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Abstract

The main objective of this thesis is to determine the complex generic represen-

tation theory of the Juyumaya algebra. We do this by showing that a certain

specialization of this algebra is isomorphic to the small ramified partition algebra,

introduced by Martin (the representation theory of which is computable by a com-

bination of classical and category theoretic techniques). We then use this result

and general arguments of Cline, Parshall and Scott to prove that the Juyumaya

algebra En(x) over the complex field is generically semisimple for all n ∈ N. The

theoretical background which will facilitate an understanding of the construction

process is developed in suitable detail. We also review a result of Martin on the

representation theory of the small ramified partition algebra, and fill in some gaps

in the proof of this result by providing proofs to results leading to it.
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Chapter 1

Introduction

Representation theory is concerned with the study of how various algebraic struc-

tures (such as groups, monoids, algebras) act on vector spaces while respecting

the operations on these algebraic structures. In group theory, the idea of repre-

sentation is to find a group of permutations or linear transformations with the

same structure as a given, abstract, group (see, for example, [1]). Formally, a

representation of a group is a homomorphism G → GLn(F ) for a field F, giving

an invertible n×n matrix for each element of G. More abstractly, representations

of a group G may be defined in terms of modules over the group algebra over F.

One of the most fundamental problems in representation theory is to construct

and classify irreducible representations of a given algebraic structure, up to iso-

morphism. This problem is usually difficult and often can be solved only partially

[2]. The problem has been solved for some algebras such as the partition algebras

over C [3], and for some groups such as the symmetric groups [1] and the wreath

product groups over C [4].

For F a field and δ′ ∈ F the partition algebras Pn(δ
′) (n = 1, 2, . . .) are a tower of

finite dimensional unital algebras over F each with a basis of set partitions. These

algebras appeared independently in the work of Martin [3, 5, 6] and Jones [7].

Their work on the partition algebra stemmed from studies of the Temperley-Lieb

algebra and the Potts model in statistical mechanics. The partition algebras have

a rich representation theory. For example, Martin [3, 6], Martin and Saleur [8],

Doran and Wales [9], Halverson and Ram [10], Martin and Woodcock [11] have

extensively studied the structure and the representation theory of the partition

algebra Pn(δ
′), with δ′ ∈ C. They revealed that Pn(δ

′) is semisimple whenever δ′

1



Chapter 1. Introduction 2

is not an integer in [0, 2n − 1], and they analyzed the irreducible representations

in both the semisimple and non-semisimple cases.

Martin and Elgamal have studied a certain generalization [12] of the partition

algebra called the ramified partition algebra. For each natural number n, poset

T, and any |T |-tuple of scalars δ = (δ1, . . . , δd) ∈ F d, the ramified partition al-

gebra P
(T )
n (δ) is a certain subalgebra of the tensor product of partition algebras

⊗
t∈T Pn(δt). The partition algebra coincides with the case |T | = 1 . For fixed n

and T the ramified partition algebra, like the partition algebra, has a basis inde-

pendent of δ. In case T = 2 := ({1, 2},≤), it was shown in [12] that there are

unboundedly many choices of δ such that P
(2)
n (δ) is not semisimple for sufficiently

large n, but that it is generically semisimple for all n.

Some years later, while working on a different problem (restriction rules for wreaths),

Martin discovered another algebra called the small ramified partition algebra [13].

The small ramified partition algebras P ς
n are subalgebras of the ramified partition

algebras. They are also subalgebras of the tensor product of the symmetric group

algebra FSn and the partition algebra Pn(δ
′). Unlike the partition algebras and the

ramified partition algebras, the small ramified partition algebras are independent

of parameters. As shall become clear as we proceed, we have algebra inclusions

⊂ P
(2)
n (δ) ⊂

P ς
n Pn(δ1)⊗F Pn(δ2)

⊂ FSn ⊗F Pn(δ
′) ⊂

where δ = (δ1, δ2), and δ
′ = δ2 in the inclusion FSn⊗F Pn(δ

′) ⊂ Pn(δ1)⊗F Pn(δ2).

Like some algebras such as the Temperley-Lieb algebras (see, for example, [3, 14])

and the Brauer algebras [15–17], the algebras P
(T )
n (δ), P ς

n, and Pn(δ
′) are examples

of “diagram algebras”. A diagram algebra is a finite dimensional algebra with

a basis given by a collection of certain diagrams and multiplication described

combinatorially by diagram concatenation.

This thesis is concerned with the representation theory of a certain algebra which

we shall call the Juyumaya algebra of braids and ties (or simply the Juyumaya

algebra). The Juyumaya algebras are a family of finite dimensional C-algebras

{En(x) : n ∈ N, x ∈ C}. These algebras were introduced by Juyumaya in [18] and

studied further by Aicardi and Juyumaya [19] and by Ryom-Hansen [20].
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Motivation for investigating the representation theory of this algebra comes from

observations on the representation theory of the small ramified partition algebra.

Our first discovery of the connection between these two algebras was that they

have equal dimension. (This intriguing result was hinted at [20].)

The Juyumaya algebras En(x) are a generalisation of the Iwahori-Hecke algebras

[21]. The complex generic representation theory of the Iwahori-Hecke algebras

is reasonably well known (see, for example [21] for a review). Like the Iwahori-

Hecke algebras it turns out, as we shall show, that the Juyumaya algebras are

generically semisimple. In contrast to the Iwahori-Hecke case however, the generic

representation theory of the Juyumaya algebras over the field of complex numbers

was only known for the cases n = 1, 2, 3 [19], [20]. Here we determine the result

for all n.

Our method is to establish, for each n, an isomorphism between En(1) (over C) and

the small ramified partition algebra P ς
n, of known complex representation theory

and then to use general arguments of Cline, Parshall and Scott [22].

In dealing with the study of algebraic structures and their respective represen-

tations, it is common to take a category-theoretic approach to modules. This

is the way we shall proceed in this thesis. Our approach for finding the simple

P ς
n−modules is motivated by the work of Cox et.al. on “towers of recollement” [23]

and some results of Green [24]. Towers of recollement are used in algebraic repre-

sentation theory, for example, [3, 25, 26]. The tower of recollement is somewhat

connected in the semisimple case to the Jones basic construction [27]. In fact, the

idea behind the approach is roughly the following: If A is an algebra, and e ∈ A

an idempotent, then the category eAe-mod of left eAe-modules embeds in A-mod.

More simply, the idea is that if eAe-mod may be relatively simply analysed, the

embedding then gives partial knowledge of A-mod [28].

Once we view an algebraic structure in terms of its category of modules, it is nat-

ural to compare such categories. This leads to the notion of “Morita equivalence”.

Two rings R and S are said to be Morita equivalent if their respective categories

R-mod and S-mod of (left) modules are equivalent. Two categories C and D are

said to be equivalent if there exists functors F : C → D, G : D → C satisfying

F ◦ G ∼= ID and G ◦ F ∼= IC, where ∼= denotes isomorphism of functors and I is

the identity functor.
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1.1 Structure of the thesis

We will adopt the convention of placing a QED box at the end of some results to

imply that we will not provide the proof of that result but interested reader can

find the proof in the reference provided in the header of the result. We will begin

each chapter with a brief summary of what that chapter contains. However, for

convenience, here is an overview of the arrangement and content of this thesis.

In Chapter 2, we begin with a brief tour through representation theory of partition

algebras, with emphasis determined by what is useful for the later chapters. The

goal of the thesis is to present the connection of the small ramified partition algebra

to the Juyumaya algebra.

In Chapter 3, we recall the definition of the small ramified partition algebra after

reviewing the ramified partition algebra, a generalisation of the partition algebra.

The focus then turns to working out the irreducible representations of the the small

ramified partition algebra in Chapter 4. We look at an illustrative example. Before

describing explicitly the structure of P ς
n, we give an indexing set for the irreducible

representations of P ς
n. Since we are taking a category theoretic approach, it is

natural to ask about the category of P ς
n-modules, and we do so here. After setting

the scene with the category of P ς
n-modules, we then exploit some properties of

this category to construct the irreducible representations of P ς
n. An observation

reveals that the basis elements of the small ramified partition algebra is somewhat

related to some wreath products of symmetric groups. As an alternative method

to construct the irreducible representations of P ς
n we consider the wreath product

groups and describe its representation theory.

In Chapter 5, we recall the definition of the Juyumaya algebra. We also present

the main results of the thesis and prove them.

Unfortunately, constraints of time prevent the development of a wider investigation

of the representation theory within the thesis. Chapter 6 considers the progress

made so far and looks at some aspects of the theory that we have not yet had time

to develop, but which would be interesting subjects for further research.

Appendix A contains some representation theory of the symmetric groups over C.

This is useful for Chapter 4 but is removed to the appendix to facilitate the flow

of narrative.
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Appendix B contains an account of some necessary preliminaries for our studies

- review on algebras, modules, and the core classical representation theory of al-

gebras. We begin by giving the definitions of a matrix representation of a group

and that of a module. We continue with the analysis of the relationship between

simple modules and semisimple modules. Then we consider for which algebras we

can reduce the study of their representation theory to the study of their simple

modules. Such algebras are called semisimple, and the Artin-Wedderburn Theo-

rem will give a complete classification in this case. If an algebra is not semisimple,

then the Jacobson radical of the algebra can be regarded as a measure of its non-

semisimplicity. The Krull-Schmidt Theorem then tells us that it is enough to

determine the indecomposable modules.

This thesis is based on a published article of the author, titled The generic repre-

sentation theory of the Juyumaya algebra of braids and ties [29]. However, some

of the notation has been improved and some of the arguments have been discussed

comprehensively here.



Chapter 2

A review of the partition algebra

One of the main algebras of interest in this thesis is the small ramified partition

algebra. It is an algebra with a diagrammatic formulation akin to the partition

algebra. It will be convenient, therefore, to recall this familiar example in a suitable

formalism and then generalise to the small ramified partition algebra. We also

briefly summarise the basic representation theory of the partition algebras that

will be useful later on. Details can be found in [3]. Much of the standard terms

and notation in representation theory we use here are reviewed for reference in

Appendix B.

2.1 Partition monoid

For n ∈ N, we define n = {1, 2, . . . , n} and n′ = {1′, 2′, . . . , n′}.

Definition 2.1. A (set) partition of a set X is a collection {S1, S2, S3, . . .} of

non-empty subsets of X such that

S1 ∪ S2 ∪ S3 ∪ . . . = X and Si ∩ Sj = ∅ whenever i 6= j.

We denote the set of all partitions of X by PX .

6
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Figure 2.1: A diagrammatic representation of a partition from P4∪4′ .

Example 2.2.

P2∪2′ = {{{1}, {2}, {1′}, {2′}}, {{1, 2, 1′, 2′}}, {{1, 2, 1′}, {2′}},

{{1, 2, 2′}, {1′}}, {{1, 1′, 2′}, {2}}, {{2, 1′, 2′}, {1}}, {{1, 2}, {1′, 2′}},

{{1, 1′}, {2, 2′}}, {{1, 2′}, {1′, 2}}, {{1, 2}, {1′}, {2′}},

{{1, 1′}, {2}, {2′}}, {{1, 2′}, {1′}, {2}}, {{1′, 2}, {1}, {2′}},

{{2, 2′}, {1}, {1′}}, {{1′, 2′}, {1}, {2}}}.

We call the individual subsets in a partition of X parts. For instance, {1, 2} is a

part of the partition {{1, 2}, {1′}, {2′}} ∈ P2∪2′ in Example 2.2.

We shall see in Theorem 2.4 that the set Pn∪n′ of all partitions on n ∪ n′ forms a

monoid, the so-called partition monoid (see, for example, [10], [6], or [12]), under

an associative binary operation we describe shortly.

A set partition p ∈ Pn∪n′ may be represented by a diagram on the vertex set

n ∪ n′ as follows. In a rectangular frame, we arrange vertices labelled 1, . . . , n in

a row (increasing from left to right) and vertices labelled 1′, . . . , n′ in a parallel

row directly below. When such a diagram is arranged in this way we may talk

about the top and bottom rows of p. We then add edges in such a way that two

vertices are connected by a path if and only if they belong to the same part of p.

For example, the partition

{{1, 3, 4, 4′}, {2′, 3′}, {1′}, {2}} ∈ P4∪4′

is represented by the diagram pictured in Figure 2.1.

The diagram representing a set partition is not unique. Two such diagrams are

regarded as equivalent if they have the same connected components. We will thus

identify diagrams on the vertex set n ∪ n′ if they are equivalent and the term

partition diagram will be used to mean the equivalence class of the given diagram.
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In the same way, we will not distinguish between a set partition and a diagram

which represents it.

Figure 2.2: A closed loop, an isolated vertex, and an open string, respectively
that may appear in the middle row during the composition of two partition

diagrams. The dotted line here just indicates the middle row

In order to describe the product of these partition diagrams, let p, q ∈ Pn∪n′ . We

first place the partition diagram representing p above the partition diagram rep-

resenting q so that vertices 1′, . . . , n′ of p are identified with vertices 1, . . . , n of

q. This new diagram consists of a top row, bottom row, and the part where the

vertices coincide which we will call the “middle row”. In this middle row, there

are three topologically different connected components that are isolated from the

boundaries in composition that may appear, namely closed loops, isolated vertices,

and open strings. (These connected components are illustrated respectively in Fig-

ure 2.2). We finally remove this middle row as well as any connected components;

the resulting diagram is the product pq. An example is given as follows.

If

p 7→

q 7→ ,
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then the product of the partition diagrams of p and q in Pn∪n′ is

pq 7→ = .

Lemma 2.3 (See [3, Prop. 1]). The product on Pn∪n′ defined above is associative

and well-defined up to equivalence.

Theorem 2.4. The set Pn∪n′ forms a monoid.

Proof. It is easy to verify that the identity element is the partition

{{1, 1′}, {2, 2′}, {3, 3′}, . . . , {n, n′}}.

Associativity follows from Lemma 2.3.

The submonoids of the partition monoid Pn∪n′ include the following.

Definition 2.5.

(1) The Brauer monoid Bn∪n′ = {x ∈ Pn∪n′ : each part of x contains exactly two

elements of n ∪ n}. (See, for example, [30], [15]).

(2) The Temperley-Lieb monoid Tn∪n′ = {x ∈ Bn∪n′ : x is planar}. The word

planar here means that if we consider the basis elements as diagrams, then

there are no edge crossings in the diagram. (See, for example, [31]).

(3) The symmetric group Sn∪n′ = {x ∈ Pn∪n′ : each part of x has exactly two

elements (one primed and the other unprimed) of n ∪ n}. (See, for example,

[10]).

2.2 The partition algebra

A convenient situation occurs when we use an algebraic structure such as a group

or a monoid as a basis for an algebra (see section B.1.3 for a definition) over a
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field or a ring. Since we already know how elements multiply in these algebraic

structures, we can use the product operation on them to define the product in

their algebra. In the case of a monoid, this construction is known as the monoid

algebra and will be denoted by FG where F is the field and G is the monoid.

Definition 2.6. Let Pn(δ
′) = CPn∪n′ be the C-vector space with basis Pn∪n′ . We

define a product on Pn(δ
′) as follows. Given p, q ∈ Pn∪n′ , define

p ◦ q = δ′l(pq),

the scalar multiple of (the monoid product) pq by the scalar δ′l ∈ C where l is the

number of connected components removed from the middle row when constructing

the product pq. The linear extension of the product ◦ gives Pn(δ
′) the structure

of an associative C-algebra which is known as the partition algebra.

The dimension of Pn(δ
′) is the Bell number B2n (see, for example [32]), the number

of ways to partition a set of 2n elements. The sequence is A020557 in the Sloane’s

On-line Encyclopedia of Integer Sequences [33].

The partition algebra is an example of a monoid algebra (see, for example [34, p.

106], [35, §5.1, Ex. 4]). More examples of a monoid algebra are as follows:

For each monoid defined in Definition 2.5, we can construct an associative algebra

in the same way that we construct the partition algebra Pn(δ
′) from the partition

monoid Pn∪n′ . For example, we obtain the Brauer algebra Bn(δ
′) from Bn∪n′ , the

Temperley-Lieb algebra TLn(δ) from Tn∪n′ , and the group algebra of the symmetric

group CSn from Sn∪n′ in this way.

We now briefly summarise a category-theoretical approach to the representation

theory of Pn(δ
′). This approach was introduced by J.A. Green in the Schur algebra

setting, [24], but has turned out to be useful in the context of diagram algebras,

see for example, [23], [36], [25], and [26]. In the case of the partition algebra Pn(δ
′),

good references to the formalism are [3, 6].
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Definition 2.7.

(1) Let A be an algebra over a field F. An element e ∈ A is an idempotent in case

e2 = e.

(2) An idempotent e of A is a central idempotent in case it is in the centre of A.

Given an algebra A over a field and an idempotent e ∈ A then e determines a

second algebra, namely

eAe = {eae : a ∈ A}

with binary operation given by that of A restricted to eAe and with identity

e = e1e. (If e 6= 1, then the algebra eAe is not a subalgebra of A. Although in

the thesis, for convenience, we shall refer to such an algebra as an idempotent

subalgebra of A.) Thus, we may define functors between A-mod (the category of

left A-modules) and eAe-mod:

F : A-mod → eAe-mod

M 7→ eM
(2.1)

G : eAe-mod → A-mod

N 7→ AAe⊗eAe N
(2.2)

The functor F is called localisation, and G is called globalisation, with respect to e.

We shall return to consider such functors for the small ramified partition algebras

(since algebras are rings) in Section 4.6. As a first illustration of how these functors

may be applied to algebras we consider the partition algebra Pn(δ
′).

