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Types of dependence and time-dependent association between
two lifetimes in single parameter copula models

Jaap Spreeuw

January 31, 2006

Abstract

Most publications on modeling insurance contracts on two lives, assuming dependence of
the two lifetimes involved, focus on the time of inception of the contract. The dependence be-
tween the lifetimes is usually modeled through a copula and the effect of this dependence on
the pricing of a joint life policy is measured. This paper investigates the effect of association
at the outset on the mortality in the future. The conditional law of mortality of an individual,
given his survival and given the life status of the partner is derived. The conditional joint
survival distribution of a couple at any duration, given that the two lives are then alive, is
also derived. We analyze how the degree of dependence between the two members of a couple
varies throughout the duration of a contract. We will do that for (mainly Archimedean) cop-
ula models, with one parameter for the degree of dependence. The conditional distributions
hence derived provide the basis for the calculation of prospective provisions. Key words:
Archimedean copulas, multiple life contingencies, aging, valuing policies.
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1 Introduction

Traditionally, it has been presumed in multiple life contingencies that the remaining lifetimes of
the lives involved are mutually independent. As some empirical investigations have shown, for
a married couple, this standard assumption is based on computational convenience rather than
realism.

Over the past few years, several papers about insurance contracts on two lives have been
published which allow for dependence between the two lifetimes. Frees et al. (1996) and Carriere
(2000) present alternative ways of modeling dependence of times of death of coupled lives and
applying them to a dataset. In both papers, a significant degree of positive correlation between
lifetimes was observed. This implies, for instance, that joint life annuities are underpriced while
last survivor annuities are overpriced. Carriere and Chan (1986) present boundaries of single
premiums for last survivor annuities. All three papers adopt a methodology based on copulas,
an approach which is popular nowadays. Other papers studying bounds of single premiums are
Dhaene et al. (2000) and Denuit et al. (2001).

All these papers study the impact of dependency of two remaining lifetimes on the pricing of
life insurance products on the lives concerned. Dependency, however, also affects the valuation
of such contracts over time. Prospective provisions (also known as reserves) are based on laws
of mortality which apply to the policy valuation date. If the remaining lifetimes of a couple
are dependent at the outset of a policy, then any of the two lives’ survival probabilities may
depend on the life status of the partner. Moreover, the joint distribution of remaining lifetimes,
given the survival of both partners to a certain date, is affected as well. Using copula models
to modify a formula used in the valuation of survivorship life insurance policies, Margus (2002)
has pointed out that mortality rates of a life whose spouse is still alive differs from the mortality
rates of a life whose spouse already died before the time of valuation. Youn et al. (2002) show
that a lot of well-known relationships between probabilities and single premiums in multiple life
contingencies are not valid in case of dependent lifetimes. They establish, however, that the
validity of those relationships can be restored if the definition of individual survival probabilities
allows for the life status of the partner. Carriere (2000), stating that the copula should affect
the lives from the time of marriage, rather than from the time of birth, uses similar arguments.

Moreover, it is not sufficient just to conclude that there is dependence between remaining life-
times. It is also essential to state what type of dependence applies. Hougaard (2000) points out
that within a time framework, one can basically distinguish between three different categories:

1. Instantaneous dependence: dependence caused by common events affecting both lives at
the same time.

2. Long-term dependence: dependence which is caused by a common risk environment, af-
fecting the surviving partner for their remaining lifetime.

3. Short-term dependence: the event of death of one life changes the mortality of the other
life immediately, but this effect diminishes over time.

Instantaneous dependence is implied due to the fact that both members of a couple are prone
to common events such as accidents. Dependence is assumed to be of a long-term nature if the
force of mortality of the survivor is a constant or increasing function of the time of death of the
partner. On the other hand, dependence is taken to be short-term if this force of mortality is
a decreasing function of the time-of-death of the partner. An example of long-term dependence
is the mechanism of matching couples (”birds of a feather flock together”). For instance, two
partners often come from the same neighborhood which determines their common risks. The
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“broken heart syndrome” (as researched in Parkes et al., 1969, and Jagger and Sutton, 1991) is
the most well-known example of short-term dependence.

It is a question which type of dependence prevails within the framework of multiple life
contingencies. Hougaard (2000) suggests that in case of a married couple, short-term dependence
is perhaps more relevant than long-term dependence. This assertion is underpinned by one of
the main results from the empirical work in Parkes et al. (1969) and Jagger and Sutton (1991).
Both studies show that within about 6 months after death of the partner, the mortality of
widowers is comparable with that of married men. Youn and Shemyakin (1999, 2001) show
that, when implementing a copula model, ignoring the difference between the physical ages of
the two partners can lead to an underestimation of the instantaneous dependence and short-term
dependence.

As long as both lives of a couple are alive, the degree of association between the respective
remaining lifetimes depends on time. This gives rise to another question, namely which patterns
of association over time between members of a couple are realistic. Moreno (1994) discusses this
issue, also known as aging, in the context of frailty models, which are an important subclass of
Archimedean copula models.

This paper analyzes the time-dependent association implied by copula models, and identifies
their type of dependence. We assess the impact of the life history of one life on the mortality
of the other life. If the one life has died before the other life, we will also distinguish between
the different times of death. In this respect, our approach differs from the one in Margus (2002)
who considers only one state “Dead” of the partner without specifying when the partner died.
We also investigate how the dependence between the two lives will change over time, as long as
they are both still alive. We consider one and the same couple at the outset and restrict our
study in this paper to models with one parameter for dependence only.

We have developed a methodology which is based on analyzing the force of mortality of one
life. Our paper sheds new light on theoretical properties of copulas. Besides, it gives an answer
to the important question which copula models may be suitable for modelling dependence, which
exhibits itself in the practice of the insurance of couples. Some of the copulas discussed in this
contribution have not been widely studied before, and this has led to some interesting findings.
Our approach helps the actuary to choose an appropriate copula and provides a framework for
the calculation of provisions of contracts on two lives.

The organization of this paper is as follows. In Section 2, we specify the conditional marginal
and joint survival functions which we want to analyze. Section 3 gives an introduction to copula
models and outlines the structure for the next two sections. Section 4 concerns the previous
death of one life and analyses the impact on the death of the other life, while Section 5 deals with
the case where both lives are still alive. A numerical example about provisions of an insurance
contract on two lives is given in Section 6. A discussion in Section 7 concludes the paper.

