provided by City Research Online

Haberman, S. & Russolillo, M. (2005). Lee Carter mortality forecasting: application to the Italian population (Report No. Actuarial Research Paper No. 167). London, UK: Faculty of Actuarial Science & Insurance, City University London.



City Research Online

**Original citation**: Haberman, S. & Russolillo, M. (2005). Lee Carter mortality forecasting: application to the Italian population (Report No. Actuarial Research Paper No. 167). London, UK: Faculty of Actuarial Science & Insurance, City University London.

Permanent City Research Online URL: http://openaccess.city.ac.uk/2299/

#### Copyright & reuse

City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

#### Versions of research

The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

#### **Enquiries**

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at <a href="mailto:publications@city.ac.uk">publications@city.ac.uk</a>.



# Faculty of Actuarial Science and Statistics

# Lee Carter Mortality Forecasting: Application to the Italian Population

Steven Haberman and Maria Russolillo

Actuarial Research Paper No. 167

November 2005

ISBN 1901615-93-6

Cass Business School 106 Bunhill Row London EC1Y 8TZ T +44 (0)20 7040 8470 www.cass.city.ac.uk "Any opinions expressed in this paper are my/our own and not necessarily those of my/our employer or anyone else I/we have discussed them with. You must not copy this paper or quote it without my/our permission".

Lee-Carter mortality forecasting: application to the Italian population\*

Steven Haberman<sup>†</sup> and Maria Russolillo<sup>‡</sup>

November 2005

**Abstract** 

In this paper we investigate the feasibility of using the Lee-Carter methodology to construct mortality forecasts for the Italian population. We fit the model to the matrix of Italian death rates for each gender from 1950 to 2000. A time-varying index of mortality is forecasted in an ARIMA framework and is used to generate projected life tables. In particular we focus on life expectancies at birth and, for the purpose of comparison, we introduce an alternative approach for forecasting life expectancies on a period basis.

The resulting forecasts generated by the two methods are then compared.

Keywords: Lee-Carter methodology; Mortality forecasting; Time series; Life expectancy

JEL Classification: C53, G22

We wish to thank Emilia Di Lorenzo for her helpful and constructive comments.

† Faculty of Actuarial Science and Statistics, Cass Business School, City University, London, e-mail: s.haberman@city.ac.uk

<sup>‡</sup> Department of Mathematics and Statistics, University of Napoli "Federico II", e-mail: mrussoli@unina.it

#### 1. Introduction and motivation

#### 1.1. Mortality on the move

During the 20<sup>th</sup> century life expectancy has increased dramatically. The Human Mortality Database shows that Italian life expectancy at birth from 1900 to 1999 rose from 41.90 to 82.26 years for females and from 41.65 to 76.12 for males. Moreover, the trends in mortality rates for many industrialised countries have also been downwards for several years. Usually we view such mortality improvements in an optimistic way: according to the statistics we live longer than our ancestors. But these changes clearly affect pricing and reserve allocation for life annuities and represent one of the major threats to a social security system that has been planned on the basis of more modest life expectancy. Even when using updated mortality tables, these trends in mortality reduction present risks for insurers. This is because these tables do not take these trends into account. Put otherwise, the risk is of underestimating the survival probability, thus determining inappropriate premiums. This risk, is known in the actuarial literature as Longevity Risk, that being the risk derived from a future mortality rate which, ex post, does not reflect the forecasted one: see Brouhns, Denuit, Vermunt (2002b). To face this risk, it is necessary to build projected tables including this trend. Thus, reasonable mortality forecasting techniques have to be used to consistently predict the trends (Brouhns, Denuit, Vermunt, 2002a).

In this paper, we investigate how the Lee Carter approach can be used to forecast mortality (Lee and Carter, 1992; Lee, 2000; Lee and Miller, 2000; Lee and Miller, 2001), by using the Italian mortality experience of the past half-century. We follow the methodology of Renshaw and Haberman (2003a), which is the inspiration for the paper.

There were two reasons for selecting the Lee-Carter model in our work. Firstly, this model represents one of the most influential recent developments in the field of mortality forecasts. Secondly, the important feature of this model is that for a precise value of the time index k, we can define a complete set of death probabilities that allow us to calculate all of the life table. Once we estimate the parameters, depending on age  $\{\alpha_x, \beta_x\}$ , they stay constant and invariant through time. Hence, when we know k, we can use the parameters for any year of interest. Another important feature that drove us to choose this model is that traditional projection models provide the forecaster with point estimates of future mortality rates. On the contrary, the LC method allows for uncertainty in forecasts (the so-called longevity risk).

The paper is organised as follows. Section 2 describes the Lee-Carter method for mortality projection and introduces the notation used in this paper. Model fitting on Italian mortality data is illustrated, with particular attention to the re-estimation of  $k_t$ . The standard Box and Jenkins methodology to generate an ARIMA model for the mortality index  $k_t$  is discussed in Section 3. Section 4 is devoted to forecasting the index of mortality, which is used to generate associated life table values. Next a comparison between the LC and the alternative approach to forecast life expectancies at birth is examined. Concluding comments are presented in Section 5.

#### 2. Lee-Carter mortality forecasting methodology

#### 2.1. The model

The Lee-Carter method is a powerful approach to mortality projections which describes the log of a time series of age-specific death rates  $m_{x,t}$  as the sum of an age-specific component  $\alpha_x$ , that is independent of time and

another component that is the product of a time-varying parameter  $k_t$ , reflecting the general level of mortality, and an age-specific component  $\beta_x$ , that represents how rapidly or slowly mortality at each age varies when the general level of mortality changes:

(1) 
$$\ln(m_{xt}) = \alpha_x + \beta_x k_t + \varepsilon_{xt}$$

This interesting alternative for forecasting mortality was proposed in 1992 by Lee and Carter, who published a new method extrapolating long-run forecasts of the level and age pattern of mortality, based on a combination of statistical time series methods and parametric approach.

#### 2.2. Notation and data

In this contribution we fit the Lee-Carter model to the matrix of Italian death rates, from year 1950 to 2000. Then we use the forecasts of this single parameter to generate forecasts both of the level and of the age distribution of mortality for the next 25 years. In particular we focus on life expectancies at birth and, for the purpose of comparison, we introduce an alternative approach for forecasting life expectancies on a period basis.

The data for the Italian population, supplied by the Human Mortality Database, is divided by gender (Wilmoth et Al., 2000). Rather than using the entire dataset, we consider a subgroup of death rates for five-year age groups under 105 years old, so as to only cover five-year groups with a sample size significant enough for our analysis. The same is repeated for the corresponding exposure to risk. We denote the "Number of deaths" and the "Exposure to risk" by two 5×1 matrices, where the first number refers to the age interval, and the second number refers to the time interval (Elandt-Johnson and Johnson, 1980). For each gender and for each calendar year:  $t = t_1, t_1 + 1, \dots, t_1 + h - 1 = t_n$ , where  $h = t_n - t_1 + 1$ , we consider all ages  $x = x_1, x_2, \dots, x_k$ , grouped the in classes as

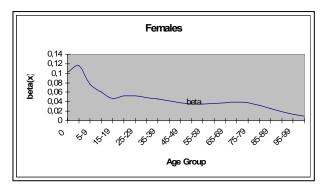
[0,1-4,5-9,10-14,...,95-99,100-104]. From these data we construct an array of crude rates of deaths  $m_{x,t} = \frac{d_{x,t}}{e_{x,t}}$ .

#### 2.3. Model fitting

The LC model cannot be fitted by ordinary regression methods, because there are no given regressors; thus in order to find a least squares solution to the equation (1) we use a close approximation, suggested by Lee and Carter (1992), to the singular value decomposition (SVD) method, assuming that the errors are homoschedastic. To obtain a unique solution, we impose that the sum of the  $\beta_x$  coefficients is equal to 1.0, and that the sum of the  $k_t$  parameters is equal to zero.

Under these assumptions, it can be seen that the  $\alpha_x$  coefficients must be simply the average values over time of the  $\ln(m_{x,t})$  values for each x.

