the non-adjacent repetitions on test. This may be an 

indication of the cognitive strain that non-adjacencies pose in conjunction with the 

fact that Johnson et al. used younger infants than Gómez did. Another (speculative) 

explanation may be that this reflects the fact the detection of non-adjacencies is 

primarily possible in the linguistic domain, and only possible in the non-linguistic 

domain later on in development. Thus, conducting the present AGL experiments on 

infant participants would potentially produce highly interesting and insightful 

results. 
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 The novel hypothesis established throughout this thesis is that domain-

specific expectations feed into a domain-general learning device, meaning that 

people have language-specific expectations about the relevant units of analysis in the 

linguistic domain. An interesting way of testing this hypothesis would be to conduct 

cross-linguistic experiments using populations that may be equipped with different 

linguistic expectations than native speakers of English. The point was made earlier 

(Experiment 3) that the re-use of segments in the linguistic conditions did not 

distract people away from the non-adjacent dependencies as regularities between 

segments is not of importance in the English language. The systematic re-use of sub-

patterns in the Componential conditions, so it was argued, did distract people and the 

non-adjacencies were therefore not learnable. However, some languages, such as 

Finnish, display Vowel Harmony, meaning that regularities between segments here 

do play an important role. It would therefore be interesting to run the –Gestalt 

condition on an experimental group of native speakers of Finnish and a control group 

of English speaking participants. If it is indeed a case of language-specific 

expectations guiding people toward the correct analysis, then the Finnish-speaking 

participants would be expected to show some kind of interference when it comes to 

extracting the non-adjacent dependencies based on the fact that they are used to 

Vowel Harmony. Vowel sets in Finnish determine grammaticality. If the initial 

vowel is a back vowel, all subsequent vowels must be either back or neutral. If the 

initial vowel in a word is a front vowel, all subsequent vowels must be either front or 

neutral. The back vowel set includes /u, o, a/, front vowels are /y, ø, æ/ and neutral 

vowels are /i, e/ (Suomi, McQueen & Cutler, 1997). The experiment would have to 

be conducted in the auditory modality as some graphemes used in Finnish are not 

used in English. Also, the present AL would have to be somewhat modified. For 
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example, in L1a of the –Gestalt materials, the grammatical non-adjacent 

dependencies are lum X fip, zel X pof and vok X gam, and the ungrammatical test 

items involve *lum X gam, *zel X fip, and *vok X pof. This would have to be 

changed to the grammatical dependencies being lum X fyp, zæl X pof and vok X 

gam, and the ungrammatical strings being *lum X gam, *zæl X fyp, and *vok X pof. 

Crucially, all words in category X would have to be CVC words containing only the 

neutral vowels /i/ or /e/. Importantly, in all three ungrammatical sequences for this 

experiment, the non-adjacent items would contain vowels that are taken from the 

same vowel set. If Finnish-speaking participants were guided by their prior linguistic 

knowledge, then it might be expected that this knowledge would interfere with their 

grammaticality judgments, specifically with their ability to reject sequences that 

conform with Vowel Harmony and accept sequences that do not. If this were indeed 

the case, then these findings could be interpreted as supporting evidence for 

language-specific knowledge. 

 An additional interesting way of testing this language-specific knowledge 

would be to run the present AGL experiment using linguistic characters, which are 

unfamiliar to UK students, such as Cyrillic symbols. There would have to be two 

separate experimental conditions: One in which participants are explicitly told that 

they were going to see sequences of language (albeit a foreign language using 

unusual characters), and one condition in which participants are merely told they are 

about to see a large number of sequences made up of three abstract symbols. It 

would be interesting to see whether people‟s explicit knowledge of whether or not 

they are processing linguistic sequences affects their ability to detect the non-

adjacent dependencies. In line with the hypothesis established in this thesis, the 
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prediction would be that participants who are not informed about the domain of the 

input would struggle to detect the underlying regularities, and be outperformed by 

participants in the other condition. 

 To summarise, the work carried out for this thesis expands on the present 

knowledge of learning tools available to humans in language learning. Specifically, 

it found that the acquisition of non-adjacent dependencies in the linguistic domain is 

robust and not reliant on additional cues. This is in line with what was expected 

initially as non-adjacent regularities are not specifically highlighted in natural 

languages. The present series of work showed that the detection of non-adjacencies 

is a domain-general ability, which, to an extent, is specialised for linguistic analysis. 