There is a natural inclusion

Pn−1(δ
′) $ Pn(δ

′) (2.3)

given by adding vertices labelled n and n′ with a vertical edge connecting them in

the rightmost part of an arbitrary partition diagram q ∈ Pn−1(δ
′).

For n ≥ 1, δ′ 6= 0, consider the idempotent en in Pn(δ
′) defined by 1/δ′ times the

partition diagram where i is joined (by an edge) to i′ for i = 1, . . . , n − 1, and

there is no edge joining n to n′. This is illustrated in Figure 2.3.
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Figure 2.3: The idempotent e5 in P5(δ
′)

Theorem 2.8 (See [3, Theorem 1]). For each n ∈ N, δ′ 6= 0 and idempotent

en ∈ Pn(δ
′) as defined above, there is an isomorphism of algebras

enPn(δ
′)en ∼= Pn−1(δ

′).

Thus, according to Green [24], there are associated functors

F : Pn-mod → Pn−1-mod

M 7→ enM

and

G : Pn−1-mod → Pn-mod

N 7→ Pnen ⊗Pn−1 N

Following Martin [6], we define the propagating number for a partition diagram

q, denoted by #(q), to be the number of distinct parts of q containing elements

from both the top and bottom row of q. The product of partition diagrams has

the property that if q1, q2 are partition diagrams, we have

#(q1q2) ≤ min(#(q1),#(q2)).

The ideal Pn(δ
′)enPn(δ

′) is spanned by all diagrams having a propagating number

strictly less than n. Furthermore, we have

Lemma 2.9 (See [3]). For each n, and δ′ 6= 0, the following is an isomorphism of

algebras

Pn(δ
′)/Pn(δ

′)enPn(δ
′) ∼= CSn.
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Let Ŝn denote any index set for the irreducible representations of the symmetric

group Sn. (See Appendix A for a good choice.)

It follows, by [24], Theorem 2.8, and Lemma 2.9, that

Theorem 2.10 (See [3, p. 72–73]). Let Λ̂n denote an index set for the irreducible

representations of Pn(δ
′). Then Λ̂n is the disjoint union

Λ̂n = Λ̂n−1 ∪̇ Ŝn. (2.4)

Theorem 2.11 (See [8, Coro. 10.3, §6]). For each integer n ≥ 0, the algebra Pn(δ
′)

is semisimple over C whenever δ′ is not an integer in the range [0, 2n-1].



Chapter 3

The Small Ramified Partition

Algebras

In order to define the small ramified partition algebra, it will be helpful to recall

the definition of the ramified partition algebra, given in [12], from which this

algebra can be constructed. We shall mainly base our exposition on the notations

and terminology of [12], as well as key results from that paper.

The purpose of Section 3.1 is to lay out some notation and terminology which will

be used later. In Section 3.2, we review the definition of the ramified partition

algebra from which the small ramified partition algebra can be constructed. We

then recall the definition of the small ramified partition algebra.

3.1 Some definitions and notation

Given n ∈ N, we let Sn denote the symmetric group on n. The group algebra FSn

of Sn is embedded in Pn(δ
′) as the span of the partitions with every part having

exactly two elements, one primed and the other unprimed, of n ∪ n′. When we

write d for a poset, we mean {1, 2, . . . , d} equipped with the natural partial order

≤ (although we will often concentrate on the case 2 = ({1, 2}, 1 ≤ 2) in this

thesis). Throughout this chapter, F will denote a field. For X ′ ⊂ X and c ∈ PX

we define c|X′ as the collection of the sets of the form ci ∩X
′ where the ci are the

parts of the partition c.

14
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Definition 3.1. For a set X, we define the refinement partial order on PX as

follows. For p, q ∈ PX , we say p is a refinement of q, denoted p ≤ q, if each part

of q is a union of one or more parts of p.

For example, the set partition p = {{1, 2}, {3, 4, 5}, {6}} is a refinement of the set

partition q = {{1, 2, 3, 4, 5}, {6}} since {1, 2, 3, 4, 5} ∈ q is the union of the parts

{1, 2} and {3, 4, 5} of p, and {6} in q is a part of p.

Proposition 3.2 (See [12, Prop. 1]). Let p, q ∈ PX and Y ⊆ X. Then p ≤ q

implies p|Y ≤ q|Y .

3.2 Ramified partition algebra

The ramified partition algebra was introduced by Martin and Elgamal [12] as a

generalisation of the ordinary partition algebra Pn(δ
′) (see Chapter 2 for a review).

3.2.1 The ramified partition monoid

Definition 3.3. Let (T,≤) be a finite poset. For a set X, we define PT
X to be the

subset of the Cartesian product
∏

T PX consisting of those elements q = (qi : i ∈ T )

such that qi ≤ qj whenever i ≤ j. Any such element q ∈ PT
X will be referred to as

a T-ramified partition.

For example, some elements of P2
2∪2′ are listed below:

π1 = ({{1}, {2}, {1′}, {2′}}, {{1}, {2}, {1′}, {2′}})

π2 = ({{1, 2}, {1′}, {2′}}, {{1, 2, 1′}, {2′}})

π3 = ({{1, 2′}, {2, 1′}}, {{1, 2, 1′, 2′}}),

and so on.

We now recall from [12] the diagrammatic realization of an element of PT
n∪n′ . We

shall only need the case T = 2 here. We first look at an example from [12]. The

diagram in Figure 3.1 represents

({{1, 2, 3}, {1′, 2′}, {3′}, {4, 5′}, {5, 4′}}, {{1, 2, 3, 1′, 2′}, {3′}, {4, 5′}, {5, 4′}}).
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Figure 3.1: A diagram representing a 2-ramified partition

=

Figure 3.2: The composition of ramified 2n- partition diagrams

Consider an element (p, q) in P2
n∪n′ . Then p and q can be thought of as partition

algebra diagrams in which the connected components (the parts of p) are grouped

into disjoint sets or “islands”. The islands are the parts of q. Note that islands can

cross (as illustrated in Figure 3.1), but it is not hard to draw them unambiguously.

Similarly, a diagram representing a T-ramified partition is not unique. We say two

diagrams are equivalent if they give rise to the same T-ramified partition.

The term ramified partition diagram (or sometimes ramified 2n-partition diagram

to indicate the number of vertices) will be used to mean the equivalence class of

the given diagram.

We refer to the edges in the underlying partition algebra diagram of a ramified

partition diagram as bones.

The composition of ramified 2n-partition diagrams in PT
n∪n′ is as follows. First

identify the bottom of one ramified 2n-partition diagram with the top of the other,

composing the underlying partition algebra diagrams as in Section 2.1. The islands

in the composition are the connected components of the union of the islands in

each of the diagrams. Then discard any island connected components that are

isolated from the boundaries in composition as shown in Figure 3.2.
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Throughout, we shall identify a ramified partition with its ramified partition dia-

gram and speak of them interchangeably.

Proposition 3.4 (See [12, Prop. 2]). For any d-tuple δ = (δ1, . . . , δd) ∈ F d, the

set PT
n∪n′ forms a basis for a subalgebra of

⊗
t∈T Pn(δt).

Proof. The proof can be found in [12].

Proposition 3.5. For each n ∈ N the set of ramified 2n-partition diagrams, PT
n∪n′ ,

with multiplication defined by composition of diagrams (as defined above), is a

monoid.

Proof. Clearly, the identity element in PT
n∪n′ is

({{1, 1′}, {2, 2′}, . . . , {n, n′}}, {{1, 1′}, {2, 2′}, . . . , {n, n′}}).

It remains to check that the multiplication operation is associative, but this is easy

to verify.

3.2.2 The ramified partition algebras

For δ = (δ1, δ2, . . . , δd) ∈ F d, the T-ramified partition algebra P
(T )
n (δ) over F is the

finite dimensional algebra with basis PT
n∪n′ and product induced by the product

of PT
n∪n′ in a way made precise as follows.

Let r, s ∈ PT
n∪n′ . When forming the product rs in PT

n∪n′ a crucial step involved

the removal of connected components that are isolated from the boundaries after

the composition of diagrams of r and s. Instead, replace any bone (resp. island)

connected components that are isolated from the boundaries in composition by a

factor δ1 (resp. δ2) as shown in Figure 3.3. In [12] it is shown that this operation

(extended linearly over F ) gives P
(T )
n (δ) the structure of an associative F -algebra.

A line joining the top part of a diagram and the bottom part will be called a

propagating line (but note that in general, equivalent diagrams might have a dif-

ferent number of propagating lines). The propagating number (see Section 2.2) of

a partition diagram is the same as the smallest number of propagating lines in a

diagram representing it. A propagating line with an island around it will be called

a propagating stick.
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= δ1δ2

Figure 3.3: The composition of diagrams in P
(2)
4 (δ)

The complex generic representation theory of P
(T )
n (δ) has been determined in the

case T = 2 in [12]. It was shown that there are infinitely many choices of δ such

that P
(2)
n (δ) is not semisimple for sufficiently large n, but that it is generically

semisimple for all n.

3.2.3 Small Ramified Partition Algebra P ς
n

In this section we recall the definition of the small ramified partition algebra. To

define this algebra we require the following definitions.

Definition 3.6. We define diag-Pn to be the subset of Pn∪n′ such that i, i′ are in

the same part for all i ∈ N.

For example, recall from [3] the special elements in Pn∪n′ as follows.

1 = {{1, 1′}, {2, 2′}, . . . {i, i′}, . . . {n, n′}}

Ai,j = {{1, 1′}, {2, 2′}, . . . {i, i′, j, j′}, . . . {n, n′}} i, j = 1, 2, . . . , n

σi,j = {{1, 1′}, {2, 2′}, . . . {i, j′}, {j, i′} . . . {n, n′}} i, j = 1, 2, . . . , n

ei = {{1, 1′}, {2, 2′}, . . . {i}, {i′}, . . . {n, n′}} i = 1, 2, . . . , n.

Here, 1 and Ai,j are in diag-Pn while σi,j and ei are not. Note that σi,i+1 cor-

responds to the simple transposition (i, i + 1) ∈ Sn, and the elements of the set

{σi,i+1 : 1 ≤ i ≤ n− 1} generate FSn.

Definition 3.7. For any δ′ ∈ F, we define ∆n to be the subalgebra of Pn(δ
′)

generated by the elements of Sn and the Ai,j , i, j = 1, 2, . . . , n.
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Proposition 3.8. The map

ς : Sn × diag-Pn → Sn × Pn∪n′

given by

(a, b) 7→ (a, ba)

defines an injective map.

Proof. The well-definedness of ς is clear. To prove that ς is an injective map, it

suffices to show that if (a, ba) is equal to (c, dc) in Sn ×Pn∪n′ , then (a, b) is equal

to (c, d) in Sn × diag-Pn. Assume that (a, ba) = (c, dc). Since a = c, then bc = dc.

But c is invertible, thus, b = d.

Note that ς is not a surjective map as there are some elements in Sn ×Pn∪n′ that

are not images of elements in Sn × diag-Pn under ς. For example, although any

non-identical pair of permutations is an element in Sn ×Pn∪n′ , it is not an image

of any element in Sn × diag-Pn under the map ς.

Definition 3.9. We define Pn∪n′ to be the subset of the Cartesian product Sn ×

Pn∪n′ given by the elements q = (q1, q2) such that q1 is a refinement of q2.

Proposition 3.10 (See [13, p. 5]). The set Bς
n := ς(Sn × diag-Pn) lies in Pn∪n′

and forms a basis for a subalgebra of FSn ⊗F ∆n.

Definition 3.11. The associative algebra P ς
n over F is the free F -module with Bς

n

as basis and multiplication inherited from the multiplication on P
(2)
n (δ). We call

P ς
n the small ramified partition algebra.

It is easy to check that

Lemma 3.12. The multiplication on P ς
n is well-defined up to equivalence.

There is a diagram representation of Bς
n since its elements are 2-ramified partitions

(see [13, p. 6]). Each element of the basis ς(Sn × diag-Pn) of B
ς
n is obtained by

taking a permutation in Sn and partitioning its parts (propagating lines) into

disjoint islands.

Example 3.13. The map defined in Proposition 3.8 is illustrated by the following

pictures.
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In particular, these pictures describe the diagrammatic realization of some basis

elements in P ς
4 .

Lemma 3.14 (See [13, §3.4]). The dimension of P ς
n is given by n!Bn, where Bn

is the nth Bell number.

Remark 3.15. Notice that, P ς
n is spanned by diagrams with propagating number n

(See Example 3.13). This means that, unlike the ramified partition algebras, the

small ramified partition algebras do not depend on parameter δ.

Definition 3.16. For any δ′ ∈ F, we define Γn as the subalgebra of Pn(δ
′) gener-

ated by the elements of Ai,j , i, j = 1, 2, . . . , n.

Note that the natural injection of Γn into P ς
n is given by

Ai,j 7→ (1, Ai,j)

and there exists a natural injection of FSn into P ς
n given by

σi,i+1 7→ (σi,i+1, σi,i+1) = ς(σi,i+1, 1).

Proposition 3.17 (See [13, Prop. 2]). The algebra P ς
n is generated by (1, Ai,i+1)

and (σi,i+1, σi,i+1) (i = 1, 2, . . . , n− 1).



Chapter 4

The Representation Theory of the

small ramified partition algebra

P ςn

In this chapter we study the representations of the small ramified partition algebras

of Section 3. Our aim is to classify their finite dimensional representations over

an algebraically closed field of characteristic zero. The final Theorem (Theorem

4.57) in this chapter is due to Martin [13]. However, the proof in [13] is very terse.

Here we present an explicit proof of the Theorem by providing the proofs (which

we have not found in the literature) of the results leading to it. We follow closely

the notation of [13].

In Section 4.1 and Section 4.2, we recall some relevant definitions that will be

needed later. In Section 4.3, we give a concise exposition of the representation

theory of the wreath product G ≀ Sn with G a finite group (see, for example [4,

Chapter 4], [37, Chapter 5], [38, Section 3.1], [39], [40, Appendix A]) over an al-

gebraically closed field F of characteristic zero. The focus then turns to working

out the irreducible representations of P ς
n. The case P ς

2 is worked out as an illus-

trative example in Section 4.4. Before describing explicitly the structure of P ς
n, we

describe an indexing set for the irreducible representations of P ς
n in Section 4.5.

In Section 4.6, we begin our study of the category of P ς
n-modules. In what follows,

in Section 4.7, we recall the definition of Morita equivalence (see, for example [41,

p. 325]) and a result about Morita equivalence of F -algebras. This result is then

21
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applied to certain algebras related to the small ramified partition algebra. We give

an explicit construction of the simple P ς
n-modules in Section 4.8.

4.1 Set partition shapes and combinatorics

Definition 4.1. We define the shape of a set partition b to be the list of sizes of

parts of b in non-increasing order.

It is clear that the shape of a partition of n is an integer partition of n. We write

b  µ to denote that b has shape µ.

Remark 4.2. We can think of the shape of b as a Young diagram. For example, a

Young diagram with shape

corresponds to (2, 1, 1).

See Appendix A for more details.

The following power notation is useful in the case when several parts of b are of

the same length:

µ = (λ1, λ1, . . . , λ1︸ ︷︷ ︸
p1

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
p2

, . . .)  λp = (λp11 , λ
p2
2 , . . .).

Exponents equal to unity are omitted.

Example 4.3. The set partition b = {{1, 2}, {3, 5, 7}, {4, 6}} ∈ P7 has shape

(3, 22).

For the following, we adopt the convention of multiplying permutations right to

left.

The symmetric group Sn acts on Pn from the left via the map

Sn × Pn → Pn

(π, a) 7→ πa := {πa′ : a′ ∈ a},
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where πa′ := {πi : i ∈ a′}. Thus, for each a ∈ Pn and any π, π′ ∈ Sn the following

holds:

π(π′a) = (ππ′)a.

Example 4.4. Consider π = (12), π′ = (132) ∈ S3. If a = {{1, 2}, {3}} ∈ P3

then the action described above gives the following.

(12) ((132){{1, 2}, {3}}) = ((12)(132)){{1, 2}, {3}} = {{3, 2}, {1}}.

We next introduce a partial order on partitions of n.

Definition 4.5. Suppose λ and λ′ are two partitions of n. We say that λ is a

refinement of λ′, denoted λ ≤ λ′, if the parts of λ′ are unions of parts of λ.

(We write λ < λ′ if λ ≤ λ′ and λ 6= λ′.)

For example, the diagram of partitions of 4 ordered by refinement is shown in

Figure 4.1.

Figure 4.1: Diagram of partitions of 4 ordered by refinement

To specify a function µ from a set S to a set T, given an ordered list, x, of the

elements of S, we may write µ : x 7→ y, meaning µ(xi) = yi for all i. But if almost

all µ(xi) = t0, with t0 some given element of T then it is convenient, following [13],

to write

µ =
xi1

µ(xi1)

xi2
µ(xi2)

· · · (4.1)

where {i1, i2, . . .} is the set of i such that µ(xi) 6= t0.

For example, µ : (1, 2, 3, 4, . . .) 7→ (3, 4, 5, 0, 0, 0, . . .) becomes 1
3
2
4
3
5
(with t0 = 0)
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4.2 The stabilizer of a set partition

We now introduce the so-called stabilizer [42, p. 144] of a set partition in Sn. The

representations induced from stabilizers play a vital role in the theory of P ς
n (as

we shall see shortly).

Definition 4.6. Let b ∈ Pn be a set partition. The stabilizer S(b) of b in Sn is

the group of all permutations σ ∈ Sn such that σb = b.

Theorem 4.7 (See, for example [42, p. 144]). Let b ∈ Pn be a partition of shape

λp = (λp11 , λ
p2
2 , . . .). The group S(b) is isomorphic to the direct product

∏

i

(Sλi ≀ Spi) (4.2)

of wreath products of symmetric groups.