We estimate  $\alpha_x$  as the logarithm of the geometric mean of the crude mortality rates, averaged over all t, for each x:


(2) 
$$\alpha_x = \frac{1}{h} \sum_{t=t}^{t} \ln m_{xt} = \ln \left[ \prod_{t=t}^{t} m_{xt}^{\frac{1}{h}} \right]$$

Furthermore,  $k_t$  must equal the sum over age of  $(\ln(m_{x,t})-\alpha_x)$ . All that remains, is to estimate the  $\beta_x s$ . We found each  $\beta_x$  by regressing  $(\ln(m_{x,t})-\alpha_x)$  on  $k_t$ , without a constant term, separately for each age group x. More precisely, we estimate  $\beta_x$  from  $(\ln m_{xt}-\alpha_x)=\beta_x k_t^{(1)}+\varepsilon_{xt}$  (where  $k_t^{(1)}$  refers to the  $k_t$  estimated above) using the least squares estimation, i.e. choosing  $\beta_x$  to minimize  $\sum_{x,t} (\ln m_{xt}-\alpha_x-\beta_x k_t^{(1)})^2 \Rightarrow \beta_x = \frac{\sum_{t=1}^m k_t^{(1)}(\ln m_{xt}-\alpha_x)}{\sum_{t=1}^m k_t^{(1)}}$ . The raw

estimates of  $\alpha_x$ ,  $\beta_x$  and  $k_t$  are inserted in the Appendix A.

Here  $\alpha_x$  describes the general age shape of the age specific death rates  $m_{x,t}$ , while  $k_t$  is an index that describes the variation in the level of mortality to t. The  $\beta_x$  coefficients describe the tendency of mortality at age x to change when the general level of mortality  $(k_t)$  changes. When  $\beta_x$  is large for some x, then the death rate at age x varies substantially when the general level of mortality changes (as with x=0 for infant mortality, for example) and when  $\beta_x$  is small, then the death rates for that age vary little when the general level of mortality changes (as is often the case with mortality at older ages).

The Lee Carter model also assumes that all the age specific death rates move up or down together, although not necessarily by the same amounts, since all are driven by the same period index,  $k_t$ . Although not all occurrences of  $\beta_x$  need to have the same sign, in practice all the  $\beta_x s$  do have the same sign, at least when the model is fit over fairly long periods. As shown in the Appendix A, the  $\beta_x s$  for both females and males have the same sign, which is positive. In Fig. 1, the values of  $\beta_x$ , as determined with the SVD, are plotted against x, for each case separately i.e. by gender.



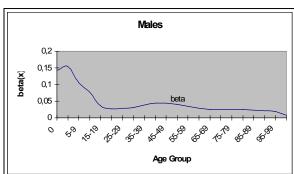



Fig.1 Beta versus age

From Fig.1 we can see that when  $\beta_x$  is large for some x, then the death rate at age x varies significantly when the general level of mortality changes (again, as with x=0 for infant mortality) and when  $\beta_x$  is small,

then the death rate at that age varies little when the general level of mortality changes. This often the case with mortality at older ages.

#### 2.4. Reestimating kt

Because the first stage estimation is based on logs of death rates rather than the death rates themselves, sizable discrepancies can occur between predicted and actual deaths. To guarantee that the fitted death rates will lead to the actual numbers of deaths, when applied to given population age distribution, we have reestimated  $k_t$  in a second step, taking the  $\alpha_x$  and  $\beta_x$  estimates from the first step. To correct for this, we apply the methodology from Section 3 of Lee and Carter (1992). We thereby find a new estimate for k by an iterative search, adjusting the estimated  $k_t$  so that the actual total observed deaths  $\sum_{x=x_1}^{x_k} d_{xt}$  equal the total expected deaths  $\sum_{x=x_1}^{x_k} e_{xt} e^{(\alpha_x + \beta_x k_t)}$ , for each year t.

The iterative method proceeds as follows:

- 1) We compare the total expected deaths  $\sum_{x=x_1}^{x_k} e_{xt} e^{(\alpha_x + \beta_x k_t^{(1)})}$  to the actual total observed deaths  $\sum_{x=x_1}^{x_k} d_{xt}$  in each period.
- 2) This comparison reveals one of three possible states:
  - (i) If  $\sum_{x=x1}^{xk} e_{xt} e^{(\alpha_x + \beta_x k_t^{(1)})} > \sum_{x=x1}^{xk} d_{xt}$ , we need to decrease the expected deaths, adjusting the estimated  $k_t$  so that the new estimate of  $k_t$ , say  $k_t^{(2)}$ , will be:  $k_t^{(2)} = k_t^{(1)} (1-d)$ , if  $k_t^{(1)} > 0$  (where  $k_t^{(1)}$  is the first estimate of  $k_t$ );  $k_t^{(2)} = k_t^{(1)} (1+d)$ , if  $k_t^{(1)} < 0$ , where d is a small number.
  - (ii) If  $\sum_{x=x_1}^{xk} e_{xt} e^{(\alpha_x + \beta_x k_t^{(1)})} = \sum_{x=x_1}^{xk} d_{xt}$ , we stop here the iterations.

(iii) If 
$$\sum_{x=x1}^{xk} e_{xt} e^{(\alpha_x + \beta_x k_t^{(1)})} < \sum_{x=x1}^{xk} d_{xt}$$
, we need to increase the expected deaths adjusting the estimated  $k_t$  so that :  $k_t^{(2)} = k_t^{(1)} (1+d)$ , if  $k_t^{(1)} > 0$ ;  $k_t^{(2)} = k_t^{(1)} (1-d)$ , if  $k_t^{(1)} < 0$ .

#### 3) Go back to Step 1.

As Lee and Carter (1992) point out, this approach differs from the direct SVD estimates. This is because the low death rates of youth contribute far less to the total deaths, yet when fitting the log-transformed rates they are weighted equivalently to the high death rates of the older ages. It is also worth noting that differences in population age group sizes also results in different weights in the second-stage estimation of k.

#### 2.5. First application and comments

We have run this iterative process 1000 times using a VBA macro and Microsoft Excel to find the new estimate of k, shown in the Appendix B.

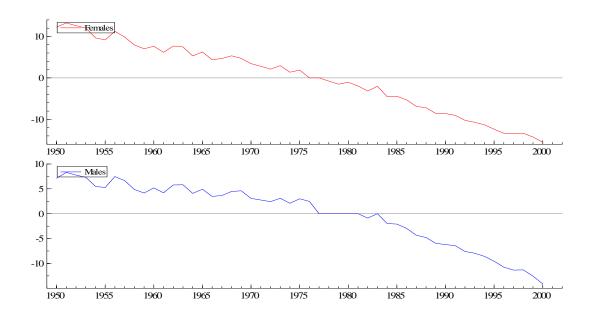



Fig.2 Re-estimates of k

Fig.2 plots estimates of k, for females and males; as shown, k declines roughly linearly from 1950 - 2000, more for females than for males. If we look at the values of k, shown in Appendix B, k declines at about the same pace during the first half of the period as it does during the second half. It also is striking that short-run fluctuations in k do not appear much greater in the first part of the period than they do in the second, with the exception of the male series in the first years. We can note that these results are consistent with the findings of Lee and Carter (1992) in their analysis of the total USA population. Both these features of k (its linear decline and its relatively constant variance) are very convenient for forecasting purposes. We can see from the re-estimated  $k_t$  that mortality improved in Italy. For the purposes of comparison with other countries, for example Britain (as presented in Renshaw and Haberman, 2003a), we can see that the Italian improvement is more pronounced. This is probably due to the fact that mortality was initially higher in Italy than in Britain, making the relative improvement greater and therefore more apparent. If we compare male to female mortality we might expect to see the same effect. Male mortality is higher than female mortality, thus possible improvements in male mortality could again be more evident than improvements in female mortality in an analogous way to the country comparison.

#### 3. ARIMA methodology

#### 3.1. Modelling mortality index

The estimated time-dependent parameter  $k_t$  can be modelled as a stochastic process; we thus used the standard Box and Jenkins methodology (identification-estimation-diagnosis) to generate an appropriate ARIMA (p,d,q) model for the mortality index  $k_t$  (Box and Jenkins, 1976; Hamilton, 1994).

Considering the time series given by the reestimated  $k_t$ , we need to identify a correct model, for our series, among the general class of ARIMA models. The procedure to construct the model goes through different iterative phases to arrive at a model that fits our data well (Francis X. Diebold, 2004; Makridakis, Wheelwright, Hyndman, 1998). The phases are the following:

- 1) Preliminary analysis of the series and possible transformation.
- 2) Identification of the order of the model.
- 3) Parameter estimation.
- 4) Evaluation of the model.

In the first step, we analyse the general pattern of the time series, as is illustrated in Fig. 2. A clear, almost linear, trend emerges, indicating that mortality enjoyed a steady erosion over the years.

The input series for an ARIMA needs to be stationary, that is, it should have a constant mean, variance, and autocorrelation through time. Therefore, the series usually needs to be differenced first until it is stationary. The number of times the series needs to be differenced to achieve stationarity is reflected in the d parameter. In order to determine the necessary level of differencing, one should examine the plot of the data and autocorrelogram, that displays graphically and numerically the autocorrelation function (ACF). We examine the ACF of the series and choose the value of d that gives rise to a rapid decrease of the ACF towards zero.

