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Optimal strategies for pricing general insurance

P. Emms∗, S. Haberman and I. Savoulli
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February 9, 2006

Abstract

Optimal premium pricing policies in a competitive insurance environment are
investigated using approximation methods and simulation of sample paths. The
market average premium is modelled as a diffusion process, with the premium as
the control function and the maximization of the expected total utility of wealth,
over a finite time horizon, as the objective. In order to simplify the optimisation
problem, a linear utility function is considered and two particular premium strate-
gies are adopted. The first premium strategy is a linear function of the market
average premium, while the second is a linear combination of the break-even pre-
mium and the market average premium. The optimal strategy is determined over
the free parameters of each functional form.

It is found that for both forms the optimal strategy is either to set a premium
close to the break-even or not to sell insurance depending on the model parame-
ters. If conditions are suitable for selling insurance then for the first premium
strategy, in the case of no market average premium drift, the optimal premium
rate is approximately p̄(0)/aT above break-even where p̄(0) is the initial market
average premium, a is a constant related to the elasticity of demand and T is the
time horizon. The optimal strategy for the second form of premium depends on
the volatility of the market average premium. This leads to optimal strategies
which generate substantial wealth since then the market average premium can be
much larger than break-even leading to significant market exposure whilst simul-
taneously making a profit. Monte-Carlo simulation is used in order to study the
parameter space in this case.

JEL classification: G22
Subj. classification: IM20; IM30
Keywords: Optimal premium strategies; Competitive demand model; Asymptotic ex-
pansions
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1 Introduction

There is little in the insurance literature on modelling how insurance premiums should
be determined in a competitive market and how they respond to changes in the levels of
premiums being offered by competitor companies (Daykin et al. 1994). Despite the fact
that underwriting cycles in non-life insurance are known to be present and an objective
analysis is needed for properly formulating underwriting strategies rather than just
following the trends, such an analysis has not been done so far. It is widely observed
that for a number of years premium rates decline to a point where the market, on
average, is underwriting at a considerable loss, followed by a reverse trend of large
increases in premium rates to the point where the market is making a substantial profit.
During these underwriting cycles, it is observed that, individual insurance companies
are following the market with their premium rates declining when the market average
premium rate declines and increasing when the market average premium rate increases
(Cummins and Outreville 1987, Daykin et al., 1994). A question arises here: What is the
optimal premium strategy for an individual insurance company and how is this related
to the market? This leads to the conclusion that there is a wide scope for investigation
of this area.

An attempt towards this direction was carried out by Taylor (1986; 1987) who in-
vestigated the appropriate response of an insurer to the movement of market average
premium rates, assuming that the management objective of the insurer is to maximize
the expected present value of wealth arising over a given finite time horizon. Price elas-
ticity of demand for the product was allowed for, as was the required rate of return on
the capital supporting the insurance operation. A key factor in this investigation was the
time which would elapse before market average premiums were predicted to return to
profitability. The conditions that might produce “loss leaders” were also investigated.
However, the optimization model developed, in Taylor (1986), involved projection of
the market average premium rates over future years. The problem was approached as if
such a projection could be made with certainty. Results were obtained for four different
scenarios of market behaviour over a 5 year period and were varied. When the mar-
ket average premium rate fell below the break-even rate, the optimal strategy involved
underwriting for significant profit margins which implied a complete withdrawal from
the market as demand levels in this case fell dramatically. On the other hand, when
the market average premium rate was below the break-even rate, but was expected to
rise and return to profitability in the near future, the optimal premium policy indicated
“loss leading” in the near future which would lead to a rise in demand and hence return
to profitability when the market average premium rates would recover at the end of the
time period.

Taylor considered two different demand functions, the exponential demand function
and a constant price elasticity demand function. We shall focus on the first of these
functions. The required rate of return on the capital supporting the insurance operation
is taken into consideration in the derivation of the wealth process. Ultimately, we
optimize the premium policy by assuming it takes the form of:
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I: a linear function of market average premium

II: a linear function of market average premium and break-even premium

and hence optimize the objective function over the free parameters of each functional
form. We show that for case I that there is an analytical expression for the objective
function. We then find an approximate maximum for this expression. For case II we
approximate the objective function and find a maximum for this approximate expression.

The problem described herein can be viewed as a stochastic optimal control problem
with the premium policy as the control variable and the maximization of the expected
utility of wealth as the value function. Using the tools of stochastic optimal control
theory and stochastic calculus (the dynamic programming principle and Ito’s lemma),
one can derive the Hamilton-Jacobi-Bellman (HJB) equation which characterizes the
value function. By solving this equation, the value function and the optimal policy may
be obtained in greater generality. This is the approach adopted by Emms & Haberman
(2005). However, it was found that one has to increase the complexity of Taylor’s model
in order to avoid a bang-bang premium strategy. Specifically, Emms & Haberman
assumed the premium rate is held fixed over the duration of the policy and introduced
an accrued premium rate and an associated evolution equation for this state variable.
They found that the optimal premium rate can be negative, which reflects a shortcoming
of the model, namely that one requires sufficient capital in order to loss-lead. In order
to resolve this shortcoming one must constrain the optimisation problem.

Rather than complicate Taylor’s model further we adopt the alternative approach
and study fixed premium strategies. We have chosen to approximate the objective func-
tion and its roots using analytical approximations. The use of approximate methods
allows us to give a qualitative description of the optimal premium strategy without the
need to run a simulation. Further, we are able to use the approximate solutions to study
the sensitivity of the model to its parameters and in some cases we obtain good quan-
titative as well as qualitative agreement. We also note that numerical methods yield
the optimal strategy for one point of parameter space and that, in contrast, it would
require many simulations in order to determine fully the model sensitivity. The approx-
imate analysis also informs the reader which nondimensional parameters (i.e. parameter
groups) are important: in effect this reduces the dimension of the sensitivity analysis.
Numerical solutions are used to confirm the validity of the asymptotic behaviour of the
model, where approximate solutions exist.