(The wreath product is discussed in Section 4.3.)

The subgroup S(b) contains all permutations σ ∈ Sn which preserve the parts of

the partition b, or that permute parts of the same size. Thus, we mention two

subgroups in S(b) for b  λp:

Let S0(b) denote the group that permutes within parts: S0(b) ∼= (Sλ1)
×p1 ×

(Sλ2)
×p2 × . . . ⊂ Sn; and let S1(b) denote the group that permutes parts of equal

size: S1(b) ∼= Sp1 × Sp2 × . . . ⊂ Sn.

Example 4.8. Consider b ∈ P3. If

b = {{1}, {2}, {3}} then S(b) = {S1 ≀ S3
∼= S3},

b = {{1, 2}, {3}} then S(b) = {(S2 ≀ S1)× (S1 ≀ S1) ∼= S2},

b = {{1, 3}, {2}} then S(b) = {(S2 ≀ S1)× (S1 ≀ S1) ∼= S2},

b = {{2, 3}, {1}} then S(b) = {(S2 ≀ S1)× (S1 ≀ S1) ∼= S2},

b = {{1, 2, 3}} then S(b) = {S3 ≀ S1
∼= S3},

Definition 4.9. Let G be a group acting on a set X, and let x ∈ X. Then the

orbit of x under G is the subset of X defined by

Gx = {gx : g ∈ G}.
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It is easy to verify that

Lemma 4.10. The orbit of b ∈ Pn under Sn consists of those set partitions of the

same shape as b.

As Example 4.4 illustrates, Sn acts transitively on set partitions of a fixed shape,

i.e. the action has exactly one orbit. Thus the number of set partitions of a given

shape λp, using the orbit-stabilizer theorem (see [43, Theorem 3.9.2]), is

Dλp =
n!∏

i((λi!)
pipi!)

=
n!

|S(b)|
(4.3)

(where b is any set partition of shape λp).

We shall establish later a construction of irreducible representations of our algebra

P ς
n directly in terms of representations of S(b). Since S(b) is the direct product of

wreath products of symmetric groups, one is led to study wreath product groups.

4.3 Representations of wreath products

In this section, our attention is restricted to wreath products G ≀H with H = Sn

and G any finite group. We recall the classification of irreducible representations of

the group G ≀Sn for any finite group G over the complex fields C. For such groups,

the representation theory is closely related to that of G and of the symmetric

groups (see [1] for a review). For a comprehensive treatment of this topic refer e.g.

to [4, Chapter 4], [37, Chapter 5], [44, §2]. However, the exposition given in [4]

and [37] is quite lengthy while that given in [44] is brief and somewhat abstract.

Here we discuss the subject in a concise and lucid manner. Good references for

applications of wreath product groups and its representations are [38, Section 3.1],

[39], [40, Appendix A].

It is enough for us to study the wreath factors of S(b) since the field we are working

over is the complex field.

4.3.1 Wreath product definition

Notation: Let |G| denote the order of a group G.
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Recall the direct product of two groups G and H

G×H = {(g, h) : g ∈ G, h ∈ H}

with identity element 1G×H = (1G, 1H) and group operations

(g1, h1)(g2, h2) = (g1g2, h1h2)

(g, h)−1 = (g−1, h−1).

We denote by Aut(G) the automorphism group of G. (Recall that Aut(G) =

{f : G → G : f is an isomorphism} and that Aut(G) is a group under function

composition.)

The notion of semidirect product of two groups generalises the idea of a direct

product.

Definition 4.11. Suppose that X is a group with a normal subgroup G and a

subgroup H such that

X = GH and G ∩H = {e}.

Then X is said to be the internal semidirect product of G and H.

Since G is normal in X, for each h ∈ H we have an automorphism of G given

by ψ : g 7→ hgh−1. It is easy to verify that ψ(h1h2) = ψ(h1)ψ(h2); thus ψ : H →

Aut(G) is a homomorphism.

Definition 4.12. Let G and H be groups. Let ψ : H → Aut(G) be a homomor-

phism. We define a binary operation · on G×H by

(g1, h1) · (g2, h2) = (g1ψ(h1)(g2), h1h2).

The set G ×H, equipped with the operation · forms a group, called the external

semidirect product of G and H with respect to ψ and is denoted G⋊ψ H.

For simplicity’s sake, we frequently omit the ψ and simply write G ⋊H instead.

Often we write (g1, h1)(g2, h2) instead of (g1, h1) · (g2, h2).

The identity element of G⋊H is (1G, 1H).



Chapter 4. The Representation Theory of P ς
n 27

Let G1 = {(g, 1H) : g ∈ G} and H1 = {(1G, h) : h ∈ H}. It is straightforward to

show that these are subgroups of G ⋊H and that they are isomorphic to G and

H respectively. The group operation · shows that

(g, 1H)(1G, h) = (gψ(1H)(1G), h) = (g, h) ∈ G1H1.

In fact, G⋊H is the internal semidirect product of G1 and H1.

We now define a special semidirect product that will be of particular interest to

us, namely, the wreath product.

Definition 4.13. Suppose H is a subgroup of Sn acting on the set n = {1, . . . , n}.

Define

Gn = {f |f : n→ G}

to be the set of all mappings from n into a group G.

The wreath product of G and H, denoted by G ≀ H, is, as a set, the cartesian

product

Gn ×H = {(f ; π)|f : n→ G, π ∈ H}

with multiplication given by

(f ; π)(f ′; π′) = (ff ′
π; ππ

′)

where fπ ∈ Gn is the mapping fπ : n→ G, defined by

fπ(i) = f(π−1(i)), for all i ∈ n;

and for two maps f and f ′ : n→ G,

ff ′(i) := f(i)f ′(i), for all i ∈ n.

Its order (if G is finite) is |G|n|H|.

It is easy to check that Gn is a normal subgroup of G ≀ H and that G ≀ H is a

semidirect product of Gn and H.

Theorem 4.14. Let G,H be groups as defined in Definition 4.13. Then G ≀H is

a group.
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Proof. The identity element in G ≀H is (e; 1H), where e is defined by

e(i) = 1G for all i ∈ n

and 1H is the identity of H. The inverse of an element (f ; π) in G ≀H is (f−1
π−1 ; π

−1).

The associativity is verified as follows: consider any three elements (f 1; π1), (f
2; π2),

and (f 3; π3) in G ≀H. Then,

(
(f 1; π1)(f

2; π2)
)
(f 3; π3) = (f 1f 2

π1
; π1π2)(f

3; π3)

= ((f 1f 2
π1
)f 3
π1π2

; π1π2π3).

However, by definition,

(f 1f 2
π1
)f 3
π1π2

(i) = f 1(i)f 2(π−1
1 (i))f 3(π−1

2 π−1
1 (i)), for all i ∈ n. (4.4)

Consider

(f 1; π1)
(
(f 2; π2)(f

3; π3)
)
= (f 1; π1)(f

2f 3
π2
; π2π3)

= (f 1(f 2f 3
π2
)π1 ; π1π2π3).

Again by definition,

f 1(f 2f 3
π2
)π1(i) = f 1(i)(f 2f 3

π2
)(π−1

1 (i))

= f 1(i)f 2(π−1
1 (i))f 3(π−1

2 π−1
1 (i)), for all i ∈ n. (4.5)

Since the right hand sides of Equations (4.4) and (4.5) are equal, we have the

associative law of multiplication of the elements of G≀H. Thus, G≀H is a group.

4.3.2 Conjugacy classes of wreath product groups

We shall describe the conjugacy classes of G ≀Sn. In order to do this, we introduce

a notation. The use of this notation facilitates the calculation of the order of the

set of conjugacy classes.

We write Λ for the set of all integer partitions including the empty partition ∅,

and Λn for the subset consisting of partitions of n. For example,
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Λ3 = {(13), (2, 1), (3)}.

For G a group, we write ΛC(G) for an index set for ordinary irreducible represen-

tations (together, in principle, with a map to explicit representations) of G. Thus,

ΛC(Sn) = Λn (see for example, [45]). We shall use the analogous notation, ΛC(A),

for any algebra A over C.

We set r = |ΛC(G)|. For X, Y any sets, we write Mor(X, Y ) for the set of maps

f : X → Y. Thus an element V of Mor(ΛC(G),Λ) may be expressed as an ordered

r-tuple (V1, V2, . . . , Vr) of integer partitions (a multipartition). For any finite set

S, we write Mor(S,Λ)n for the subset of Mor(S,Λ) consisting of multipartitions of

the form (V1, V2, . . .) such that
∑

i |Vi| = n.

Theorem 4.15 (See [4, Corollary 4.4.4]). There exists a bijection

ΛC(G ≀ Sn) → Mor(ΛC(G),Λ)n

LV 7→ V

Note that, by Proposition B.31, we can deduce that the number of conjugacy

classes of G ≀ Sn is

|Mor(ΛC(G),Λ)n|.

As an example, we consider Mor(ΛC(S3),Λ)2. Using the above ordering on Λ3 =

ΛC(S3), the elements are:

((2), ∅, ∅), (∅, (2), ∅), (∅, ∅, (2)),

((12), ∅, ∅), (∅, (12), ∅), (∅, ∅, (12)),

((1), (1), ∅), ((1), ∅, (1)), (∅, (1), (1)).

Hence, there are 9 conjugacy classes in the group S3 ≀ S2. The order of this group

is 62 × 2 = 72.

4.3.3 Induced representations

If G is a group and H is a subgroup of G, then a representation of G can be

constructed from a representation of H by induction (see, for example [46, §4.1]).
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This technique is of particular relevance for Section 4.3.4 as all irreducible repre-

sentations of wreath products are obtained as induced representations.

Definition 4.16. Let ρ : H → GL(W ) be a representation of H in a complex

vector space W. Let IndGH(W ) be a vector space defined by

IndGH(W ) = CG⊗CH W.

Then G acts on IndGH(W ) as follows:

s(g ⊗ w) = sg ⊗ w s ∈ G, g ∈ CG, w ∈ W.

This action of G on IndGH(W ) is the representation of G induced by ρ and is denoted

by ρ ↑ G.

Dually, the restriction (see, for example [46, §4.1]) of a representation ψ : G →

GL(V ) defines a representation of a subgroup H. In this case, the representation

is denoted by ψ ↓ H and the vector space ResGH(V ) = V.

4.3.4 Ordinary irreducible representations of wreath prod-

uct groups

Let F denote an algebraically closed field, say F = C, G a finite group and H a

subgroup of Sn. We define a group

G∗ := G1 ×G2 × . . .×Gn

which is the direct product of n copies Gi of G, where

Gi = {(f ; 1H) : f(j) = 1G for all j 6= i} ∼= G.

(G∗ is often called the base group of the wreath product.) Let H ′ be the group

H ′ := {(e; π) : π ∈ H}.

Note that H ′ is a complement of G∗ and isomorphic to H.
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Since F is an algebraically closed field, the irreducible representations of G∗ over

F are the outer tensor products (see Appendix B for definition)

T ∗ := T1#T2# · · ·#Tn

of irreducible representations Ti of G over F, where # denotes the outer tensor

product.

The representing matrices of the outer tensor products can be obtained as the

Kronecker product

T ∗(f ; 1H) := T1(f(1))× T2(f(2))× · · · × Tn(f(n))

= t1a1b1(f(1))t
2
a2b2

(f(2)) . . . tnanbn(f(n)). (4.6)

(where the tiaibi(f(i)) are the matrix entries of Ti(f(i))).

To obtain the irreducible representations of wreath product groups, first we derive

the inertia group G ≀HT ∗ of this representation T ∗, which is defined by

G ≀HT ∗ = {(f ; π) ∈ G ≀H : T ∗(f ;π) ∼ T ∗}

where ∼ denotes equivalence of representations and T ∗(f ;π) is the representation

conjugate to T ∗ defined as follows:

T ∗(f ;π)((f ′; 1H)) := T ∗
(
(f ; π)−1(f ′; 1H)(f ; π)

)
(4.7)

= T ∗
(
(f−1
π−1 , π

−1)(f ′; 1H)(f ; π)
)

= T ∗
(
(f−1
π−1f

′
π−1 , π−1)(f ; π)

)

= T ∗
(
(f−1
π−1f

′
π−1fπ−1 , 1H)

)

= T ∗
(
(f−1f ′f)π−1 ; 1H

)
.

The group G ≀HT ∗ by definition is a product

G ≀HT ∗ = G∗H ′
T ∗
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of G∗ with a subgroup H ′
T ∗ of the complement H ′ of G∗. The group H ′

T ∗ will be

called the inertia factor of T ∗ :

H ′
T ∗ = {(e; π) : T ∗(e;π) ∼ T ∗}.

We notice that, by substituting e for f into Equation (4.7),

T ∗(e;π) = T ∗(fπ−1 ; 1H).

To describe the inertia factor explicitly, we distinguish the irreducible representa-

tions (over F ) of T ∗ with respect to their type. That is,

Definition 4.17. Let F 1, F 2, . . . , F r be a fixed listing of the r pairwise inequiv-

alent representations of G over F. T ∗ is said to be of type (n) = (n1, n2, . . . , nr)

with respect to the above listing if nj is the number of factors Ti of T
∗ equivalent

to F j.

Let Snj
be the subgroup of Sn consisting of the elements permuting exactly the

nj indices of the nj factors Ti of T
∗ which are equivalent to F j.

Define

S ′
(n) = S ′

n1
× S ′

n2
× · · · × S ′

nr

with

S ′
nj

= {(e; π) : π ∈ Snj
}.

In this setup, it was proved in [4] that

H ′
T ∗ = H ′ ∩ S ′

(n)

so that for the inertia group of T ∗ the following holds:

G ≀HT ∗ = G∗(H ∩ S(n))
′ = G ≀ (H ∩ S(n)).

The representations T̂ ∗ whose matrices are defined as follows form the irreducible

representations of G ≀HT ∗ :
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T̂ ∗(f ; π) = t1a1bπ−1(1)
(f(1))t2a2bπ−1(2)

(f(2)) . . . tnanbπ−1(n)
(f(n)).

Let T ′ be an irreducible representation of the inertia factor H ′. Let T̂ ∗ be deter-

mined using the method outlined above. Then the representation T̂ ∗ ⊗ T ′ is an

irreducible representation of G ≀HT ∗ .

Proposition 4.18 (See [4, 4.3.33]). The induced representation (T̂ ∗ ⊗ T ′) ↑ (G ≀

H) is irreducible and every irreducible representation of G ≀ H over F is of this

form.

The dimension of the irreducible representation (T̂ ∗ ⊗ T ′) ↑ (G ≀ H) of G ≀ H is

given by

dim
(
(T̂ ∗ ⊗ T ′) ↑ (G ≀H)

)
= dim(T̂ ∗ ⊗ T ′)

|G ≀H|

|G ≀HT ∗|
.

Example 4.19. As an example, we derive the ordinary irreducible representations

of S2 ≀S2.We will denote an irreducible representation T of a group G by [λ] where

λ is the partition associated with T . For example, the irreducible representations

of the group S2 are [12] and [2].

(1) The irreducible representations of the basis group S∗
2 are

[2]#[2], [2]#[12], [12]#[12], [12]#[2].

With respect to the listing [2], [12] of the irreducible representations of S2,

the types of these representations are:

(2, 0) (1, 1) (0, 2) (1, 1).

Hence a complete system of irreducible representations of S∗
2 with pairwise

different types is

[2]#[2], [2]#[12], [12]#[12].

(2) The corresponding inertia groups are: S2 ≀ S2, S2 × S2, S2 ≀ S2; the inertia

factors are: S ′
2, S

′
1, S

′
2.
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(3) Consequently, the irreducible ordinary representations of S2 ≀ S2 are:

̂[2]#[2]⊗ [2]′ = ̂[2]#[2],

̂[2]#[2]⊗ [12]′,

̂[2]#[12]⊗ [1]′ ↑ (S2 ≀ S2) = [2]#[12] ↑ (S2 ≀ S2),

̂[12]#[12]⊗ [2]′ = ̂[12]#[12],

̂[12]#[12]⊗ [12]′.

Their dimensions are 1, 1, 2, 1, 1, respectively, satisfying Theorem B.3. Here,

we have 12 + 12 + 22 + 12 + 12 = 8 = |S2 ≀ S2|.

4.4 The regular P ς
n-module

Recall that the set of all ramified partition diagrams on n ∪ n′ forms a monoid,

written as Bς
n.

For example, Bς
2 = {a, b, c, d} where a, b, c, d are:

Consider the free C-module CBς
n = P ς

n with basis Bς
n. This module is a monoid

algebra over C by virtue of the monoid multiplication. We now describe the regular

representation of the monoid Bς
n.

Set r = |Bς
n|. The action of Bς

n on the monoid algebra P ς
n = {λ1g1 + λ2g2 + · · · +

λrgr : λi ∈ C, gi ∈ Bς
n can be expressed as

g(λ1g1 + λ2g2 + · · ·+ λrgr) = (λ1gg1 + λ2gg2 + · · ·+ λrggr)

for all g ∈ Bς
n. We obtain a left regular representation of Bς

n in this fashion.

Example 4.20. Let Bς
2 = {a, b, c, d} as described above. The elements of the

algebra CBς
2 = P ς

2 have the form

λ1a+ λ2b+ λ3c+ λ4d (λi ∈ C).
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We have

a(λ1a+ λ2b+ λ3c+ λ4d) = λ1a+ λ2b+ λ3c+ λ4d,

b(λ1a+ λ2b+ λ3c+ λ4d) = λ1b+ λ2b+ λ3d+ λ4d,

c(λ1a+ λ2b+ λ3c+ λ4d) = λ1c+ λ2d+ λ3a+ λ4b,

d(λ1a+ λ2b+ λ3c+ λ4d) = λ1d+ λ2d+ λ3b+ λ4b.

