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Outline

• Relationships in Category Theory
– Pivotal Role of Adjointness
– Intension-Extension
– Static/Dynamic
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– Static/Dynamic
– All a Question of Typing

• Natural Composition of Systems
– Godement
– Satisfy Complex Requirements

• Time-Space and other Examples
– Relevance to Anticipation



Purpose

• To attempt to show that the natural 
relationships declared categorically can 
satisfy those needed in the real world 
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satisfy those needed in the real world 
and provide a basis for anticipation



Relationships Dominate Category 
Theory

• Categories
– Cartesian closed – products
– Locally cartesian closed – pullbacks/comma/slice
– Intra-category

• Functors
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• Functors
– Map from one category to another
– Inter-category

• Natural Transformations
– Map from one functor to another
– Inter-functor



Adjointness

• Perhaps most important relationship is 
that of adjointness

• Discovered by Kan
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• Discovered by Kan
• Elaborated by Lawvere
• Provides a more general type of 

relationship then equivalence
– Suited to real-world where relationships 

are not always so simple



Inter-relationship between two Categories L, R
through Functors F,G

If adjointness holds, we write  F ┤ G

Free functor
Category R
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Features of Adjointness F ┤ G
• Free functor (F) provides openness
• Underlying functor (G) enforces rules
• Natural so one (unique) solution
• Special case 

– GF(L) is the same as L AND 
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– FG(R) is the same as R 
– Equivalence relation

• Adjointness in general is a relationship less 
strict than equivalence
– 1L <= GF if and only if FG <= 1R



Example of Adjointness

L R

F
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• If conditions hold, then we can write the 
adjunction F ┤ G

• The adjunction is represented by a 4-tuple:
– <F,G,η, ε>

• η  and ε are unit and counit respectively
– η : L � GFL; ε : FGR � R
– Measure displacement in mapping on one cycle

G



Uses of Adjointness

• Representing intension-extension 
• Intension-extension is critical for representing 

information systems
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– Goes back to Port Royal Logic

• Intension is definition of a system
– The permanent part that does not change

• Extension is time-varying part of a system
– The time-varying part that is in constant flux



Example 1

• Banking System
• Intension is definition of structures, rules 

and procedures that specify how the 
bank operates; can be a preorder with 
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and procedures that specify how the 
bank operates; can be a preorder with 
cycles

• Extension is the data values for the 
banking operation at a particular time; a 
partial order



Consider one relationship
• Customer (C) : account (A) in context of 

holds (H)
• For Intension (I) - Extension (E) define 2 

categories and 3 functors:
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categories and 3 functors:

I E

C XH A C + A

Σ
∆

Π



Definitions

• C XH A is the relationship C X A in the 
context of H

• C is customer, A is account, H is holds
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• C is customer, A is account, H is holds
• C + A is all possible values for pairs of 

C,A; by convention written this way but 
also includes other pools of possible 
data values (data soup, data types)



Functors pair 1

• Σ selects values that exist for C, A in E
– Free functor as performing choice

• ∆ takes values that exist for relationship 
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• ∆ takes values that exist for relationship 
between C, A in E and checks 
conformity with definition in I for C XH A
– Underlying functor as checking a rule

• If Σ and ∆ are adjoint, we write:
Σ ┤ ∆



Functors pair 2

• ∆ takes values that exist for relationship between C, 
A in E and checks conformity with definition in I for C 
XH A
– Because many contexts may exist it is now a free functor as 

selecting a role (viewpoint is now free)
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selecting a role (viewpoint is now free)
– Could have other contexts H', H'' …
– Note no use of number (Gödel !)