Moreover, these experiments form a good basis for a number of interesting follow-

up investigations. 
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Appendix A 

 

 Stimulus materials used for Experiments 3, 4 and 6: Table 1 

 Logic® soundnames used for Experiment 5: Tables 2A and 2B 

 Phonetic transcriptions for artificial words used in Experiment 5: 

Table 2C 

 Foils used 2AFC task in Experiment 6: Table 3 

  



Appendix A 

 
 
 

195 

 

 

-Gestalt Shape Holistic Componential 

dov 

   

fet 

   

fip 

   

fub 

   

fum 

   

gam 

   

ged 

   

Table 1: Visual stimuli used for Experiment 3 (Shape, Holistic, Componential), Experiment 4 

(Shape, Componential) and Experiment 6 (Componential). 
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-Gestalt Shape Holistic Componential 

gos 

   

gub 

   

hab 

   

hin 

   

huk 

   

hup 
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-Gestalt Shape Holistic Componential 

jad 

   

jaf 

   

jeg 

   

jev 

   

juf 

   

juk 
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-Gestalt Shape Holistic Componential 

kam 

   

keb 

   

lar 

   

lek 

   

lep 

   

lig 

   



Appendix A 

 
 
 

199 

 

-Gestalt Shape Holistic Componential 

lof 

   

lud 

   

lum 

   

mus 

   

nar 

   

nat 
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-Gestalt Shape Holistic Componential 

nis 

   

nos 

   

nug 

   

nup 

   

pes 

   

pif 
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-Gestalt Shape Holistic Componential 

pir 

   

pof 

   

rud 

   

taf 

   

teg 

   

vam 

   



Appendix A 

 
 
 

202 

 

-Gestalt Shape Holistic Componential 

vek 

   

vog 

   

vok 

   

vug 

   

wem 

   

zec 
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-Gestalt Shape Holistic Componential 

zel 

   

zep 

   

zin 

   

zog 

   

zom 
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Grapheme Logic Soundname 

a Steinway Piano 

b Full Strings Legato 

c Oboe Solo Legato 

d Hard Stage Mkll – JB Style 

e EVD Clav 

f Heavy Noise 

g Liverpool Bass 

h Full Brass Legato 

i Crunchy Funk Piano 

j House Bass 

k OVATI HARM4 

l -8VA TRUMPTS 

m Tuba Solo Legato 

n Finger Nylon 

o Love‟n Organ 

p BAN DI P C 

r Tubular Bells 

s Ebony Flute 

t Upright Jazz Bass 

u 70‟s Funk Clav 

v Clarinet One 

w Vibraphone 

z Timpani Single Strokes 

 

 

 

 

 

 

Table 2A: Grapheme-soundname mappings for the Componential condition in Experiment 5. 
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Artificial Word Logic Soundname 

dov AC Bass – True Stacc. - A 

fet CLARINET ONE 

fip EBONY FLUTE 

fub BR. DARK FADE 

fum SLO HAMMOND 

gam Marimba 

ged House Bass 

gos Tubular Bells 

gub Wurlitzer 200A Tremolo 

hab Auto-Wah Clav 

hin Clarinet Solo Legato 

huk EVB Organ 

hup Endless Cho 

jad BASS FING 16 

jaf Oboe Solo Legato 

jeg Kronky Organ 

jev VLNS 34 F 

juf Harpischord 

juk Clean Electric Guitar 1 

kam Vintage Wah Clav 

keb Piccolo Legato 

lar 60‟s Classic Rock Organ 

lek Upper Keyed Clav 

lep OVATION P 32 

lig EVD Clav 

lof  Full Strings Legato 

lud Heavy Noise 

lum Steinway Piano 

mus Classic Solo Organ 

Table 2B: Word-soundname mappings for the Shape condition in Experiment 5. 