By taking matrices relative to the basis a, b, c, d of CBς
2 we obtain the regular

representation of Bς
2 :

a →




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, b →




0 1 0 0

0 1 0 0

0 0 0 1

0 0 0 1



,

c →




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



, d →




0 0 0 1

0 0 0 1

0 1 0 0

0 1 0 0



.

We do not yet have the tools for a systematic analysis of the representation theory

of a monoid, in particular Bς
n, but a couple of observations are in order. Suppose

a representation R of an algebraic structure has been found which consists of

matrices each being an n × n matrix. We can form another representation R′ by

a similarity transformation (see, for example [47, §5.2])

R′(g) = S−1R(g)S,

S being a nonsingular matrix. Thus, R and R′ are equivalent representations (see

Definition B.2). Using similarity transformations, it is often possible to bring each

matrix in the representation monoid (or group) into a diagonal form of (B.3).

Example 4.21. Consider the regular representation of the monoid Bς
2 in Example

4.20. Over C, we choose the basis {−b − d, b − a + c − d,−b + d, b − a + d − c}.
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Then

a →




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, b →




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



,

c →




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1



, d →




1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0



.

These are indeed all direct matrix sums of the form (B.3). Thus we have de-

composed the regular representation of Bς
2 (over C) into its irreducible parts. In

particular, there are exactly 4 1-dimensional inequivalent representations in the

regular representation above. By the Artin-Wedderburn theorem (see Theorem

B.40), this decomposition can only happen for a semisimple algebra and the reg-

ular representations obtained are the only ones. For a general field, we have

Proposition 4.22. Let F be an arbitrary field. Then the algebra P ς
2 is semisimple

over F provided 2 is invertible in F .

Proof. It is easy to see that the elements −b−d, b−a+c−d,−b+d, b−a+d−c form

a basis of P ς
2 over a field F whenever 2 is invertible in F. Thus, the proposition

follows from the above argument.

Note that the sum of the squares of the dimensions of these inequivalent irreducible

representions is |Bς
2|.

We shall show in Section 4.6 that, for each n ∈ N, P ς
n is semisimple over F =

C. Before turning our attention to the decomposition of the regular P ς
n-module

(for n ≥ 2) into simple modules, we describe an indexing set for the simple P ς
n-

modules.

4.5 Indexing set for the simple P ς
n-modules

In this section, we describe an indexing set for the simple modules of P ς
n. This will

be useful later.
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Let Λ (resp. Λ∗) be the set of all finite Young diagrams including (resp. excluding)

the empty diagram. We write Morf (Λ∗,Λ) for the set of functions

µ : Λ∗ → Λ

with only finitely many λ ∈ Λ∗ such that µ(λ) 6= ∅. This condition means that the

degree of µ ∈ Morf (Λ∗,Λ)

|µ| =
∑

λ

|λ||µ(λ)|

is well defined.

We denote the subset of Morf (Λ∗,Λ) of functions of degree N ∈ N by MorN(Λ
∗,Λ).

For example, using notation (4.1) we have,
(i) Mor1(Λ

∗,Λ) =
{

(1)
(1)

}
.

(ii) Mor2(Λ
∗,Λ) =

{
(2)
(1)
, (1

2)
(1)
, (1)
(2)
, (1)
(12)

}
.

(iii) Mor3(Λ
∗,Λ) =

{
(3)
(1)
, (21)

(1)
, (1

3)
(1)
, (2)
(1)

(1)
(1)
, (1

2)
(1)

(1)
(1)
, (1)
(3)
, (1)
(21)

, (1)
(13)

}
.

The shape of a function µ ∈ Morf (Λ∗,Λ) is an integer partition κ(µ) defined as

follows. We define it using ascending power notation (see Section 4.1), in terms of

which κ(µ) is given by the function

α(i) =
∑

λ⊢i

|µ(λ)|.

This can then be recast in ordinary power notation as described above.

For example, consider µ : ((3), (13), (2), (12), . . .) 7→ ((1), (12), (1), ∅, . . .). Then

α(2) =
∑

λ⊢2 |µ(λ)| = |µ((2))|+ |µ((12))| = |(1)|+ |∅| = 1,

α(3) =
∑

λ⊢3 |µ(λ)| = |µ((3))|+ |µ((13))| = |(1)|+ |(12)| = 3.

Therefore, µ has shape κ(µ) = (33, 2)

Let Morλp(Λ
∗,Λ) denote the subset of Morf (Λ∗,Λ) consisting of maps of shape λp.

We have

MorN(Λ
∗,Λ) =

⋃

λp⊢N

Morλp(Λ
∗,Λ).

For example,

Mor3(Λ
∗,Λ) = Mor(3)(Λ

∗,Λ) ∪Mor(2,1)(Λ
∗,Λ) ∪Mor(13)(Λ

∗,Λ)
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where

Mor(3)(Λ
∗,Λ) =

{
(3)

(1)
,
(21)

(1)
,
(13)

(1)

}
,

Mor(2,1)(Λ
∗,Λ) =

{
(2)

(1)

(1)

(1)
,
(12)

(1)

(1)

(1)

}
,

and

Mor(13)(Λ
∗,Λ) =

{
(1)

(3)
,
(1)

(21)
,
(1)

(13)

}
.

If κ has just a single ‘factor’ im then Morim(Λ
∗,Λ) is just the set of maps from Λi

to Λ such that α(i) = m (and α(j) = 0, for all j 6= i).

Lemma 4.23. The map

Morim(Λ
∗,Λ) → Morm(Λi,Λ)

µ 7→ µ|Λi

is a bijection.

By Theorem 4.15 and Lemma 4.23,

ΛC(Sn ≀ Sm) = Mor(nm)(Λ
∗,Λ).

Thus with b ⊢ λp

ΛC(S(b)) = ΛC(×i(Sλi ≀ Spi))

= ×i(ΛC(Sλi ≀ Spi))

= ×iMor(λpii )(Λ
∗,Λ)

= Mor(λp)(Λ
∗,Λ). (4.8)

We have (as we shall show in Theorem 4.57)

ΛC(P
ς
n) = Morn(Λ

∗,Λ) =
⋃

λp⊢n

Morλp(Λ
∗,Λ).
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4.6 Decomposition of the regular P ς
n-module

To find all the irreducible modules in P ς
n, we rely on some results of [24] as well as

[23].

We recall from Section 2.2 the following. Given an algebra A and an idempotent

e ∈ A we may define functors

F : A-mod → eAe-mod

M 7→ eM
(4.9)

G : eAe-mod → A-mod

N 7→ AAe⊗eAe N
(4.10)

The functor G usually takes an irreducible module N to a module G(N) which

is not irreducible. We want to define another functor G′. This functor takes irre-

ducibles to irreducibles [24].

If M is an A-module and M0 an A-submodule of M , define

M(e) =
∑

M0⊆M

eM0=0

M0.

Then

G′ : eAe-mod → A-mod

R 7→ (Ae⊗eAe R)/(Ae⊗eAe R)(e)
(4.11)

By [24, §6.2], every simple eAe-module arises in the following way:

Theorem 4.24 (Green [24]). Let {L(λ), λ ∈ Λ} be a full set of irreducible A-

modules, indexed by a set Λ. Set Λe = {λ ∈ Λ: eL(λ) 6= 0}. Then {eL(λ) : λ ∈ Λe}

is a full set of irreducible eAe-modules. The remaining irreducible modules L(λ)

(with λ ∈ Λ\Λe) are a full set of irreducible A/AeA-modules.

From now on, we will write [a, b] for ς(a, b).
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Consider the element eλp of P ς
n defined by

eλp :=
∑

b⊢λp

[1, b].

Example 4.25. For n = 3,

Lemma 4.26. The element eλp is central in P ς
n.

Proof. For eλp to be central in P ς
n, it is enough to show that eλp [a, b

′] = [a, b′]eλp

for all [a, b′] ∈ P ς
n.

eλp [a, b
′] =

∑

bλp

[1, b][a, b′]

=
∑

bλp

[a, bb′]

On the other hand,

[a, b′]eλp =
∑

bλp

[a, b′][1, b]

=
∑

bλp

[a, b′aba−1]

=
∑

bλp

[a, b′b] since, as b runs over elements of shape λp, so does aba−1.

=
∑

bλp

[a, bb′] as elements in diag-Pn commute.

Therefore eλp is central in P ς
n.
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We shall often say that the shape of [a, b] = (a, ba) is the shape of b. Recall

from Definition 4.5 a partial order on integer partition which we shall be utilizing

hereafter.

Proposition 4.27. For each shape λp, the ideal P ς
neλp has basis

{[a, b] : shape of [a, b] ≥ λp}.

Proof. We first need to show that if [a, b0] has shape ≥ λp then [a, b0] ∈ P ς
neλp . We

prove this by induction on the shape of [a, b0]. Suppose [a, b0] has shape (n). Then

[a, b0]

(∑

bλp

[1, b]

)
= (⋆)[a, b0] ∈ P ς

neλp (4.12)

where ⋆ is the number of elements b in diag-Pn of shape λp.

Now let [a, b0] have shape λp
′

(where λp
′

≥ λp). Suppose [a, b′0] ∈ P ς
neλp for [a, b′0]

of larger shape than [a, b0]. Then

[a, b0]

(∑

bλp

[1, b]

)
= (⋆)[a, b0] + r ∈ P ς

neλp (4.13)

where ⋆ is the number of elements [a, b] of shape λp such that b is a refinement of

b0 and where r is a sum of terms of form [a′, b′] with the shape of b′ greater than

λp
′

. Therefore, [a, b0] ∈ P ς
neλp .

We also need to show that for any shape λp, basis elements in P ς
n whose shapes

are greater than or equal to λp form a basis of P ς
neλp .

Suppose [a, b0] is an arbitrary element of P ς
n. Then [a, b0] (

∑
bλp [1, b]) is a sum of

elements of the form [a, b0aba
−1] (with b  λp). Note that the shape of an element

[a, b0aba
−1] is greater than or equal to λp. This implies that

x

(∑

bλp

[1, b]

)
∈ span {[a, b] : shape of [a, b] ≥ λp} ∀x ∈ P ς

n.

Thus, the elements [a, b] of shape greater than or equal to λp span P ς
neλp .

Proposition 4.28. P ς
neλp′ $ P ς

neλp if and only if λp
′

> λp.

Proof. Assume λp
′

> λp. Take any [a, b] ∈ P ς
neλp , for b of shape greater than or

equal to λp
′

. Then [a, b] has shape greater than or equal to λp. Therefore, every basis
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element of P ς
neλp′ is a basis element of P ς

neλp which implies that P ς
neλp′ $ P ς

neλp . On

the other hand, assume P ς
neλp′ $ P ς

neλp . Take [a, b] of shape λp
′

, so [a, b] ∈ P ς
neλp′

which implies [a, b] ∈ P ς
neλp . Therefore, [a, b] has shape greater than or equal to

λp. This means λp
′

≥ λp but if λp
′

= λp then P ς
neλp′ = P ς

neλp , a contradiction.

Thus, λp
′

> λp

As a concrete explanation of Proposition 4.28 we look at the following example.

Example 4.29. We use the elements constructed in Example 4.25 here.

P ς
3e(13) = P ς

3

P ς
3e(2,1) = C-span {[a, b] : a ∈ S3, b is of shape (3) or (2, 1)}

P ς
3e(3) = C-span {[a, b] : a ∈ S3, b is of shape (3)}

Therefore, P ς
3e(3) $ P ς

3e(2,1) $ P ς
3e(13), corresponding to (3) > (2, 1) > (13). We

see that the assertion in Proposition 4.28 holds.

Set

I> λp =
∑

λp
′
>λp

P ς
neλp′ .

Each section

Mλp := P ς
neλp/I> λp

in the filtration stated in Proposition 4.28 has basis parameterized by elements

[a, b] ∈ ς(Sn × diag-Pn) of shape λ
p.

Example 4.30. The elements constructed in Example 4.25 induce a filtration for

P ς
3 by ideals (see Example 4.29)

P ς
3e(3) $ P ς

3e(2,1) $ P ς
3e(13).

Then the sections in the filtration above are as follows.

M(13) =
P ς
3e(13)

P ς
3e(2,1) + P ς

3e(3)
= C-span{[a, b] : a ∈ S3, b is of shape (13)}

M(2,1) =
P ς
3e(2,1)
P ς
3e(3)

= C-span{[a, b] : a ∈ S3, b is of shape (2, 1)}

M(3) = P ς
3e(3) = C-span{[a, b] : a ∈ S3, b is of shape (3)}
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Note that for each λp, the dimension of Mλp is n!Dλp (where Dλp is defined in

Equation (4.3)).

Next, we decompose the sections as far as possible.

As a vector space we have [13]

Mλp =
⊕

bλp

C[Sn, b].

Note that C[Sn, b] is an S(b)-module via the embedding g 7→ [g, 1] of S(b) into Bς
n.

Proposition 4.31. The map

ϑ : CSn → C[Sn, b]

a 7→ [a, b]

is an S(b)-module isomorphism.

Proof. The module C[Sn, b] is generated by elements 〈{[a, b] : a ∈ Sn}〉. Assume

g ∈ S(b). The element g acts on a ∈ CSn as follows:

g · a = ga (4.14)

The action of S(b) on C[Sn, b] is as follows.

S(b)× [Sn, b] → [Sn, b]

(g, [a, b]) 7→ [g, 1][a, b] = [ga, gbg−1]

= [ga, b] since g ∈ S(b). (4.15)

Comparing (4.14) and (4.15) we see that C[Sn, b] is an S(b)-module isomorphic to

CSn as an S(b)-module.

Corollary 4.32. The modules M(1n) and M(n) are isomorphic to CSn as CSn-

modules.

Recall that the number of set partitions of shape λp is Dλp = |Sn|
S(b)

. It follows

from Proposition 4.31 that C[Sn, b] decomposes into Dλp copies of the regular

S(b)-module.
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Remark 4.33. In P ς
n, multiplication is given by

[a, b][a′, b′] = [aa′, bab′a−1]. (4.16)

Assuming b and ab′a−1 have the same shape, say λp, if b 6= ab′a−1 then b(ab′a−1)

has shape > λp. Therefore, the multiplication in Equation 4.16 is zero in Mλp .

Precisely, multiplication of two elements [a, b], [a′, b′] ∈Mλp is

[a, b][a′, b′] =




0, if b 6= aba−1

[aa′, b′], if b′ = aba−1.
(4.17)

Lemma 4.34. The element eλp + I> λp := eλp is central and idempotent in Mλp .

Proof. The proof that eλp is central inMλp follows a similar argument to the proof

of Lemma 4.26.

To show that eλp is idempotent in Mλp , we have to show that (eλp)
2 = eλp .

(eλp)
2 =

(∑

bλp

[1, b]

)2

=
∑

bλp

[1, b] + ⋆

where ⋆ denotes the sum of elements whose shapes are greater than λp. But ⋆ is

zero using Equation (4.17). Therefore eλp is an idempotent element in Mλp .

Proposition 4.35. The section

Mλp = (eλp + I> λp)

(
P ς
n

I> λp

)
(eλp + I> λp).

Proof.

(eλp + I> λp)

(
P ς
n

I> λp

)
(eλp + I> λp) =

eλpP
ς
neλp + I> λp

I> λp

=
P ς
neλp + I> λp

I> λp
since eλp is central in P ς

n

=
P ς
neλp

I> λp

=Mλp
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Proposition 4.35 says, in other words, that Mλp is an idempotent subalgebra of

the quotient algebra of P ς
n by I> λp . The identity element is eλp + I> λp .

By Equation (2.2) and Equation (4.11), there exists a functor

F1 : Mλp-mod → P ς
n/I> λp-mod

N 7→

P ς
n

I> λp
(eλp + I> λp)⊗Mλp

N

( P ς
n

I> λp
(eλp + I> λp)⊗Mλp

N)(eλp+I> λp )

.
(4.18)

Proposition 4.36 ([24, 6.2e]). If V is irreducible over Mλp then F1(V ) is irre-

ducible over P ς
n/I> λp .

Thus F1 induces a map

F1 : {simple Mλp-modules} → {simple P ς
n/I> λp-modules}.

By Theorem 4.24, we deduce that

Proposition 4.37. Let V be an irreducible P ς
n/I> λp-module. Then V ∈ Im(F1)

if and only if (eλp + I> λp)V 6= 0.

Those simple modules not hit by F1 correspond to simple modules over
Pς
n

I> λp

Pς
n

I> λp
(eλp+I> λp

)
Pς
n

I> λp

∼= P ς
n/(P

ς
neλp).

We have

Proposition 4.38. Let V be an irreducible P ς
n/I> λp-module. Then (eλp+I> λp)V 6=

0 if and only if (P ς
neλp + I> λp)V 6= 0.

Proof. Note that (P ς
neλp+I> λp)V = P ς

n/I> λp(eλp+I> λp)V. Now if (eλp+I> λp)V 6=

0 then P ς
n/I> λp(eλp +I> λp)V 6= {0} (as 1+I> λp ∈ P ς

n/I> λp). If (eλp +I> λp)V = 0

then P ς
n/I> λp(eλp + I> λp)V = {0}. That is, P ς

n/I> λp(eλp + I> λp)V 6= {0} implies

(eλp + I> λp)V 6= 0.

There is a functor induced by the natural epimorphism from P ς
n to P ς

n/I> λp

F2 : P
ς
n/I> λp-mod → P ς

n-mod. (4.19)
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Suppose V is a P ς
n/I> λp-module. Define a map

φ : P ς
n → P ς

n/I> λp

a 7→ a+ I> λp

If a ∈ P ς
n, define

av := φ(a)v for all a ∈ P ς
n, v ∈ V (4.20)

Then V becomes a P ς
n-module via this action. Thus F2(V ) = V is now regarded

as P ς
n-module. Define F2 to be the identity on morphisms. Then F2 is a functor.

