
Data conversion and interoperability for FCA

ANDREWS, Simon J

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/36/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ANDREWS, Simon J (2009). Data conversion and interoperability for FCA. In:
Conceptual Structures Tools Interoperability Workshop at the 17th International
Conference on Conceptual Structures, Moscow, 2009.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/99874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/

Data Conversion and Interoperability for FCA

Simon Andrews

Communication and Computing Research Centre
Faculty of Arts, Computing, Engineering and Sciences

Sheffield Hallam University, Sheffield, UK
s.andrews@shu.ac.uk

Abstract. This paper proposes a tool that converts non-FCA format
data files into an FCA format, thereby making a wide range of public
data sets and data produced by non-FCA tools interoperable with FCA
tools. This will also offer the power of FCA to a wider community of data
analysts. A repository of converted data is also proposed, as a consistent
resource of public data for analysis and for the testing, evaluation and
comparison of FCA tools and algorithms.

1 Introduction

Most tools for Formal Concept Analysis require data to be in a particular for-
mat, usually representing a formal context and/or concept lattice. Unfortunately,
most publicly available data sets, and most of the data produced by non-FCA
applications, is not in this format. To make them interoperable with FCA tools,
they need to be converted. Furthermore, there is a variety of data set formats
and data types, each requiring different treatment. Converting data sets for FCA
can be a time consuming and awkward task. A further problem arises in that a
particular data set may be interpreted in different ways, resulting in inconsistent
conversions. This can lead to different analyses of the same data and can make
the comparison of FCA tools and algorithms more difficult. These problems have
been pointed out by this author [2] and by Kuznetsov and Ob”edkov [5]:

“We would like to propose the community to reach a consensus w.r.t. data-
bases to be used as testbeds. Our idea is to consider two types of testbeds. On
the one hand, some “classical” (well-recognised in data analysis community)
databases should be used, with clearly defined scalings if they are many-valued.
On the other hand, we propose to use “randomly generated contexts”. . . The
community should specify particular type(s) of random context generator(s)
that can be tuned by the choice of . . . parameters.”

This paper, therefore, has two proposals to improve the interoperability and
consistency of use of non-FCA format data sets:

1. A ‘To-FCA Format’ Data Converter, that will provide FCA practitioners
with an efficient and consistent means of converting a range of non-FCA
data set formats into a format suitable for FCA.

2. An FCA Data Repository, that will provide FCA practitioners with a re-
source of public data sets in FCA format.

2 Data Conversion

Public data set repositories, such as the UCI Machine Learning Repository [3]
and Amazon Public Data Sets [1], provide a useful resource for FCA. Several
data sets from the UCI Repository have become familiar to FCA. Four of these
are listed in Table 1 and are useful to illustrate issues in data conversion. The
table lists the name of the data set, its format, number of objects, number of
attributes, the data type/s of the attributes and the number of attributes once
converted into a formal context. Some of these have a question mark indicating
that there are different interpretations possible. For example, the Mushroom data
set has been quoted variously as having 125 [2], 119 [4] and 120 [9] attributes.

Table 1. Some UCI Repository Data Sets

Name Format Objs Atts Att Type FCA Atts

Mushroom data only 8124 22 Categorical 125?

Adult data only 48842 14 Categorical, 96?
Integer

MS Web DST Sparse 32711 294 N\A 294

Internet Ads data only 3279 1558 Real, 1555?
Relational

There are several issues to consider when converting data sets into a formal
context:

Data Set Format Different ‘standard’ data set formats require different treat-
ment. Some contain data values only, others include additional information, such
as the names of the attributes or the classes of objects. Many contain data in tab-
ular form, with rows representing objects and columns representing attributes.
The type of the attribute (categorical, integer, real or relational) will determine
the conversion technique required. Many data sets are multivariate, having a
mixture of attribute types. Some data sets do not have a tabular format, such
as the DST Sparse Data Format and Sparse ARFF, where relational data is
represented by attribute/object pairs; clearly suitable for FCA, but requiring a
different method of conversion. Similarly, RDF files [6] would require a different
method of conversion, where an RDF subject becomes an FCA object. Data-
bases are another important consideration; RDBMS data files would require a
significantly different approach to the treatment of flat-file data.