In Section 2 a continuous-time model for the insurance market is constructed. We
discuss appropriate values for the model parameters and adopt suitable parameterisa-
tions. The two following sections consider each strategy in turn: we find analytical
and approximate forms for the optimal strategies. The sensitivity of the model to the
parameters of the model is determined using these approximations. Premium Strategy
II leads to a stochastic differential equation for the insurer’s exposure and consequently
it is more difficult to analyse. We divide the analysis into three parts corresponding
to the three forms of the process describing the market average premium: constant
(Section 4), drifting but deterministic (Section 4.1), and lognormal (Section 4.2). The
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lognormal case uses Monte-Carlo simulation to assess the parameter dependence of the
model since analytical approximations have not been found. Finally we summarise these
results and make suggestions for modelling improvements in Section 5.

2 Model Formulation

Following Taylor (1986), we adopt the following processes to describe an insurance
market:

q(t) - volume of exposure at time t.

π(t) - break-even rate (per unit of exposure) at time t (i.e. risk premium plus
expenses per unit of exposure).

p(t) - premium rate (per unit of exposure) charged by the insurer at time t.

p̄(t) - market average premium rate (per unit of exposure) charged by all the
insurers in the market at time t.

In this paper, we extend Taylor’s (1986) model by specifying a stochastic process
for the market average premium p̄. Thus, we consider how uncertainty in the market
affects an insurer’s premium policy. We model p̄ as a geometric Brownian motion:

dp̄

p̄
= µdt+ σdZ, (1)

where Z is a Wiener process. The drift µ and the volatility σ are both assumed to be
constant. This process is widely used to model the market prices of financial instruments
and is often used in option pricing (Hull 1993), and interest rate modelling (Brigo &
Mercurio 2001). The future market average premium is log-normally distributed (and
hence positive), i.e.

log p̄(t) ∼ N

(

log p̄0 + (µ−
1

2
σ2)t, σ2t

)

.

A log-normal process is certainly a simple model for the process followed by the market
average premium. However, it is the simplest feasible model that allows us to assess the
importance of the drift and volatility of the market average premium with reference to
the break-even premium. Thus, it represents a good starting point for the modelling
process.

We adapt Taylor’s (1986) specification of the demand function to our continuous
setting. Taylor (1986) defines the demand process by

qk+1 = f(pk+1, p̄k+1)qk,

where f(pk, p̄k) is the demand function in year k. Adapting this to our continuous
setting, we have

qt+δt − qt = f(pt+δt, p̄t+δt)
δtqt − qt.
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Then

∆q = (f δt − 1)q

= (exp(log(f δt)) − 1)q

= (log f)qδt+ o(δt2),

using a Taylor series expansion. Therefore, the demand process is described by

dq

q
= log f(p, p̄)dt, (2)

where p := p(p̄, π, t) is the premium at time t.
Define the wealth process w as the insurer’s capital at time t. Then w follows the

stochastic process given by

dw = −αwdt+ q(p − π)dt. (3)

where α is the excess return on capital (i.e. return on capital - risk free rate) required
by the shareholders of the insurer whose strategy is under consideration. Thus, αw dt
is the cost of holding w in a small time interval dt. Notice we take the break-even
premium π as constant and study the deviation of p̄ from π by allowing p̄ to drift at
rate µ. For developing a model of competitive pricing in insurance it seems wise to
study the simplest case first without introducing additional parameters. In reality, the
break-even premium and the market average premium will be coupled, which constrains
the magnitude of µ which one might reasonably set.

Our aim is to determine the strategy which maximizes the expected total utility of
wealth J over a finite time horizon T . For a given utility function (of wealth) U(w, t)
we define the value function

V := max
p

{

J = E

∫ T

0

U(w(s), s)ds

}

, (4)

that is as the maximization of the objective function J over a choice of strategies p.
This is similar to the objective function used by Taylor (1986) with profit replaced by
total wealth at time T .

2.1 Parameterisations and numerical values

We consider two different choices for the demand function. For the exponential demand
function we have

f(p, p̄) = exp

[

−a(p − p̄)

p̄

]

, (5)

for some constant a > 0. Whereas for the constant price elasticity demand function

f(p, p̄) =

(

p

p̄

)

−a

. (6)
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Notice that for the first of these parameterisations (5), the RHS of the demand equa-
tion (2) and the wealth equation (3) is linear in the premium p. Thus for a purely
deterministic problem the Hamiltonian formed from these expressions is linear in the
control variable p (Sethi & Thompson 2000). Thus, if the premium is non-negative the
premium strategy is degenerate (Emms & Haberman 2005): this is a consequence of
the continuous version of Taylor’s model where premium rates vary over the course of
policies. We avoid the degeneracy here by considering fixed premium strategies so that
large premium jumps are not possible.

The price-elasticity of demand (see Taylor 1986) is defined by

e = −
∂ log q

∂ log p
, (7)

so that for the exponential demand function eexp = ap/p̄. For the constant price
elasticity demand function we have e = a. Therefore, for the same choice of parameter
a, p ≥ p̄⇒ eexp ≥ a and p < p̄⇒ eexp < a. In general, when p > p̄, greater elasticity has
a negative impact on terminal wealth, since demand falls more rapidly. The converse
also applies, so when p < p̄, greater elasticity has a positive impact on terminal wealth.

We assume the Utility function takes the linear form

U(w, t) = e−βtw, (8)

where β is the (subjective) intertemporal discount rate. A linear utility function has the
advantage of simplicity and may be appropriate for an insurer which is well-capitalized
and has access to the financial markets in order to diversify its risk. Other utility
functions are possible but they introduce more parameters into the model. We do not
expect qualitative changes to the optimal strategy for different utility parameterisations;
instead we expect changes only to the terminal wealth that a different utility function
would produce.