Proposition 4.39. Let V be a P ς
n/I> λp-module. If V ′ is a P ς

n-submodule of F2(V ),

then V ′ is a P ς
n/I> λp-submodule of V.

Proof. Assume V ′ ⊆ F2(V ) is a P ς
n-submodule. If b ∈ P ς

n/I> λp , v ∈ V ′, then

b = φ(a), for some a ∈ P ς
n. Thus bv = φ(a)v = av ∈ V ′ by Equation (4.20).

Therefore, V ′ is a P ς
n/I> λp-submodule of V.

The converse of Proposition 4.39 is also true. That is,

Proposition 4.40. Let V be a P ς
n/I> λp-module. If V ′ is a P ς

n/I> λp-submodule of

V then V ′ is a P ς
n-submodule of F2(V ).

Proof. Let a ∈ P ς
n, v ∈ V ′. Then av = φ(a)v. But φ(a)v ∈ V ′ (by Equation (4.20))

as V ′ is a P ς
n/I> λp-submodule of V. Therefore, V ′ is a P ς

n-submodule of F2(V ).

Proposition 4.41. A P ς
n/I> λp-module V is irreducible if and only if F2(V ) is

irreducible over P ς
n.

Proof. Suppose V is an irreducible P ς
n/I> λp-module, and assume V ′ ⊆ F2(V ) is a

P ς
n-submodule with V ′ 6= 0. By Proposition 4.39, V ′ is a P ς

n/I> λp-submodule of V.

Since V is an irreducible P ς
n/I> λp-module this implies that V ′ = V. Hence F2(V )

is an irreducible P ς
n-module. The converse is similar, using Proposition 4.40.

Thus, the functor F2 induces a map

F2 : {simple P ς
n/I> λp-modules} → {simple P ς

n-modules}.
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Proposition 4.42. Let W be an irreducible P ς
n-module. Then W ∈ Im(F2), if and

only if I> λpW = 0.

Proof. Let W ∈ Im(F2). That is, W = F2(V ) = V for V an irreducible P ς
n/I> λp-

module. Let a ∈ I> λp , v ∈ V. Then by Equation (4.20), av = φ(a)v = 0v = 0.

Therefore, I> λpW = I> λpV = 0. Conversely, suppose W is an irreducible P ς
n-

module and I> λpW = 0. Let V = W regarded as a P ς
n/I> λp-module as follows:

For a+ I> λp ∈ P ς
n/I> λp , (a+ I> λp)v := av for any v ∈ V. (4.21)

This action is well-defined, as I> λpV = 0. Then W = F2(V ). Hence, W ∈ Im(F2)

by Proposition 4.41.

Thus, the simple modules F2 misses are the simple P ς
n-module W for which

I> λpW 6= 0. That is, P ς
neλp′W 6= 0 for some λp

′

> λp.

Proposition 4.43. An irreducible P ς
n-module W lies in Im(F2F1) if and only if

(a) I> λpW = 0

(b) P ς
neλpW 6= 0

Proof. Assume W ∈ Im(F2F1). Then W ∈ Im(F2), so I> λpW = 0. Write W =

F2(F1(M)) with F1(M) an irreducible P ς
n/I> λp-module andM an irreducibleMλp-

module. By Propositions 4.37 and 4.38, F1(M) ∈ Im(F1) implies

((P ς
neλp) + I> λp)F1(M) 6= 0

⇒(P ς
neλp)W 6= 0 as required.

Conversely, suppose (a) and (b) hold. By (a) and Proposition 4.42, W ∈ Im(F2),

i.e. W = F2(V ) where V is an irreducible P ς
n/I> λp-module. By (b) P ς

neλpW 6= 0,

which implies (P ς
neλp + I> λp)V = (P ς

neλp/I> λp)V 6= 0. Therefore V ∈ Im(F1) by

Proposition 4.37 and Proposition 4.38. Hence W ∈ Im(F2F1) as required.

Suppose W is an irreducible P ς
n-module. Consider P ς

neλpW for all λp. Take λp

maximal such that P ς
neλpW 6= 0. If λp = (1n) then P ς

neλp = P ς
n. Then P

ς
neλpW =

P ς
nW = W 6= 0. So a maximal such λp exists. Then if λp

′

> λp, P ς
neλp′W = 0. This

implies, I> λpW = 0. Therefore (a) and (b) hold or in other words, W ∈ Im(F2F1)

for λp.
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Proposition 4.44. Let W be an irreducible P ς
n-module. Then W ∈ Im(F2F1) for

a unique λp.

Proof. We argue by contradiction. Set I> λp =
∑

λp
′′
>λp P

ς
neλp′′ . Suppose W arises

in two ways. That is,

I> λpW = 0 (4.22)

P ς
neλpW 6= 0

and

I> λp
′W = 0

P ς
neλp′W 6= 0 and λp 6= λp

′

. (4.23)

Then for all λp
′′

> λp, P ς
neλp′W = 0. Therefore, λp

′

6> λp. Similarly, λp 6> λp
′

. So

λp, λp
′

are incomparable. Now W = eλpP
ς
nW = eλpW. Then

eλp′W = eλp′eλpW

=


∑

b′λp
′

[1, b′]
∑

bλp

[1, b]


W

The element ∑

b′λp
′

[1, b′]
∑

bλp

[1, b]

is a sum of basis elements of shape greater than λp, since λp and λp
′

are incompa-

rable. Hence ∑

b′λp
′

[1, b′]
∑

bλp

[1, b]W = 0,

so eλp′W = 0, and therefore, P ς
neλp′W = 0. This contradicts Equation (4.23).

Thus, W ∈ Im(F2F1) for a unique λp.

It also follows that

ΛC(P
ς
n) =

⋃̇
λp⊢n

ΛC(Mλp)

We shall discuss the details shortly.
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4.7 Morita theory

This section contains a brief account of the theory of Morita equivalence. Morita

theory addresses the question of when two algebras have equivalent categories of

modules.

Definition 4.45. Let A and B be algebras over a field F. Then A and B are said

to be Morita equivalent (see, for example, [41, p. 325]) if there is an equivalence

from the category of left A-modules to the category of left B-modules.

Theorem 4.46 (See, for example [48]). Two algebras A,B are Morita equivalent if

and only if there exists an idempotent e ∈ A such that A ∼= AeA and B ∼= eAe.

Consider the idempotent [1, b0], b0  λp, and recall from Equation (4.17) the

multiplication of elements in Mλp . We have

[1, b0]Mλp = [1, b0]
⊕

w∈Sn;bλp

C[w, b] =
⊕

w∈Sn;bλp

C[1, b0][w, b] =
⊕

w∈Sn

C[w, b0].

Thus,

[1, b0]Mλp [1, b0] =
⊕

w∈Sn

C[w, b0][1, b0] =
⊕

w∈Sn

[w, b0wb0w
−1]

=
⊕

w∈S(b0)

[w, b0] ∼= CS(b0)

and

Mλp [1, b0]Mλp =Mλp

⊕

w∈Sn

C[w, b0] =

( ⊕

x∈Sn;bλp

C[x, b]

)⊕

w∈Sn

C[w, b0]

=
⊕

x∈Sn;bλp

⊕

w∈Sn

C[x, b][w, b0] =
⊕

x, w∈Sn;bλp

[xw, bxb0x
−1] =Mλp

Thus by Theorem 4.46

Theorem 4.47. The algebras Mλp and CS(b0) (with b0  λp) are Morita equiva-

lent.
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Properties of a ring which are preserved under Morita equivalence are calledMorita

invariants (See, for example [49, p. 243]). Examples of such properties include

a ring being semisimple, artinian, noetherian, e.t.c.. By Maschke’s theorem (see

Proposition B.26 and Corollary B.34) and Theorem B.38, CS(b0) is split semisim-

ple for every shape. Consequently, we have

Corollary 4.48. For each λp, Mλp is semisimple over C.

We notice that dimensionality is not a Morita invariant property, and in fact differs

in our case. We illustrate this point with an example.

Example 4.49. Recall from Example 4.30 the sections M(13),M(2,1),M(3) in the

filtration for P ς
3 . Their dimensions are 6, 18, 6 respectively. Also recall from Ex-

ample 4.8 that for each b ∈ P3

S(b) ∼= S3 if b  (13) or (3)

S(b) ∼= S2 if b  (2, 1)

Although M(2,1) and S(b) with b  (2, 1) are Morita equivalent by Theorem 4.47,

their dimensions are not equal since S(b) has dimension 2 andM(2,1) has dimension

18.

Next we construct explicitly the simple modules of P ς
n and compute their dimen-

sions.

4.8 Explicit construction of simple modules of

P ς
n (illustrated by an example)

Recall that the complex representation theory of the symmetric groups is known

(see Appendix A). In particular, for a partition λ of an integer n there are standard

constructions for primitive idempotents which generate irreducible representations

of CSn.

Definition 4.50.

(1) Let A be an algebra over a field F. Two idempotents e and f are orthogonal

if ef = fe = 0.
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(2) An idempotent e of A is primitive if it is not possible to write e as the sum of

two orthogonal idempotents.

We proceed to construct the irreducible representations of P ς
n, using information

from Appendix A. We relegate the details of the representation theory of the

symmetric group, that is useful for this section, to the Appendix to avoid obscuring

the computation by too many details.

We have seen in Section 4.6 that by decomposing Mλp for all λp we get the sim-

ple P ς
n-modules. It is convenient to illustrate the decomposition of Mλp with an

example. We work out all the simple modules of P ς
3 .

Example 4.51. Consider each section Mλp in the filtration for P ς
3 constructed in

Example 4.30. We proceed by examining these cases one at a time.

It is easy to see that the map

φ : M(3) → CS3

[a, b] 7→ a

defines a C-algebra isomorphism.

As seen in Appendix A, CS3 regarded as a CS3-module decomposes as a direct

sum

CS3 = CS3yt1 ⊕ CS3yt2 ⊕ CS3yt3 ⊕ CS3yt4 (4.24)

where t1 = 1 2 3 , t2 =
1 2
3

, t3 =
1 3
2

, t4 =
1
2
3
, and

yt1 = e+ (12) + (23) + (13) + (123) + (132)

yt2 = e+ (12)− (13)− (123)

yt3 = e− (12) + (13)− (132)

yt4 = e− (12)− (23)− (13) + (123) + (132)

respectively, their Young symmetrizers.

Via φ we get

M(3) = φ−1(CS3yt1)⊕ φ−1(CS3yt2)⊕ φ−1(CS3yt3)⊕ φ−1(CS3yt4)
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as an M(3)-module. For simplicity, set Vti := φ−1(CS3yti) so that

M(3) = Vt1 ⊕ Vt2 ⊕ Vt3 ⊕ Vt4 .

Via φ M(3) can be regarded as a CS3-module. Now applying φ−1 to (4.24), we

have

M(3) =M(3)φ
−1(yt1)⊕M(3)φ

−1(yt2)⊕M(3)φ
−1(yt3)⊕M(3)φ

−1(yt4).

Let ŷti := φ−1(yti). Then

M(3) =M(3)ŷt1 ⊕M(3)ŷt2 ⊕M(3)ŷt3 ⊕M(3)ŷt4

= Vt1 ⊕ Vt2 ⊕ Vt3 ⊕ Vt4 .

It is easy to see that these summands are P ς
3 -submodules of M(3). We show that

they are irreducible P ς
3 -modules.

If N ⊂ Vti is a nonzero P ς
3 -submodule, then N is an M(3)-submodule of Vti . This

imply that N = Vti . Therefore Vti is an irreducible P ς
3 -module.

The decomposition of M(13) follows a similar argument to that of M(3). By Corol-

lary 4.32, M(13) as a vector space decomposes as

M(13) =M(13)y̌t1 ⊕M(13)y̌t2 ⊕M(13)y̌t3 ⊕M(13)y̌t4

where y̌ti denotes the Young symmetrizer associated with a Young tableau ti.

We already know, by Theorem 4.47, that M(2,1) has two simple modules. Since

M(2,1) has dimension 18 then these simple modules must each be of dimension 3.

By the Artin-Wedderburn theorem, we expect 3 copies each of the 3-dimensional

simple modules in the regular representation.

The condition for idempotence, f 2 = f, leads to two elements h1, h2 in M(2,1). We

can represent them in terms of diagrams with the following convention: Given

a diagram d in P ς
n with an island I containing r noncrossing bones, there is a

corresponding natural embedding ψ of CSr into P ς
n mapping a permutation σ to d

with σ in the island. Given y ∈ CSr we denote the image of y under ψ by drawing

d with a box covering I labelled with y. For example, we represent h1 and h2 as
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where t, t′ are standard Young tableaux 1
2

and 1 2 respectively on the number

of bones lying in that island. The young symmetrizer associated with t (resp. t′)

is denoted by yt (resp. yt′).

We check readily that h1, h2 are orthogonal idempotents. Thus, we have a decom-

position of M(2,1) into subspaces:

M(2,1)h1 ⊕M(2,1)h2.

It is easy to verify that left-multiplication of elements of Bς
n on M(2,1)h1 and

M(2,1)h2 give 3-dimensional representation each of P ς
n (of course, elements that

are not of shape (2, 1) are sent to zero). Simple calculations show that these

representations are irreducible. Figure 4.2 gives the decomposition of M(2,1) into

summands.

In Figure 4.2, the simple modules (a), (b), (c) are equivalent to each other.

Also the simple modules (d), (e), (f) are equivalent but are inequivalent to

(d), (e), (f).

Lemma 4.52 (See [13]). Any submodule of Mλp contains an element of form

q =
∑

i ci[xi, b], with b  λ
p.
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Figure 4.2: Some simple modules of P ς
3 .

Proof. Let U 6= 0 be a submodule ofMλp . Let m :=
∑

ij cij[xi, yj ] ∈ U with m 6= 0.

Then V := P ς
nm is a submodule of U. Choose l so that some scalar cil 6= 0. Then

[1, yl]
∑

ij

cij[xi, yj] =
∑

ij

cij[1, yl][xi, yj ]

=
∑

ij

cij[xi, ylyj] ∈ V

=
∑

i

cil[xi, yl] ∈ U.

We write TLb (resp. TRb ) for a traversal of the left (resp. right) cosets of S(b) in

Sn.

Recall that P ς
n is generated by [1, A1,2] and [Sn, 1]. The element [1, A1,2] acts on

q =
∑

i ci[xi, b] as 1 or takes the shape of q up in the order described in Section

4.1 which is regarded as 0 in Mλp . We consider the action of [Sn, 1] in two parts:

(a) [S(b), 1] : The subspace C[S(b), 1]q gives a CS(b)-submodule consisting of

elements which are of the form
∑

i c̃i[x̃i, b] (with x̃i in Sn). So there exists an

element of the same form as q generating an irreducible S(b)-submodule. (We

assume that q is in fact such an element).
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(b) a traversal: take an element w of a traversal of S(b) in Sn. Then the action of

w is

wq = [w, 1]
∑

i

ci[xi, b] =
∑

i

ci[wxi, wbw
−1]. (4.25)

Set bw = wbw−1. Then wq generates an irreducible S(bw)-module.

We observe that

Proposition 4.53. The map

φ : S(b) → S(bw)

g 7→ wgw−1

is a group isomorphism.

and hence

Proposition 4.54. The map

ψ : CS(b)q → CS(bw)wq

gq 7→ φ(g)wq = wgq

is an isomorphism of CS(b)-modules (via the group isomorphism φ).

Corollary 4.55. The module CS(bw)wq is an irreducible CS(bw)-module.

Proof. Let V ⊆ CS(bw)wq be a non-zero CS(bw)-submodule. Then V is a non-

zero CS(b)-submodule of CS(bw)wq (via φ). This implies that ψ−1 is a non-zero

CS(b)-submodule of CS(b)q (as ψ is an isomorphism of CS(b)-modules). Thus

ψ−1 = CS(b)q by the argument in (a) above. Since ψ is also an isomorphism of

vector spaces, we have that V = CS(bw)wq and the result holds.

Let Lµ be the irreducible S(b)-submodule CS(b)q of U. Then, as CS(b)-module,

Lµ is isomorphic to Lµ(w), where Lµ(w) = CS(bw)wq, for all w ∈ TLb . Since these

subspaces involve different basis elements, we get

⊕w∈TL
b
Lµ(w) ⊆ U.
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Thus, every irreducible P ς
n-submodule is at least a sum (as a vector space) of Dλp

spaces each of which is an (isomorphic) simple module for S(b) for the appropriate

b. In particular,

Proposition 4.56 (See [13]). For each inequivalent simple S(b)-module Lµ (i.e.

with µ ∈ Morλp(Λ
∗,Λ) and λp  b) of dimension mµ and basis {vi|i = 1, . . . ,mµ},

say, there is a simple P ς
n-module of Lςµ of dimension

dim Lςµ = mµDλp (4.26)

and basis {[wvi, b
w]|i = 1, . . . ,mµ, w ∈ TLb }. The modules {Lςµ} are pairwise

inequivalent.

Since CS(b) is split semisimple (over C) for every shape, we have that the mul-

tiplicity of Lµ in the b-th summand is mµDλp , since the summand is Dλp copies

of the regular S(b)-module. Thus each Mλp is semisimple (see also Proposition

4.48), and hence

Theorem 4.57 (See [13]). Let n ∈ N. Then the algebra P ς
n is split semisimple over

C. The simple modules may be indexed by the set Morn(Λ
∗,Λ). The dimensions

of the simple modules are given by mµDλp .

Proof. Immediate from previous results.



