Northumbria Research Link

Citation: Underwood, Chris (2004) Modelling small-scale CHP plant under closed loop control. In: CSTB Workshop: Matlab/Simulink Building and HVAC Simulation, 14-15 October 2004, Paris.

URL:

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/3387/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright \circledast and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

www.northumbria.ac.uk/nrl

CSTB Workshop: Matlab/Simulink Building and HVAC Simulation 14-15 October 2004

Modelling Small-scale CHP Plant Under Closed Loop Control

C P Underwood

Northumbria University, United Kingdom

Background – UK Climate Change Levy

- A commodities tax introduced in April 2001
- Applicable to electricity, gas and other fuels (but not oil since this is already subject to excise duty)
- Payable by most (there are a few exceptions) nondomestic energy consumers
- Examples of current Levy rates: 0.15 p/kWh (natural gas); 0.43 p/kWh (electricity)

Background – CHP and the Levy

- Purpose of the Levy: to help secure the UK's CO₂ emissions reduction target (5% (Kyoto-binding); 12.5% targeted by between 2008 – 2012)
- Fuels used in "good quality" CHP will be exempt from the Levy
- UK CHP capacity target of 10 GWe by 2010 (about 15% of current capacity)

CHP Quality Indexing

- Quality indexing scheme operated by the CHPQA group at the UK's DEFRA
- *QI* thresholds set for different types of CHP installation
- A QI is calculated as a weighting of power and heat from CHP that is actually utilised
- Example, for small scale installations < 1 MWe...</p>

Threshold: $\eta \ge 0.2$ AND $QI \ge 115$

Where: $QI = 230\eta + 125\phi$ (η = efficiency; ϕ = heat "efficiency")

Modelling Equations – Gas and Work

 $\eta_{\text{indicated}} = 1 - r_c^{1-\gamma}$ $V \cdot V_{disp}$ $P_3 = \text{fnc}(v_{\text{cyl}}, T_{\text{ai}}, M_{\text{f}}, \eta_{\text{indicated}}, FLHV, W_{\text{brake}})$ $P_2 = \max(P_3, P_{crit})$ $M_{\rm q} = {\rm fnc}(A_{\rm throat}, V_{\rm ai}, T_{\rm ai}, P_2, P_{\rm ai})$ $A_{\text{throat}} = \text{fnc}(IV_{\text{lift}}, IV_{\text{diam}})$ $W_{\text{brake}} = \text{fnc}(M_g, \eta_{\text{indicated}}, \eta_{\text{mech}}, FLHV)$ $M_{\rm f} = {\rm fnc}(FAR, M_{\rm q})$ $(M_a \text{ is solved recursively})$

Modelling Equations – Heat Transfer

$$\begin{split} & T_{\text{adiabatic}} = \textit{fnc} \left(h_{\text{gas-chamber}}, \textit{FLHV}, \textit{FAR} \right) \\ & (T_{\text{adiabatic}} \text{ implicit in } h_{\text{gas-chamber}} \text{ hence solve recursively}) \\ & T_{\text{gas-outlet}} = \textit{fnc} \left(T_{\text{adiabatic}}, W_{\text{brake}} \right) \\ & Q_{\text{HX}} = \textit{fnc} \left(T_{\text{gas}}, T_{\text{coolant}}, E_{\text{HX}} \right) \\ & Q_{\text{loss}} = \textit{fnc} \left(T_{\text{coolant}}, T_{\text{ambient}}, E_{\text{loss}} \right) \end{split}$$

- Inlet throat area fitted to mnfrs. data
- General form...

$$IV_{\text{lift}} = C_1 + C_2 V_{\text{disp}} + \dots$$
$$C_3 V_{\text{disp}}^2 + C_4 r_c + \dots$$
$$C_5 r_c^2 + C_6 r_c V_{\text{disp}} + \dots$$
$$C_7 \left(r_c V_{\text{disp}} \right)^2$$

- Mechanical efficiency balanced from mnfrs. data
- Generally lower for smaller engines
- Typically, for naturally aspirated SI engines up to 250 kW...