Following Taylor (1986), we assume that underwriting at an average premium rate
20% higher than the market average will produce only 60% of the volume of the exposure
which would be underwritten if underwriting were carried out at the market average i.e.

f(1.2p̄, p̄) = 0.6.

Consequently for the exponential demand function (5) we have a = 2.55 p.a. and for
the constant price elasticity demand function we obtain a = 2.80 p.a.

Typical values for the remaining parameters are taken as follows:

market average premium drift µ = 0.05 p.a.,
a finite time horizon T = 10 years,

excess return on capital α = 0.06 p.a.,
discount rate β = 0.06 p.a.,

a constant break-even premium π = 4 [q]−1 p.a.,
initial wealth w(0) = 50,

initial exposure q(0) = 5 [q],

(9)
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where [q] denotes the units for the volume of exposure, which will vary according to
the type of insurance under consideration. For the Monte-Carlo Simulation we shall use
p̄(0) = 1 [q]−1 p.a. . . . 10 [q]−1 p.a. – the break-even premium rate π has been chosen to
lie in this range since it is the relative value of these two quantities which is important.
The value of µ represents an upper bound on the drift of p̄ that is considered herein.
We shall use these data to suggest suitable approximations and also in the numerical
work to follow.

3 Premium Strategy I

In order to investigate the optimal premium, we set a premium strategy of the form

p(t) = kp̄(t), (10)

where k is a constant. Thus, we assume that the premium set by the insurer is a linear
function of the market average premium and calculate the objective function for a range
of values of k. For an exponential demand function (5), the demand process (2) can be
integrated to obtain

q(t) = q(0) exp(a(1 − k)t), (11)

while the constant elasticity demand function (6) integrates to

q(t) = q(0)k−at. (12)

For k ≈ 1 both forms of demand function lead to the same exposure since log k ≈ k−
1. This suggests that a similar qualitative strategy will arise for both parameterisations,
and so henceforth we shall consider only the exponential demand function. Quantitative
wealth differences do arise, since for k = 0, (11) predicts a finite exposure whilst (12)
predicts an infinite exposure. This leads to greater wealth generation if the insurer is
operating at a profit i.e. p > π for a constant elasticity demand function. However,
numerical experiments do not indicate a qualitative change to the optimal premium
strategy (details not included but are available from the authors).

The exposure as described by (11) is a deterministic function of time, which yields
an analytical expression for the objective function. Substituting (11) into (3) gives

w(t) = exp(−αt)

[

w(0) +

∫ t

0

exp(αs)q(0) exp(a(1 − k)s)(kp̄(s) − π)ds

]

. (13)

The mean wealth is easily found by interchanging expectation and integration to obtain

E(w(t)) = exp(−αt)

[

w(0) +

∫ t

0

exp(αs+ a(1 − k)s)q(0)(kp̄(0) exp(µs) − π)ds

]

,

(14)
where we have used

E(p̄(t)) = p̄(0) exp(µt).
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Next taking the linear utility function (8) and again exchanging expectation and
integration operators we find

J = IE

(
∫ T

0

U(w(t), t)dt

)

=

∫ T

0

e−βtIE(w(t))dt.

(15)

Substituting (14) into (15) finally yields

J(k) = w(0)
1 − e−(α+β)T

α+ β
+

kq(0)p̄(0)

α+ a(1 − k) + µ

(

e(a(1−k)+µ−β)T − 1

a(1 − k) + µ− β
−

1 − e−(α+β)T

α+ β

)

−
q(0)π

α+ a(1 − k)

(

e(a(1−k)−β)T − 1

a(1 − k) − β
−

1 − e−(α+β)T

α+ β

)

. (16)

Figure 1 shows plots of J against k for different values of p̄(0) using the data set (9)
with µ = 0 and π = 4. For approximately p̄(0) > π there is a global maximum value
for J which appears to gives an optimal strategy k∗ ≈ π/p̄(0). Note asterisks are used
throughout to denote optimal values. Another numerical simulation is shown in Figure 2
with µ = 0, π = 6 and is consistent with this hypothesis. For example, if p̄(0) = 8 then
π/p̄(0) ≈ 3/4 which is just below the maximum at k∗ = 0.8 in Figure 2(ii). We can show
by approximation that this numerical result continues to hold as the model parameters
are changed. For p̄(0) much larger than the break-even premium such a strategy leads
to significant exposure, which generates very large values for V as shown in the second
panel of Figure 1 (noting that the ordinate axis in the second panel is on the logarithmic
scale).

In order to obtain the value function V , we maximize J with respect to k. Note that
(16) is independent of σ, due to the assumption of a utility function which is linear in
wealth. The first order condition for a maximum of J is

dJ

dk
= t1 + t2 + t3 + t4 + t5 = 0, (17)

where

t1 =
p̄(0)

µ+ α+ a(1 − k)

(

e(µ−β+a(1−k))T − 1

µ− β + a(1 − k)
+
e−(α+β)T − 1

α+ β

)

,

t2 =
akp̄(0)

(µ+ α+ a(1 − k))2

(

e(µ−β+a(1−k))T − 1

µ− β + a(1 − k)
+
e−(α+β)T − 1

α+ β

)

,

t3 =
akp̄(0)

µ+ α+ a(1 − k)

(

e(µ−β+a(1−k))T (1 − T (µ− β + a(1 − k))) − 1

(µ− β + a(1 − k))2

)

,

t4 = −
aπ

(α+ a(1 − k))2

(

e(a(1−k)−β)T − 1

a(1 − k) − β
+
e−(α+β)T − 1

α+ β

)

,

t5 = −
aπ

α+ a(1 − k)

(

(e(a(1−k)−β)T (1 − T (a(1 − k) − β)) − 1

(a(1 − k) − β)2

)