#### 3.2. Identification phase

In the Identification phase, after we made the series stationary, we also need to decide how many autoregressive parameters (p) and/or moving average parameters (q) are necessary to yield an effective, but still parsimonious model of the process. We experimented with twelve models,

based on combinations of the p and q parameters varying between zero and two. The sample autocorrelations and partial autocorrelations, together with related diagnostics, provided graphical aids to model selection. This complemented our automatic identification criteria, the Akaike and Schwarz information criterion per model. To guide model selection we use these two criterions even though the SIC usually selects more parsimonious models due to its greater concern over the number of parameters to be estimated. Using a model selection strategy involving not just examination of AIC and SIC, but also examination of autocorrelations and partial autocorrelations, we are led to choose the ARIMA (0,1,0) for males and an ARIMA (0,1,1) for female. For males a model with an ar(1) term added could be marginally superior, but we preferred a random walk with drift on grounds of parsimony. We examine the general pattern of the time series for both genders in Fig.2, and we saw that a clear, decreasing trend emerges for each, indicating that the series are not stationary in mean. We are led to the same conclusions if we look at the autocorrelation function or the partial autocorrelation functions in Fig.3 (females) and 4 (males).

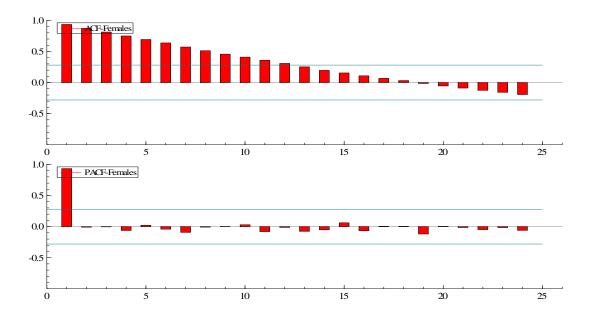



Fig.3 Female autocorrelation and partial autocorrelation function

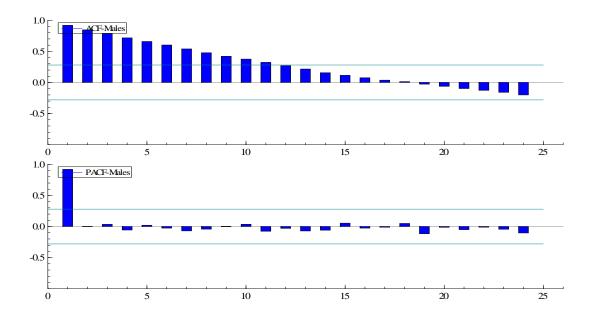



Fig.4 Male autocorrelation and partial autocorrelation function

As we can see, if we look at the graph of the autocorrelation function (ACF), this approaches zero gradually rather than abruptly. On the contrary, the partial autocorrelation function (PACF) cuts off abruptly; specifically, at displacement 1, the partial autocorrelations are significant while coefficients on all longer lags are zero. This is a clear sign of a nonstationary series.

Thus, following the Box and Jenkins methodology, we considered the differenced series, which we show in Fig.5

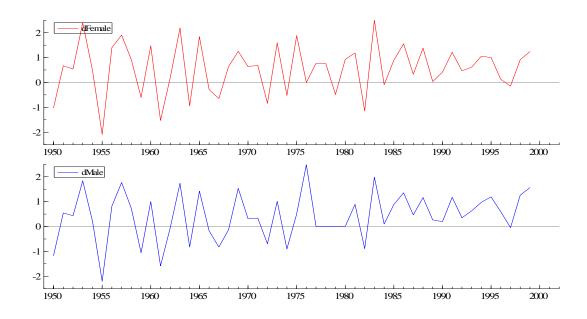



Fig.5 Differenced female and male series

After differencing the series, the nonstationarity in mean seems to be eliminated. Also the autocorrelation and partial autocorrelation functions (Fig.6), become consistent with the hypothesis of a stationary series. Because of the decreasing trend, when we estimated our model we also took a constant into consideration.

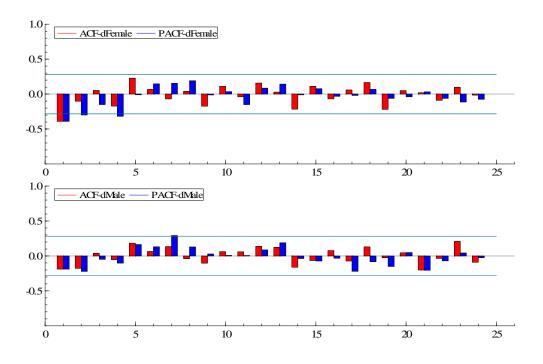



Fig.6 Autocorrelation and partial autocorrelation functions after differencing the series

#### 3.3. Parameters estimation

Concerning the third phase, there are several different methods for estimating parameters. All of them should produce very similar estimates, but may be more or less efficient for any given model. Model parameters are estimated using statistical software, in our case time series estimation was performed by EViews using a least squares procedure. The  $k_t$  index for males was modelled as an ARIMA (0,1,0) process, i.e.:

$$K_{t} = K_{t-1} + \lambda + \varepsilon_{t}$$

and for females as an ARIMA (0,1,1) process, i.e.:

$$K_{t} = K_{t-1} + \lambda + \varepsilon_{t} - \theta_{1} \varepsilon_{t-1}$$

The constant terms  $\lambda$  indicate the average annual change of  $k_t$ . It is this change that drives the forecasts of the long-run change in mortality.  $\theta$  represents the moving average term.

The estimated parameters for both genders, and their standard errors, appear in the table below:

Male ARIMA (0,1,0)

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| λ        | -0.424882   | 0.137488   | -3.090321   | 0.0033 |

Female ARIMA (0,1,1)

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| λ        | -0.566485   | 0.045168   | -12.54168   | 0.0000 |
| θ        | -0.644956   | 0.108801   | -5.927839   | 0.0000 |

The autoregressive parameter  $\varphi$  is equal to zero in both cases; as we see from the t-statistics, the other parameters are significant. Furthermore, the Ljung-Box test and the residual plot guide us towards retaining the chosen model due to its good fit to the data.

For comparison, we note that Renshaw and Haberman (2003a), fitted the same ARIMA (1,1,0) process for males and females using the LC model, obtaining parameters estimates of  $\varphi = -0.532$  and  $\lambda = -0.3041$  for males and of  $\varphi = -0.572$  and  $\lambda = -0.3525$  for females. This was based on data for England and Wales over the period 1950-1998, and results in parameters which are comparable with our above estimates.

#### 3.4. Evaluation of the model

The evaluation of the model aims at verifying that the model identified and estimated in the previous phases is adequate. If it is not, we have to suggest an alternative model. The objective of diagnostic checking is to ascertain whether the model "fits" the historical data well enough.

To verify that the model we have previously identified and estimated fits the historical data well, we perform a number of analyses. We fit different models to the matrix of Italian death rates from 1950 to 1985, thereby using a 35 years in-sample period, to generate out-of-sample forecasts for the next 15 years. After fitting a range of models in-sample, we compute the Root of Mean Square Error (RMSE) for each ARIMA model and we find that the models we have chosen (ARIMA (0,1,0) for males and ARIMA (0,1,1) for females) are the ones with the lowest RMSE. This indicates that these are the models which best approximate the historical data.

#### 4. Projecting lifetables

#### 4.1. Traditional method

Now we can use the ARIMA (0,1,1) and ARIMA (0,1,0) models to generate the forecasts of the index of mortality  $k_t$  for the next 25 years based on the period 1950-2000. Appendix C lists these values for both genders.

Figure 7 and 8, instead, plot the past values of k along with the forecasts based on the time series model and the associated confidence intervals, for females and males respectively. It is worth noticing that we have used the Lee-Carter method for calculating the prediction intervals that concentrates just on variability due to kappa. The other sources of variability could be allowed for by using a bootstrap method: see Brouhns, N., Denuit, M., Van Keilegom (2005).