Appendix A 

 
 
 

206 

 

Artificial Word Logic Soundname 

nar Classical Flute 

nat English Horn Solo 

nis Violins 1 Legato 

nos Bossa Organ 

nug 70‟s Funk Clav 

nup 12STRING 16 

pes OVATI HARM 4 

pif Wurlitzer 

pir BAN-DI P C 

pof VIBRAPHONE 

rud Vibraphone 

taf 8 Finger Nylon 

teg Timpani Single Strokes 

vam  -8VA TRUMPTS 

vek CONCERT HARP 

vog HardStage Mkll – JB Style 

vok  -8VA BR. SOPRA SAX 

vug Tuba Solo Legato 

wem VLAS ARCO 

zec ST JUMBO 16 

zel 13BRT CELLO 

zep Cathedral - Full 

zin Full Brass Legato 

zog Liverpool Bass 

zom Love‟n Organ 
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monosyllabic CVC words bisyllabic CVCVC words 

[dɒv] dov ['dəʊvæd] dovad 

[fet] fet ['fetæk] fetac 

[fɪp] fip ['fɪpul] fipul 

[fʌb] fub ['fəbul] fubal 

[fʌm] fum ['fəɒmks] fumox 

[gæm] gam [ɡæ'mʌk] gamuc 

[ged] ged ['gɛdɒk] gedok 

[gɒs] gos [gəʊ'seg] goseg 

[gʌb] gub ['gu:bɪp] gubip 

[hæb] hab ['hæbek] habec 

[hɪn] hin [hɪ'nəg] hinug 

[hʌk] huk ['hjukɪg] hukig 

[hʌp] hup ['hu:pet] hupet 

[ʤæd] jad ['ʤædɪf] jadif 

[ʤæd] jaf [ʤa:'fɪn] jafen 

[ʤeg] jeg ['ʤegɪn] jegin 

[ʤev] jev [ʤeɪ'væt] jevat 

[ʤʌf] juf [ʤə'fɪs] jufis 

[ʤʌk] juk ['ʤu:kɪl] jukel 

[kæm] kam [kæ'mʌt] kamut 

[keb] keb ['kebæm] kebam 

[lær] lar [la: 'rɒf] larof 

[lek] lek ['lekɪv] lekiv 

[lep] lep [lə'pɒd] lepod 

[lɪg] lig [lɪ'gɒp] ligop 

[lɒf] lof [ləʊ'fʌz] lofuz 

[lʌd] lud ['lu:dem] ludem 

[lʌm] lum ['ləmɒt] lumot 

[mʌs] mus ['mju:sɒv] musov 

Table 2C: Phonetic transcriptions and corresponding artificial words used for the +Gestalt and –Gestalt 

conditions in Experiment 5. Primary stress is indicated for bisyllabic words. 
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monosyllabic CVC words bisyllabic CVCVC words 

[nær] nar [na: 'rel] narel 

[næt] nat ['na:təf] natuf 

[nɪs] nis ['nɪsʊr] nisur 

[nɒs] nos ['nɒseg] noseg 

[nʌg] nug ['nəgʌm] nugom 

[nʌp] nup ['nu:pæf] nupaf 

[pes] pes ['pesɛ:r] pesir 

[pɪf] pif ['pɪfa:r] pifar 

[pɪər] pir ['pɪrʌk] piruk 

[pɒf] pof ['pɒfʌs] pofus 

[rʌd] rud [rə'dɪl] rudil 

[tæf] taf ['tæfɪp] tafep 

[teg] teg ['tegɒr] tegor 

[væm] vam ['vamɪks] vamex 

[vek] vek ['vekəs] vekas 

[vɒg] vog ['vəʊgʌd] vogud 

[vɒk] vok ['vɒkæz] vokaz 

[vʌg] vug ['vu:gæp] vugap 

[wem] wem ['wemɪk] wemic 

[zek] zec ['zekɪd] zecid 

[zel] zel [ze'lɒn] zelon 

[zep] zep ['zɛpæk] zepak 

[zɪn] zin [zɪ'nev] zinev 

[zɒg] zog ['zɒ:gɪk] zogik 

[zɒm] zom ['zɒ:mən] zomun 
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bok 

 

min 

 

buf 

 

mof 

 

cal 

 

nop 

 

ceb 

 

peg 

 

cur 

 

rak 

 

dem 

 

sap 

Table 3: Foils used for 2AFC test during the Familiarisation phase in Experiment 6, and CVC 

words used as a basis. 
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fal 

 

sif 

 

fun 

 

tel 

 

gav 

 

ten 

 

jah 

 

tim 

 

kil 

 

ver 

 

kor 

 

zoh 
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kul 

 

zup 

 

lid 

 

min 

 

lon 

 

mof 
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Appendix B 

ANOVA tables 

 

 

 

Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 54 233.49 48.54 *** .47 1.0 

2 1 54 1341.43 28.49 *** .35 1.0 

3 1 54 486.04 2.02 n.s. .04 .29 

12 1 54 41.33 .04 n.s. .001 .05 

13 1 54 233.49 .30 n.s. .005 .08 

23 1 54 1341.43 .85 n.s. .02 .15 

123 1 54 41.33 .89 n.s. .02 .15 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 

 

 

 

Table 1: Results of the 2x2x2 ANOVA for Experiment 1: (1) = Familiarity (familiar vs. unfamiliar X 

words), (2) = Grammaticality (grammatical vs. ungrammatical strings), (3) = Condition (+Gestalt vs. -

Gestalt). 