2 Conditional marginal and joint survival functions

We consider a contract effected on two lives (x) and (y), aged x and y, respectively at duration
0. The complete remaining lifetimes of (x) and (y) are denoted by Tx and Ty, respectively, with
marginal survival functions S1 (s1) and S2 (s2). We assume that Tx and Ty are continuously
distributed, with upper bounds ωx−x and ωy−y, respectively. The variables ωx and ωy denote
the limiting ages of (x) and (y). The joint survival function is denoted by S (s1, s2).

We want to calculate the prospective provision at duration t ≥ 0. We assume that the policy
is in force if at least one of both lives is alive.

Consider first of all the case where life (x) is still alive and (y) passed away between duration
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ty and ty+dt, with ty ∈ [0, t]. Then the survival function of remaining lifetime of (x) at duration
t, given death of (y) at time ty, is given by:

S1;t (s |Ty = ty ) = P [Tx > t+ s |Tx > t, Ty = ty ] =
− d

dty
P [Tx > t+ s, Ty > ty]

− d
dty

P [Tx > t, Ty > ty]

=

d
dty

S (t+ s, ty)

d
dty

S (t, ty)
. (1)

Next, consider the case where both are still alive at duration t ≥ 0. Then the survival function
of remaining lifetime of (x) at t, given survival of (y) to time t, is given by

S1;t (s |Ty > t) = P [Tx > t+ s |Tx > t, Ty > t ] =
P [Tx > t+ s, Ty > t]

P [Tx > t, Ty > t]
=

S (t+ s, t)

S (t, t)
. (2)

The expressions for S2;t (s |Tx = tx ) and S2;t (s |Tx > t) are similar to (1) and (2), respectively,
with x and y interchanged. The joint survival function, given survival of both to t, is defined as

St (s1, s2) = P [Tx > t+ s1, Ty > t+ s2 |Tx > t, Ty > t ] =
S (t+ s1, t+ s2)

S (t, t)
. (3)

3 Copula models

We start this section by giving a general introduction to copulas in Subsection 3.1. Then, we
show how the equations established in Section 2 are specified if a copula model applies. We make
a distinction between previous death of one life (Subsection 3.2) and survival of both (Subsection
3.3). Finally, in Subsection 3.4, we will give an overview of the copula families to be considered
in this paper.

3.1 Introduction to general copulas

If we apply a copula model, the joint distribution is determined by the marginals and a copula
function of two arguments, denoted by C [·, ·]. Assuming that 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, this
function has the following properties:

1. C [0, v] = C [u, 0] = 0;

2. C [1, v] = v and C [u, 1] = u;

3. C [·, ·] is nondecreasing in each argument.

For an overview of applications of copulas in actuarial science, see Frees and Valdez (1998). In
the sequel, we will use survival copulas only. Then the joint survival function is a survival copula
function, with the marginal survival functions as its arguments:

S (s1, s2) = C [S1 (s1) , S2 (s2)] .

The functions introduced in Section 2 will be re-expressed in the next two subsections.
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3.2 Previous death of one partner

For (1), we get:

S1;t (s |Ty = ty ) = P [Tx > t+ s |Tx > t, Ty = ty ] =
(C2 [S1 (t+ s) , v])v=S2(ty)

(C2 [S1 (t) , v])v=S2(ty)
, (4)

with C2 [·, ·] denoting the partial derivative of C [·, ·] with respect to its second argument. Ob-
viously, this definition only makes sense if C2 [S1 (t) , v] 6= 0 for v = S2 (ty).

We prefer to specify the mortality in terms of the forces of mortality, rather than the sur-
vival function, if possible. The advantage of this is the multiplicative relationship between
this quantity and the related quantity applying to the case of independence. Provided that
(C2 [S1 (t+ s) , v])v=S2(ty) 6= 0, the forces of mortality are given as:

µ1 (x+ t+ s |Ty = ty ) = − d

ds
ln
h
(C2 [S1 (t+ s) , v])v=S2(ty)

i
= µ1 (x+ t+ s)

S1 (t+ s) (C21 [u, v])u=S1(t+s);v=S2(ty)

(C2 [S1 (t+ s) , v])v=S2(ty)
, (5)

with µ1 (x+ t+ s) denoting the force of mortality at age x+t+s corresponding to the distribution
of Tx. Furthermore C21 [·, ·] is the second derivative with respect to its second and first argument.

Another advantage of the force of mortality representation is that it allows us to adopt the
concepts in Hougaard (2000). We will focus on the specification of conditional laws of mortality
through forces of mortality and analyze their behavior as a function of ty, the time of death
of the partner. For several copulas, we will work out whether there is long-term or short-term
dependence between the lives. Our method is strongly based on Hougaard’s definition, which
follows below.

Definition 1 The remaining lifetimes Tx and Ty exhibit short-term dependence if
µ1 (x+ t+ s |Ty = ty ) is an increasing function of ty ∈ [0, t] (or alternatively, if
µ2 (y + t+ s |Tx = tx ) is an increasing function of tx ∈ [0, t]). On the other hand, there is
long-term dependence between Tx and Ty if µ1 (x+ t+ s |Ty = ty ) is constant or decreasing as
a function of ty ∈ [0, t] (or equivalently, if µ2 (y + t+ s |Tx = tx ) is constant or decreasing as a
function of tx ∈ [0, t]).

As we will see below now, the case of a force of mortality which is constant as a function
of the time of death does not exist in copula models. It follows from (5) that if the force of
mortality of (x) is constant, then

C21 [u, v]

C2 [u, v]
= d

ln [C2 [u, v]]

du
, u, v ∈ [0, 1] ,

is independent of v. This implies:

ln [C2 [u, v]] = K1 (u) +K2, (6)

with K1 (u) denoting a real valued differentiable function, depending only on u and the para-
meters of dependence, and not on v. In (6), K2 is a real valued constant. This leads to

C [u, v] = v exp [K1 (u) +K2] +K3,
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with K3 denoting another real valued constant. The condition C [u, 0] = 0 for u ∈ [0, 1] implies
K3 = 0. Then, the condition C [u, 1] = u for all u ∈ [0, 1] implies K1 (u) = ln [u]−K2. Hence,

C [u, v] = uv,

being the independence copula. In other words, if two lifetimes are dependent and a copula
model applies, then the force of mortality of one life always depends on the time of death of the
other life.

We will identify the type of dependence for some copula families, which is the topic of Section
4.