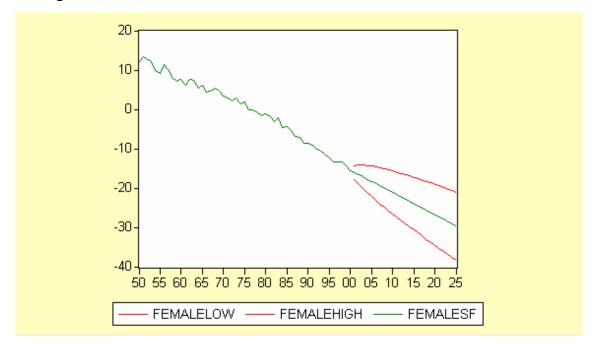



Fig. 7 Forecasts of Female Mortality Index k with confidence interval

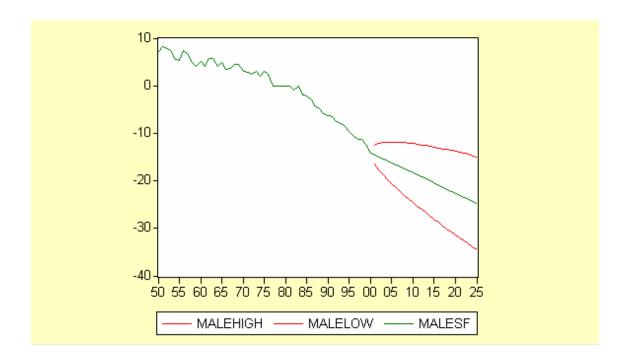



Fig. 8 Forecasts of Male Mortality Index *k* with confidence interval

Once we have forecasted the index of mortality, we can generate associated life table values at five-year intervals. First we insert the projected  $k_{2000+s}$ , s = 1,2,....,25, into the formulas

(3) 
$$m_{x,2000+s} = m_{x,2000} \exp \left\{ \hat{\beta}_x \begin{pmatrix} \hat{k}_{2000+s} - \hat{k}_{2000} \\ \hat{k}_{2000+s} - \hat{k}_{2000} \end{pmatrix} \right\}$$

to compute forecast mortality rates by alignment to the latest available empirical mortality rates  $\hat{m}_{x,2000}$ .

Figure 9 shows the shapes of the mortality rates that we forecast for the females generations born in years 2001 and 2025. It is worth noticing that the mortality rates for age groups 1 - 4 and 5 - 9 become virtually identical by 2001 and 2025.

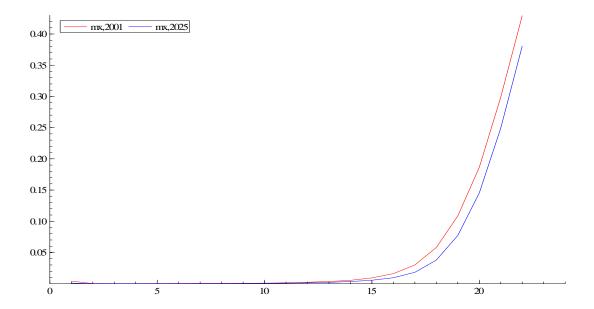



Fig. 9 Forecasted mortality rates for the female generations born in years 2001 and 2025 From these projected mortality rates, we can build projected life tables and compute life expectancy at birth: see Keyfitz N. (1977).

Thus, we convert the life table death rates,  $m_x$ , into probabilities of death,  $q_x$ . Let  $f_x$  be the average number of years lived within the age interval [x,x+1) for people dying at that age. As in Renshaw and Haberman (2003a), we assume that  $f_x = \frac{1}{2}$  for all age group except age 0 (for x = 0 we fix  $f_x = 0.15$  for males and  $f_x = 0.16$  for females). We then compute  $q_x$  from  $m_x$  and  $f_x$  according to the formula,

(4) 
$$q_x \cong \frac{w_x m_x}{1 + f'_x w_x m_x}, \qquad x = x_0, x_1, \dots, x_{k-2},$$

for 
$$x = 0,1-4,5-9,...,100-104$$
,  $w_{xi} = x_{i+1} - x_i$ ,  $k = 22$  and  $f'_x = 1 - f_x$ .

To complete the life table calculation, let  $p_x$  be the probability of surviving from age x to x+1.

Therefore,

(5) 
$$p_x = 1 - q_x$$
,

for all five-year age groups up the age of 104.

From  $q_x$  calculated by (4) and an arbitrary  $l_0$  (in our case we make it equal to 100000) the life table is constructed by working down the column of l's and d's, applying the recurrence equations

(6) 
$$l_{x+wx} = l_x(1-q_x),$$
  $x = x_0, x_1, ..., x_{k-2},$ 

(7) 
$$d_x = l_x - l_{x+w_x} = l_x q_x$$
,  $x = x_0, x_1, ..., x_{k-2}$ 

where  $l_x$  indicates the number of survivors and  $d_x$  is the distribution of deaths by age in the life table population.

The person-years lived by the life-table population in the age interval [x,x+1) are

(8) 
$$L_{x} = w_{x}(l_{x} - f'_{x} d_{x}), \qquad x = x_{0}, x_{1}, \dots, x_{k-2}.$$

The person-years remaining for individuals of age x equal

(9) 
$$T_{x_i} = \sum_{x=x_i}^{x_{k-1}} L_x$$

imply that life expectancy is given by

(10) 
$$e_{x_i} = \frac{T_{x_i}}{l_{x_i}}$$
.

Appendix D lists forecasts of life expectancy at birth obtained using the Lee-Carter model and also shows forecasts obtained with the alternative method which will be discussed later.

#### 4.2. The alternative approach to forecast life expectancy

The method seen above allowed us to compute life expectancies from forecasted mortality rates. In that approach we found an appropriate ARIMA time series model for the mortality index  $k_t$  and then we used that mortality model to generate forecasts of the mortality rates. From the forecasts of mortality rates it was straightforward to calculate life tables and life expectancy at birth.

Now we introduce an alternative approach by modelling and forecasting life expectancy directly; we perform a time series analysis of the annual life expectancies at age x to generate forecasts directly. In particular, we consider annual life expectancies at birth for the Italian population, supplied by the Human Mortality Database and divided by gender, from 1950 to 2000. As before, we use the standard Box and Jenkins methodology to generate an appropriate ARIMA (p,d,q) model for our time series, represented in this case by the males and females life expectancies at birth.

In this case the life expectancies are intrinsically viewed as a stochastic process and are estimated and forecasted within an ARIMA time series model. We find that an appropriate model for males and females is ARIMA (1,1,1):

(11) 
$$\nabla e_t = \varphi_1 \nabla e_{t-1} + \lambda + \varepsilon_t - \theta_1 \varepsilon_{t-1}$$

where  $\nabla$  is the differencing operator and  $\{\varepsilon_i\}$  denotes white noise.

The fitted ARIMA (1,1,1) model generates sex-specific life expectancy forecasts directly. Appendix D shows forecasts of life expectancy at birth, comparing the results obtained using the Lee-Carter methodology and the alternative approach. Both approaches are illustrated in Figure 10, which shows life expectancy at birth from 1950 to 2000 and forecasts from 2001 to 2025. As shown the forecasts based on the LC model are dominated by the forecasts obtained under the direct time series approach (for both genders), thus bearing out the conservative nature of the life expectancy under the LC approach. We want to stress that our results are consistent with the findings of Lee and Carter (1992) and Renshaw and Haberman (2003a), in their forecasting of life expectancies in the USA and in England and Wales, respectively.

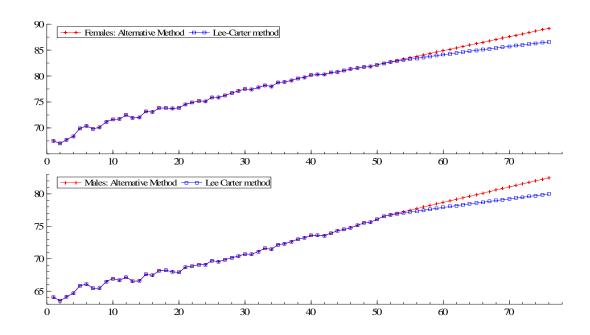



Fig. 10 Life Expectancy at birth and Forecasts

#### 5. Conclusions

We have presented an application of the model underpinning the Lee-Carter methodology for forecasting vital rates. In particular we have focused on forecasting life expectancies on a period basis and we have compared the life expectancies forecasted under the LC model, with the time-series-based forecast. The results are interesting; the *a priori* assumption would be that they would be different, and this is what we find in our analysis. The modelling of the underlying mortality rates is a superior method in theoretical terms yet employing the alternative allow us to examine the effect of a different approach. Moreover, the difference in results is evident for both genders.

#### References

Box, G.E.P., Jenkins, G.M. Time Series Analysis for Forecasting and Control. San Francisco: Holden-Day, 1976.

Brouhns, N., Denuit, M., Vermunt, J.K. (2002a). A Poisson Log-Bilinear Regression Approach to the Construction of Projected Life Tables. *Insurance: Mathematics and Economics 31*, 373-393.

Brouhns, N., Denuit, M., Van Keilegom I. (2005). Bootstrapping the Poisson Log-Bilinear model for mortality forecasting. *Scandinavian Actuarial Journal*, 212-224.

Brouhns, N., Denuit, M., Vermunt, J.K. (2002b). Measuring the Longevity risk in mortality projections. *Bulletin of the Swiss Association of Actuaries*, 105-130.

