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PREFERENTIAL HEATING IN THE NEIGHBOURHOOD OF A TWO-DIMENSIONAL
NULL POINT

J. A. McLaughlin and A. W. Hood

Mathematical Institute, University of St Andrews, St Andrews,
KY16 9SS, Scotland

ABSTRACT

The nature of fast magnetoacoustic and Alfvén waves is

investigated in a zero 3 plasma. This gives an indica-
tion of wave propagation in the low 3 solar corona. It is
found that for a two-dimensional null point, the fast wave
is attracted to that point and the front of the wave slows
down as it approaches the null point, causing the current
density to accumulate there and rise rapidly. Ohmic dis-
sipation will extract the energy in the wave at this point.
This illustrates that null points play an important role in
the rapid dissipation of fast magnetoacoustic waves and
suggests the location where wave heating will occur in
the corona. The Alfvén wave behaves in a different man-
ner in that the wave energy is dissipated along the sepa-
ratrices. For Alfvén waves that are decoupled from fast
waves, the value of the plasma § is unimportant. How-
ever, the phenomenon of dissipating the majority of the
wave energy at a specific place is a feature of both wave

types.

Key words: MHD; Magnetoacoustic Waves; Preferential
Heating.

1. INTRODUCTION

The coronal heating problem remains a key unsolved
problem in solar physics. While the coronal magnetic
field is ultimately involved, there are many rival theories
ranging from reconnection models involving nanoflares
and wave heating models involving phase mixing and res-
onant absorption. The reconnection models either re-
quire the formation of many current sheets, due to ran-
dom photospheric boundary motions that braid the mag-
netic field, or the collapse of null points. The wave heat-
ing models rely on the generation of small length scale
wave motions in the corona. There is clear evidence from
SOHO and TRACE observations of slow MHD waves
(Berghmans & Clette, 1999; De Moortel et al., 2000), fast
MHD waves (Nakariakov et al., 1999) and non-thermal
line broadening due to Alfvén waves (Harrison et al.,
2002). While there may be insufficient energy in these
waves to heat the whole corona, their dissipation will con-
tribute to the overall energy budget. This paper is con-
cerned with the propagation of MHD waves in the neigh-
bourhood of null points in a zero B plasma, giving an in-
dication of how MHD waves behave in the low £ plasma
of the solar corona.

The existence of null points is predicted on theoretical
grounds and their importance lies in the fact that the

Alfvén speed is actually zero at that point. This impor-
tant consequence will be utilised later. Potential field
extrapolations, using photospheric magnetograms to pro-
vide the field distribution on the lower boundary, suggest
that there are always likely to be null points in the corona.
The number of such points does depend on the magnetic
complexity of the photospheric flux distribution. Detailed
investigations of the coronal magnetic field, using such
potential field calculations, can be found in Beveridge et
al. (2002) and Brown & Priest (2001).

Waves in the neighbourhood of 2D null points have been
investigated by various authors. These proceedings are
a concise version of a paper by McLaughlin & Hood
(2004), and full details and references can be found in
that work. These proceedings have the following out-
line. In Section 2 the basic equations are described. The
results for an uncoupled fast magnetoacoustic wave are
presented in Section 3. Some simple analytical results
are also discussed as a verification to and interpretation of
the numerical simulation. Section 4 discusses the propa-
gation of Alfvén waves and the conclusions are given in
Section 5.

2. BASIC EQUATIONS AND NUMERICAL
METHOD

The usual MHD equations for a low 3 plasma appropriate
to the solar corona are used. Hence,

ov 1
p M+A<.4v< Imﬁdx_wvx_wv (1)
W|W =V x (v x B) +9V?B, (2)
9p _
Ml_.d.gilo“ 3)

where p is the mass density, v is the plasma velocity,
B the magnetic induction (usually called the magnetic
field), g = 4m x 10~"Hm™' the magnetic permeabil-
ity, n = 1/po is the magnetic diffusivity (m?s~'), and
o the electrical conductivity. The gas pressure and the
adiabatic energy equation are neglected in the low 3 ap-
proximation.