3.3 Both lives survive

Next, we consider the case of survival of both. Then, equation (2) becomes:

S1;t (s |Ty > t) = Pr [Tx > t+ s |Tx > t, Ty > t ] =
Pr [Tx > t+ s, Ty > t]

Pr [Tx > t, Ty > t]
=

C (S1 (t+ s) , S2 (t))

C (S1 (t) , S2 (t))
.

(7)
A similar relationship holds for S2;t (s |Ty > t) = Pr [Ty > t+ s |Tx > t, Ty > t ]:

S2;t (s |Tx > t) = Pr [Ty > t+ s |Tx > t, Ty > t ] =
Pr [Tx > t, Ty > t+ s]

Pr [Tx > t, Ty > t]
=

C (S1 (t) , S2 (t+ s))

C (S1 (t) , S2 (t))
.

(8)
Once again, whenever possible, we prefer to express the effect of survivorship of the partner
through a force of mortality function. The force of mortality corresponding to survival function
(7) is given by:

µ1 (x+ t+ s |Ty > t) = − d

ds
ln [C (S1 (t+ s) , S2 (t))]

= µ1 (x+ t+ s)
S1 (t+ s) (C1 [u, v])u=S1(t+s);v=S2(t)

C (S1 (t+ s) , S2 (t))
. (9)

Equation (3) becomes:

St (s1, s2) = Ct [S1;t (s1 |Ty > t) , S2;t (s2 |Tx > t)] =
C [S1 (t+ s1) , S2 (t+ s2)]

S (t, t)
, (10)

determined by the marginals S1;t (s |Ty > t) and S2;t (s |Tx > t) as well as a new copula Ct.
In Section 5, we derive the form of the copula Ct for some copula families. We assume that

t is such that S (t, t) > 0.

3.4 Copulas to be considered

In this paper, in both Sections 4 and 5, we will first of all discuss the three special cases of
independence, comonotonicity (Fréchet upper bound) and countermonotonicity (Fréchet lower
bound). This is followed by Archimedean copulas.

If the two lifetimes are independent, the copula is specified as C [u, v] = uv. The Fréchet
upper bound gives maximal positive dependence, with C [u, v] = min [u, v]. On the other
hand, the Fréchet lower bound represents maximal negative dependence, and we have C [u, v] =
max [u+ v − 1, 0].

The Fréchet lower bound will only be discussed for illustrative purposes. In general, for the
sake of practical relevance, we assume that the two lifetimes have a type of positive dependence.
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More formally, we assume that the two lifetimes are Positive Quadrant Dependent (PQD in
short). According to Lehmann (1966), this is the case if

Pr [Tx > s1, Ty > s2] ≥ Pr [Tx > s1] Pr [Ty > s2] ∀s1, s2 ∈ R.

In general, it may not be easy to obtain straightforward expressions for the equations in the
previous subsection. Archimedean copulas have been well known and widely applied for their
mathematical tractability, as well as their flexibility, and will therefore be considered. An
Archimedean copula is constructed by a generator, being a function φ (·) : [0, 1] → R+ with
a continuous first and second derivative, denoting φ0 (τ) and φ00 (τ) respectively, satisfying

φ (1) = 0, φ0 (τ) < 0 and φ00 (τ) > 0, 0 ≤ τ ≤ 1,

for all τ ∈ (0, 1). Then the copula generated by the function φ (·) is expressed as

C [u, v] = φ[−1] (φ (u) + φ (v)) , 0 ≤ u, v ≤ 1,

with φ[−1] (·), being the pseudo-inverse function of φ (·):

φ[−1] (τ) =
½

φ−1 (τ) , for 0 ≤ τ ≤ φ (0)
0, for φ (0) ≤ τ ≤∞.

In the above equation, φ−1 (·) is the inverse function of φ (·). The pseudo-inverse and the inverse
function coincide completely if limτ↓0 φ (τ) = ∞. If this property holds, the generator is said
to be strict. For the sake of mathematical convenience (to avoid technical complications with
the specification of the force of mortality), we will only discuss Archimedean copulas with strict
generators, hence

C [u, v] = φ−1 (φ (u) + φ (v)) , 0 ≤ u, v ≤ 1. (11)

Archimedean copulas have been introduced in Genest and MacKay (1986a,1986b). For more
details about Archimedean copulas and their properties, see Chapter 4 of Nelsen (1999). We
will use some of the families described therein as illustrations. We only consider Archimedean
copulas which allow for at least a range of Positive Quadrant Dependence and which explicitly
contain the important special case of independence. In this paper, nine families are object of
study. They are tabulated in Table 1.

Some of the copula types in this table have well known names. Families 1, 2, 3, 5 and 6
are known as the Clayton (or Cook-Johnson or Oakes), the Gumbel-Hougaard, the Frank, the
Ali-Mikhail-Haq and the Joe family, respectively. The last column displays the maximal value
of the population version of Kendall’s coefficient of concordance, which in the remainder of this
paper we shall refer to as Kendall’s τ . The higher the value of this quantity, the stronger the
association between the random variables. The maximal value is equal to 1, corresponding to
Fréchet’s upper bound. All families except one are positively ordered, which implies that the
population version of Kendall’s τ increases as the value of the parameter increases. Only Frank’s
family is negatively ordered. One can read from the table that all families except one cover the
entire range of Positive Quadrant Dependence. The exception is Ali-Mikhail-Haq. The limiting
case for θ ↑ 1 gives the copula C [u, v] = uv /(u+ v − uv) , which has a value of Kendall’s τ equal
to 1 /3 .
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Number Generator φ (τ) PQD for Independence for Maximum τ

1 τ−θ − 1 θ > 0 θ ↓ 0 1 (θ →∞)

2 (− ln τ)θ θ ≥ 1 θ = 1 1 (θ →∞)

3 − ln eθτ−1
eθ−1 θ < 0 θ ↑ 0 1 (θ → −∞)

4 (1− ln t)θ − 1 θ ≥ 1 θ = 1 1 (θ →∞)

5 ln 1−θ(1−t)t θ ∈ [0, 1) θ = 0 1
3 (θ ↑ 1)

6 − ln
h
1− (1− t)θ

i
θ ≥ 1 θ = 1 1 (θ →∞)

7 − ln (1+t)−θ−1
2−θ−1 θ ∈ [−1,∞) \{0} θ = −1 1 (θ →∞)

8 exp
£
t−θ
¤− e θ > 0 θ ↓ 0 1 (θ →∞)

9 1
tθ
− tθ θ > 0 θ ↓ 0 1 (θ →∞)

Table 1: Archimedean copula families

4 Copula models, one life died

4.1 Special cases

4.1.1 Independence

For C [u, v] = u v, (4) leads to

S1;t (s |Ty = ty ) =
S1 (t+ s)

S1 (t)
,

while (5) yields:

µ1 (x+ t+ s |Ty = ty ) = µ1 (x+ t+ s)
S1 (t+ s)

S1 (t+ s)
= µ1 (x+ t+ s) ,

which is as expected: the force of mortality of (x) is not affected at all by the time of death of
(y).