Chapter 5

The Juyumaya algebra of braids

and ties - Connection to P ςn

This chapter introduces the main object of the thesis, the Juyumaya algebra. In

Section 5.1, we recall the definition of the Juyumaya algebra. We prove the main

results of the thesis in Section 5.2 and Section 5.3.

5.1 The Juyumaya algebra of braids and ties

Following [20], we recall the Juyumaya algebra over the ring C[u, u−1].

Definition 5.1 (See [20, §2]). Let u be an indeterminate over C and A be the

principal ideal domain C[u, u−1]. The algebra EA
n (u) overA is the unital associative

A-algebra generated by the elements T1, T2, . . . , Tn−1 and E1, E2, . . . , En−1, which

satisfy the defining relations
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(A1) TiTj = TjTi if |i− j| > 1

(A2) EiEj = EjEi

(A3) E2
i = Ei

(A4) EiTi = TiEi

(A5) EiTj = TjEi if |i− j| > 1

(A6) TiTjTi = TjTiTj if |i− j| = 1

(A7) EjTiTj = TiTjEi if |i− j| = 1

(A8) EiEjTj = EiTjEi = TjEiEj if |i− j| = 1

(A9) T 2
i = 1 + (u− 1)Ei(1− Ti)

for all i, j.

Let C(u) be the field of rational functions. We define E0
n(u) as

E0
n(u) := EA

n (u)⊗A C(u)

where C(u) is made into an A-module through inclusion.

Corollary 5.2 (See [20, Corollary 3]). The dimension of E0
n(u) is given by n!Bn,

where Bn is the nth Bell number.

The Bell number making appearance in Corollary 5.2 indicates that there might

be a connection between the Juyumaya algebra and the (small ramified) partition

algebra. In section 5.2 we present this connection.

From the presentation of EA
n (u), relations (A1), (A6), (A9) form a deformation

of the defining Coxeter relations (see [21, §1]) of the symmetric group Sn. It is

straightforward to verify the following result.

Proposition 5.3. There exists a homomorphism from EA
n (u) to the group ring

ASn of the symmetric group given by

X : EA
n (u) → ASn

Ti 7→ (i, i+ 1)

Ei 7→ 0.
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In particular, ASn is isomorphic to a quotient of EA
n (u).

5.2 Relationship of the Juyumaya algebra to P ς
n

In response to a remark by Ryom-Hansen in [20] regarding the dimension of E0
n(u):

“The appearance of the Bell number is somewhat intriguing and may indicate

a connection to the partition algebra . . ., we do not think at present that the

connection can be very direct”, we present new results that establish a connection

between the Juyumaya algebra and the partition algebra, via the small ramified

partition algebra.

Let C be the field of complex numbers which is a C[u, u−1]-algebra (that is, with

u acting as a complex number x). Denote the C-algebra EA
n (u) ⊗A C by En(x).

Here, we shall only need the case x = 1.

Recall from Definition 3.7 and Section 3.2.3 the definitions of ∆n and Ai,i+1 re-

spectively.

Proposition 5.4. The map ρ : En(1) → CSn ⊗C ∆n given by

Ei 7→ (1, Ai,i+1)

Ti 7→ (σi,i+1, σi,i+1)

defines a C-algebra homomorphism.

Proof. To show that this map is an algebra homomorphism we check that the

relations (A1)–(A9) hold when (1, Ai,i+1) is put in place of Ei and (σi,i+1, σi,i+1) is

put in place of Ti as follows.

Assume |i− j| > 1. Then

(A1) ρ(TiTj) = (σi,i+1, σi,i+1) (σj,j+1, σj,j+1) = (σi,i+1σj,j+1, σi,i+1σj,j+1) and

ρ(TjTi) = (σj,j+1, σj,j+1) (σi,i+1, σi,i+1) = (σj,j+1σi,i+1, σj,j+1σi,i+1).

Since |i− j| > 1, σi,i+1σj,j+1 = σj,j+1σi,i+1. Thus,

(σi,i+1σj,j+1, σi,i+1σj,j+1) = (σj,j+1σi,i+1, σj,j+1σi,i+1) as required.

Diagrammatically, this may be represented as follows.
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(A2) ρ(EiEj) = (1, Ai,i+1) (1, Aj,j+1) = (1, Ai,i+1Aj,j+1) = (1, Aj,j+1Ai,i+1)

= (1, Aj,j+1) (1, Ai,i+1) = ρ(EjEi).

The second equality follows from the definition of the tensor product of

algebras, the third equality is a consequence of the commutativity of the

elements Ak,k+1 and the fourth equality follows again from the definition of

the tensor product of algebras.

(A3) ρ(E2
i ) = (1, Ai,i+1) (1, Ai,i+1) = (1, Ai,i+1Ai,i+1) = (1, Ai,i+1) = ρ(Ei).

(A4) Similar to the proof of relation (A2), ρ(EiTi) = (1, Ai,i+1) (σi,i+1, σi,i+1)

= (1σi,i+1, A
i,i+1σi,i+1) = (σi,i+11, σi,i+1A

i,i+1)

= (σi,i+1, σi,i+1) (1, A
i,i+1) = ρ(TiEi).

(A5) ρ(EiTj) = (1, Ai,i+1) (σj,j+1, σj,j+1) = (1σj,j+1, A
i,i+1σj,j+1) and

ρ(TjEi) = (σj,j+1, σj,j+1) (1, A
i,i+1) = (σj,j+11, σj,j+1A

i,i+1).

Since |i− j| > 1, Ai,i+1σj,j+1 = σj,j+1A
i,i+1. Thus,

(σj,j+1, A
i,i+1σj,j+1) = (σj,j+1, σj,j+1A

i,i+1) as required.

(A6) ρ(TiTjTi) = (σi,i+1, σi,i+1) (σj,j+1, σj,j+1) (σi,i+1, σi,i+1)

= (σi,i+1σj,j+1σi,i+1, σi,i+1σj,j+1σi,i+1) and

TjTiTj corresponds to (σj,j+1, σj,j+1) (σi,i+1, σi,i+1) (σj,j+1, σj,j+1)

= (σj,j+1σi,i+1σj,j+1 σj,j+1σi,i+1σj,j+1).

Since |i− j| = 1, σi,i+1σj,j+1σi,i+1 = σj,j+1σi,i+1σj,j+1.

Thus, (σi,i+1σj,j+1σi,i+1 σi,i+1σj,j+1σi,i+1) =

(σj,j+1σi,i+1σj,j+1, σj,j+1σi,i+1σj,j+1) as required.

(A7) The element EjTiTj is mapped to (1, Aj,j+1)(σi,i+1, σi,i+1)(σj,j+1, σj,j+1)

= (σi,i+1σj,j+1, A
j,j+1σi,i+1σj,j+1) and

the element TiTjEi is mapped to (σi,i+1, σi,i+1)(σj,j+1, σj,j+1)(1, A
i,i+1)
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= (σi,i+1σj,j+1, σi,i+1σj,j+1A
i,i+1).

Since |i− j| = 1, Aj,j+1σi,i+1σj,j+1 = σi,i+1σj,j+1A
i,i+1 and the result follows.

Proving relation (A7) using diagrams:

(A8) The element EiEjTj corresponds to (1, Ai,i+1)(1, Aj,j+1)(σj,j+1, σj,j+1)

= (σj,j+1, A
i,i+1Aj,j+1σj,j+1),

the element EiTjEi corresponds to (1, Ai,i+1)(σj,j+1, σj,j+1)(1, A
i,i+1)

= (σj,j+1, A
i,i+1σj,j+1A

i,i+1), and

the element TjEiEj corresponds to (σj,j+1, σj,j+1)(1, A
i,i+1)(1, Aj,j+1)

= (σj,j+1, σj,j+1A
i,i+1Aj,j+1).

We have Ai,i+1Aj,j+1σj,j+1 = Ai,i+1σj,j+1A
i,i+1 = σj,j+1A

i,i+1Aj,j+1 since |i−

j| = 1 as required.

Relation (A8) may be described using diagrams as follows.

(A9) Since u is specialised to 1, relation A9 states that T 2
i = 1 and the relation cor-

responds to (σi,i+1, σi,i+1) (σi,i+1, σi,i+1) = (σi,i+1σi,i+1, σi,i+1σi,i+1) = (1, 1) as

required.
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We leave it as an exercise to use diagrams to check relations (A2) – (A6) and (A9).

Next we show that

Theorem 5.5. The map φ : En(1) → P ς
n given by

Ei 7→ (1, Ai,i+1)

Ti 7→ (σi,i+1, σi,i+1)

defines a C-algebra isomorphism.

Proof. The map φ is well-defined since by Proposition 3.17 (1, Ai,i+1) and (σi,i+1, σi,i+1)

generates precisely P ς
n.

In order to check that φ is an algebra homomorphism, we need to verify that the

defining relations of En(1) are satisfied in P ς
n and this has already been shown in

Proposition 5.4. All that remains is to show that the map is an isomorphism. By

Corollary 5.2 and by Corollary 3.14, the dimensions of En(1) and P ς
n are equal.

Moreover, the map φ is surjective since the images of the generators Ei and Ti of

En(1) generate P
ς
n.

Thus, the preceding facts together imply that φ is an isomorphism.

5.3 Representation theory

Generic irreducible representations of the Juyumaya algebra are constructed for

the cases n = 2, 3 in [19], [20]. Here we provide a proof of generic semisimplicity

of the Juyumaya algebra for all n, by reference to Chapter 4.

In the previous section we established, for each n ∈ N, an isomorphism between

the algebras En(1) and P ς
n. With this result we have implicitly determined the

complex representation theory of En(1) since the representation theory of P ς
n over

C is already known (See Chapter 4). With the knowledge that the algebra P ς
n over

C is split semisimple, we can now prove that

Theorem 5.6. For all n, the algebra En(x) is generically semisimple.

Before we provide the proof of Theorem 5.6, it is worth clarifying our notion of

generic. Our notion is essentially the same as that of Cline, Parshall, and Scott

[22, §1]. Precisely,
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Definition 5.7. Let P be a property of finite dimensional algebras over fields.

Given a commutative, Noetherian domain O with quotient field K = k(0), and

a finite dimensional algebra A over O such that P holds for the K-algebra AK .

Then P is said to hold generically for A if there exists a non-empty open subset

Ω ⊆ Spec O such that P holds for the residual algebras Ak(p) for all p ∈ Ω.

For example, the property that an algebra be split semisimple is a generic property

but in our case it holds on a Zariski non-empty open subset of the complex space.

Proof of Theorem 5.6.

By Theorem 5.5, En(1) is isomorphic to the algebra P ς
n and by Theorem 4.57 P ς

n is

split semisimple over C. This implies that En(1) is split semisimple over C. Since

split semisimplicity is a generic property therefore, En(x) is split semisimple for

generic choices of x ∈ C. But En(x) is semisimple if and only if it is split semisimple

(since we are working over an algebraically closed field of characteristic zero).
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Conclusion

In this chapter, we summarise what has been achieved so far and make some

suggestions as to possible further directions in which this research could continue.

6.1 Summary

We have determined the generic representation theory of the Juyumaya algebra

beyond the cases n = 2, 3 over the field of complex numbers. In order to under-

stand the representation theory of the Juyumaya algebra over the field of complex

numbers, it was crucial for us to study the representation theory of the small ram-

ified partition algebra since these algebras are isomorphic as C−algebras. Thus,

to begin our study of the small ramified partition algebra, it was helpful to, first of

all, familiarise ourselves with both the partition algebra and the ramified partition

algebra.

It was worth studying the representation theory of wreath products as it is closely

tied to the combinatorial representation theory of the small ramified partion alge-

bra. While the representation theory of wreath products are by now reasonably

known, there is a lack of concise presentations suitable for readers seeking a fast

read on this topic. Chapter 4, therefore, has a considerable emphasis on the expo-

sition of this material as a way of bridging the gap. On the other hand, to some

extent the exposition of the representation theory of the small ramified partition
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algebra is not new material but is presented in a terse manner in the only refer-

ence [13] found. We have tried to improve this by giving a detailed description

and providing the results with proofs which are not found in that paper.

6.2 Discussion

The subject of representation theory of algebras is a vast one. As such, there are

a number of interesting open problems on this subject.

The small ramified partition algebra P ς
n−1 can be embedded in P ς

n by adding ver-

tices labelled n and n′ with a propagating stick (see Section 3.2.2 for definition)

connecting them in the rightmost part of an arbitrary diagram p ∈ P ς
n−1. We have

the following tower of algebras

P ς
n−1 ⊂ P ς

n ⊂ . . . .

The Bratteli diagram for the tower of small ramified partition algebras is a graph

with vertices organised into levels indexed by n ∈ N such that the vertices on level n

are labelled by the index set Morn(Λ
∗,Λ) (described in Section 4.5) corresponding

to the irreducible representations of P ς
n.

The Bratteli diagram for the inclusion P ς
n−1 ⊂ P ς

n for n ≤ 4 is shown in Figure

6.1.

The number of paths from the top of the Bratteli diagram (in Figure 6.1) to

µ ∈ Morn(Λ
∗,Λ) is the label (in bold) on vertex µ and thus is the dimension of µ.

In row n = 4, the dimensions of the irreducible modules are 1, 3, 2, 3,

1, 4, 8, 4, 3, 3, 6, 3, 3, 6, 6,6, 6, 1, 3, 2, 3, 1 (reading from left to right). Furthermore,

12 + 32 + 22 + 32 + 12+42 + 82 + 42 + 32+32 + 62 + 32 + 32+62 + 62 + 62 + 62 +

12+32 + 22 + 32 + 12 = 360 which is 4!15 (from Corollary 3.14), the dimension of

P ς
4 .

We have not described the branching rule for P ς
n−1 ⊂ P ς

n for all n. A good starting

point might be to prove the conjecture in Martin’s paper [13], relating to an

algorithm for describing a restriction rule for P ς
n to P ς

n−1.
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Figure 6.1: Bratteli diagram for P ς
n.



Appendix A

The Representation Theory of the

Symmetric Group

Here we briefly review some combinatorial notions from the representation theory

of the symmetric groups. This appendix provides some necessary tools for the con-

struction of the irreducible representations of the small ramified partition algebra

studied in Chapter 4.

A.1 Partitions and Young tableaux

Definition A.1. A partition λ of a nonnegative integer n ∈ N is a finite sequence

of positive integers λ = (λ1, λ2, . . . , λl) satisfying λ1 ≥ λ2 ≥ · · · ≥ λl > 0 such

that n =
∑l

i=1 λi.

For example, the partitions of the integer 4 are:

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

We write λ ⊢ n to denote that λ is a partition of n. By definition, n = 0 has

a unique partition, namely the empty sequence ∅. A partition λ is represented

graphically by a Young diagram.

Definition A.2. A Young diagram of λ = (λ1, λ2, . . . λl) is a left-justified array

of boxes with l rows, and λi boxes on the ith row.
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For example, the Young diagrams of the partitions of 4 are

, , , , .

Definition A.3. A (Young) tableau of shape λ is obtained by filling in the boxes

of a Young diagram of λ with non-repeated entries ti,j ∈ {1, 2, . . . , n}.

For example, let λ = (2, 1) ⊢ 3. Then the Young tableaux of shape (2, 1) are

1 2
3

, 2 1
3

, 1 3
2

, 3 1
2

, 2 3
1

, 3 2
1

.

Definition A.4. A standard (Young) tableau of shape λ is a Young tableau of

shape λ such that the entries of each row are in increasing order from left to right

and the entries of each column are in increasing order from top to bottom.

For example, the following are all standard tableaux of shape (2, 2, 1).

1 2
3 4
5

,
1 2
3 5
4

,
1 3
2 4
5

,
1 3
2 5
4

,
1 4
2 5
3

.

A.1.1 Specht Modules for Sn

To each Young tableau, we construct a primitive idempotent (see Definition 4.50

for a definition) which generates a simple module of CSn. This simple module is

known as the Specht module (See, for example, [1, Section 2.3]). The primitive

idempotents are constructed from corresponding “symmetrizers” and “antisym-

metrizers”. We briefly discuss these tools and a construction here. A technique

for explicitly constructing the irreducible representations of P⋉
n is considered in

Section 4.8 of Chapter 4, based on the concepts of Young tableaux, symmetrizers,

and antisymmetrizers.

Definition A.5. Let t be a Young tableau. Then the row stabilizer of t, denoted

Rt, is the subgroup of Sn which permutes elements within each row of t.

Definition A.6. Let t be a Young tableau. Then the column stabilizer of t,

denoted Ct, is the subgroup of Sn which permutes elements within each column of

t.
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Example A.7. Let t =
1 2 3
4 5
6

. Then

Rt = {(123), (132), (12), (13), (23), (1), (123)(45),

(132)(45), (12)(45), (13)(45), (23)(45), (45)}

Ct = {(146), (164), (14), (16), (46), (1), (146)(25),

(164)(25), (14)(25), (16)(25), (46)(25), (25)}

To each Young tableau, we associate a primitive idempotent.

Definition A.8. Let t be a Young tableau. The symmetrizer st, the antisym-

metrizer at, and the Young symmetrizer yt associated with t are defined as

st =
∑

r∈Rt

r;

at =
∑

c∈Ct

sgn(c)c;

yt =
∑

c,r

sgn(c)rc.

where sgn stands for the sign of the permutation c.

The symmetrizer, antisymmetrizer, and the Young symmetrizer, generate left ide-

als that provide the irreducible representations of the symmetric group [50, The-

orem 5.12.2]. In particular,

Theorem A.9 (See, e.g.,[51, Theorem 5.4]). The Young symmetrizer yt associated

to the Young tableau t is a primitive idempotent, and the invariant subspace Sλ :=

CSnyt, for each λ ⊢ n, of CSn yields an irreducible representation of Sn.