2.1 Basic equilibrium

The basic magnetic field structure is taken as a simple 2D
X-type neutral point. The aim of studying waves in a 2D
configuration is one of simplicity. The individual effects
are much easier to identify when there is no coupling be-
tween the fast and Alfvén modes. However, the extension
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Figure 1. Our choice of equilibrium magnetic field.

to 3D is relatively straightforward. The modes will be-
come coupled but their evolution is predictable from the
2D case. Therefore, the magnetic field is taken as

woumoﬁ“oﬁmvg @
a a
where By is a characteristic field strength and a is the
length scale for magnetic field variations. This magnetic
field can be seen in Figure 1. Obviously this particular
choice of magnetic field is only valid in the neighbour-
hood of the null point located at z = 0,2 = 0.

2.2 Linearised equations

To study the nature of wave propagation near null points,
the linearised MHD equations are used. Using subscripts
of 0 for equilibrium quantities and 1 for perturbed quan-
tities, the linearised equation of motion becomes

%<H V x wp
—-—=|— B 5
the linearised induction equation
0B
®|M =V x (vi x Bg) +nV*By (6)
and the linearised equation of mass continuity
0
%+<.€o<cno. %)

We will not discuss equation (7) further as it can be
solved once we know vi. In fact, it has no influence
on the momentum equation (in the low £ approximation)
and so in effect the plasma is arbitrarily compressible
(Craig & Watson, 1992). We assume the background gas
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density is uniform and label it as pg. A spatial variation
in pg can cause phase mixing (Heyvaerts & Priest, 1983).

We now consider a change of scale to non-
dimensionalise; let vi = ¥vi, By = DByByg,
B, = ByBi, z = az*, z = az*, V = 1V* and
t = #t*, where we let * denote a dimensionless quantity
and ¥, By, a and t are constants with the dimensions of

the variable they are scaling. We then set ,\|woq|o =V and

¥ = aft (this sets ¥ as a sort of constant background
Alfvén speed). This process non-dimensionalises equa-
tions (5) and (6), and under these scalings, t* = 1 (for
example) refers to ¢ = ¢ = a/¥; i.e. the (background)
Alfvén time taken to travel a distance a. For the rest of
this paper, we drop the star indices; the fact that they are
now non-dimensionalised is understood.

The ideal linearised MHD equations naturally decouple
into two equations for the fast MHD wave and the Alfvén
wave. The slow MHD wave is absent in this limit and
there is no velocity component along the background
magnetic field (as can be seen by taking the scalar prod-
uct of equation (5) with Bg. The magnetic resistivity, 7,
in equation (6) will be neglected in the numerical simula-
tions but is included for discussion in the conclusions.

The linearised equations for the fast magnetoacoustic
wave are:

ov 9 Ob, Ob,
E A AV
b, — I®|<. @ — ®|<. ®)
ot 0z’ 06t Oz’

where the Alfvén speed, v 4 (z, 2), is equal to vz2 + 22,

B; = (bg,0,b,) and the variable V is related to the per-

pendicular velocity; V' = [(v1 x By) - €,]. These equa-

tions can be combined to form a single wave equation:
0%V oV 9*V

%Hew@,& %._.% ) (&)

The linearised equations for the Alfvén wave, with v =
(0,vy,0) and By = (0, by, 0) are:

which can be combined to form a single wave equation:

2 2
@S\H &MINW vy . (1D

ot? Oz 0z

3. FAST WAVES

We solve the linearised MHD equations for the fast wave,
namely equations (8), numerically using a two-step Lax-
Wendroff scheme. The numerical scheme is run in a box
with —6 < x < 6 and —6 < z < 6 and we initially con-
sider a single wave pulse coming in from the top bound-
ary. For the single wave pulse, the boundary conditions
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Figure 2. Movie showing contours of V for a fast wave
sent in from the upper boundary and its resultant propa-
gation. Here, w = 2w and time is measured in units of

Atbovp\ 2 /Bo. The number of points in each direction is
1600 x 1600.

Figure 3. Movie of shaded surfaces showing the build up
of current.

were set such that:

sinwt for 0<t< X
V(z,6) = 0 otherwise .
ov oV ov
g_aﬂlm =0 ) M_HH — Y, M_&Hlm =0.

Tests show that the central behaviour is largely unaffected
by these choices of side and bottom boundary conditions.
The other boundary conditions on the perturbed magnetic
field follow from the remaining equations and the solen-
odial condition, V - B; = 0.