Categorical Attributes Categorical (many valued) attributes are the most
common type and can be converted by creating a formal context attribute for
each of the values. The attribute cap-surface, for example, in the Mushroom
data set, has four values: fibrous, grooves, scaly and smooth. In a formal con-
text, this becomes four attributes: cap-surface fibrous, cap-surface grooves, cap-

surface scaly and cap-surface smooth. However, different interpretations are pos-
sible if an attribute has only two values; it may be said that not having one value
implies having the other, thus leading to a single attribute in the formal context.
This is particularly so if the values are opposites. For example, in the Mushroom
data set, there is an attribute called bruises? that has values bruises and no.
Should this be interpreted as a single attribute, bruises, or two: bruises? bruises
and bruises no? If, for a particular attribute, there is no object with a particular
value, or all objects have the same value, how should this be interpreted? In the
Mushroom data set, for example, none of the mushrooms has a universal veil;
all have a partial veil. Should the veil attribute be ignored or interpreted as one
or two attributes?

Other Attribute Types A table of Boolean values is used by some data sets
to indicate the relationship between attributes and objects, such as the majority
of the data in the Internet Ads data set. Such data can be translated, one-to-one,
into a corresponding context. Attributes with integer or real types are less easily
dealt with. Should they be ignored or should some form of scaling be used to
create context attributes with ranges of values? Attributes that have free text
values (a person’s address, for example) are the least convertible and will almost
certainly be omitted in a conversion.

Missing Values Many data sets contain missing values. Should they be treated
as a ‘has not’ relationship or should objects with missing values be removed?

Classes Some data sets contain classes of data. Should these be ignored in the
conversion, treated as attributes, or should a separate context be created for
each class?

Clearly, a useful tool for data conversion must deal with all of these issues.

2.1 A Conversion Example

A simple example will help illustrate some of the issues outlined above, and
visualise possible input and output files of an FCA data converter. Figure 1 is a
miniature version of the UCI Mushroom data file, mushroom.data; a data only
flat-file of comma separated values, and a format very suitable for input to an
FCA data converter. The first column gives the mushroom class, the other four
are mushroom attributes. Each is nominally valued in the following way:

column 1 class: edible = e, poisonous = p
column 2 bruises?: bruises = t, no = f
column 3 gill-size: broad = b, narrow = n (missing value = ?)
column 4 veil-type: partial = p, universal = u
column 5 ring-number: none = n, one = o, two = t

e,t,b,p,n

e,t,n,p,t

p,f,n,p,n

e,t,?,p,o

p,f,n,p,n

Fig. 1. Miniature version of mushroom.data

Figure 2 is an interpretation of the mushroom data as a formal context. The
following decisions have been made in the interpretation:

– The mushroom class is not used.
– The attribute ‘bruises?’ is a single formal attribute.
– All other attributes have a formal attribute for each of their possible values.

Mushroom

b
ru

is
es

g
il
l-

si
ze

-b
ro

a
d

g
il
l-

si
ze

-n
a
rr

ow
v
ei

l-
ty

p
e-

p
a
rt

ia
l

v
ei

l-
ty

p
e-

u
n
iv

er
sa

l
ri

n
g
-n

u
m

b
er

-n
o
n
e

ri
n
g
-n

u
m

b
er

-o
n
e

ri
n
g
-n

u
m

b
er

-t
w

o

mushroom1 × × × ×
mushroom2 × × × ×
mushroom3 × × ×
mushroom4 × × ×
mushroom5 × × ×

Fig. 2. Mushroom context

Figure 3 is the Mushroom context in the Burmeister cxt file format, a common
FCA context format used by a number of FCA tools and one that could be
output from an FCA data converter. The ‘B’ at the start of the file possibly
stands for ‘Burmeister’; it appears to be a tradition of the format! The numbers
that follow are the number of objects and the number of attributes, respectively.
The names of the objects and attributes are then listed, followed by the incidence
vectors of the objects, consisting of dots and ‘X’s.