,

(18)
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and we have dropped q(0) without loss of generality.
Consider first the simple case of α = µ = 0. Figure 3 shows how each of the terms

t1—t5 varies as a function of k where the remaining numerical parameters are chosen
as in (9). It appears that a dominant balance (Bender & Orszag 1978) exists for k < 1
between t3 and t5. Balancing these terms we find the approximate optimal strategy is

k∗ = γ =
π

p̄(0)
, (19)

which is the ratio of the break-even premium to the initial market average premium.
The optimal strategy is to set a premium which has an approximately constant mean
equal to π for γ < 1 (in the case µ = 0). For γ > 1, numerical experiments suggest that
there is no maximum objective function so that the optimal strategy is to set p = ∞

which yields the finite value function

V =

(

w(0) +
q(0)p̄(0)

a

)(

1 − e−βT

β

)

, (20)

from (16). This is the asymptote in Figures 1 & 2 as k → ∞.
Consequently the optimal premium strategy has two modes depending on the model

parameters: either set an infinite premium and accumulate wealth from the existing
customer base or set the premium at just above break-even in order the maximise
market exposure whilst at the same time making a profit. The existence of a finite
optimal premium strategy for γ < 1 arises from two competing forces: the desire to
set as low a premium as possible in order to gain new business, and the requirement to
generate a profit by setting a high premium. In reality, an infinite premium rate will
correspond to not selling insurance at all since no-one will buy insurance at such a price.

For this second mode we note that it is optimal to sell insurance at just above break-
even. We can determine by just how much the premium should be above the break-even
level by formalising the above approximation. Set

ε =
1

aT
≪ 1. (21)

This is a non-dimensional quantity expressing how fast demand grows as we change the
relative premium price i.e. it is inversely related to the elasticity of demand. Put

k ∼ k0 + εk1 + . . . (22)

and substitute into (17) and (18). Collecting together powers of ε and neglecting expo-
nentially small terms (which requires k < 1), we obtain

k0 = γ, k1 = 1, (23)

so that the optimal premium price is

p∗ = (γ +
1

aT
+ . . .)p̄ (24)

for ε ≪ 1. A detailed derivation of this result appears in Appendix A. The optimal
strategy is to set the premium initially at p̄(0)/aT above the break-even level, π.
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3.1 Drifting market average premium

Next we relax the assumption that α = µ = 0. If we suppose that the dominant balance
t3 ∼ t5 is maintained as we vary the parameters of the model then we can determine
the concomitant change in the optimal strategy. For this to be true, the O(ε) terms
in (17) must remain O(ε) as the parameters are varied. Numerical experiments verify
that for reasonable values of the model parameters, this is a valid assumption. Again
balancing t3 and t5 and dropping exponentially small terms, we obtain the following
implicit relationship:

k ∼ γe−µT

(

α+ a(1 − k) + µ

α+ a(1 − k)

)(

a(1 − k) − β + µ

a(1 − k) − β

)2 (

1 − T (a(1 − k) − β)

1 − T (µ+ a(1 − k) − β)

)

,

= γe−µT

(

1 +
µ

α+ a(1 − k)

)(

1 +
µ

a(1 − k) − β

)2 (

1 −
µT

1 − T (a(1 − k) − β)

)

−1

.

(25)

Figure 4 shows a plot of the left-hand side (LHS) and the right-hand side (RHS) of (25)
for the data set (9). Only the lower value root is an approximate solution to (17): the
other root arises since we have neglected t1, t2 and t4. By examining how the expression
on the RHS of (25) varies as a function of the model parameters we can determine
the model sensitivity. It is straightforward to see from (25) that the root is strongly
dependent on the parameters γ, µ, T , a. The root is weakly dependent on α and β
since α≪ a and β ≪ a. Thus the root is a function of three parameters k∗ = k∗(ν, ε, γ)
where ν = µT .

Equation (25) suggests that k∗ ≈ γe−ν since µ≪ a, and in Figure 4, k∗ is just above
γe−ν . A more formal analysis using a perturbation expansion is given in Appendix A
for the case α = 0, µ 6= 0. We find the optimal strategy up to O(ε2) is

p∗ =

(

γe−ν + ε

(

1 +
2νγe−ν

1 − γe−ν

)

+O(ε2)

)

p̄. (26)

Since the market average premium has drift µ and noting the form of E(p̄(t)), (26)
states that the optimal strategy is to keep the expected premium value near the break-
even premium value at t = T . In addition, for positive drift ν > 0 then p∗(0) < π, i.e.
this is a loss-leading optimal strategy. The insurer sets a low initial premium now in
order to build up market exposure. Near to t = T , the premium becomes greater than
break-even (because the O(ε) term is positive) and the insurer makes a large profit from
their existing exposure. If k ≥ 1 then the asymptotic analysis breaks down because
the exponential terms in (18) are not negligible. Numerical experiments reveal that
this condition determines the mode of the optimal premium strategy. Consequently, if
γe−ν < 1 the insurer should enter the market and adopt strategy (26).

These approximations remain valid as long as the t3 ∼ t5 balance is maintained,
which requires that k < 1. If the drift of the market average premium µ is negative,
then we would expect the optimal strategy to be p = ∞ if p̄(0) is below π. If p̄(0) is
significantly above π then the optimal strategy is to set k∗ < 1 so that E[p(t)] is close
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to π at t = T as in (26). However, if γ & 1 then an optimal strategy can exist such
that k∗ > 1 and the approximations used hitherto break down. Essentially, the optimal
strategy is then to hold onto market exposure by setting a premium slightly higher than
the market average as long as that generates a profit which outweighs the subsequent
loss.