 $0.6 \le \eta_{mech} \le 0.82$

Matlab Function - ChpSim

PARAMETER SET	INPUT DATA SET
Number of Cylinders:	Relative Air:Fuel Ratio (Stoichiometric=1):
4	12
	Jacket Water Mass Flow rate (kg/s):
Cylinder Bore (mm):	1
108	Jacket Inlet Water Temperature (K):
Displacement Volume (all cylinders - litres):	361.15
4.58	Inlet Air Pressure (N/sq m):
Compression Ratio (typically: 10 (SI); 20 (CI):	101325
10	Inlet Air Temperature (K):
Mechanical Efficiency (fraction):	298.15
0.65	Engine Speed (RPS):
OK Cancel	25

Jacket-series, separate circuit or... 🔀

UXILLARY HX	SIZE		
Aux. Heat Exchar	ger Surface Are	ea (sq m):	
5	R		
	l	ок	Cancel

Manufacturers Reference Data

Manufacturer	Model	Brake Power (kW)	Fuel Use (kW)	Brake Efficiency	Displacement (Litre)	Compression Ratio
MAN Rollo	E0824E302	37	142	0.261	4.58	-
	E0826E302	70	210	0.333	6.873	-
	E2866E	95	271	0.351	11.97	-
	E2866E302	118	341	0.346	11.97	-
	E2876E302	130	376	0.346	12.82	-
	E2842E	177	490	0.361	21.94	-
	E2842E302	222	617	0.360	21.94	-
Perkins	3008SI	160	445	0.360	17.41	12
Waukesha	F11G	83.5	273	0.306	11.03	10
Caterpillar	G3304	61	185	0.330	6.994	10.5
	G3304	51	167	0.305	6.994	8
	G3306	91	266	0.342	10.49	10.5
	G3306	77	257	0.300	10.49	8
	G3406	138	407	0.339	14.6	10.3
	G3408	166	551	0.301	17.93	10
	G3412	244	758	0.322	26.9	10
Cummins	Onan LPG-2	5.8	20.8	0.279	0.928	9.5
	Onan LPG-3	9.7	30.7	0.316	1.391	9.5
	Onan LPG-4	13.2	43.6	0.303	1.855	9.5
	Ford LRG-4251	23.1	55.5	0.416	2.451	9.4
	Ford ESG-642	35.8	97.2	0.368	4.197	9.3
	Ford WSG-1068	70.9	195.3	0.363	6.77	^

Correlation with Manufacturers Data

Parameter Extraction Using ChpSim

0.7

Throttling Rate

0.8

0.9

1.0

Matlab Function ChpScheduler

- Reads hourly time series of heat & power demands
- Performs an hourly balance to give...
 - Module matching
 - Turndown
 - Energy balance
 - Machine utilisation
- Integrated annual energy balance includes *QI*

Module Rated Power (KA0:	
100	
Heat Recovery at Rated Power (KW):	
100	
Module Minimum Modulation:	
0.5	
First Heating-Load Factor Coefficient:	
0.69899	
Second Heating-Load Factor Coefficient	
0.30195	
First Efficiency-Load Factor Coefficient:	
0.06856	
Second Efficiency-Load Factor Coefficient:	
0.44993	
Third Efficiency-Load Factor Coefficient:	
-0.18205	
QI Power Efficiency Coefficient:	
230	
QI Heat "Efficiency" Coefficient:	
125	
ОКСаг	ncel

Application Example: 700-household Village

- "Heat-rich" case
- Two scenarios...
 - existing case
 - 50% reduced heating to reflect a major insulation campaign

Simulated Village Energy Demands

1 200 300 400 500 600 700 Hour (start: 01:00 first day of the month)

APRIL

OCTOBER

Application – Nominal Module Choice

- Naturally aspirated gas engine
- 8-cylinder in-line; 137 mm bore; 26.9 ltr.; $r_c = 10$; $\eta_{mech} = 0.65$; $M_w = 5 \text{ kgs}^{-1}$ (series cooled)
- Parameter extraction from *ChpSim*...

$$Q_{\text{recovery}} = 0.699 + 0.302 (W / W_{\text{rated}})$$

$$\eta = 0.0686 + 0.450 (W / W_{\text{rated}}) - 0.182 (W / W_{\text{rated}})^2$$

Simulated nominal capacities 239 kWe / 292 kWt

Results – Efficiency and Module Utilisation

Results – Heat Recovery Utilisation

Results – Quality Index

Conclusions and Further Work

- For maximised QI and η_r a CHP module must be capable of turndown though this will reduce module utilisation
- The minimum turndown is shown here to maximise QI when set at 0.7 whereas for maximised η it should be 0.8 0.9
- For a "heat rich" application, heat recovery utilisation is maximised when no turndown is applied
- Further work is required to investigate short term module dynamics, smart control and thermal storage
- Further work is also needed to extend the range of model applicability to large turbo/super-charged engines and gas turbines