The module Sλ are called the Specht module [50].

The irreducible representations for different Young diagrams are inequivalent, but

for different Young tableaux of the same shape they are equivalent [52, Lemma

4.7]. Moreover the complete decomposition of the regular representations of Sn is

governed by the following theorem.

Theorem A.10 (See, e.g.,[53, Proposition 7.2.2] and [50, Theorem 5.12.2]). Every

irreducible representation of Sn is isomorphic to Sλ for a unique λ. Furthermore,
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Sλ satisfy

n! =
∑

λ⊢n

(dim Sλ)2,

so the Specht modules give a complete set of inequivalent irreducible modules.

As an example, we construct all the irreducible representations of S3.

Example A.11. There are four standard Young tableaux for n = 3.

t1 = 1 2 3 : st1 = e+ (12) + (23) + (13) + (123) + (132)

at1 = e

yt1 = at1st1 = e+ (12) + (23) + (13) + (123) + (132)

t2 =
1 2
3

: st2 = e+ (12)

at2 = e− (13)

yt2 = at2st2 = e+ (12)− (13)− (123)

t3 =
1 3
2

: st3 = e+ (13)

at3 = e− (12)

yt3 = at3st3 = e− (12) + (13)− (132)

t4 =
1
2
3

: st4 = e

at4 = e− (12)− (23)− (13) + (123) + (132)

yt4 = at4st4 = e− (12)− (23)− (13) + (123) + (132)

In the example above, it is easy to see that yt1 and yt4 each generates an inequiv-

alent one-dimensional representations. On can show directly that yt4yt1 = 0. In

fact, one can prove that if tableaux t and t′ are not equal then ytyt′ = 0 for gen-

eral Sn (see [51, lemma IV.6]). To construct a basis for the representations of S3
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generated by yt2 , we multiply e2 on the left by elements of S3.

eyt2 = e+ (12)− (13)− (123) = yt2

(12)yt2 = (12) + e− (132)− (23) := q2

(13)yt2 = (13) + (123)− e− (12) = −yt2

(23)yt2 = (23) + (132)− (123)− (13) = yt2 − q2

(123)yt2 = (123) + (13)− (23)− (132) = −yt2 + q2

(132)yt2 = (132) + (23)− (12)− e = −q2

We see that CS3yt2 is spanned by yt2 and q2. Since these elements are linearly

independent, they form a basis for CS3yt2 . It is straightforward to verify that yt3

also generates a two dimensional irreducible representation. Since S3 has only one

two-dimensional representation it is necessary that this representation generated

by yt3 is isomorphic to the one described above. However, the invariant subspace

generated by yt3 is different from that generated by yt2 .We note that the invariant

subspaces generated by the idempotents yt1 , yt2 , yt3 , yt4 of the four standard Young

tableaux together span the whole of CSn. We conclude that the regular represen-

tation of S3 is fully decomposed into irreducible representations by using Young

symmetrizers associated with the standard Young tableaux, as was claimed above.
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Representation theory of finite

groups

We assemble an arsenal of basic tools to use for the study of the representation the-

ory of the small ramified partition algebra. We assume basic knowledge of groups,

rings, fields, and vector spaces. A complete exposition of group representations

can be found in [1], [45], or [54]. This chapter contains no new material but it is

intended to keep this thesis reasonably self-contained. We shall omit most proofs

on the assumption that the reader will have seen this material before.

B.1 Group representations and modules

Let F be a field. Unless stated otherwise, we will always assume that F is alge-

braically closed. We shall use the notation dim V to denote the dimension of a

vector space V over F . We recall that GL(V ) denotes the group of all invertible

linear transformations of a vector space V onto itself over F . We write GL(n, F )

for the group of invertible n× n matrices over F.

B.1.1 Matrix representations

Definition B.1. A matrix representation of a finite group G over F is a homo-

morphism

ρ : G→ GL(n, F ).

72
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Thus, if ρ is a function from G to GL(n, F ), then ρ is a representation if and only

if

ρ(e) = I the identity matrix, and (B.1)

ρ(gh) = ρ(g)ρ(h), for all g, h ∈ G. (B.2)

The conditions (B.1) and (B.2), applied with h = g−1, imply that each ρ(g) is

invertible and

ρ(g−1) = ρ(g)−1 for all g ∈ G.

The dimension, or degree, of ρ is the integer n.

Definition B.2. Two representations ρ, ρ′ : G→ GL(n, F ) of a group G are said

to be equivalent if there exists a fixed invertible matrix T such that

ρ′(g) = Tρ(g)T−1 for all g ∈ G.

Otherwise, ρ and ρ′ are said to be inequivalent.

We write ρ ∼ ρ′ to imply that ρ and ρ′ are equivalent representations.

Theorem B.3 (See, e.g.,[1, Proposition 1.10.1 ]). Let ρ1, . . . , ρl be a complete set

of inequivalent irreducible representations of a group G. Then

l∑

i=1

(dim ρi)
2 = |G|.

An approach to the representation theory of finite groups involves yet another

equivalent concept, that of finitely generated modules over the group algebra.

Much of the material in the remainder of the thesis shall be presented in terms

of modules. It is therefore necessary at this juncture to review some elementary

module theory.

B.1.2 Modules and Algebras

Definition B.4. LetR be a ring with unit, meaningR has a multiplicative identity

1, and let M be an abelian group written additively. We say that M is a left R-

module if there is a map from R×M →M such that for all r, s,∈ R, andm,n ∈M ,

the following conditions are satisfied:
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(1) rm ∈M ;

(2) (r + s)m = rm+ sm;

(3) r(m+ n) = rm+ rn;

(4) (rs)m = r(sm);

(5) 1m = m.

If F is a field, then the definition of an F -module is precisely that of an F -vector

space. Thus a module is the natural generalization of a vector space when working

over an arbitrary ring instead of a field [55].

A right R-module M is defined similarly, with the exception that the ring acts

on the right. If R is commutative, then every left R-module can, in an obvious

way, be given a right R-module structure, and hence it is not necessary to dis-

tinguish between left and right R-modules. In this thesis all modules will be left

modules, unless stated otherwise. An example of a module is a vector space V

over F, together with a multiplication (v, g) 7→ vg for v ∈ V and g ∈ G (and the

multiplication satisfies the above axioms). Then V, following [56], is referred to as

an FG-module.

Matrix representation lies at the concrete end of the spectrum of representation

theory. At the abstract, theoretic end of the spectrum is found the module theo-

retic approach. A result that enables this approach is the bijection between FG-

modules and matrix representations of G over F, which we reveal in the following

result.

Theorem B.5 (See, e.g.,[56, Theorem 4.4]).

(1) If ρ : G → GL(n, F ) is a representation of G, then the vector space F n of

column vectors becomes an FG-module with the action of G given by gv =

ρ(g)v.

(2) Conversely, if V is a finite dimensional FG-module, we can choose a basis

{v1, . . . , vn} of V and let ρ(g) be the matrix describing the action of g on V

with respect to this basis. Then g 7→ ρ(g) is a representation of G.

Thus representations of a group G over a field F can be identified with its FG-

modules. Our viewpoint will primarily be that of modules over an algebra, al-

though on occasion it will be convenient to work with the matrix representation ρ
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arising from a given FG-module, where ρ : G→ GL(n, F ) is defined by ρ(g)v = gv

for v ∈ F n and g ∈ G.

Definition B.6. Let R, S be rings. We say that an abelian groupM is an (R, S)-

bimodule over R and S if M is a left R-module and a right S-module and if we

have

r(ms) = (rm)s for all r ∈ R,m ∈M, and s ∈ S.

We shall sometimes write RM, MR, RMS for a left R-module, a right R-module,

and a (R, S)-bimodule respectively.

Example B.7.

(1) Every left R-module is an (R,Z)-bimodule, and every right R-module is a

(Z, R)-bimodule.

(2) If R is commutative, then any R-module is an (R,R)-bimodule.

Definition B.8. Let M be an R-module, and let N be a subgroup of M. Then

N is a R-submodule (or submodule) of M if rn ∈ N for all r ∈ R and n ∈ N.

Example B.9.

(1) The (left) R-submodules of R are exactly the left ideals of R.

(2) For every R-moduleM , the zero subspace {0}, andM itself, are R-submodules

of M.

Definition B.10. A non-zero R-module M is irreducible if the only submodules

of M are {0} and M ; otherwise M is called reducible.

Remark B.11. Irreducible modules are also called simple modules.

Definition B.12. Let M be an R-module. If M ′ is a submodule of M, then the

quotient module M/M ′ of M by M ′ is the quotient group M/M ′ considered as an

R-module by defining r(m+M ′) = rm+M ′ for r ∈ R, and m+M ′ ∈M/M ′.

B.1.2.1 Operations on Modules

Definition B.13. Let N1 and N2 be submodules of an R-module M. Then the

sum of the submodules is defined to be

N1 +N2 = {x+ y : x ∈ N1, y ∈ N2}.
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The sum of two submodules N1 and N2 of a module M is also a submodule of

M, as is N1 ∩ N2. If N1 ∩ N2 = {0}, then the sum of N1 and N2 is said to be

direct, and we denote it by N1 ⊕ N2. Let {u1, u2, . . . , um} be a basis of N1, and

{v′1, v
′
2, . . . , vn} be a basis of N2. The resulting representation matrices relative to

the basis {u1, u2, . . . , um, v
′
1, v

′
2, . . . , vn} have the form

(
A 0

0 B

)
(B.3)

where A and B are of dimensions m and n respectively.

Definition B.14. A submodule N of a module M is a direct summand of M if

there is some other submodule N ′ of M such that M = N ⊕N ′.

If M and N are R-modules, then we denote the set of all R-module homomor-

phisms from M to N by homR(M,N). We will sometimes write EndR(M) for

homR(M,M).

Let R, S be rings with units, let M be an (R, S)-bimodule, and let N be an R-

module. Then homR(M,N) becomes an S-module in the following way: For s ∈ S

and ρ ∈ homR(M,N), we define sρ ∈ homR(M,N) by

(sρ)(m) = ρ(ms).

Definition B.15. Let M be an (R, S)-bimodule and let N be an S-module. The

tensor product of M and N over S is an R-module, denoted M ⊗S N, with gener-

ating set {m⊗ n : m ∈M,n ∈ N} and defining relations:

• (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n for all m1,m2 ∈M and n ∈ N.

• m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2 for all m ∈M and n1, n2 ∈ N.

• (ms)⊗ n = m⊗ (sn) for all m ∈M, n ∈ N, and s ∈ S.

• (rm)⊗ n = r(m⊗ n) for all m ∈M, n ∈ N, and r ∈ R.

Definition B.16. Suppose G1 and G2 are groups and that M1, M2 are RG1-

modules and RG2-modules respectively. Then the outer tensor product (see, for

example, [57]) of M1 and M2, denoted M1#M2, is defined as the R(G1 × G2)-

module obtained by defining the action of any (g1, g2) ∈ G1 × G2 on an element
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m1 ⊗m2 of the R-module M1 ⊗RM2, by

(g1, g2)(m1 ⊗m2) = g1m1 ⊗ g2m2.

B.1.2.2 Finiteness conditions

Definition B.17. Let M be an R-module. The submodules of M are said to

satisfy the ascending chain condition (A.C.C.) if every chain of submodules of M

M1 ⊂M2 ⊂ · · ·

terminates, that is, if there exists an index j such that Mj =Mj+1 = · · · .

Analogously,

Definition B.18. Let M be an R-module. The submodules of M are said to

satisfy the descending chain condition (D.C.C.) if every chain of submodules of

M

M1 ⊃M2 ⊃ · · ·

terminates.

An R-module M whose submodules satisfy the A.C.C. (resp. D.C.C.) is termed

Noetherian (resp. Artinian).

Definition B.19. Let M be a left R-module. A composition series for M is a

sequence of submodules of M

M =M0 ⊃M1 ⊃M2 ⊃ · · · ⊃Ml = {0}

such that all quotient modules Mi/Mi+1 are simple (i = 0, 1, . . . , n − 1). The

quotient modules Mi/Mi+1 are called the composition factors of this series and

the number n is the length of the series.

Two composition series are said to be equivalent if they have the same number

of factors and if the factors can be paired off in such a way that corresponding

factors are isomorphic over R [58].
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Evidently, not every module has a composition series. For example, the Z-module

has no composition series see, for example, [59, Prop. 7.11]. Some criteria for the

existence of composition series for a module are stated in the following theorem.

Theorem B.20 (Jordan-Hölder. See, e.g., [60, Theorem 3.2.1] or [50, Theorem

3.7.1]). The following statements about an R-module M are equivalent:

(i) M has a composition series;

(ii) M satisfies the ascending chain condition (A.C.C.) and descending chain

condition (D.C.C.);

(iii) every sequence of submodules of M can be refined (that is, submodules can

be inserted) to yield a composition series.

Definition B.21. Let M and N be R-modules. An R-module homomorphism

α : M → N is a linear map such that α(rm) = rα(m) for all r ∈ R m ∈M.

B.1.3 Group algebras

Definition B.22. Let R be a ring and let G be a group. The group ring of G over

R, denoted by RG, consists of all finite formal R-linear combinations of elements

of G, i.e.:

RG =

{∑

i

rigi : ri ∈ R, gi ∈ G

}
,

whose multiplication operation is defined by R-linearly extending the group multi-

plication operation of G. Explicitly, we define the multiplication in RG as follows:

(∑

i

rigi

)(∑

j

sjgj

)
=

∑

i,j

(risj)(gigj)

for all ri, sj ∈ R.

In the case where R = F is a field, the group ring is an F -vector space with G as

a basis and hence having finite dimension |G|. In this case, FG is called the group

algebra instead since it satisfies a mathematical structure we now define.

Definition B.23. An (associative) algebra A over a field F, or an F−algebra, is a

nonempty set A, together with three operations, called addition (denoted by +),

multiplication (denoted by juxtaposition) and scalar multiplication (also denoted

by juxtaposition), for which the following properties must be satisfied:
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• A is a vector space over F under addition and scalar multiplication.

• A is a ring with identity under addition and multiplication.

• If r ∈ F and a, b ∈ A, then

r(ab) = (ra)b = a(rb).

Definition B.24.

(1) An algebra is finite-dimensional if its vector space is finite-dimensional.

(2) An algebra is commutative if A is a commutative ring.

(3) An element a ∈ A is invertible if there is b ∈ A for which ab = ba = 1.

(4) The centre of an F−algebra A is the set

Z(A) = {a ∈ A : ax = xa for all x ∈ A}

of all elements of A that commute with every element of A.

Example B.25.

• Any ring is a Z-algebra.

• The matrix ring Mn(F ) is a finite-dimensional F -algebra.

We now state the fundamental theorem on decomposition of modules (or repre-

sentations).

Theorem B.26 (Maschke. See, e.g., [56, Theorem 8.1]). Let F be a field of

characteristic zero and G a finite group. Let V be a finite-dimensional FG-module

with a submodule U ⊆ V. Then there exists a subspace W ⊆ V such that V =

U ⊕W.

A useful notion, and one which is somewhat easy for a module to satisfy, is inde-

composability.

Definition B.27. An FG-module V is indecomposable if it cannot be written as

a direct sum of two non-trivial submodules. Otherwise, V is decomposable.
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Clearly, if V is an irreducible module it has no proper submodules and hence cannot

be written as a direct sum of non-trivial submodules. Therefore, any irreducible

module is automatically indecomposable. But the converse is not true in general.

That is, there exist indecomposable modules which have proper submodules.

Theorem B.28 (See, e.g.,[58, Theorem 14.2]). If the submodules of V satisfy the

D.C.C., then V can be expressed as a direct sum of a finite number of indecom-

posable modules.

Definition B.29. An FG-module is said to be completely reducible if it is a direct

sum of irreducible FG-modules.

Note that by Definition B.29, every irreducible FG-module V is completely re-

ducible. A module which is both reducible, and completely reducible is decom-

posable. However, a decomposable module need not be completely reducible.

Remark B.30. A completely reducible module is also called semisimple.

A natural question to ask is: given G, how many irreducible CG-modules are

there? The following result reveals the answer.

Proposition B.31 (See, e.g.,[61, Prop. 6.3]). If G is finite, then the number of

inequivalent irreducible G-modules is equal to the number of conjugacy classes of

G.

It is worth mentioning that, in general, there is no natural one-to-one correspon-

dence between the conjugacy classes of G and the irreducible CG-modules [55].

However, if G = Sn, then a conjugacy class consists of all permutations of a

given cycle-type (hence there is such a correspondence). But a cycle-type is just

a partition of n. Thus,

Corollary B.32. The number of inequivalent irreducible Sn-modules is the number

of partitions of n.

We state another useful result in representation theory.

Lemma B.33 (Schur. See, e.g., [56, Lemma 9.1]). Let F be the field of complex

numbers, G be a group, and U, V be irreducible FG-modules.

(1) Every FG-homomorphism U → V is either zero or an isomorphism.
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(2) Every FG-isomorphism U → U is a scalar multiple of the identitiy map 1U .

A consequence of Maschke’s theorem states that every FG-module is a direct sum

of irreducible FG-submodules, where F is a field of characteristic zero (such as R

or C). In essence, this reduces representation theory to the study of irreducible

FG-modules [56].

Corollary B.34 (See, e.g., [56, Theorem 8.7]). Suppose that G is a finite group

and that F is a field of characteristic zero. Then every non-zero FG-module is

completely reducible.

In the thesis, we shall be concerned only with the case F = C, which is called

ordinary (or complex) representation theory. Since C has characteristic zero, we

see from Corollary B.34 that every CG-module is semisimple for any finite group

G. The remainder of this section concentrates on algebras that have this property.

Let A be an algebra. Our interest is in A-modules which are semisimple and in

determining conditions on A under which each A-module will satisfy the property

of semisimplicity. Thus, the following theorem reveals the connection between

simple modules and semisimple modules.