We can assess the validity of the approximations described above by comparing how
the approximate expression in (26) compares with the numerical solution of (17) as we
vary each parameter in turn as shown in Figure 5. The numerical determination of k∗

was carried out by using multiple Romberg Integrations to calculate J in (15) and then
using Brent’s Method in order to find the maximum of J (Press et al. 2002). It is better
to calculate the integrals numerically rather than determining the root of (17) since (16)
has a removable singularity at k = 1 − β/a. Figure 5(i) shows that the approximate
expression (26) compares favourably with the solution of (17) with ε and γ fixed. If the
market average premium drift is negative there is an optimal premium strategy which
entails setting a premium above the market average in order to utilise the insurer’s
existing exposure.

Figure 5(ii) demonstrates the validity of asymptotics in the sense that the approx-
imate root tends towards the exact value of k∗ as ε → 0. It is also clear that the
approximation remains reasonable over a wide range of values of ε. As the elasticity
of the demand function decreases, corresponding to increasing ε, so k∗ increases. If ε
is increased, the balance between setting a high premium in order to generate a profit
and a low premium in order to generate exposure is shifted in favour of setting a higher
premium.

The optimal value k∗ depends strongly on γ. Figure 5(iii) shows the relationship
between these two parameters for a loss-leading optimal strategy (ν = 0.5). The almost
linear increase in k∗ arises since it is optimal to set k such that terminal premium is just
above break-even (see (26)).

4 Premium Strategy II

We proceed with investigating a broader structure for the premium policy p. A linear
function of the form k1p̄ + k2π has been suggested by practitioners as representing an
approach used in practice for pricing a range of non-life insurance products. However,
incorporating this formulation into our model means that the optimization now involves
two parameters k1 and k2 and this makes the calculations rather cumbersome. Therefore,
guided by Strategy I, we represent the premium policy p as a function of the break-even
premium π and the difference of the market average premium p̄ and the break-even
premium:

p(t) = π + r(p̄(t) − π) (27)

and hence we optimize over the single parameter r. The strategy differs substantially
from strategy I in that the demand function f = f(p/p̄) is no longer deterministic so
that the volatility of the market average premium affects the optimal strategy.
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A simple analytical expression for the objective J can be found if µ = σ = 0. In
this case, the market average premium remains constant throughout the period i.e.
p̄(t) = p̄(0). From the demand process (2) we obtain

q(t) = q(0)(f(p, p̄))t. (28)

The wealth equation (3) can now be written

d(eαtw(t)) = rq(0)(p̄− π) exp [(α+ log f(p, p̄))t] .

This can be integrated immediately to give

w(t) = w(0)e−αt +
r(p̄− π)q(0)

α+ log f(p, p̄)

(

(f(p, p̄))t − e−αt
)

. (29)

Therefore the objective function is

J = w(0)

(

1 − e−(α+β)T

α+ β

)

+
r(p̄− π)q(0)

α+ log f(p, p̄)

(

eT (log f(p,p̄)−β) − 1

log f(p, p̄) − β
+
e−(α+β)T − 1

α+ β

)

. (30)

Plots of the objective function J for a number of values of p̄(0) are shown in Figure 6
for the exponential demand function (5). As for Strategy I, it is apparent that for
p̄(0) > π = 4 there is a maximum for J . Furthermore, there are two modes for the
optimal strategy: p = ∞ or r∗ ≈ 0.

We can determine an approximate expression for the second mode in this special case
using the same techniques as before. If we set α = β = 0 and assume an exponential
demand function then it is easy to see that the root of dJ/dr = 0 is given approximately
by the equation

d

dr

(

re(1−r)(1−γ)/ε

(1 − r)2

)

= 0,

for ε ≪ 1 since this term is of order e1/ε. Expanding this expression yields a quadratic
for r whose relevant root is

r∗ =
ε

1 − γ
,

up to O(ε). The discriminant of this quadratic determines the mode of the optimal
strategy. Substituting into (27) gives the optimal premium for the second mode as

p∗ = π + εp̄(0). (31)

This complements the result (24) obtained for the first strategy albeit for the case σ = 0.

4.1 Approximate Objective Function

We have found an analytical expression for the objective function J if the market average
premium is constant. For a deterministic but drifting process, p̄, we are unable to find
an analytical expression for dJ/dr. In this section, we approximate the integral J and
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then find the maximum value of this approximate expression for the case σ = 0. In
taking this approach we assume that both J and the approximate expression for J have
approximately the same extrema.

The sensitivity analysis of Strategy I suggests that α and β do not affect the optimal
strategy substantially. We shall suppose this also holds for Strategy II so we set α =
β = 0. Consequently the objective function becomes

J =

∫ T

0

(
∫ t

0

rq(p̄(0)eµs − π) ds+ w(0)

)

dt. (32)

It is only the first term on the RHS of (32) which determines the optimal premium
strategy, w(0) only affects the magnitude of the wealth generated by this strategy. We
rewrite the objective with just the first term and consider only the exponential demand
function:

J0 =

∫ T

0

I(t;x) dt, (33)

where the integral

I(t;x) =

∫ t

0

r(eµs − γ) exp[x(µs+ γ(e−µs − 1))] ds (34)

and

x =
a(1 − r)

µ
. (35)

From the data set (9) we see that x≫ 1 as long as r is not too close to 1.
The integral I is in Laplace form

I(t;x) =

∫ t

0

f(s)exφ(s) ds, (36)

with f(s) = r(eµs − γ) and φ(s) = µs+ γ(e−µs − 1). If γ < 1 then φ(s) is a continuous
increasing function of s and so attains its maximum at s = t on [0, t]. Following Bender
& Orszag (1978) (see pp. 258) the approximate value as x→ ∞ for µ > 0 is

I(t;x) ∼
f(t)exφ(t)

xφ′(t)
=
rexφ(t)+µt

µx
. (37)

Integrating this expression over [0, T ] yields an approximate form for the objective func-
tion as x→ ∞:

J∗ =
reµT+x(µT+γ(e−µT

−1))

(µx)2(1 − γe−µT )
(38)

valid if γ < 1. If µ < 0 then a similar expression can be derived depending on where φ
attains its maximum.