We find that the linear, fast magnetoacoustic wave trav-
els towards the neighbourhood of the X-point and bends
around it. Since the Alfvén speed, v 4 (z, 2), is spatially
varying, different parts of the wave travel at different
speeds, and it travels faster the further it is away from
the origin (i.e. the further away a point is from the ori-
gin, the greater in magnitude v 4 (, 2) is). So the wave
demonstrates refraction and this can be seen in a movie
in Figure 2. A similar refraction phenomenon was found
by Nakariakov & Roberts (1995). It is this refraction ef-
fect that wraps the wave around the null point and it is
this that is the key feature of fast wave propagation.

Since the Alfvén speed drops to zero at the null point,
the wave never reaches there, but the length scales (this
can be thought of as the distance between the leading and
trailing edges of the wave pulse) rapidly decrease, indi-
cating that the current (and all other gradients) will in-
crease.

3.1 Current

Since we have a changing perturbed magnetic field whose
gradients are increasing in time, we have a build up of
current density. Simulations show that there is a large
current accumulation at the neutral point (Figure 3) and
further study shows this build up is exponential in time, in
keeping with our discussion on the thickness of the wave
pulse.

This build-up of current is extremely important since it
implies that resistive dissipation will eventually become
important, regardless of the size of the resistivity, and will
convert the wave energy into heat. In fact, the exponen-
tial growth of the current means that the time for magnetic
diffusion to become important will depend only on log 1.
Thus, refraction of the wave focuses the majority of the
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Figure 4. Movie of WKB solution for a wave sent in from
the upper boundary and its resultant propagation. The
lines represent the front, middle and back edges of the
wave, where the pulse enters from the top of the box.

wave energy at the null point. This key result will be dis-
cussed further in the conclusions. Note that the topology
of the current accumulation seems to be approaching that
of a current line. The current line comes from the col-
lapse of the width of the fast wave as it approaches the
null. Note that while the current grows exponentially in
time, the velocity remains finite in magnitude.

3.2 Analytical results

We can approximately solve equation (9) for the fast
wave to gain more insight into the current build-up ob-
served in the numerical simulations. Substituting V' =
ei®(2:2) . e—iwt into (9) and assuming that w > 1 (WKB
approximation), leads to a first order PDE of the form

F A&uau? 9¢ @v = 0. Applying the method of char-

Oz’ Oz
acteristics, we generate the solution:

¢ = -w’s,
\»&o . \w.&.o

z = |mocos|s) +zosin | =2s )| e A® ,
20 20

B Azo . [ Axg _As

z2 = |zgcos| —s) —xzgsin|[ —=s )| e ,

20 20

where s is some parameter along the characteristic, z¢
is a starting point distinguishing between different char-
acteristic curves, zg is a second starting point (29 = 6
in our simulations), w is the frequency of our wave and
A is a constant such that A = zg w/+/z% + 2Z. Figure 4
shows constant ¢ at four different values of the parameter
s. Constant ¢ can be thought of as defining the position
of the leading edge of the wave pulse, i.e. with this choice
of s, the WKB solution represents the front of the wave.
s is comparable to ¢ and so the subfigures can be directly
compared to Figure 2. The agreement between the ana-
lytic model and the leading edge of the wavefront is very
good.

We can also use our WKB approximation to predict the
current density build up. The current density is given by
j = V2V which from above can be approximated by:

. 9 —w?V —w2e24sy
J=EVV = s S
e+ 2z g+ 25
— Ikﬁmmmbma\ — I\_.wmwbmm%mlsp;
— Ixﬁmmm&mml&ﬁcmmml&e*\ .

By considering the modulus of this result, we can see that
|5] will grow exponentially with s, i.e. as e24%, and that
the current will be negative. To compare with our simula-
tions, we first note that the time in our numerical scheme,
t, is related to our parameter s by ¢ = ws. Now, the expo-

nent 2A4s in the exponential is equal to 12ws/ /2 + 22
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Figure 5. Movie showing contours of vy for an Alfvén
wave sent in from upper boundary for 0 < ¢ < 3 and its
resultant propagation.

and so along o = 0 and at 29 = 6 (x¢ = 0 is where the
maximum current of our numerical simulations occured)
this is simply 2¢. The slope of the numerical experiment
is 1.65. This agreement between the analytical and nu-
merical current density build up is quite good, consider-
ing that the WKB solution is only valid for a harmonic
wavetrain with w 3> 1.