Theorem B.35 (See, e.g., [62, Prop. 4.28]). The following statements about an

A-module M are equivalent:

(1) Any submodule of M is a direct summand of M.

(2) M is semisimple.

(3) M is a sum of simple submodules.

Lemma B.36 (See, e.g., [63, Lemma 6.4.4]). IfM is a module satisfying condition

(1) of the above theorem, then any submodule ofM also satisfies that condition.

The following results follows immediately from Theorem B.35 and Lemma B.36.

Corollary B.37 (See, e.g., [64, Lemma. 3.3]).

(1) A submodule of a semisimple module is again semisimple. The direct sum of

any set of semisimple modules is again semisimple.

(2) A quotient of a semisimple module is again semisimple.
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Theorem B.38 (See, e.g., [58, Theorem 25.2]). An algebra A is semisimple if and

only if A is semisimple as an A-module.

Thus, if G is a finite group and F is a field of characteristic zero, then FG is

semisimple by Corollary B.34.

Definition B.39. An algebra D is said to be a division algebra if the non-zero

elements of D form a group under multiplication.

We now give a complete classification of the finite dimensional semisimple alge-

bras. The following astounding result forms the foundation for our approach in

decomposing the small ramified partition algebra in Chapter 4.

Theorem B.40 (Artin-Wedderburn. See, e.g., [65, Theorem 3.3.2]). An algebra

A is semisimple over F if and only if it is isomorphic to a direct sum of matrix

algebras

A ∼= Mn1(D1)⊕ · · · ⊕Mnl
(Dl)

where n1, . . . , nl ∈ N and D1, . . . , Dl division algebras.

A corollary of the Artin-Wedderburn theorem states that if an algebra A satisfies

the assumptions of Theorem B.40, then A has exactly l isomorphism classes of

simple modules. If Si is the simple module corresponding to Mni
(Di), then dim

Si = ni and Si occurs precisely ni times in a decomposition of A into simple

modules.

In the case where an algebra A is not semisimple, one can measure how far from

semisimple it is by finding the smallest ideal I in A such that A/I is semisimple.

This ideal I of A is called the (Jacobson) radical of A.

Definition B.41. The Jacobson radical of an algebra A, denoted J (A), is the

intersection of all the maximal ideals of A.

Theorem B.42 (Jacobson. See, e.g., [66, Prop. 2] and [55, Theorem 23]). Let A

be a finite dimensional algebra. The ideal J (A) is

(i) the intersection of all maximal submodules of A,

(ii) the smallest submodule I of A such that A/I is semisimple.



Appendix B. Representation theory of finite groups 83

Thus an algebra can also be said to be semisimple if its Jacobson radical is the

null ideal [67]. Given a finite dimensional A-module M, it is clear that we can

decompose M as a direct sum of indecomposable modules. The Krull-Schmidt

theorem says that this decomposition is essentially unique, and so it is enough to

classify the indecomposable modules of an algebra.

Theorem B.43 (Krull-Schmidt. See, e.g., [68, Coro. 19.22] or [50, Theorem

3.8.1]). Let A be a finite dimensional algebra. Then any finite dimensional repre-

sentation of A can be uniquely (up to an isomorphism and the order of summands)

decomposed into a direct sum of indecomposable representations.

B.1.3.1 The regular FG-module

Definition B.44. Let G be a finite group and F be C. The vector space FG,

with the natural multiplication (g×v) 7→ gv (v ∈ FG, g ∈ G), is called the (left)

regular FG-module.

The right regular FG-module is defined similarly but with G acting on the right

of FG. Henceforth, we shall use the term “regular FG-module” always to mean

“left regular FG-module”; it will be clear, however, that the subsequent discussion

applies equally well to the right regular FG-module. Note that the dimension of

the regular FG-module is equal to |G|.

Definition B.45. An FG-module V is faithful if the identity element of G is the

only element g for which

gv = v for all v ∈ V.

Proposition B.46 (See, e.g., [56, Prop. 6.6]). The regular FG-module is faithful.

Example B.47. Let G = S3 = {e, g1, g2, g3, g4, g5} where e = (1)(2)(3), g1 =

(12), g2 = (13), g3 = (23), g4 = (123), g5 = (132). The elements of FG have the

form

λ1e+ λ2g1 + λ3g2 + λ4g3 + λ5g4 + λ6g5 (λi ∈ F ).
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We find the matrices of e, g1, g4 : (here we multiply permutations from left to

right)

e(λ1e+ λ2g1 + λ3g2 + λ4g3 + λ5g4 + λ6g5) = λ1e+ λ2g1 + λ3g2 + λ4g3 + λ5g4 + λ6g5,

g1(λ1e+ λ2g1 + λ3g2 + λ4g3 + λ5g4 + λ6g5) = λ1g1 + λ2e+ λ3g4 + λ4g5 + λ5g2 + λ6g3,

g4(λ1e+ λ2g1 + λ3g2 + λ4g3 + λ5g4 + λ6g5) = λ1g4 + λ2g3 + λ3g1 + λ4g2 + λ5g5 + λ6e.

By taking matrices relative to the basis e, g1, g2, g3, g4, g5 of FG, we obtain the

following matrix representation of G :

e →




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, g1 →




0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0




,

g4 →




0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0




.

We leave computing the rest of the matrices as an exercise.

As a consequence of Maschke’s theorem, we have:

Corollary B.48 (See, e.g., [69, Theorem 2.31]). Every irreducible representation

of the group algebra CG occurs in the regular representation of CG.

B.1.3.2 Projective modules

Let A be a finite dimensional algebra.

Definition B.49. A sequence of A-modules

L
ψ
−→M

φ
−→ N (B.4)
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is exact at M if im ψ = ker φ.

If a sequence L0 −→ L1 −→ . . . −→ Lk −→ Lk+1 is exact at every module Li : 1 ≤ i ≤ k,

then it is called an exact sequence. An exact sequence of the form

0 −→ L
ψ
−→M

φ
−→ N −→ 0 (B.5)

is called a short exact sequence.

Note that in a short exact sequence as above we have that

M/L ∼= N

by the isomorphism theorem, and dim M = dim L + dim N. In other words,

all short exact sequences can essentially be written in the form

0 −→ L
ψ
−→M

φ
−→M/L −→ 0

where ψ is an inclusion map of a submodule L of M and φ is the natural epimor-

phism. The module M in the short exact sequence (B.5) is an extension of L by

N.

Lemma B.50. Given a short exact sequence (B.5) the following are equivalent:

(i) There exists a homomorphism µ : N →M such that φµ = 1N .

(ii) There exists a homomorphism τ : M → L such that τψ = 1L.

(iii) There exists a module Y with M = Y ⊕ ker φ.

Definition B.51. A short exact sequence (B.5) is split if it satisfies one of the

three equivalent conditions in Lemma B.50.

Proposition B.52 (See, e.g., [59, Prop. 6.34]). If an exact sequence (B.5) splits,

then M ∼= L⊕N.

Definition B.53. Let R be a ring. A set {mi} of elements of an R-module M is

called R-free if the only solution to

∑

i

rimi = 0, ri ∈ R

is ri = 0 for all i.
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Definition B.54. A subset {mi} of an R-module M is called a set of generators

of M if every m ∈M can be expressed in the form

m =
∑

i

ri(m)mi ri(m) ∈ R

an R-linear combination of a finite number of the {mi}.

Definition B.55. A R-free set of generators of M is called a basis of M. A (left)

R-module with a basis is called a free (left) R-module.

Definition B.56. An R-module P is said to be projective if P is a direct summand

of a free module, i.e. if there exists an R-module Q such that P ⊕ Q is a free R-

module.

Every free module is projective, but not vice-versa: a projective module which is

not free, for example, is Z regarded as a Z⊕ Z-module.

Proposition B.57 (See, e.g., [59, Prop. 6.73 and Prop. 6.76]). The following are

equivalent for an R-module P :

(1) P is projective;

(2) if P
g′

−→ E ′ is an R-module homomorphism and E
f
−→ E ′ is a surjective R-

module homomorphism, then there exists an R-module homomorphism P
g
−→ E

such that g′ = f ◦ g. That is, the following diagram can be completed such that

it is commutative:

P
∃g

~~}
}

}
}

g′

��

E
f

// // E ′

(3) P is a direct summand of a free module;

(4) Every short exact sequence of the form

0 −→ L
ψ
−→M

φ
−→ P −→ 0

splits.
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B.2 Character Theory of Groups

In the case of large groups the explicit construction of irreducible representations

can be difficult [70]. It will become clear that the character of a representation

encapsulates a great deal of information about the representation such as deter-

mining whether or not a representation is irreducible. We assume thoughout this

section that F = C.

Definition B.58. The trace of an n× n matrix A = (aij), written Tr A, is given

by

Tr A =
n∑

i=1

aii.

That is, the trace of A is the sum of the diagonal entries of A.

Definition B.59. The character of a representation ρ of a group G is the function

χ : G→ C defined by

χ(g) = Tr ρ(g) for all g ∈ G.

Naturally enough, we define the character of an FG-module with basis B to be

the character χ of the corresponding representation, namely

χ(g) = TrAg

where Ag is the matrix of g relative to B.

Theorem B.60 (See, e.g., [71, Theorem I]). Equivalent representations of a group

have the same character.

The converse of Proposition (B.60) is also true. That is, if two representations

have the same character, then they must be equivalent. The result corresponding

to Proposition (B.60) for modules is that isomorphic FG-modules have the same

character.

Definition B.61. Let G be a group. We say that χ is a character of G if χ is

the character of some representation of G. Moreover, we say that a character is

irreducible if it is the character of an irreducible representation; and it is reducible

if it is the character of a reducible representation. A complex character is the

character of a complex representation.
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Note that characters are invariant under conjugation and so χ takes a constant

value on any conjugacy class C. Such functions are called class functions.

Definition B.62. A class function on a group G is a function f : G → C such

that f(g) = f(h) whenever g and h are in the same conjugacy class.

The sums and scalar multiples of class functions are again class functions, so the

set R(G) of all class functions on G forms a subspace of the vector space of all

functions from G to C. Also, R(G) has a basis consisting of those functions that

have the value 1 on precisely one conjugacy class and 0 elsewhere. Thus

dim R(G) = number of conjugacy classes of G.

Theorem B.63 (See, e.g.,[72, Theorem 12.2.23]). The number of irreducible char-

acters of G is equal to the number of conjugacy classes of G.

The irreducible characters of a finite groupG are class functions, and the number of

them is equal to the number of conjugacy classes of G by Theorem B.63. Therefore,

it is convenient to record all the values of all the irreducible characters of G in an

array. This array is known as the character table of G.

Definition B.64. The character table of a group G is an array whose rows are

indexed by the irreducible characters of G and whose columns are indexed by the

conjugacy classes (or, in practice, by conjugacy class representatives).

Thus a character table is a concise way to describe all irreducible characters of a

group G. From this table, characters of G can be written as sums of irreducible

characters and, as we shall see later on, there are many more facts about the

structure of G that can be read from its character table.

Definition B.65. Let G be a group with FG-module. The regular character,

denoted χreg, is the character of the regular FG-module.

The values of χreg on the elements of a group G are easily described and given in

the next result.

Proposition B.66 (See, e.g.,[56, Prop. 13.20]). Let χreg be the regular character

of G. Then

χreg(g) =




|G| if g = 1,

0 otherwise.
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Another result which is helpful for computing characters over the ground field C

is the following.

Proposition B.67 (See, e.g.,[56, Prop. 13.20]). Let χ be a character of G. Then

χ(g−1) = χ(g) for all g ∈ G, where χ(g) denotes the complex conjugate of χ(g).

B.2.1 Inner products of characters

A method for determining whether a representation is irreducible is by using inner

products.

The characters of a finite group G are functions from G to C. The set of all such

functions form a vector space over C, if we adopt the natural rules for adding

functions and multiplying functions by complex numbers. It is easy to see that

the following definition satisfies the conditions of an inner product on the vector

space of all functions from G to C, [56].

Definition B.68. Let χ and ψ be characters of G. The inner product of χ and ψ

is

〈χ, ψ〉 =
1

|G|

∑

g∈G

χ(g)ψ(g). (B.6)

By Proposition B.67, Definition B.68 becomes

Corollary B.69. Let χ and ψ be characters; then

〈χ, ψ〉 =
1

|G|

∑

g∈G

χ(g)ψ(g−1).

Next, we state an important theorem for irreducible characters.

Theorem B.70 (See, e.g.,[1, Theorem 1.9.3]). Let χ and ψ be characters of two

non-isomorphic irreducible FG-modules. Then we have

(i) 〈χ, ψ〉 = 0,

(ii) 〈χ, χ〉 = 1.

Theorem B.70 has many interesting consequences.
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Corollary B.71. Let χ1, χ2, . . . , χk be the irreducible characters of G. If ψ is any

character of G, then

(i) ψ = d1χ1 + d2χ2 + . . .+ dkχk for some non-negative integer d1, d2, . . . , dk.

(ii) 〈ψ, χi〉 = di for all i.

(iii) 〈ψ, ψ〉 = d21 + d22 + . . .+ d2k.

(iv) Let V be a CG-module with character ψ. Then V is irreducible if and only if

〈ψ, ψ〉 = 1.

(v) Let U and V be CG-modules, with characters χ and ψ, respectively. Then

U ∼= W if and only if χ = ψ.

(vi) Any distinct of irreducible characters χ1, χ2, . . . , χk of G are linearly inde-

pendent vectors in the vector space of all functions from G to C.

B.3 Category Theory

We assume familiarity with some category theory basics. See, for example, [73],

[74], or [75]. However, in this section we recall a few points in order to establish

some general notation.

B.3.1 Definition of a Category

Definition B.72. A category C consists of the following data:

1. a collection Ob(C) of objects

2. a collection of arrows (often called morphisms) hom(A,B) for each pair A,

B of objects where each morphism f ∈ hom(A,B) has a domain A and

codomain B so that f : A→ B.

3. a binary operation ◦ known as composition of morphisms such that for each

ordered triple A,B,C of objects we have

hom(A,B)× hom(B,C) → hom(A,C)

(f, g) 7→ g ◦ f
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satisfying the following laws:

• Associative : for all f : A→ B, g : B → C, h : C → D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f

A

g◦f
��

@@
@@

@@
@

f
// B

g

��

h◦g

  
@@

@@
@@

@

C
h

// D

• Identity: for each object A there is given a morphism:

1A : A→ A

called the identity morphism satisfying the following:

for all f : A→ B,

f ◦ 1A = f = 1B ◦ f

.

Example B.73.

• Set: The objects are sets, morphisms are functions, and composition is the

usual composition of functions.

• Grp: The objects in this category are groups, morphisms are homomor-

phisms, and composition is the usual composition.

• Ab: The category of abelian groups - the objects are abelian groups, the

morphisms are group homomorphisms.

• R-mod: Given a ring, R-mod is the category of all left R-modules. Thus,

Ob(R-mod) is the collection of all left R-modules and the set of morphisms

from M to N (where M,N are objects of R-mod) is the set of all R-

module homomorphisms from M to N. We write Hom(M,N) rather than

hom(M,N).

Definition B.74. A subcategory B of a category C is a category for which:

• each object of B is an object of C

• for all objects B, B′ in B, B(B,B′) ⊆ C(B,B′) ; and
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• compositions and identity arrows are the same in B as in C.

Definition B.75. The product of two categories C and D, denoted C × D has as

objects pairs (C,D) of objects C ∈ C and D ∈ D; and arrows (f, g) : (C,D) →

(C ′, D′) for f : C → C ′ ∈ C and g : D → D′ ∈ D. The composition and identity

are defined componentwise; that is,

(C,D)
(f,g)

// (C ′, D′)
(f ′,g′)

// (C ′′, D′′)

is defined in terms of the compositions in C and D by

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g).

1(C,D) = (1C , 1D).

B.3.2 Monomorphisms, Epimorphisms, and Isomorphisms

When we think about sets, groups and functions, we are often interested in func-

tions with special properties such as being injective (one-to-one), surjective (onto),

or bijective (defining an isomorphism). Appropriate analogues of these concepts

also play an important role in categorical reasoning.

Definition B.76. An arrow f : B → C in a category C is a monomorphism (or

“is monic”) if, for any pair of arrows g : A → B and h : A → B, the equality

f ◦ g = f ◦ h implies that g = h.

Definition B.77. An arrow f : B → C in a category C is an epimorphism (or “is

epic”) if, for any pair of arrow g : B → C and h : B → C, the equality g ◦f = h◦f

implies that g = h.

Definition B.78. An arrow f : B → C in a category C is an isomorphism if there

is an arrow f ′ : B → A, called the inverse of f , such that f ′ ◦ f = 1B. The objects

A and B are said to be isomorphic if there is an isomorphism between them.

An important concept in category theory is the concept of category of categories

where the mappings or arrows between categories (the categories are objects in

this context) are functors, which we shall now define.
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B.3.3 Functor

Definition B.79. A (covariant) functor

F : C → D

between categories C and D is a mapping of objects to objects and arrows to

arrows, in such a way that:

• F (f : A→ B) = F (f) : F (A) → F (B)

• F (g ◦ f) = F (g) ◦ F (f)

• F (1A) = 1F (A)

Example B.80. The forgetful functor U : Ab → Set from the category of abelian

groups to the category of sets is the functor that forgets the abelian group structure

on the objects of Ab.

Definition B.81. A contravariant functor F is one that maps objects to objects

as before, but that maps arrows to arrows going the opposite direction, that is, F

is a functor from Cop to D.
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