Elandt-Johnson, R.C. and Johnson, N.L. (1980). Survival Models and Data Analysis. New York: Wiley.

Francis X. Diebold. Elements of Forecasting, 3rd edition, Cincinnati: South-Western College Publishing, 2004.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press, Princeton, N.J.

Human Mortality Database. University of California, Berkeley (USA), available at www.mortality.org

Keyfitz, N. (1977). Introduction to the Mathematics of Population with Revisions. Addison-Wesley Publishing Co., Reading, Massachusetts.

Lee, R.D., Carter, L.R. (1992). Modelling and Forecasting U.S. Mortality. *Journal of the American Statistical Association* 87, 659-671.

Lee, R. (2000). The Lee-Carter Method for Foresting Mortality, with Various Extensions and Applications. *North American Actuarial Journal 4*, 80-93.

Lee, R., Miller, T. (2000). Assessing the Performance of the Lee-Carter Approach to Modeling and Forecasting Mortality, available at <a href="https://www.demog.berkeley.edu">www.demog.berkeley.edu</a>

Lee, R., Miller, T. (2001). Evaluating the Performance of the Lee-Carter Method for Forecasting Mortality. *Demography 38, 4,* 537-549.

Makridakis, S., Wheelwright, S.C., Hyndman, R.J. Forecasting methods and applications, third edition. John Wiley and Sons, 1998.

Renshaw, A., Haberman, S. (2003a). Lee-Carter mortality forecasting: a parallel generalised linear modelling approach for England and Wales mortality projections. *Applied Statistics* 52, 1, 119-137.

Wilmoth, J.R. with the assistance of Andreev, K., Bubenheim, M., Jdanov, D., Philipov, D., Shkolnikov, V. and Vachon, P. (2000). Methods Protocol for the Human Mortality Database.

#### **APPENDICES**

Appendix A: raw estimates of  $\alpha_x$ ,  $\beta_x$  and  $k_t$ 

| Estimation αx |              |              |  |
|---------------|--------------|--------------|--|
| Age Group     | Females      | Males        |  |
| 0             | -4,033699707 | -3,835790179 |  |
| 1-4           | -7,213929985 | -7,10874839  |  |
| 5-9           | -8,160779498 | -7,8680444   |  |
| 10-14         | -8,26407312  | -7,813319463 |  |
| 15-19         | -7,864148005 | -6,945887141 |  |
| 20-24         | -7,651584535 | -6,717847306 |  |
| 25-29         | -7,452283749 | -6,677807228 |  |
| 30-34         | -7,176244489 | -6,52591061  |  |
| 35-39         | -6,82668437  | -6,267172662 |  |
| 40-44         | -6,42665121  | -5,857718365 |  |
| 45-49         | -5,97721047  | -5,367224209 |  |
| 50-54         | -5,5362239   | -4,85898577  |  |
| 55-59         | -5,099981417 | -4,371698852 |  |
| 60-64         | -4,618943106 | -3,908334419 |  |
| 65-69         | -4,091446245 | -3,46120974  |  |
| 70-74         | -3,513642443 | -3,004627826 |  |
| 75-79         | -2,91609241  | -2,533438599 |  |
| 80-84         | -2,340328469 | -2,054049223 |  |
| 85-89         | -1,816543952 | -1,608759955 |  |
| 90-94         | -1,360558507 | -1,204260676 |  |
| 95-99         | -0,98275526  | -0,858826013 |  |
| 100-104       | -0,683975682 | -0,571001792 |  |

| Estimation βx |             |             |  |
|---------------|-------------|-------------|--|
| Age Group     | Females     | Males       |  |
| 0             | 0,102499919 | 0,141392134 |  |
| 1-4           | 0,115756234 | 0,154637924 |  |
| 5-9           | 0,076369591 | 0,1048845   |  |
| 10-14         | 0,06054872  | 0,077513092 |  |
| 15-19         | 0,046862446 | 0,036496079 |  |
| 20-24         | 0,052411099 | 0,027122682 |  |
| 25-29         | 0,052634309 | 0,028254762 |  |
| 30-34         | 0,049035161 | 0,029940744 |  |
| 35-39         | 0,046391497 | 0,03824621  |  |
| 40-44         | 0,041574381 | 0,043840993 |  |
| 45-49         | 0,0371411   | 0,043890003 |  |
| 50-54         | 0,035471203 | 0,040208161 |  |
| 55-59         | 0,034728713 | 0,034730071 |  |
| 60-64         | 0,036185567 | 0,029289642 |  |
| 65-69         | 0,038141047 | 0,024775806 |  |
| 70-74         | 0,03928069  | 0,024092927 |  |
| 75-79         | 0,03702842  | 0,024840021 |  |
| 80-84         | 0,031747846 | 0,024819726 |  |
| 85-89         | 0,025296883 | 0,023897241 |  |
| 90-94         | 0,018481342 | 0,021030037 |  |
| 95-99         | 0,013483991 | 0,018642631 |  |
| 100-104       | 0,00892984  | 0,007454613 |  |

| Raw kt |              |              |  |
|--------|--------------|--------------|--|
|        |              |              |  |
| Year   | Females      | Males        |  |
| 1950   | 14,76794409  | 8,583743518  |  |
| 1951   | 14,89155126  | 9,913426279  |  |
| 1952   | 13,408219    | 8,394651321  |  |
| 1953   | 12,52239962  | 7,846443414  |  |
| 1954   | 10,62992411  | 6,157210056  |  |
| 1955   | 9,842540872  | 6,678494859  |  |
| 1956   | 10,87206043  | 7,63722919   |  |
| 1957   | 9,952250993  | 6,926523736  |  |
| 1958   | 8,333794839  | 5,760670293  |  |
| 1959   | 7,666052493  | 4,684290325  |  |
| 1960   | 7,514274804  | 5,502144527  |  |
| 1961   | 6,452023934  | 4,67497325   |  |
| 1962   | 7,350708893  | 5,924349376  |  |
| 1963   | 7,437428484  | 6,008580608  |  |
| 1964   | 5,035484367  | 4,149811148  |  |
| 1965   | 5,574608009  | 4,440954214  |  |
| 1966   | 3,765069333  | 3,160189717  |  |
| 1967   | 4,097046229  | 2,997962203  |  |
| 1968   | 4,145444986  | 3,741762929  |  |
| 1969   | 3,538285116  | 3,239875422  |  |
| 1970   | 2,803734674  | 2,594174948  |  |
| 1971   | 2,15831635   | 2,1059274    |  |
| 1972   | 1,746190265  | 1,687278316  |  |
| 1973   | 1,709463933  | 2,05402866   |  |
| 1974   | 0,043476874  | 0,49638264   |  |
| 1975   | 0,085074077  | 1,008839268  |  |
| 1976   | -0,48958581  | 0,302168793  |  |
| 1977   | -1,406965414 | -0,064006487 |  |
| 1978   | -2,454922639 | -0,523079984 |  |
| 1979   | -2,794406103 | -0,942828408 |  |
| 1980   | -1,942370504 | -0,584121479 |  |
| 1981   | -3,91343144  | -1,793326397 |  |
| 1982   | -4,657875266 | -2,739795273 |  |
| 1983   | -4,248820047 | -2,475348897 |  |
| 1984   | -5,901708476 | -3,960446015 |  |
| 1985   | -5,964310903 | -4,129592882 |  |
| 1986   | -6,714897273 | -4,911413514 |  |
| 1987   | -7,42132546  | -5,417138884 |  |
| 1988   | -7,575054175 | -5,531328024 |  |
| 1989   | -8,556732355 | -6,055195481 |  |
| 1990   | -8,365313614 | -5,705874419 |  |
| 1991   | -8,247115251 | -5,245437366 |  |
| 1992   | -8,664645546 | -5,975670242 |  |
| 1993   | -8,610286143 | -6,494699583 |  |
| 1994   | -9,306065233 | -7,242041819 |  |
| 1995   | -9,841560985 | -7,062980989 |  |
| 1996   | -10,14304994 | -8,138229592 |  |
| 1997   | -11,10687368 | -9,046047702 |  |
| 1998   | -11,81185036 | -9,821817576 |  |
| 1999   | -12,90587746 | -11,02581041 |  |
| 2000   | -13,29832396 | -11,78585499 |  |