4. ALFVEN WAVES

The equations describing the behaviour of the Alfvén
wave, equations (10), were solved numerically using the
same two-step Lax-Wendroff scheme. We initially con-
sider abox (0 < 2z < 6,0 < 2z < 6) with a single
wave pulse coming in across half of the top boundary
(0 < z < 3). We chose such a pulse because, as shown in
Figure 5, the Alfvén wave spreads out along the field lines
as it propagates and we found that this choice of bound-
ary condition illustrated this effect much clearer. The full
boundary conditions were;

. 0<z<3
vy (2,6) = sinwt (1 + cos ZZ) for = =
@A ’ v ) A wv OM&MW
F2|.=6 =0 otherwise
ov ov ov
@_s mlo @_s o|o @_N o|o

Tests show that the central behaviour is unaffected by
these choices. The other boundary conditions follow
from the remaining equations and the solenodial condi-
tion, V - By 0. Note that we have used a slightly
different inital pulse to those in the fast wave investiga-
tion. This is because the field lines (see Figure 1) leave
the box and we know that the Alfvén wave follows the
field lines. Hence, we made this choice of inital pulse in
case reflections from the side boundaries influenced the
subsequent evolution.

We found that the linear Alfvén wave travels down from
the top boundary and begins to spread out, following the
field lines. As the wave approaches the lower boundary
(the separatrix), it thins but keeps its original ampitude.
The wave eventually accumulates very near the separa-
trix; defined by the z axis. This can be seen in Figure
5.

4.1 Analytical results
The Alfvén equation we have to solve takes the form:

82v, o 8\’

and this can be solved using the method of characteris-

tics. Let 2 = (z2 — zZ) and comparing the original
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equation with mee =& mww + 2 w%w leads to:
x=x0e°, 2z=2zpe?, (12)

where zo and zg are the starting positions of our char-
acteristics. In our simulation, 29 = 6. Thus, our char-

.. . 82 m» .
acteristic equation, 5 = & can be solved with a

F(20) G (t— ).

In order to compare these analytical results with the nu-
merical results above, we substitute the same initial con-
ditions into the D’Alembert solution, i.e. F A&OV =
1 + cos (*2¢) and G (t) = sin (wt) to get the analytical
solution for vy, namely:

D’ Alembert solution such that vy =

The agreement between the analytical and numerical re-
sults is excellent (the contours essentially lie on top of
each other), even though the analytical solution does not
satisfy the numerical boundary conditions.

Furthermore, we use our analytical solution to calculate
by, jo and j,:

b, = - T+SMSMNz Qiom v:b
o = mﬂaT+8mAaHMNVTOMaQ+_om|v

2% sin (2 ) sinw (¢ -+ 1og £ J15)

jo = Tosin(TE)sine (t4+10g2) ()
allfor { © m%mﬂ%mw o

4.2 Current

As in the fast wave case, we have a spatially varying per-
turbed magnetic field and so current is forming, given
by w (VxB1) = (jz,0,7.). In the Alfvén case only

i — 10y o= 10by i
Jo = =452 and j, = 4 Bz Are present. The evolution

of the current can be seen in Figures 6 and 7.

From Figure 6, we see that j, spreads out along the field
lines, accumulating along the separatrix; 2 = 0. j, takes
a discontinuous form; this is due to our choice of initial
conditions and this is confirmed by the analytical solu-
tion. j, also increases in time. From equation 15, we see
that j, grows like W and thus, in accordance with equa-
tion 12, this means j, grows like €%, i.e. grows as e’
(since s = t + constant in the D’ Alembert solution).

The behaviour of j, can be seen in Figure 7. j, takes the
spatial form of the inital pulse and, in the same way as v,
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Figure 6. Movie showing shaded surfaces of j .
Figure 7. Movie showing shaded surfaces of j ,.

spreads out along the fieldlines. It decays in amplitude
as it approaches the separatrix. The analytical solution,
equation 16, shows that it behaves like z (and 2 is going
to woaov. Thus, according to equation 12, j, decays as
e ".

Hence, the Alfvén wave causes current density to build
up along the separatrix.