The extrema of J∗ are determined by a quadratic equation whose relevant root is

r∗ =
ψ − 1 − (ψ2 − 6ψ + 1)1/2

2ψ
, (39)
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where

ψ =
1

ε

(

1 +
γ

ν
(e−ν − 1)

)

. (40)

The discriminant in (39) determines the mode of the optimal strategy.
Figure 7(i)–(iii) shows the sensitivity of the root r∗ = r∗(ν, ε, γ) to the model para-

meters. On each plot we show the approximate form of the optimal strategy calculated
from (39) and the numerical computation of the maximum of (32) computed as before.

In Figure 7(i), we see that as the drift of the market average premium increases
the optimal value r∗ decreases. This behaviour is consistent with the idea that the
optimal strategy is to aim for a large terminal exposure rather than a large profit per
policyholder. By keeping the terminal premium relatively small, then p/p̄ is small and
so the exposure is large. As ε becomes very small then Figure 7(ii) shows that the
optimal premium strategy is to set a premium just above the break-even premium.

In the final plot, Figure 7(iii) shows that the variation of r∗ is no longer linear with
γ but increases only gradually. This is due to the fact that the second strategy does not
require a loss-leading strategy if ν > 0. In fact we have initially p(0)− π = rp̄(0)(1− γ)
so that loss-leading optimal strategies only occur for γ > 1. This behaviour differs
markedly from Strategy I: it is apparent from the figure that for sufficiently large γ > 1
there is no finite value for r∗. This occurs when the market average premium fails to
reach break-even over the time horizon.

4.2 Volatility of the Average Market Premium

The optimal value for r in Strategy II depends on the volatility σ of the market average
premium p̄. This is distinct from Strategy I where p̄/p is deterministic so that the
demand function and therefore the exposure are also deterministic. To determine the
sensitivity of the optimal form of Strategy II to the value of σ we resort to Monte
Carlo simulation. The model can be written as a system of four stochastic differential
equations:

dp̄ = p̄(µ dt+ σ dZ), (41)

dq = q log f(p, p̄) dt, (42)

dw = −αw dt+ q(p − π) dt. (43)

dH = U dt, (44)

with given initial conditions for p̄, q and w at t = 0 and H(0) = 0.
For certain values of r, p might become negative as we introduce volatility so we

set a lower bound for the premium p equal to π/5. Consequently for the numerical
simulation we set

p = max(π/5, π + r(p̄ − π)). (45)

We integrate (41)–(44) from t = 0 to t = T numerically using a Mersenne Twister
random number generator for dZ. In order to minimise the number of time steps
M required for each sample path, we adopt a second order simplified weakly con-
vergent scheme (see p.466 Kloeden & Platen 1999). This integration yields H(T ) =
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∫ T

0
U(w, t) dt. We calculate J(T ) = E[H(T )] by averaging over a large number of simu-

lations, typically N = 10, 000. We use antithetic variance reduction in order to decrease
the number of simulations required to produce a given standard error. The value of
J(T ) varies continuously with r if we use the same random seed for each numerical
simulation. The value function V (T ) = maxr J(T ) is found numerically (should it exist)
using Brent’s Method (Press et al. 2002). This fits a quadratic polynomial to J and
has the advantage of requiring relatively few calls to J(T ) and therefore few expensive
Monte Carlo simulations.

We use M = 200 time steps for each value of r. To check the convergence of the
Monte-Carlo scheme we also verify the value of r∗ by calculating J at r∗ ± 0.01 using
N = 100, 000 simulations. Therefore the value of r∗ is accurate to 2 d.p. for the number
of time steps used.

For completeness we examine the effect of the volatility on the optimal premium
strategy with and without market average premium drift µ. Tables 1(a)–(d) show the
optimal strategy for the cases µ = 0, σ = 0.05; µ = 0, σ = 0.1; µ = 0.05, σ = 0.05;
µ = 0.05, σ = 0.1. The qualitative features of the results are similar to those of Strategy
I. Looking at Table 1(a),(b) we see that there are again two modes for the optimal
premium determined by the value of γ = π/p̄(0). As the volatility σ increases, the value
function increases rapidly. Moreover, as p̄(0) is increased, then this too leads to large
values of V . The reason for this behaviour can be seen in the sample paths in Figure 8.
This figure shows a path generating the value V (T ) > 108 for the case p̄(0) = 10. As σ
increases so does the likelihood that p̄ will increase substantially more than π so that
the optimal premium p, which is just above π, generates a large exposure. This in turn
increases the wealth generated by selling insurance. This behaviour is reinforced as p̄(0)
increases.

Tables 1(c)–(d) show the optimal strategy for market average premium with positive
drift µ = 0.05. This has the effect of increasing the value function V for r = r∗ since large
exposure and wealth can now be generated. Also loss-leading strategies are possible for
p̄(0) < π. As σ is increased still further (say to σ = 0.2) then the Monte-Carlo simulation
can take up to 105 simulations to converge suggesting that this problem is ill-conditioned.
This is in part a restriction of the model since π is kept constant while p̄ may increase
independently – in reality, competition within the insurance market would prevent this
behaviour from occurring.

5 Conclusions

We have investigated optimal strategies for two particular approaches to fixing the pre-
mium. The first approach is based on a linear function of the market average premium,
while the second involves a linear combination of the break-even premium and the mar-
ket average premium.