Appendix B 

 
 
 

213 

 

 

 

Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 46 264.65 44.12 *** .49 1.0 

2 1 46 907.97 22.12 *** .33 1.0 

3 1 46 575.54 .50 n.s. .01 .11 

12 1 46 38.45 2.94 n.s .06 .39 

13 1 46 264.65 .06 n.s. .001 .06 

23 1 46 907.97 9.82 ** .18 .87 

123 1 46 38.45 .38 n.s. .01 .09 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Results of the 2x2x2 ANOVA for Experiment 2: (1) = Familiarity (familiar vs. unfamiliar X 

chunks), (2) = Grammaticality (grammatical vs. ungrammatical strings), (3) = Condition (+Gestalt vs. 

-Gestalt). 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 77 507.46 33.87 *** .31 1 

2 2 77 229.84 1.1 n.s. .03 .23 

12 2 77 507.46 4.41 * .10 .74 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Results form the 3x2 ANOVA for Experiment 2: (1) = Grammaticality (grammatical vs. 

ungrammatical strings), (2) = Stimuli type (-Gestalt, One-word, Nine-letter). 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 116 434.60 107.43 *** .48 1.0 

2 1 116 986.98 25.82 *** .18 1.0 

3 3 116 367.18 .42 n.s. .01 .13 

12 1 116 78.80 5.72 * .05 .66 

13 3 116 434.60 5.37 ** .12 .93 

23 3 116 986.98 4.07 ** .10 .83 

123 3 116 78.80 1.98 n.s. .05 .50 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Results from the 2x2x4 ANOVA for Experiment 3: (1) = Familiarity (familiar vs. unfamiliar 

X chunks), (2) = Grammaticality (grammatical vs. ungrammatical strings), (3) = Condition (–Gestalt, 

vs. Shape vs. Holistic vs. Componential). 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 88 424.71 25.84 *** .23 1.0 

2 1 88 1868.59 56.74 *** .39 1.0 

3 3 88 334.72 .45 n.s. .02 .14 

4 1 88 334.72 .40 n.s. .00 .10 

12 1 88 48.55 .22 n.s. .00 .08 

13 3 88 424.71 1.82 n.s. .06 .46 

23 3 88 1868.59 5.35 ** .15 .92 

14 1 88 424.71 1.05 n.s. .01 .17 

24 1 88 1868.59 .71 n.s. .01 .13 

34 3 88 334.72 .31 n.s. .01 .11 

123 3 88 48.55 .42 n.s. .01 .13 

124 1 88 48.55 .03 n.s. .00 .05 

134 3 88 424.71 1.11 n.s. .04 .29 

234 3 88 1868.59 1.47 n.s. .05 .38 

1234 3 88 48.55 .53 n.s. .02 .15 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 
 

 

 

 

 

 

 

Table 5: Results of the 2x2x4x2 ANOVA for Experiment 4: (1) = Familiarity (familiar vs. unfamiliar 

X chunks), (2) = Grammaticality (grammatical vs. ungrammatical strings), (3) = Condition (–Gestalt, 

vs. Shape vs. Holistic vs. Componential), (4) = Language (L1a vs. L2a). 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 3 200 208.10 .48 n.s. .00 .11 

2 1 200 748.00 97.12 *** .33 1.0 

3 2 200 208.10 .69 n.s. .01 .19 

12 1 200 748.00 5.96 * .03 .68 

13 3 200 208.10 .97 n.s. .01 .26 

23 3 200 748.00 9.27 *** .12 1.0 

123 3 200 748.00 1.05 n.s. .02 .28 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Results of the cross-experimental analysis in Chapter 4: (1) = Presentation Mode 

(simultaneous vs. sequential), (2) = Grammaticality (grammatical vs. ungrammatical strings), (3) = 

Stimulus Type (+Gestalt vs. –Gestalt vs. Shape vs. Componential). 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 88 209.21 44.94 *** .34 1.0 