4.1.2 Fréchet upper bound

For C [u, v] = min [u, v], we have C2 [u, v] = I{u>v}, so S1;t (s |Ty = ty ) only exists if S2 (ty) <
S1 (t), in which case we get:

S1;t (s |Ty = ty ) =

(
1 for s < S

[−1]
1 (S2 (ty))− t

0 for s > S
[−1]
1 (S2 (ty))− t

, (12)

defining

S
[−1]
1 (κ) =

½
S−11 (κ) for 0 < κ ≤ 1
ωx for κ = 0

. (13)
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In words, given death of (y) at ty, (x) dies with certainty at age x+ S
[−1]
1 (S2 (ty)). Although

a force of mortality cannot be specified (since (12) is degenerate), this can be considered as an
example of long term dependence: S[−1]1 (S2 (ty)) increases in ty: the sooner (y) dies, the sooner
(x) dies. Note that if (y) dies at 0, then (x) dies at 0.

4.1.3 Fréchet lower bound

For C [u, v] = max [u+ v − 1, 0], we have C2 [u, v] = I{v>u−1}, so S1;t (s |Ty = ty ) only exists if
S2 (ty) > 1− S1 (t), which is always satisfied. In this case we get:

S1;t (s |Ty = ty ) =

(
1 for s < S

[−1]
1 (1− S2 (ty))− t

0 for s > S
[−1]
1 (1− S2 (ty))− t

,

with S[−1]1 (·) as defined in (13). In other words, given death of (y) at ty, (x) dies with certainty at
age x+ S−11 (1− S2 (ty)). The sooner (y) dies, the later (x) dies. Note that S1;t (s |Ty = ty ) = ωx
for ty = 0: death of (y) at 0 implies death of (x) not before attaining the limiting age. As stated
in Margus (2002), the death of one life prevents the death of the other life.

4.2 Archimedean copulas

Substituting (11) into (5) leads to:

µ1 (x+ t+ s |Ty = ty )

= µ1 (x+ t+ s)S1 (t+ s)
¡−φ0 (S1 (t+ s))

¢Ã−¡φ−1¢00 (v)¡
φ−1

¢0
(v)

!
(v=φ(S(t+s,ty)))

. (14)

Note that, in this expression only the function

−
Ã¡

φ−1
¢00
(v)¡

φ−1
¢0
(v)

!
(v=φ(S(t+s,ty)))

= −d
ln

∙
−
³¡
φ−1

¢0
(v)
´
(v=φ(S(t+s,ty)))

¸
dv

, (15)

depends on ty. If this function decreases (increases) in ty, then the dependence is of a long-term
(short-term) nature.

Our analyses establish that almost all of the copulas exhibit long term dependence. The first
four families listed in the table have a frailty specification. Frailty is a basic example of long
term dependence. This has been pointed out in Hougaard (2000), and will be demonstrated
here again.

Case 2 (Frailty) If the inverse of the generator is a Laplace transform, we have the general
expression

φ−1 (v) =
Z ∞

z=0
e−zvdF (z) ,

with F (z) denoting the c.d.f. of frailty. Then we have¡
φ−1

¢0
(v) =

Z
ze−zvdF (z) ,

and ¡
φ−1

¢00
(v) =

Z
z2e−zvdF (z) .
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So

d

dty

Ã
−
¡
φ−1

¢00
(v)¡

φ−1
¢0
(v)

!
(v=φ(S(t+s,ty)))

= φ0 (S2 (ty))S2 (ty)µ (y + ty)

R
z3e−zvdF (z)

R
ze−zvdF (z)− ¡R z2e−zvdF (z)¢2¡R
ze−zvdF (z)

¢2
≤ 0.

As the first illustration, we discuss the Clayton family. This type has some special properties, as
we will see in this, as well as in next section. This is followed by the Gumbel-Hougaard copula
(applied in Youn and Shemyakin (1999, 2001), Youn et al., 2002, and Denuit et al., 2001) and
Frank’s copula (applied in Frees et al., 1996, Carriere, 2000, and Margus, 2002).

Example 3 (Clayton) The inverse of the generator, φ−1 (τ) = (τ + 1)−
1
θ is the Laplace trans-

form of the Gamma(α, β) distribution with parameters α = θ−1 and β = 1. In general the

Laplace transform of a Gamma(α, β) distribution is φ−1 (τ) =
³
τ
β + 1

´− 1
θ
, leading to a gen-

erator φ (τ) = β
¡
t−θ − 1¢. From Genest and MacKay (1986b), we know that a generator is

determined up to a positive multiplier. Hence, the value of β does not affect the joint distribu-
tion. Equation (14) gives:

µ1 (x+ t+ s |Ty = ty ) = µ1 (x+ t+ s) (θ + 1)
(S1 (t+ s))−θ

(S1 (t+ s))−θ + (S2 (ty))−θ − 1
,

which is decreasing in ty. Note the special case ty = 0 (death immediately after issue), in which
case the above expression leads to:

µ1 (x+ t+ s |Ty = ty ) = (θ + 1)µ1 (x+ t+ s) .

In other words, if (y) dies immediately after issue of a contract, the force of mortality (x) is
(θ + 1) times the marginal force of mortality for any time in the future. We will discuss this
feature further in Section 5 where Clayton’s copula is considered again.

Example 4 (Gumbel-Hougaard) The inverse of the generator, φ−1 (τ) = exp
³
−τ 1

θ

´
is the

Laplace transform of the positive stable distribution, as pointed out in Frees and Valdez (1998).
Equation (14) gives:

µ1 (x+ t+ s |Ty = ty ) = µ1 (x+ t+ s)

Ã
(− lnS1 (t+ s))θ

(− lnS1 (t+ s))θ + (− lnS2 (ty))θ
!1− 1

θ

µ
1 + (θ − 1)

³
(− lnS1 (t+ s))θ + (− lnS2 (ty))θ

´− 1
θ

¶
,

which is decreasing as a value of ty.