The qualitative behaviour of the optimal strategy in the first case has been deter-
mined analytically. If the market average premium is driftless, then we have demon-
strated that there are two optimal strategy modes: setting an infinite premium rate
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when the initial market average premium rate is below the break-even premium or set-
ting the premium rate a fraction above the break-even premium when the market is
underwriting at a profit. If the market average premium has upward drift then there
are again two optimal strategies: an infinite premium rate or a loss-leading strategy
which makes an initial loss but gains market exposure. If the market average premium
has negative drift then a non-infinite optimal strategy can exist whereby the insurer
sets a premium just above the market mean. This can generate enough initial wealth
to offset the loss as the market average premium drifts below break-even. The impor-
tant parameters which determine the optimal strategy are γ, the ratio of initial market
average premium to break-even premium, ε, a measure of the inverse elasticity of the
demand function, and ν, the nondimensional drift of the market average premium.

The optimal form of the strategy in the second case is similar except that the drift
of the market average premium does not have such a pronounced effect on the optimal
strategy. Loss leading is much less likely with this form of strategy. The second strategy
is also affected by the volatility of the market average premium. However, the qualitative
form of the optimal strategy remains the same. As the volatility of the market average
premium increases so does the wealth generated by choosing an optimal strategy. If one
views both strategies as providing constraints on p, then the form of Strategy II allows
the premium to remain closer to the break-even premium π. This means the second
strategy can generate greater wealth than the first if the market average premium drifts
upwards.

Some of these strategies are unrealistic in that generating a large market exposure
contradicts the assumption that the insurer does not affect the rest of the market. This
points to a limitation in the modelling, specifically that the market average premium
should be coupled explicitly to the break-even premium. One should also relax the
restriction of a constant break-even premium and this forms the basis of future modelling
work. A limitation of Taylor’s original model (1986) is that the change in exposure is
linearly proportional to the current exposure. Clearly this is unrealistic if the current
exposure is zero or if the market for policies is saturated. This is another area in which
we aim to improve the pricing model.

For a large part of parameter space, the optimal strategy can be found using per-
turbation expansions, which indicates that this form of analysis may allow progress in
respect of more general static and dynamic strategies.
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A Approximate optimal premium strategy I

In this appendix we outline the derivation of the approximate optimal strategies (24)
and (26). First, we set α = µ = 0 in (18). Second, we write the expressions in terms
of the nondimensional parameters ε, b = βT (taken as O(1)), and γ. Third, we note
that if we multiply each of (18) by a positive function of k, the value of the root is not
changed. Finally, if k < 1 then eβT+ε−1(k−1) is exponentially small i.e. it is smaller than
all orders of ε if ε≪ 1.
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With these points in mind, we multiply t1 to t5 by eb+ε−1(k−1)/(p̄(0)T 2) and neglect
exponentially small terms to obtain

t1 =
ε

1 − k

(

ε

1 − k − εb

)

,

t2 =
εk

(1 − k)2

(

ε

1 − k − εb

)

,

t3 =
k

1 − k

(

1 + b− ε−1(1 − k)

(ε−1(1 − k) − b)2

)

,

t4 = −
εγ

(1 − k)2

(

ε

1 − k − εb

)

,

t5 = −
γ

1 − k

(

1 − ε−1(1 − k) + b

(ε−1(1 − k) − βT )2

)

,

without renaming t1—t5.
Next, multiply through by (1−k)/ε, which makes the leading order terms O(1), and

write the root as a perturbation expansion:

k ∼ k0 + εk1 + . . .

The terms determining the root k then become

t1 =
ε

1 − k0

+O(ε2),

t2 =
εk0

(1 − k0)2
+O(ε2),

t3 =
(k0 + εk1)(ε− (1 − k0 − εk1) + εβT )

(1 − k0 − εk1 − εβT )2
,

t4 = −
γε

(1 − k0)2
+O(ε2),

t5 = −γ

(

ε− (1 − k0 − εk1) + εβT

((1 − k0 − εk1) − εβT )2

)

.

If we then do a further Taylor series expansion for t3 and t5 to O(ε) we obtain

t3 =
1

(1 − k0)2
(k0(k0 − 1) + ε(k1(k0 − 1) + (1 − k1 − βT )k0)),

t5 = −
γ

(1 − k0)2
(k0 − 1 + ε(1 − k1 − βT )).

Collecting together terms of O(1) yields k0 = γ, while collecting terms of O(ε) gives
k1 = 1 as stated in equation (24).
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If µ 6= 0 we write ν = µT , set α = 0 and proceed as above. Multiplying (18) through
by eb+ε−1(k−1)/(εp̄(0)T 2) gives

t1 =
εeν

(εν + 1 − k)(εν − bε+ 1 − k)
,

t2 =
εkeν

(εν + 1 − k)2(εν − bε+ 1 − k)
,

t3 =
keν(ε− νε+ bε+ k − 1)

(εν + 1 − k)(εν − bε+ 1 − k)2
,

t4 = −
γε

(1 − k)2(1 − k − bε)
,

t5 = −
γ(ε+ k − 1 + bε)

(1 − k)(1 − k − bε)2
.

The expansion of t3 and t5 to O(ε) in similar to that described earlier. Thus, we
write k ∼ k0 + εk1 + . . ., group terms, and ignore those of O(ε2)

t3 =
eν(k0 + εk1)(k0 − 1 + ε(1 + k1 − ν + b))

(1 − k0 + ε(ν − k1))(1 − k0 + ε(ν − b− k1))2
,

First, take out the factor (1 − k0)
3:

t3 =
eν(k0 + εk1)

(1 − k0)3
× (k0 − 1 + ε(1 + k1 − ν + b))

×

(

1 + ε

(

ν − k1

1 − k0

))

−1

×

(

1 + ε

(

ν − b− k1

1 − k0

))

−2

.

Now expand the last two terms and ignore terms of O(ε2)

t3 =
eν(k0 + εk1)

(1 − k0)3
× (k0 − 1 + ε(1 + k1 − ν + b))

×

(

1 − ε

(

ν − k1

1 − k0

))

×

(

1 − 2ε

(

ν − b− k1

1 − k0

))

.