5. CONCLUSIONS

This paper describes the start of an investigation into
the nature of MHD waves in the neighbourhood of null
points. From the work explained above, it has been seen
that when a fast magnetoacoustic wave propagates near
a magnetic X-type neutral point, the wave wraps itself
around the null point due to refraction (at least in two
dimensions). It has also been seen that this behaviour
causes a large current density to accumulate at the null
and simulations have shown that this build up is expo-
nential in time, although the exponential growth in this
linear simulation will be modified by non-linearities. We
also note that for the set of disturbances investigated here,
there is no evidence of the X-point collapsing; rather,
the current density seems to form a spike. However, it
is clear that the refraction of the wave focusses the en-
ergy of the incident wave towards the null point. As seen
from both the numerical work and analytical approxima-
tions, the wave continues to wrap around the null point,
again and again. The physical significance of this is that
any fast magnetoacoustic disturbance in the neighbour-
hood of a neutral point will be drawn towards the region
of zero magnetic field strength and focus all of its en-
ergy at this point. Hence, this is where the build up of
current will occur and energy will be dissipated. Experi-
ments are being carried out to extend the analysis to mul-
tiple null points and three dimensions but, if the results
transfer, then null points should effectively trap and dissi-
pate the energy contained in fast magnetoacoustic waves.
Therefore, wave heating will naturally occur at coronal
null points.

The numerical experiments and analytical work de-
scribed above were all conducted using the ideal MHD
equations. However, we can make some comments about
the addition of resistivity into the model. For the fast
magnetoacoustic wave, all the current density accumu-
lates at the null point and appears to form a null line.
Hence, no matter how small the value of the resistivity
is, if we include the dissipative term, then eventually the
nV?2B; term in equation (6) will become non-negligible
and dissipation will become important. In addition, since
V2B, grows exponentially in time, the diffusion terms
become important in a time that depends on logn. This
means that linear wave dissipation will be very efficient.
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Thus, we deduce that null points will be the locations of
wave energy deposition and preferential heating.

In the case of the Alfvén wave, the results show that the
wave propagates along the field lines, accumulating on
the separatrix and hence, due to symmetry, along the sep-
aratrices. The wave also thins and stretches along the sep-
aratrices. The current j, increases and accumulates along
the separatrix, whilst j, decays away. This is seen in both
the analytical and numerical work.

Now consider the effect of including resistivity. Con-
der 2 ; it into 2 %% 4 8 8by _
waoasmm 4 W.T this can be split into 55 e T mw e =
Bz — H=. = decays away (exponentially) but Z= in-
creases (exponentially). We have also seen that the cur-

rent accumulates along the separatrices. Hence, eventu-
ally (due to its exponential increase), the resistive term,

2 .
sww = 3WW, will become important, no matter how

small the value of 1. Hence, all the Alfvén wave energy
will be dissipated along the separatrices. This is a differ-
ent behaviour to that of the fast wave in the sense that the
two wave types deposit all their wave energy at different
areas (along the separatrices as opposed to the null point),
although the phenomenon of depositing wave energy in a
specific area is common to both.

Another of the steps to be taken is to investigate the ef-
fect of pressure on the system. This has been investigated
by Craig & Watson (1992) with cylindrical symmetry and
they find that the rapid current growth is halted. The most
obvious effect of including a finite § is the introduction
of slow magnetoacoustic waves. Fast waves can now pass
through the null point (as we would now have a non-zero
sound speed) and thus perhaps take wave energy away
from that area. The exact nature depends on the choice of
boundary conditions. In a simple manner, if the £ has a
value of By < 1 at, say, % + 22 = 1, the finite pressure
effects will become important once 22 + 22 = 2. From
our WKB solution, with 29 = 6 and ¢ = 0, the gas pres-
sure will become non-negligible when ¢t ~ — w log Bo.
This is not true for Alfvén waves since they are unaf-
fected by the finite £.

Finally, the validity of the linearisation is questionable
once the perturbed velocity becomes comparable to the
magnitude of the local Alfvén speed. In a similar argu-
ment to the finite B case, the linearisation is valid until
t ~ —log My, where M4 is the initial Alfvén Mach
number. Once the Alfvén Mach number exceeds unity,
the fast wave is likely to shock and the wave energy will
still be dissipated but this time in the shock. A more rig-
orous analysis requires detailed numerical simulations of
the non-linear MHD equations and will be investigated in
the future.
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