Example 5 (Frank) The inverse of the generator, φ−1 (τ) = ln
£
1 +

¡
eθ − 1¢ e−τ ¤ /θ is the

Laplace transform of the logarithmic series distribution on the positive integers, as pointed out
in Frees and Valdez (1998). Equation (14) gives:

µ1 (x+ t+ s |Ty = ty ) = µ1 (x+ t+ s)S1 (t+ s) (−θ) eθS1(t+s)

1− eθS1(t+s)Ã
1− eθ

(1− eθ)− ¡1− eθS1(t+s)
¢ ¡
1− eθS2(ty)

¢! ,
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which is decreasing as a value of ty.

A simple check with Mathematica shows that Family 4 in Table 1 has a frailty specification as
well, implying that dependence is also of a long term type. The frailty distribution involves a
Bessel function. Families 5 to 8 in Table 1 feature long term dependence as well. Only Family
9, has short term dependence in some cases, as will be shown below.

Example 6 (Family 9) The inverse of the generator is φ−1 (τ) = 2−
1
θ

³
−τ +√4 + τ2

´ 1
θ .

Equation (14) gives:

µ1 (x+ t+ s |Ty = ty ) = µ1 (x+ t+ s) θ

Ã
1

S1 (t+ s)θ
− S1 (t+ s)θ

!
⎛⎝w (t+ s, ty) +

1
θ

q
4 + (w (t+ s, ty))

2

4 + (w (t+ s, ty))
2

⎞⎠ , (16)

with

w (t+ s, ty) =

Ã
1

S1 (t+ s)θ
− S1 (t+ s)θ

!
+

Ã
1

S2 (ty)
θ
− S2 (ty)

θ

!
.

For small ty and t+ s, i.e. young ages and or short durations, (16) is increasing as a function
of ty. On the other hand, for larger values of ty and/or t + s, it is decreasing as a function of
ty.

5 Copula models, both survive

5.1 Special cases

5.1.1 Independence

For C [u, v] = u v, (9) leads to

µ1 (x+ t+ s |Ty > t) = µ1 (x+ t+ s) ,

which is as expected: in case of independence, the mortality of one life does not depend on the
life history of the other life.

Furthermore, (10) leads to

St (s1, s2) =
S1 (t+ s)S2 (t+ s)

S (t, t)
= S1;t (s |Ty > t)S1;t (s |Ty > t) .

Hence, Ct (u, v) = uv: the joint distribution of remaining lifetime, given survival of both is the
independence copula again (as expected).

5.1.2 Fréchet upper bound

For C [u, v] = min [u, v], we have

S1;t (s |Ty > t) =
min [S1 (t+ s) , S2 (t)]

min [S1 (t) , S2 (t)]
,

11



and a similar expression for S2;t (s |Ty > t). In this case, (10) leads to

Ct [S1;t (s |Ty > t) , S2;t (s |Ty > t)] =
min [S1 (t+ s) , S2 (t+ s)]

S (t, t)

= min [S1;t (s |Ty > t) , S2;t (s |Ty > t)] .

In words, if the joint distribution has the Fréchet upper bound as copula at the outset, it will
continue to have the Fréchet upper bound as copula in the future.

5.1.3 Fréchet lower bound

For C [u, v] = max [u+ v − 1, 0], we have

S1;t (s |Ty > t) =
max [S1 (t+ s) + S2 (t)− 1, 0]

S (t, t)
,

and a similar expression for S2;t (s |Ty > t). In this case, (10) leads to

Ct [S1;t (s |Ty > t) , S2;t (s |Ty > t)] =
max [S1 (t+ s) + S2 (t+ s)− 1, 0]

S (t, t)

= max [S1;t (s |Ty > t) + S2;t (s |Ty > t)− 1, 0] .

In words, if the joint distribution has the Fréchet lower bound as copula at the outset, it will
continue to have the Fréchet lower bound as copula in the future.

5.2 Archimedean copulas

We start this subsection by deriving the copula of the conditional joint survival function, given
survival of both lives to a certain time in Subsubsection 5.2.1. Thereafter, in Subsubsection
5.2.2, we derive some time-dependent measures of association. Finally, in Subsubsection 5.2.3,
we give some examples, extracted from Table 1.

5.2.1 Updated joint distribution

For Archimedean copulas, with the generator as defined in Subsection 3.4, the conditional mar-
ginal survival function of remaining lifetime of (x), given survival of (x) and (y) to t, has the
following expression:

S1;t (s |Ty > t) =
φ−1 (φ (S1 (t+ s)) + φ (S2 (t)))

S (t, t)
, (17)

with a similar expression for S2;t (s |Tx > t). The force of mortality as defined in (9), is:

µ1 (x+ t+ s |Ty > t)

= µ1 (x+ t+ s) S1 (t+ s)
¡−φ0 (S1 (t+ s))

¢ Ã−¡φ−1¢0 (v)¡
φ−1

¢
(v)

!
(v=φ(S(t+s,t)))

. (18)

The next theorem demonstrates that, if the copula underlying the joint survival function at the
outset is Archimedean, then the copula of the conditional joint survival function, given survival
of both, is Archimedean as well.

12



Theorem 7 If the copula of a joint survival function copula at time 0 is Archimedean, then the
copula of the conditional joint survival function, given survival of both to t, is also Archimedean.
Let φ (·) denote the generator of the copula at time 0. Then φt (·), the generator of the Archimedean
copula at time t, is

φt (τ) = φ (τ · S (t, t))− φ (S (t, t)) , τ ∈ [0, 1] . (19)

Proof. We show that the joint distribution of remaining lifetime, given survival of both to t,
comprises the copula generated by φt (·) in (19). Note, first of all that φt (·) has all the properties
of a generator for an Archimedean copula, namely φt (1) = 0, φ

0
t (τ) < 0, and φ00t (τ) > 0. The

inverse of the generator φt (·), denoted by φ−1t (·), is

φ−1t (τ) =
φ−1 (τ + φ (S (t, t)))

S (t, t)
.

Applying (11), this leads to the updated copula, denoted by Ct [·, ·]:

Ct [u, v] =
φ−1 (φ (u · S (t, t)) + φ (v · S (t, t))− φ (S (t, t)))

S (t, t)
.

Substituting u = S1;t (s |Ty > t) and v = S2;t (s |Ty > t) gives, using expression (17)

Ct [S1;t (s |Ty > t) , S2;t (s |Tx > t)] =
φ−1 (φ (S1 (t+ s)) + φ (S2 (t+ s)))

S (t, t)

= Pr [Tx > t+ s, Ty > t+ s |Tx > t, Ty > t ] .