How the object and attribute names are obtained will be a factor in the de-
sign of an FCA data converter, and how far this process can be automated will
need to be considered.

B

5
8

mushroom1
mushroom2
mushroom3
mushroom4
mushroom5
bruises
gill-size-broad
gill-size-narrow
veil-type-partial
veil-type-universal
ring-number-none
ring-number-one
ring-number-two
XX.X.X..
X.XX...X
..XX.X..
X..X..X.
..XX.X..

Fig. 3. mushroom.cxt

3 Proposal 1: A ‘To-FCA Format’ Data Converter

Figure 4 is a simple, high-level view of the proposed ‘To-FCA Format’ data
converter. The proposed output of the converter is a file in the Burmeister cxt
format.

Sourc e

Att/ Ob j
Pa irs

Att/ Ob j
Tab le

Sourc e
Data
File

Determine
Sourc e
Format

Convert
Pa irs

.cxt file
(+ conversion log)

Determine
Att Types

Convert
Attributes

Fig. 4. Proposed ‘To-FCA’ Data Converter

After selection of the source data file format, the main process is determined
by whether the data is in the form of attribute/object pairs or in the form of
a table. In the latter case, the tool must carry out the appropriate conversion
depending on the type of each attribute. Information will be required by the tool,

concerning the number and names of objects and attributes, the type of each
attribute and its categories, if appropriate. This information may be obtained
by the tool from the source data file, or from the user, depending on the source
format, and will be output in a conversion log, along with information regarding
decisions made in the conversion process, such as any original attributes not
converted.

There are a number of FCA context formats, other than cxt, used by a variety
of FCA tools and applications. The data converter could be expanded to output
these formats, too, but FcaStone1 [7, 8], already exists that easily converts one
commonly used FCA file type into another. The proposed data converter could
integrate with FcaStone, making non-FCA format data interoperable with a
much wider range of FCA tools and applications (Figure 5). In conjunction with
Graphviz2, an open-source graph visualisation tool, FcaStone can produce a
range of graph formats for the production of concept lattices, thus expanding
further the range of FCA tools interoperable with the original data.

Source

FCA Files:
con, slf, bin.xml,
tuples, csv, csc,
cex, csx, fig, tex,
dot, gml, gxl, svg,
jpg, gif, png, ps, pdfcxt File

To-FCA
Data
Converter

Source
Data
File

FCA Tools
& Applications

FcaStone
(+ Graphiz)

Fig. 5. Possible Integration of ‘To-FCA’ Data Converter and FcaStone

4 Proposal 2: An FCA Data Repository

Figure 6 is a diagram of the proposed, web-based, FCA data repository. It is
proposed that the data converter tool and FcaStone are incorporated into the
repository allowing users to convert data sets as well as to access the stored
converted data sets. Users will also be able to donate data sets. A converted data
set will be stored along with, where possible, its original data file, information
about the original data (probably from the original data source), a link back
to the original data source, the conversion log, and FCA information, such as
context density and number of concepts.

To address needs outlined in the introduction of this paper, the repository
will also provide access to stored random data and incorporate a random data
1 FcaStone: http://fcastone.sourceforge.net
2 Graphviz: http://www.graphviz.org

Data
Source

Data
File

Random
Data
Generator

.csv
File

Data Set
Original data file
Data info.
Source link
Converted files
Conversion log
FCA info.

To-FCA Data
Converter
+ FcaStone

Rnd Data Set
csv file
Data info.
Converted files
FCA info.