Appendix B:  $k_t$  re-estimated

| Reestimated kt |            |            |  |
|----------------|------------|------------|--|
| Year           | Females    | Males      |  |
| 1950           | 12,239065  | 7,127597   |  |
| 1951           | 13,261274  | 8,301183   |  |
| 1952           | 12,594144  | 7,754879   |  |
| 1953           | 12,055052  | 7,318683   |  |
| 1954           | 9,651698   | 5,478459   |  |
| 1955           | 9,163218   | 5,265724   |  |
| 1956           | 11,254295  | 7,463961   |  |
| 1957           | 9,853836   | 6,647819   |  |
| 1958           | 7,950729   | 4,876913   |  |
| 1959           | 7,034265   | 4,145711   |  |
| 1960           | 7,632881   | 5,196660   |  |
| 1961           | 6,159950   | 4,190676   |  |
| 1962           | 7,683678   | 5,772402   |  |
| 1963           | 7,480289   | 5,813922   |  |
| 1964           | 5,299921   | 4,079973   |  |
| 1965           | 6,234911   | 4,901331   |  |
| 1966           | 4,399276   | 3,478168   |  |
| 1967           | 4,684472   | 3,650243   |  |
| 1968           | 5,330330   | 4,475201   |  |
| 1969           | 4,693498   | 4,603788   |  |
| 1970           | 3,442278   | 3,068314   |  |
| 1971           | 2,802146   | 2,750540   |  |
| 1972           | 2,117816   | 2,410300   |  |
| 1973           | 2,955119   | 3,103914   |  |
| 1974           | 1,363817   | 2,088754   |  |
| 1975           | 1,885872   | 2,989996   |  |
| 1976           | 0,00000    | 2,486175   |  |
| 1977           | 0,00000    | 0,00000    |  |
| 1978           | -0,767902  | 0,00000    |  |
| 1979           | -1,524324  | 0,00000    |  |
| 1980           | -1,043566  | 0,000000   |  |
| 1981           | -1,971115  | 0,000000   |  |
| 1982           | -3,159363  | -0,890456  |  |
| 1983           | -2,010931  | 0,00000    |  |
| 1984           | -4,507087  | -1,983047  |  |
| 1985           | -4,416243  | -2,085719  |  |
| 1986           | -5,308517  | -2,968874  |  |
| 1987           | -6,862385  | -4,323954  |  |
| 1988           | -7,192844  | -4,789860  |  |
| 1989           | -8,570573  | -5,953422  |  |
| 1990           | -8,606526  | -6,217906  |  |
| 1991           | -9,022171  | -6,417020  |  |
| 1992           | -10,235814 | -7,592074  |  |
| 1993           | -10,703506 | -7,944450  |  |
| 1994           | -11,313666 | -8,573662  |  |
| 1995           | -12,367972 | -9,549911  |  |
| 1996           | -13,367315 | -10,741046 |  |
| 1997           | -13,494783 | -11,336797 |  |
| 1998           | -13,349057 | -11,294018 |  |
| 1999           | -14,263166 | -12,552274 |  |
| 2000           | -15,503808 | -14,116502 |  |

**Appendix C: Forecasted**  $k_t$ 

| Forecasted kt |              |              |  |
|---------------|--------------|--------------|--|
| Years         | Kt_Females   | Kt_Males     |  |
| 2001          | -16,07029342 | -14,54138354 |  |
| 2002          | -16,63677847 | -14,96626551 |  |
| 2003          | -17,20326352 | -15,39114747 |  |
| 2004          | -17,76974857 | -15,81602944 |  |
| 2005          | -18,33623361 | -16,2409114  |  |
| 2006          | -18,90271866 | -16,66579337 |  |
| 2007          | -19,46920371 | -17,09067533 |  |
| 2008          | -20,03568876 | -17,5155573  |  |
| 2009          | -20,60217381 | -17,94043926 |  |
| 2010          | -21,16865886 | -18,36532123 |  |
| 2011          | -21,73514391 | -18,79020319 |  |
| 2012          | -22,30162895 | -19,21508515 |  |
| 2013          | -22,868114   | -19,63996712 |  |
| 2014          | -23,43459905 | -20,06484908 |  |
| 2015          | -24,0010841  | -20,48973105 |  |
| 2016          | -24,56756915 | -20,91461301 |  |
| 2017          | -25,1340542  | -21,33949498 |  |
| 2018          | -25,70053924 | -21,76437694 |  |
| 2019          | -26,26702429 | -22,18925891 |  |
| 2020          | -26,83350934 | -22,61414087 |  |
| 2021          | -27,39999439 | -23,03902284 |  |
| 2022          | -27,96647944 | -23,4639048  |  |
| 2023          | -28,53296449 | -23,88878677 |  |
| 2024          | -29,09944953 | -24,31366873 |  |
| 2025          | -29,66593458 | -24,7385507  |  |