A similar result has been derived in Manatunga and Oakes (1996) in the context of the important
subclass of frailty models.

Next, we consider the case of copula families which remains constant in time. They can be
derived by solving the equation

φt (τ) = α (S (t, t))φ (τ) , (21)

for τ ∈ [0, 1]. The function α (S (t, t)) depends on S (t, t) only, and not on τ . In the Appendix,
we prove that the solution of this equation is:

φ (v) =
K

θ

³
v−θ − 1

´
, θ ∈ R \ {0} ,K ≥ 0.

which is the generator of Clayton’s copula.
It is well known that Clayton’s copula implies association which is independent of time.

Note, furthermore, that the Clayton family is the only type which satisfies this property.
In this subsection we use the notion of concordance ordering of copulas. A copula C(1) is

smaller than C(2) if C(1) (u, v) ≤ C(2) (u, v) for all u, v ∈ [0, 1]. For our analysis of the copulas
introduced in Subsection 3.4, we make use of some of the following theorems. The first one is
from Nelsen (1999). The second one is due to Nelsen (1999) and is an extension of a result in
Genest and MacKay (1986a). The last two have been derived in Genest and MacKay (1986a)
and can also be found in Nelsen (1999). We define ωxy = min [t |S (t, t) = 0] as the limiting age
which the joint-life status can obtain.

Theorem 8 Let Ct1 and Ct2 be Archimedean copulas, generated, respectively, by φt1 (·) and
φt2 (·). Then, if φt1 ◦ φ[−1]t2 is concave, then Ct1 < Ct2.
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Theorem 9 Let Ct1 and Ct2 be Archimedean copulas, generated, respectively, by φt1 (·) and
φt2 (·). Assume both generators to be continuously differentiable on (0, 1). Then if φ0t1 (·) /φ0t2 (·)
is nondecreasing on (0, 1), then Ct1 < Ct2 .

Theorem 10 Let {Ct |t ∈ [0, ωxy]}, be a family of copulas with continuously differentiable gen-
erators φt (·). Then C = limt→ωxy Ct is an Archimedean copula if and only if there exists a
function in Ω such that for all s, τ in (0, 1),

lim
t→ωxy

=
φt (s)

φ0t (τ)
=

φ (s)

φ0 (τ)
. (22)

Theorem 11 Let {Ct |t ∈ [0, ωxy]}, be a family of copulas with differentiable generators φt (·)
in Ω. Then limt→ωxy Ct (u, v) = min [u, v] if and only if,

lim
t→ωxy

=
φt (τ)

φ0t (τ)
= 0. (23)

Theorems 8 and 9 are used to investigate whether dependence has a monotone development
(increasing or decreasing) over time. If dependence is decreasing, Theorem 10 can be used to
find the limiting form of dependence. For instance, if φ (s) /φ0 (τ) = t ln s, then the limiting form
is independence. On the other hand, if dependence is increasing, Theorem 11 can be used to
check if maximal dependence is attained in the limit. Should this not be the case, then Theorem
10 could be applied to look for another limiting form. Note that we are actually dealing with
two parameters in the copula, namely θ and S (t, t), and we fix θ.

In each of the illustrating examples in Subsubsection 5.2.3 we derive the generator as a
function of time.

5.2.2 Time-dependent measures of association

Several time-dependent measures of association have been developed in the literature. We discuss
two which are related to Kendall’s tau, denoted by τ (Tx, Ty). It is defined as:

τ (Tx, Ty) = 4

Z 1

u=0

Z 1

v=0
C [u, v] dC [u, v] + 1. (24)

Kendall’s tau does not depend on the distribution of the marginals and this explains its pop-
ularity. Independence, comonotonicity and countermonotonicity imply values for Kendall’s tau
of 0, 1 and −1, respectively.

From Genest and MacKay (1986a, 1986b), we know that for Archimedean copulas, (24)
reduces to

τ (X1,X2) = 4

Z 1

u=0

φ (v)

φ0 (v)
dv + 1. (25)

One measure of time-dependent association is Kendall’s tau pertaining to the copula constructed
by the generator φt (τ), defined in (19). We will denote it by eτ t (T1, T2). Hence

eτ t (Tx, Ty) = 4Z 1

u=0

φt (v)

φ0t (v)
dv + 1 =

4

S (t, t)

Z 1

u=0

φ (u · S (t, t))− φ (S (t, t))

φ0t (u · S (t, t))
dv + 1. (26)

Manatunga and Oakes (1996) define this version of Kendall’s tau as the truncated tau. They
present alternative definitions of eτ t (Tx, Ty).
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The second measure to be discussed is the cross-ratio function CR (S (t, t)), which has been
introduced by Clayton (1978). Its characteristics are discussed in Oakes (1989). It is defined by
Oakes as:

CR (S (t1, t2)) =
S (t1, t2)

d
dt1

d
dt2

S (t1, t2)
d
dt1

S (t1, t2)
d
dt2

S (t1, t2)
. (27)

An interpretation of this quantity as an odds-ratio is given in Anderson et al. (1992). Some
properties of the cross-ratio function are derived in Gupta (2003). Oakes also points out that

τ t (Tx, Ty) =
CR (S (t1, t2))− 1
CR (S (t1, t2)) + 1

, (28)

is a conditional version of Kendall’s tau.
For two reasons, we prefer the cross-ratio function to the truncated tau, as the degree of

time-dependent association. First of all, an alternative definition of CR (·) is

CR (S (t1, t2)) =
µ1 (x+ t1 |Ty = t2 )

µ1 (x+ t1 |Ty > t2 )
. (29)

The interpretation is clear: it indicates the relative rate of increase of the force of mortality of
the survivor at t1 upon death of the partner at t2.

Secondly, the cross-ratio function is easier to evaluate than the truncated tau, as no inte-
gration is required. This is shown by dividing (14) by (18), using t2 = t1 = t = ty. This leads
to:

CR (S (t, t)) =

⎛⎜⎝φ−1 (v)
¡
φ−1

¢00
(v)³¡

φ−1
¢0
(v)
´2

⎞⎟⎠
v=φ(S(t,t))

. (30)

In other words, the cross ratio function only depends on the inverse of the generator. This result
has been derived in Oakes (1994).

Hougaard (2000) and Hougaard et al. (1992) have applied the cross-ratio function in the
statistical analysis of twin data.