FCA Data Repository

Fig. 6. Proposed FCA Data Repository

generator, the initial output of which will be a file of comma-separated object
number, attribute number pairs. The csv file can then be converted into the
required format. The user will be able to determine the number of attributes,
number of objects and the density. It is proposed that the user will also select
one of a small range of random number generator seeds; thus the same data set
will be generated by any given seed/data parameters.

In this way, the repository can act as a bench-marker for the comparison
of tools and algorithms by providing citeable random data as well as converted
‘real’ data sets.

5 Development of the Proposals and Conclusion

The To-FCA data converter will be developed as an open-source software. An
initial prototype is under development, converting ‘vanilla’ data sets (such as
the UCI Mushroom data set) and should be ready as a demonstrator tool in
June/July 2009. A Link has been formed with the JISC Information Environ-
ment Demonstrator Project3 to provide possible dissemination vehicles for the
development. It is also hoped that participation in an ICCS 2009 workshop com-
paring the performance of FCA algorithms4 will provide useful steering regarding
data formats.

The UCI Machine Learning Repository has kindly given the author per-
mission to reformat and make their data sets available online. The FCA data
3 JISC IE Demonstrator Project: http://www.jisc.ac.uk/whatwedo/programmes/

reppres/iedemonstrator.aspx
4 Comparing performance of FCA algorithms: http://iccs09.org/forum

repository is likely to initially take the form of a web service offering a small
selection of converted UCI data sets. The addition of random data sets and the
incorporation of tools will be an incremental development. If data sets are to be
encouraged from donors, a repository librarian will be required to validate them,
ensuring that they are in required format and that the necessary (and verifiable)
supporting information is provided.

The final vision is of an interactive set of web-services, offering FCA tools
interoperability with a wide range of data, providing a resource of useful collec-
tions of ‘real’ and random data sets in a wide variety of FCA context and lattice
formats, and offering users the facility to create, convert and donate data sets of
their own. Conversion between non-FCA and FCA formats will also open a way
to the wider use of FCA, offering its power to those currently outside the FCA
community.

References

1. Amazon Web Services: Public Data Sets on AWS [http://aws.amazon.com/
publicdatasets/] (2009)

2. Andrews, S.: In-Close, a Fast Algorithm for Computing Formal Concepts. To be
presented at the Seventeenth International Conference on Conceptual Structures
(2009).

3. Asuncion, A., Newman, D. J.: UCI Machine Learning Repository
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University
of California, School of Information and Computer Science (2007).

4. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In:
Belohlavek, R., Kuznetsov, S.O. (eds.), Proceeding of the Sixth International Con-
ference on Concept Lattices and their Applications, pp. 71-82, Palacky University,
Olomouc (2008).

5. Kuznetsov, S.O., Ob”edkov, S.A.: Comparing Performance of Algorithms for Gen-
erating Concept Lattices. In: Journal of Experimental and Theoretical Artificial
Intelligence, Vol. 14, pp. 189-216 (2002).

6. Passin, T. B.: Explorer’s Guide to the Semantic Web. Manning Publications Co.,
Greenwich, CT 06830, USA (2004).

7. Priss, U.: FcaStone - FCA File Format and Interoperability Software. In: Croitoru,
M., Jaschkë, R., Rudolph, S. (eds.), Conceptual Structures and the Web, Proceedings
of the Third Conceptual Structures and Tool Interoperability Workshop, pp. 33-43
(2008).

8. Priss, U: FCA Software Interoperability, In: Belohlavek, R., Kuznetsov, S. O. (eds.)
Proceeding of the Sixth International Conference on Concept Lattices and Their
Applications, pp. 133-144 (2008).

9. Wang, J., Han, J., and Pei, J.: CLOSET+: searching for the best strategies for
mining frequent closed itemsets. Proceedings of the Ninth ACM SIGKDD interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 236-245, ACM,
New York (2003).