• Π selects values that exist for CXH A in E
– Underlying functor as checking that values selected in E 

match the type definition

• If both pairs of adjoints hold, we write:
Σ ┤ ∆ ┤ Π



Simultaneity

• In all categorical constructions
– There is no sequence in the composition
– The whole structure is evaluated 

simultaneously (snapped)
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simultaneously (snapped)

• The I-E relationship is an arrow
Σ ┤∆ ┤Π

and not any of the categories or 
functors on their own



Can Build up Relations

• Composition of arrows is natural
– Godement calculus

• As I-E relation is an arrow
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• As I-E relation is an arrow
• Can compose one I-E relation with 

another
• Can build up complex levels of types 

and definitions with flexible meta levels



black - objects
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Defining Four Levels of Data Typing with Contravariant 
Functors and Intension-Extension (I-E) Pairs



Composition of I-E pairs

• Higher I-E pair becomes (Σ ┤∆ ┤Π)' 
• Lower I-E pair becomes (Σ ┤∆ ┤Π)
• Then top-down is 
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• Then top-down is 
(Σ ┤∆ ┤Π) o (Σ ┤∆ ┤Π)'

and bottom-up is 
(Σ ┤∆ ┤Π)' o (Σ ┤∆ ┤Π)



Form of Underlying Categories

• Might represent data structure (static)
– Pullbacks/ pushouts
– Comma/ slice categories
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– Comma/ slice categories

• Might represent process (dynamic)
– Monads/comonads



Pullback

C X A C + A

C
πc ιc

Σ
∆
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C XH A C + A

A

πa ιa

∆

Π



Pullback versus I-E

• Saying much the same thing
• Pullback useful as a descriptive diagram
• I-E is more useful algebraically as it:

casys 2009 intension-extension 21

• I-E is more useful algebraically as it:
– Spells out the exact nature of the 

relationship
– Is an arrow which can be composed with 

other categorical arrows



Monad

Transaction (ACID):
T is one cycle 
T2 is two cycles
T3 is three cycles 
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T is three cycles 

T is an endofunctor, 
can be an adjoint:
GF or Σ ┤ ∆ ┤ Π,
latter as 2 pairs 
strictly



Monad

• Monad is an abstract concept:
Monad = <T, η, µ>

Where T is the endofunctor -- endofunctor is 
functor with same source and target (often an 
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functor with same source and target (often an 
adjoint)

η is the unit of adjunction: change in L on one 
cycle

µ is the multiplication: change between T2 and T 
(on 2nd cycle looking back)

But can express in more detail:



Adjointness between Monad/Comonad

T = GF
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S = FG



Comonad

• Comonad is dual of Monad
• Comonad = <S, ε, δ>
• Where S is the endofunctor (often an adjoint)
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• Where S is the endofunctor (often an adjoint)
• ε is the counit of adjunction, measuring 

change in R on one cycle
• δ is the comultiplication, measuring change 

between S and S2 (looking forward)



Simultaneity

• Monad/comonad are not handled in a 
sequential fashion

• Cycles are simultaneous
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• Cycles are simultaneous
• Structure satisfying the rules is snapped



Time/Space

I E

Σ
∆
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I E

T XC S T + S

Π



Time/Space as I-E

• T & S is in the intension
• T || S is in the extension

• Σ ┤∆ ┤Π gives the relationship for a particular 
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• Σ ┤∆ ┤Π gives the relationship for a particular 
context C between:

T & S and T || S
where T & S is the invariant intension (I) and T 

|| S is the time-varying extension (E)
Relativistic: η, ε are significant; classical: maybe 

not so. 



Anticipation 1

• So is anticipation the comultiplication
– δ: S � S2

– taking the comonad forward one cycle 
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– taking the comonad forward one cycle 

• This is a tempting conclusion
• But it is not so simple
• Anticipation is not one arrow on its own
• Need to consider the full context



Anticipation 2

• Could better be viewed as looking 
forward:

δ: S � S2 (FG � FGFG)
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δ: S � S2 (FG � FGFG)
in the context of the monad/comonad 

adjointness, in particular of the arrow 
looking back:

µ : T2 � T (GFGF � GF)