Appendix D: Comparison between the two different approaches

|                                                                                                                     | Alternative Method                                                                                                                                                                                                                                                                                      | Lee-Carter method                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Years                                                                                                               | Female(1,1,1)                                                                                                                                                                                                                                                                                           | Female(0,1,1)                                                                                                                                                                                                                                                                                    |
| 2001                                                                                                                | 82,72917824                                                                                                                                                                                                                                                                                             | 82,67351256                                                                                                                                                                                                                                                                                      |
| 2002                                                                                                                | 82,99835649                                                                                                                                                                                                                                                                                             | 82,86201097                                                                                                                                                                                                                                                                                      |
| 2003                                                                                                                | 83,26753473                                                                                                                                                                                                                                                                                             | 83,04787938                                                                                                                                                                                                                                                                                      |
| 2004                                                                                                                | 83,53671298                                                                                                                                                                                                                                                                                             | 83,23118379                                                                                                                                                                                                                                                                                      |
| 2005                                                                                                                | 83,80589122                                                                                                                                                                                                                                                                                             | 83,41198693                                                                                                                                                                                                                                                                                      |
| 2006                                                                                                                | 84,07506946                                                                                                                                                                                                                                                                                             | 83,59034841                                                                                                                                                                                                                                                                                      |
| 2007                                                                                                                | 84,34424771                                                                                                                                                                                                                                                                                             | 83,76632497                                                                                                                                                                                                                                                                                      |
| 2008                                                                                                                | 84,61342595                                                                                                                                                                                                                                                                                             | 83,93997054                                                                                                                                                                                                                                                                                      |
| 2009                                                                                                                | 84,8826042                                                                                                                                                                                                                                                                                              | 84,11133649                                                                                                                                                                                                                                                                                      |
| 2009                                                                                                                | 85,15178244                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                |
|                                                                                                                     | · ·                                                                                                                                                                                                                                                                                                     | 84,28047172                                                                                                                                                                                                                                                                                      |
| 2011                                                                                                                | 85,42096068                                                                                                                                                                                                                                                                                             | 84,44742281                                                                                                                                                                                                                                                                                      |
| 2012                                                                                                                | 85,69013893                                                                                                                                                                                                                                                                                             | 84,61223418                                                                                                                                                                                                                                                                                      |
| 2013                                                                                                                | 85,95931717                                                                                                                                                                                                                                                                                             | 84,77494818                                                                                                                                                                                                                                                                                      |
| 2014                                                                                                                | 86,22849542                                                                                                                                                                                                                                                                                             | 84,93560524                                                                                                                                                                                                                                                                                      |
| 2015                                                                                                                | 86,49767366                                                                                                                                                                                                                                                                                             | 85,09424397                                                                                                                                                                                                                                                                                      |
| 2016                                                                                                                | 86,7668519                                                                                                                                                                                                                                                                                              | 85,25090125                                                                                                                                                                                                                                                                                      |
| 2017                                                                                                                | 87,03603015                                                                                                                                                                                                                                                                                             | 85,40561236                                                                                                                                                                                                                                                                                      |
| 2018                                                                                                                | 87,30520839                                                                                                                                                                                                                                                                                             | 85,55841107                                                                                                                                                                                                                                                                                      |
| 2019                                                                                                                | 87,57438664                                                                                                                                                                                                                                                                                             | 85,70932971                                                                                                                                                                                                                                                                                      |
| 2020                                                                                                                | 87,84356488                                                                                                                                                                                                                                                                                             | 85,85839928                                                                                                                                                                                                                                                                                      |
| 2021                                                                                                                | 88,11274312                                                                                                                                                                                                                                                                                             | 86,00564951                                                                                                                                                                                                                                                                                      |
| 2022                                                                                                                | 88,38192137                                                                                                                                                                                                                                                                                             | 86,15110895                                                                                                                                                                                                                                                                                      |
| 2023                                                                                                                | 88,65109961                                                                                                                                                                                                                                                                                             | 86,29480504                                                                                                                                                                                                                                                                                      |
| 2024                                                                                                                | 88,92027786                                                                                                                                                                                                                                                                                             | 86,43676419                                                                                                                                                                                                                                                                                      |
| 2025                                                                                                                | 00.4004504                                                                                                                                                                                                                                                                                              | 00 57704470                                                                                                                                                                                                                                                                                      |
| 2020                                                                                                                | 89,1894561                                                                                                                                                                                                                                                                                              | 86,57701179                                                                                                                                                                                                                                                                                      |
|                                                                                                                     | Alternative Method                                                                                                                                                                                                                                                                                      | Lee Carter method                                                                                                                                                                                                                                                                                |
| Years                                                                                                               | Alternative Method<br>Males (1,1,1)                                                                                                                                                                                                                                                                     | Lee Carter method<br>Males (0,1,0)                                                                                                                                                                                                                                                               |
| <b>Years</b> 2001                                                                                                   | Alternative Method<br>Males (1,1,1)<br>76,78736631                                                                                                                                                                                                                                                      | Lee Carter method<br>Males (0,1,0)<br>76,74722129                                                                                                                                                                                                                                                |
| <b>Years</b> 2001 2002                                                                                              | Alternative Method  Males (1,1,1)  76,78736631  77,02473263                                                                                                                                                                                                                                             | Lee Carter method  Males (0,1,0)  76,74722129  76,8981853                                                                                                                                                                                                                                        |
| Years<br>2001<br>2002<br>2003                                                                                       | Alternative Method Males (1,1,1) 76,78736631 77,02473263 77,26209894                                                                                                                                                                                                                                    | Lee Carter method  Males (0,1,0)  76,74722129  76,8981853  77,04728176                                                                                                                                                                                                                           |
| Years<br>2001<br>2002<br>2003<br>2004                                                                               | Alternative Method Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526                                                                                                                                                                                                                        | Lee Carter method  Males (0,1,0)  76,74722129  76,8981853  77,04728176  77,19458884                                                                                                                                                                                                              |
| Years<br>2001<br>2002<br>2003<br>2004<br>2005                                                                       | Alternative Method Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157                                                                                                                                                                                                            | Lee Carter method  Males (0,1,0)  76,74722129  76,8981853  77,04728176  77,19458884  77,34018047                                                                                                                                                                                                 |
| Years<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006                                                               | Alternative Method Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788                                                                                                                                                                                                | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656                                                                                                                                                                                          |
| Years<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007                                                       | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642                                                                                                                                                                                    | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319                                                                                                                                                                              |
| Years<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008                                               | Alternative Method Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051                                                                                                                                                                         | Lee Carter method  Males (0,1,0)  76,74722129  76,8981853  77,04728176  77,19458884  77,34018047  77,48412656  77,62649319  77,76734287                                                                                                                                                          |
| Years<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009                                       | Alternative Method Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683                                                                                                                                                             | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464                                                                                                                                                      |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010                                                             | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314                                                                                                                                                | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435                                                                                                                                          |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011                                                        | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945                                                                                                                                    | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473                                                                                                                              |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010                                                             | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314                                                                                                                                                | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435                                                                                                                                          |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011                                                        | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945                                                                                                                                    | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473                                                                                                                              |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012                                                   | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577                                                                                                                        | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564                                                                                                                  |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013                                              | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471                                                                                     | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417                                                                                                      |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014                                         | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284                                                                                                 | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483                                                                                          |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015                                    | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471                                                                                     | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963                                                                              |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016                               | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471 80,34786102                                                                         | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963 78,84597827                                                                  |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017                          | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471 80,34786102 80,58522734                                                             | Lee Carter method  Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963 78,84597827 78,97547824                                                      |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018                     | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471 80,34786102 80,58522734 80,82259365                                                 | Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963 78,84597827 78,97547824 79,10392494                                                             |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019                | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471 80,34786102 80,58522734 80,82259365 81,05995997                                     | Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963 78,84597827 78,97547824 79,10392494 79,23135178                                                 |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020           | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471 80,34786102 80,58522734 80,82259365 81,05995997 81,29732628                         | Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963 78,84597827 78,97547824 79,10392494 79,23135178 79,35779032                                     |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021      | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471 80,34786102 80,58522734 80,82259365 81,05995997 81,29732628 81,53469259             | Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963 78,84597827 78,97547824 79,10392494 79,23135178 79,35779032 79,48327033                         |
| Years 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 | Alternative Method  Males (1,1,1) 76,78736631 77,02473263 77,26209894 77,49946526 77,73683157 77,97419788 78,2115642 78,44893051 78,68629683 78,92366314 79,16102945 79,39839577 79,63576208 79,8731284 80,11049471 80,34786102 80,58522734 80,82259365 81,05995997 81,29732628 81,53469259 81,77205891 | Males (0,1,0) 76,74722129 76,8981853 77,04728176 77,19458884 77,34018047 77,48412656 77,62649319 77,76734287 77,90673464 78,04472435 78,18136473 78,31670564 78,45079417 78,58367483 78,71538963 78,71538963 78,84597827 78,97547824 79,10392494 79,23135178 79,35779032 79,48327033 79,60781993 |



#### **FACULTY OF ACTUARIAL SCIENCE AND STATISTICS**

### **Actuarial Research Papers since 2001**

| Report<br>Number | Date           | Publication Title                                                                                                                                | Author                                             |
|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 135.             | February 2001. | On the Forecasting of Mortality Reduction Factors. ISBN 1 901615 56 1                                                                            | Steven Haberman<br>Arthur E. Renshaw               |
| 136.             | February 2001. | Multiple State Models, Simulation and Insurer Insolvency. ISBN 1 901615 57 X                                                                     | Steve Haberman<br>Zoltan Butt<br>Ben Rickayzen     |
| 137.             | September 2001 | A Cash-Flow Approach to Pension Funding. ISBN 1 901615 58 8                                                                                      | M. Zaki Khorasanee                                 |
| 138.             | November 2001  | Addendum to "Analytic and Bootstrap Estimates of Prediction Errors in Claims Reserving". ISBN 1 901615 59 6                                      | Peter D. England                                   |
| 139.             | November 2001  | A Bayesian Generalised Linear Model for the Bornhuetter-<br>Ferguson Method of Claims Reserving. ISBN 1 901615 62 6                              | Richard J. Verrall                                 |
| 140.             | January 2002   | Lee-Carter Mortality Forecasting, a Parallel GLM Approach, England and Wales Mortality Projections. ISBN 1 901615 63 4                           | Arthur E.Renshaw<br>Steven Haberman.               |
| 141.             | January 2002   | Valuation of Guaranteed Annuity Conversion Options. ISBN 1 901615 64 2                                                                           | Laura Ballotta<br>Steven Haberman                  |
| 142.             | April 2002     | Application of Frailty-Based Mortality Models to Insurance Data. ISBN 1 901615 65 0                                                              | Zoltan Butt<br>Steven Haberman                     |
| 143.             | Available 2003 | Optimal Premium Pricing in Motor Insurance: A Discrete Approximation.                                                                            | Russell J. Gerrard<br>Celia Glass                  |
| 144.             | December 2002  | The Neighbourhood Health Economy. A Systematic Approach to the Examination of Health and Social Risks at Neighbourhood Level. ISBN 1 901615 66 9 | Les Mayhew                                         |
| 145.             | January 2003   | The Fair Valuation Problem of Guaranteed Annuity<br>Options: The Stochastic Mortality Environment Case.<br>ISBN 1 901615 67 7                    | Laura Ballotta<br>Steven Haberman                  |
| 146.             | February 2003  | Modelling and Valuation of Guarantees in With-Profit and Unitised With-Profit Life Insurance Contracts. ISBN 1 901615 68 5                       | Steven Haberman<br>Laura Ballotta<br>Nan Want      |
| 147.             | March 2003.    | Optimal Retention Levels, Given the Joint Survival of Cedent and Reinsurer. ISBN 1 901615 69 3                                                   | Z. G. Ignatov Z.G.,<br>V.Kaishev<br>R.S. Krachunov |
| 148.             | March 2003.    | Efficient Asset Valuation Methods for Pension Plans. ISBN 1 901615707                                                                            | M. Iqbal Owadally                                  |
| 149.             | March 2003     | Pension Funding and the Actuarial Assumption Concerning Investment Returns. ISBN 1 901615 71 5                                                   | M. Iqbal Owadally                                  |