Next, gather together the O(1) and O(ε) terms

t3 =
eν

(1 − k0)3
(k0(k0 − 1)+

ε (k1(k0 − 1) + k0(1 + k1 − ν + b) + k0(ν − k1) + 2k0(ν − b− k1))) .

For the term t5 we have

t5 = −
−γ(k0 − 1 + ε(k1 + 1 + b))

(1 − k0 − εk1)(1 − k0 − ε(k1 + b))2
.
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Then take out the factor (1 − k0)
3:

t5 = −
γ

(1 − k0)3
× (k0 − 1 + ε(k1 + 1 + b)) ×

(

1 −
εk1

1 − k0

)

−1

×

(

1 − ε

(

k1 + b

1 − k0

))

−2

,

and then collect together O(ε) terms

t5 = −
γ

(1 − k0)3
(k0 − 1 + ε(k1 + 1 + b− k1 − 2(k1 + b))) .

Bringing these results together we have

t3 =
eν

(1 − k0)3
(k0(k0 − 1) + ε(k0 − k0k1 − k1 − bk0 + 2k0ν)),

t5 = −
γ

(1 − k0)3
(k0 − 1 + ε(1 − b− 2k1)).

Examining t3 and t5 we find k0 = γe−ν at leading order and writing down the O(ε)
part of all terms gives

eν

(1 − γe−ν)2
+

eν

(1 − k0)3
(k0 − k0k1 − k1 − bk0 + 2k0ν) −

γ(1 − b− 2k1)

(1 − k0)3
= 0,

since the contributions from t2 and t4 cancel. Simplifying, we obtain k1 = 1+2νγe−ν/(1−
γe−ν) at O(ε). Therefore, the result (26) follows.
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Tables and Figures

p̄(0) r Initial p∗ V Relative error (%)
1.0 −∞ ∞ - -
2.0 −∞ ∞ - -
3.0 −∞ ∞ - -
4.0 0.41 4.00 3.00e+ 002 0.06
5.0 0.22 4.22 6.32e+ 002 0.54
6.0 0.13 4.26 4.18e+ 003 0.92
7.0 0.10 4.30 2.70e+ 004 0.81
8.0 0.09 4.35 1.23e+ 005 0.68
9.0 0.08 4.39 4.22e+ 005 0.57

10.0 0.07 4.44 1.16e+ 006 0.48

(a)

p̄(0) r Initial p∗ V Relative error (%)
1.0 −∞ ∞ - -
2.0 −∞ ∞ - -
3.0 −∞ ∞ - -
4.0 0.15 4.00 3.81e+ 002 2.96
5.0 0.11 4.11 2.09e+ 003 6.30
6.0 0.09 4.18 1.64e+ 004 4.60
7.0 0.08 4.24 8.63e+ 004 3.27
8.0 0.07 4.30 3.24e+ 005 2.48
9.0 0.07 4.35 9.51e+ 005 1.98

10.0 0.07 4.40 2.32e+ 006 1.64

(b)
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p̄(0) r Initial p∗ V Relative error (%)
1.0 −∞ ∞ - -
2.0 −∞ ∞ - -
3.0 −∞ ∞ - -
4.0 0.20 4.00 6.02e+ 002 0.57
5.0 0.12 4.12 7.39e+ 003 0.87
6.0 0.09 4.18 6.90e+ 004 0.69
7.0 0.08 4.24 3.76e+ 005 0.55
8.0 0.07 4.29 1.40e+ 006 0.45
9.0 0.07 4.34 4.02e+ 006 0.37

10.0 0.06 4.38 9.51e+ 006 0.32

(c)

p̄(0) r Initial p∗ V Relative error (%)
1.0 −∞ ∞ - -
2.0 −∞ ∞ - -
3.0 0.15 3.85 3.15e+ 002 1.40
4.0 0.11 4.00 1.95e+ 003 5.87
5.0 0.09 4.09 2.61e+ 004 3.88
6.0 0.08 4.15 1.86e+ 005 2.60
7.0 0.07 4.21 8.24e+ 005 1.92
8.0 0.07 4.26 2.64e+ 006 1.52
9.0 0.06 4.31 6.78e+ 006 1.25

10.0 0.06 4.36 1.47e+ 007 1.06

(d)

Table 1: The optimal expected total utility V for Strategy II over a range of initial
mean market values p̄(0). The parameters values are those specified in (9) but with (a)
µ = 0, σ = 0.05; (b) µ = 0, σ = 0.1; (c) µ = 0.05, σ = 0.05; (d) µ = 0.05, σ = 0.1. The
relative error is defined as the standard error divided by V .
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Figure 1: The objective function J of Strategy I for a number of initial market average
premiums p̄(0). The parameters values have been set using (9) but with µ = 0 and
π = 4.
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Figure 2: The objective function J of Strategy I for a number of initial market average
premiums p̄(0). The parameters values have been set using (9) but with µ = 0 and
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remaining data as in (9).
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Figure 5: Parameter analysis of Strategy I: (i) as a function of the (scaled) market
average premium drift ν (ε = 0.04, γ = 0.8); (ii) as a function of the inverse market
elasticity ε (ν = 0.5, γ = 0.8); (iii) as a function of the ratio of initial break-even to
market average premium γ (ε = 0.04, ν = 0.5). The approximate optimal strategy (26)
is shown with and without the O(ε) term for comparison.
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Figure 6: The objective function J for Strategy II with µ = σ = α = 0, π = 4, and an
exponential demand function.

29



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

r*

ν

numerical p- (0)=5
approximate p- (0)=5

numerical p- (0)=6
approximate p- (0)=6

(i)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

r*

ε

numerical
approximate

(ii)

30



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2  0.4  0.6  0.8  1  1.2

r*

γ

numerical
approximate

(iii)
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