In each of the illustrating examples in Subsubsection 5.2.3, we will derive the cross-ratio
function. Note that the papers introduced in this subsubsection focus on frailty models (being
a subclass of Archimedean copulas) while this contribution deals with Archimedean copulas in
general.

Some other measures of time-dependent association between two lives have appeared in the
literature. Anderson et al. (1992) introduce the “Conditional expected residual life” and the
“Conditional probability of survival”. Some of their properties have been derived in Gupta
(2003). Bassan and Spizzichino (2001) introduce and discuss a bivariate aging function which
can be used in the special case of exchangeable lifetimes (i.e. (x) and (y) have the same law of
mortality).

5.2.3 Examples

First of all, we discuss the Clayton copula, followed by Gumbel-Hougaard and Frank.

Example 12 (Clayton) For φ (τ) = δ
¡
τ−θ − 1¢, θ > 0 and any δ > 0, we have for (18):

µ1 (x+ t+ s |Ty > t) = µ1 (x+ t+ s)
(S1 (t+ s))−θ

(S1 (t+ s))−θ + (S2 (t))−θ − 1
.
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For (19), we have

φt (τ) = δ (S (t, t))−θ
³
τ−θ − 1

´
= δ (S (t, t))−θ φ (τ) , (31)

so the copula essentially remains the same throughout time. It follows that the association
remains the same as well. This is a confirmation of a previous result. The cross-ratio function
is therefore constant in time, and equal to θ + 1.

Example 13 (Gumbel-Hougaard) For φ (τ) = (− ln [τ ])θ, θ ≥ 1, we have for (18):

µ1 (x+ t+ s |Ty > t) = µ1 (x+ t+ s)

Ã
(− lnS1 (t+ s))θ

(− lnS1 (t+ s))θ + (− lnS2 (t))θ
!1− 1

θ

. (32)

For (19), we have
φt (τ) = (− ln [τS (t, t)])θ − (− ln [S (t, t)])θ . (33)

Using Theorem 9, we obtain that Ct < C and using Theorem 10, we find that the association
between the two lifetimes reduces to zero. In other words, the two lives become less dependent as
they age. The cross-ratio function is:

CR ((S (t, t))) = 1 +
θ − 1

− lnS (t, t) . (34)

Example 14 (Frank) For φ (τ) = − ln £¡eθτ − 1¢ / ¡eθ − 1¢¤, we have for (18):
µ1 (x+ t+ s |Ty > t)

= µ1 (x+ t+ s) ¡
1− eθS2(t)

¢
eθS1(t+s) (−θ)S1 (t+ s)¡

(eθ − 1) + ¡eθS1(t+s) − 1¢ ¡eθS2(t) − 1¢¢ ln ∙1 + (eθS1(t+s)−1)(eθS2(t)−1)
eθ−1

¸ . (35)

For (19), we have

φt (τ) = − ln
eθS(t,t)τ − 1
eθS(t,t) − 1 . (36)

One can see from this expression that the copula pertaining to time belongs to the Frank family
as well with parameter θ updated to θ ·S (t, t). As time proceeds, the parameter approaches zero,
implying independence. The cross-ratio function is:

CR (S (t, t)) = − θS (t, t)

1− eθS(t,t)
. (37)

Most copulas give a decreasing dependence over time leading to independence as t approaches
ωxy. Families 8 and 9 of Table 1 are the only types where dependence is increasing over time.
Family 8 will be treated below.

Example 15 (Family 8 of Table 1) If φ (τ) = exp
¡
t−θ
¢ − e, θ ≥ 1, then the inverse is

φ−1 (τ) = (ln [τ + e])−
1
θ . we have for (18):

µ1 (x+ t+ s |Ty > t)

= µ1 (x+ t+ s)
S1 (t+ s)−θ

ln
h
exp

h
S1 (t+ s)−θ

i
+ exp

h
S2 (ty)

−θ
i
− e
i

exp
h
S1 (t+ s)−θ

i
exp

h
S1 (t+ s)−θ

i
+ exp

h
S2 (ty)

−θ
i
− e

. (38)
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Copula Duration 10 Duration 20 Duration 30
Clayton 117, 158 79, 471.1 48, 556.4
Gumbel-Hougaard 116, 682 77, 329.8 47, 973.5
Family 8 117, 024 79, 822.6 48, 650
Family 9 116, 949 80, 458.3 47, 998.9
Independence 115, 605 75, 038.7 45, 170.5

Table 2: Provisions if (y) is still alive

For (19), we have

φt (τ) =
exp

h
(τ · S (t, t))−θ

i
− exp

h
(S (t, t))−θ

i
S (t, t)

. (39)

Using Theorem 9, we obtain that Ct > C and using Theorem 11, we find that the association
between the two lifetimes increases to comonotonicity. In other words, the two lives become more
dependent as they age. The cross-ratio function is

CR (S (t, t)) = 1 + θ
³
1 + [S (t, t)]−θ

´
. (40)

6 Numerical example

We consider a policy taken out by a couple where (x) = (y) = 60. The policy secures various
benefits, one of which is a whole-life annuity due of 10, 000 p.a., payable on life (x) while alive,
independent of the life status of (y). These benefits are payable by single premium, which is
156, 309 (irrespective of the degree of association, as (x) and (y) are coupled by the copula upon
issue). The marginals S1 (·) and S2 (·) are specified by the British life tables PMA92C20 and
PFA92C20, respectively. We assume that deaths are uniformly distributed between consecutive
integer ages. Interest is at 4% p.a..

As copulas, we choose:

1. Clayton (long-term dependence, association constant over time);

2. Gumbel-Hougaard (long-term dependence, association decreasing in time);

3. Family 8 (long-term dependence, association increasing in time);

4. Family 9 (partially short-term dependence, association increasing in time);

For each copula, the parameter corresponds to a value of Kendall’s τ equal to 0.5 at the outset.
We calculate the provisions at durations 10, 20 and 30. Table 2 shows the provisions that apply
if (y) is still alive on the valuation date. Obviously these provisions are higher than in the case
of independence.