2 1 88 889.64 21.87 *** .20 1.0 

3 3 88 420.22 3.51 * .11 .76 

4 1 88 420.22 4.96 * .05 .60 

12 1 88 52.17 .08 n.s. .00 .06 

13 3 88 209.21 7.03 *** .19 .98 

23 3 88 889.64 3.46 * .11 .76 

14 1 88 209.21 .06 n.s. .00 .06 

24 1 88 889.64 .07 n.s. .00 .06 

34 3 88 420.22 1.48 n.s. .05 .38 

123 3 88 52.17 1.15 n.s. .04 .30 

124 1 88 52.17 .01 n.s. .00 .05 

134 3 88 209.21 .92 n.s. .03 .24 

234 3 88 889.64 .74 n.s. .03 .20 

1234 3 88 52.17 1.1 n.s. .04 .29 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 
 

 

 

 

 

 

 

Table 7: Results of the ANOVA for Experiment 5: (1) = Familiarity (familiar vs. unfamiliar X item), 

(2) = Grammaticality (grammatical vs. ungrammatical strings), (3) = Condition (+Gestalt vs. –Gestalt 

vs. Shape vs. Componential), (4) = Language (L1 vs. L2). 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 184 192.45 4.34 * .02 .55 

2 1 184 691.10 78.25 *** .30 1.0 

3 3 184 192.45 2.43 n.s. .04 .60 

12 1 184 691.10 12.53 ** .06 .94 

13 3 184 192.45 1.79 n.s. .03 .46 

23 3 184 691.10 5.47 ** .08 .94 

123 3 184 691.10 3.99 ** .06 .83 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: Results of cross-modal analysis in Chapter 5: (1) = Modality (auditory vs. visual), (2) = 

Grammaticality (grammatical vs. ungrammatical strings), (3) = Condition (+Gestalt vs. –Gestalt vs. 

Shape vs. Componential). 
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Tables 9 – 10 for cross-modal analysis for Chapter 5: 

 

 

Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 46 179.98 .26 n.s. .01 .08 

2 1 46 965.97 21.05 *** .31 .99 

12 1 46 965.97 2.91 n.s. .06 .39 

 

 

 

 

Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 46 163.24 .31 n.s. .01 .08 

2 1 46 994.38 19.09 *** .29 .99 

12 1 46 9994.38 .00 n.s. .00 .05 

 

 

 

 

Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 46 198.08 6.34 * .12 .69 

2 1 46 644.22 39.55 *** .46 1.0 

12 1 46 644.22 21.59 *** .32 1.0 

 

 

 

Table 9: Results of +Gestalt analysis: (1) = Modality (visual vs. Auditory), 2 = Grammaticality 

(grammatical vs. ungrammatical) 

Table 10: Results of -Gestalt analysis: (1) = Modality (visual vs. Auditory), 2 = 

Grammaticality (grammatical vs. ungrammatical) 

Table 11: Results of Shape  analysis: (1) = Modality (visual vs. Auditory), 2 = Grammaticality 

(grammatical vs. ungrammatical) 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 46 228.51 2.28 n.s. .05 .32 

2 1 46 159.84 3.94 n.s. .08 .49 

12 1 46 159.84 1.33 n.s. .03 .21 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12: Results of Componential analysis: (1) = Modality (visual vs. Auditory), 2 = 

Grammaticality (grammatical vs. ungrammatical) 
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Source 
df 

Effect 

df 

Error 

MS 

Error 
F Sig. 

Partial Eta 

Squared 

Observed 

Power 

1 1 76 281.65 30.52 *** .27 1.0 

2 1 76 270.05 1.12 n.s. .01 .18 

3 3 76 401.09 2.22 n.s. .08 .54 

12 1 76 58.53 4.30 * .05 .54 

13 3 76 281.65 1.94 n.s. .07 .48 

23 3 76 270.05 .08 n.s. .00 .06 

123 3 76 58.53 .68 n.s. .03 .19 

 

Note:  

n.s. p > .05 

* p < .05 

** p < .01 

*** p < .001 
 

  

Table 13: Results of ANOVA for AGL task in Experiment 6: (1) = Familiarity (familiar vs. 

novel X item), (2) = Grammaticality (grammatical vs. ungrammatical strings), (3) = Training 

(0-block vs. 1-block vs. 4-block vs. 8+2-block). 
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