Figure 1 displays the curves for duration 10. For Clayton, Gumbel-Hougaard, and Family 8,
the provisions are increasing as a function of ty, the time-of-death of (y). Since all these copulas
feature long-term dependence, this is not a very surprising result. The more distant the time of
death of the partner, the higher the mortality of the remaining life, and hence the smaller the
provisions. The provisions relating to Family 9 are slightly decreasing in ty (from about 109, 150
for ty = 0 to 108, 900 for ty = 10), reflecting the short-term dependence for short durations. The
provisions are maximal for this Family 9, while they are minimal for Gumbel-Hougaard, which
varies between 46, 000 and 52, 000. Figure 2 gives the provision at duration 20. Again, Family
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Figure 1: Provision at duration 10 as a function of the time of death of (y). (Gumbel-Hougaard:
dashed-dotted; Clayton: solid; Family 8: dashed; Family 9: dotted).
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Figure 2: Provision at duration 20 as a function of the time of death of (y). (Gumbel-Hougaard:
dashed-dotted; Clayton: solid; Family 8: dashed; Family 9: dotted).

18



5 10 15 20 25 30
Time of death

25000

27500

30000

32500

35000

37500

Provision

Figure 3: Provision at duration 30 as a function of the time of death of (y). (Clayton: solid; Family 8:
dashed; Family 9: dotted; Gumbel-Hougaard: dashed-dotted ).

9 (now slightly increasing as a function of ty) gives the largest provisions, followed by Family
8. Now it is Clayton giving minimal values. Figure 3 gives the provisions at duration 30. Now
Gumbel-Hougaard and Family 9 display the largest values, while the provisions corresponding
to Clayton’s copula are still minimal. We have done a similar exercise regarding provisions to
be kept if the female annuitant is alive and the male has died, again for Kendall’s τ equal to 0.5.
In that case the graphs look a bit different. We have also done investigations based on smaller
and larger values of Kendall’s coefficient of concordance. Different patterns arise for different
cases, and the sizes of the provisions are by no means ordered, in the sense that e.g. Family
9 and Gumbel-Hougaard always give maximal values and minimal values for the provisions.
The provisions produced from Gumbel-Hougaard’s copula become relatively larger compared to
other copulas as the duration goes up, while relatively low values result from Clayton’s copula.

It is difficult to explain all the features arising. This example, however, mainly serves to
illustrate that provisions can differ substantially for different copulas, even if the association at
the outset is the same. This implies that a copula should be chosen with care. Probably the
results will differ for different combinations of ages at issue.

7 Discussion

In this paper, we have derived the type of association, as well as the aging properties, of some
single parameter dependence models.

If two lifetimes are independent at the outset, then the time of death of one life has no impact
at all on the mortality of the other life. Moreover, the conditional remaining lifetimes, given
survival of both to a certain time, will remain independent. These results are easily understood
by intuitive reasoning.

In case of a copula model, the mortality of one life always depends on the time of death
of the other life, unless the lifetimes are independent. We have discussed several Archimedean
copulas which allow for Positive Quadrant Dependence and incorporated the special case of
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independence. We conclude that for all the copulas studied, there is no one which incorporates
pure short-term dependence.

The question is whether this is realistic within the framework of married couples. Jagger &
Sutton (1991) and Parkes et al. (1969) have shown that in most empirical studies the mortality
of widowers increases sharply after death of their spouse, but returns to normal levels within
a period of about six months. Hougaard (2000) suggests that for married couples, short-term
dependence is probably more relevant than long-term dependence, and that for twins, probably
the opposite holds. Firstly, contrary to twins, married couples do not have common genes, but
only share their living environment. Secondly, the broken heart syndrome is a more significant
feature among married couples than it is among twins. The applications carried out in Hougaard
(2000), Hougaard et al. (1992) and Anderson et al. (1992) are all based on twin data.

Probably both the long term and the short term dependence effects merit separate para-
meters, so single parameter models may be too limited to capture all the types of dependence
featured. This is a topic for future research.

Furthermore, we have investigated the aging properties of some Archimedean copula models.
We have established that in most cases the association between lifetimes decreases over time.
In other words, individuals become less dependent as they age. Moreno (1994), devoting a
discussion to aging in some frailty models, suggests that this pattern is intuitively desirable. His
reasoning is that “if two lives have died, their survival experiences become independent of each
other”. He uses the frailty distributions of Inverse Gaussian and a multiple point distribution
as illustrations. Moreno argues that increasing dependence can occur if the mortality of some
couples is extremely low, which is the case for Poisson distributed frailty.

These arguments may make sense if dependence is of a distinct long term nature, as specified
by frailty models. For married couples, the assumption that dependence will diminish over time,
seems stark. A young individual who is still engaged in paid employment will usually have a
more extensive social network than a retiree, and hence better able to handle the shock of death
of the partner. Moreover, youngsters have more opportunities to remarry. If an individual
has been married for a long while, the shock of death of the spouse may have more dramatic
(emotional) effects than for a life who has only got a partner for a couple of years.

This all gives arguments to use more sophisticated models to describe dependence, by al-
lowing for short term dependence, as well as instantaneous dependence. Youn and Shemyakin
(1999, 2001) have captured these two types of dependence by classifying individuals according
to the age difference between the female and the male member of each couple. However, given
any age difference, they use the Gumbel-Hougaard copula to specify the dependence between
the lifetimes. As we have seen in this paper, using this copula implies assuming that there is
long-term dependence and association is decreasing as both lives age.
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A Proof in Subsubsection 5.2.1

In this Appendix, we solve the equation (21), namely

φt (τ) = α (S (t, t))φ (τ) , (41)

for φ (τ). Taking derivatives of both sides with respect to τ gives

α (S (t, t)) =
S (t, t)φ0 (S (t, t) · τ)

φ0 (τ)
. (42)

We take the derivative of both sides with respect to τ again, and establish that the following
relationship must hold:

S (t, t)φ00 (S (t, t) · τ)
φ0 (S (t, t) · τ) =

φ00 (τ)
φ0 (τ)

. (43)

Hence, the right hand side of the above equation does not depend on S (t, t). Taking the
derivative of both with respect to S (t, t) gives the following differential equation for v = S (t, t)·τ :¡

v · φ000 (v) + φ00 (v)
¢
φ0 (v)− v

£
φ00 (v)

¤2
= 0. (44)

This differential equation is solved by

φ (v) =
K2

1 +K1
v1+K1 +K3, (45)

for some real valued constants K1, K2, and K3. The conditions φ0 (v) < 0 and φ00 (v) > 0 give
K2 < 0 and K1 < 0. Furthermore, the condition φ (1) = 0 gives K3 = − K2

1+K1
. The final

condition limv↓0 φ (v) =∞ leads to K1 < −1. Substituting θ = − (1 +K1), we get

φ (v) = −K2

θ

³
v−θ − 1

´
, (46)

which is the generator of Clayton’s copula.
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