| 150. | Available August<br>2004 | Finite time Ruin Probabilities for Continuous Claims<br>Severities                                                                                                                                                                                | D. Dimitrova<br>Z. Ignatov<br>V. Kaishev                            |
|------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 151. | August 2004              | Application of Stochastic Methods in the Valuation of Social Security Pension Schemes. ISBN 1 901615 72 3                                                                                                                                         | Subramaniam lyer                                                    |
| 152. | October 2003.            | Guarantees in with-profit and Unitized with profit Life Insurance Contracts; Fair Valuation Problem in Presence of the Default Option <sup>1</sup> . ISBN 1-901615-73-1                                                                           | Laura Ballotta<br>Steven Haberman<br>Nan Wang                       |
| 153. | December 2003            | Lee-Carter Mortality Forecasting Incorporating Bivariate Time Series. ISBN 1-901615-75-8                                                                                                                                                          | Arthur E. Renshaw<br>Steven Haberman                                |
| 154. | March 2004.              | Operational Risk with Bayesian Networks Modelling. ISBN 1-901615-76-6                                                                                                                                                                             | Robert G. Cowell<br>Yuen Y, Khuen<br>Richard J. Verrall             |
| 155. | March 2004.              | The Income Drawdown Option: Quadratic Loss. ISBN 1 901615 7 4                                                                                                                                                                                     | Russell Gerrard<br>Steven Haberman<br>Bjorn Hojgarrd<br>Elena Vigna |
| 156. | April 2004               | An International Comparison of Long-Term Care Arrangements. An Investigation into the Equity, Efficiency and sustainability of the Long-Term Care Systems in Germany, Japan, Sweden, the United Kingdom and the United States. ISBN 1 901615 78 2 | Martin Karlsson<br>Les Mayhew<br>Robert Plumb<br>Ben D. Rickayzen   |
| 157. | June 2004                | Alternative Framework for the Fair Valuation of Participating Life Insurance Contracts. ISBN 1 901615-79-0                                                                                                                                        | Laura Ballotta                                                      |
| 158. | July 2004.               | An Asset Allocation Strategy for a Risk Reserve considering both Risk and Profit. ISBN 1 901615-80-4                                                                                                                                              | Nan Wang                                                            |
| 159. | December 2004            | Upper and Lower Bounds of Present Value Distributions of Life Insurance Contracts with Disability Related Benefits. ISBN 1 901615-83-9                                                                                                            | Jaap Spreeuw                                                        |
| 160. | January 2005             | Mortality Reduction Factors Incorporating Cohort Effects. ISBN 1 90161584 7                                                                                                                                                                       | Arthur E. Renshaw<br>Steven Haberman                                |
| 161. | February 2005            | The Management of De-Cumulation Risks in a Defined Contribution Environment. ISBN 1 901615 85 5.                                                                                                                                                  | Russell J. Gerrard<br>Steven Haberman<br>Elena Vigna                |
| 162. | May 2005                 | The IASB Insurance Project for Life Insurance Contracts: Impart on Reserving Methods and Solvency Requirements. ISBN 1-901615 86 3.                                                                                                               | Laura Ballotta Giorgia<br>Esposito Steven<br>Haberman               |
| 163. | September 2005           | Asymptotic and Numerical Analysis of the Optimal Investment Strategy for an Insurer. ISBN 1-901615-88-X                                                                                                                                           | Paul Emms<br>Steven Haberman                                        |
| 164. | October 2005.            | Modelling the Joint Distribution of Competing Risks<br>Survival Times using Copula Functions. I SBN 1-901615-89-8                                                                                                                                 | Vladimir Kaishev<br>Dimitrina S, Dimitrova<br>Steven Haberman       |
| 165. | November 2005.           | Excess of Loss Reinsurance Under Joint Survival Optimality. ISBN1-901615-90-1                                                                                                                                                                     | Vladimir K. Kaishev<br>Dimitrina S. Dimitrova                       |
| 166. | November 2005.           | Lee-Carter Goes Risk-Neutral. An Application to the Italian Annuity Market. ISBN 1-901615-91-X                                                                                                                                                    | Enrico Biffis<br>Michel Denuit                                      |

## **Statistical Research Papers**

| Report<br>Number | Date                          | Publication Title                                                                                                                                 | Author                                         |
|------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 1.               | December 1995.                | Some Results on the Derivatives of Matrix Functions. ISBN 1874770832                                                                              | P. Sebastiani                                  |
| 2.               | March 1996                    | Coherent Criteria for Optimal Experimental Design. ISBN 1874770867                                                                                | A.P. Dawid<br>P. Sebastiani                    |
| 3.               | March 1996                    | Maximum Entropy Sampling and Optimal Bayesian Experimental Design. ISBN 1 874 770 87 5                                                            | P. Sebastiani<br>H.P. Wynn                     |
| 4.               | May 1996                      | A Note on D-optimal Designs for a Logistic Regression Model. ISBN 1 874 770 92 1                                                                  | P. Sebastiani<br>R. Settimi                    |
| 5.               | August 1996                   | First-order Optimal Designs for Non Linear Models. ISBN 1 874 770 95 6                                                                            | P. Sebastiani<br>R. Settimi                    |
| 6.               | September 1996                | A Business Process Approach to Maintenance:<br>Measurement, Decision and Control. ISBN 1 874 770 96 4                                             | Martin J. Newby                                |
| 7.               | September 1996.               | Moments and Generating Functions for the Absorption Distribution and its Negative Binomial Analogue. ISBN 1 874 770 97 2                          | Martin J. Newby                                |
| 8.<br>9.         | November 1996.<br>March 1997. | Mixture Reduction via Predictive Scores. ISBN 1 874 770 98 0 Robust Parameter Learning in Bayesian Networks with Missing Data. ISBN 1 901615 00 6 | Robert G. Cowell.<br>P.Sebastiani<br>M. Ramoni |
| 10.              | March 1997.                   | Guidelines for Corrective Replacement Based on Low Stochastic Structure Assumptions. ISBN 1 901615 01 4.                                          | M.J. Newby<br>F.P.A. Coolen                    |
| 11.              | March 1997                    | Approximations for the Absorption Distribution and its Negative Binomial Analogue. ISBN 1 901615 02 2                                             | Martin J. Newby                                |
| 12.              | June 1997                     | The Use of Exogenous Knowledge to Learn Bayesian Networks from Incomplete Databases. ISBN 1 901615 10 3                                           | M. Ramoni<br>P. Sebastiani                     |
| 13.              | June 1997                     | Learning Bayesian Networks from Incomplete Databases. ISBN 1 901615 11 1                                                                          | M. Ramoni<br>P.Sebastiani                      |
| 14.              | June 1997                     | Risk Based Optimal Designs. ISBN 1 901615 13 8                                                                                                    | P.Sebastiani                                   |
| 15.              | June 1997.                    | Sampling without Replacement in Junction Trees. ISBN 1 901615 14 6                                                                                | H.P. Wynn<br>Robert G. Cowell                  |
| 16.              | July 1997                     | Optimal Overhaul Intervals with Imperfect Inspection and Repair. ISBN 1 901615 15 4                                                               | Richard A. Dagg<br>Martin J. Newby             |
| 17.              | October 1997                  | Bayesian Experimental Design and Shannon Information. ISBN 1 901615 17 0                                                                          | P. Sebastiani.                                 |
| 18.              | November 1997.                | A Characterisation of Phase Type Distributions.                                                                                                   | H.P. Wynn<br>Linda C. Wolstenholme             |
| 19.              | December 1997                 | ISBN 1 901615 18 9 A Comparison of Models for Probability of Detection (POD) Curves. ISBN 1 901615 21 9                                           | Wolstenholme L.C                               |
| 20.              | February 1999.                | Parameter Learning from Incomplete Data Using Maximum Entropy I: Principles. ISBN 1 901615 37 5                                                   | Robert G. Cowell                               |

| 21. | November 1999  | Parameter Learning from Incomplete Data Using Maximum Entropy II: Application to Bayesian Networks. ISBN 1901615405                  | Robert G. Cowell                                                                       |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 22. | March 2001     | FINEX: Forensic Identification by Network Expert Systems. ISBN 1 901615 60X                                                          | Robert G.Cowell                                                                        |
| 23. | March 2001.    | Wren Learning Bayesian Networks from Data, using Conditional Independence Tests is Equivalent to a Scoring Metric ISBN 1 901615 61 8 | Robert G Cowell                                                                        |
| 24. | August 2004    | Automatic, Computer Aided Geometric Design of Free-<br>Knot, Regression Splines. ISBN 1-901615-81-2                                  | Vladimir K Kaishev,<br>Dimitrina S.Dimitrova,<br>Steven Haberman<br>Richard J. Verrall |
| 25. | December 2004  | Identification and Separation of DNA Mixtures Using Peak<br>Area Information. ISBN 1-901615-82-0                                     | R.G.Cowell<br>S.L.Lauritzen<br>J Mortera,                                              |
| 26. | November 2005. | The Quest for a Doner: Probability Based Methods Offer Help. ISBN 1-90161592-8                                                       | P.F.Mostad<br>T. Egeland.,<br>R.G. Cowell<br>V. Bosnes<br>Ø. Braaten                   |

# **Faculty of Actuarial Science and Statistics**

# **Actuarial Research Club**

The support of the corporate members

CGNU Assurance English Matthews Brockman Government Actuary's Department

is gratefully acknowledged.

ISBN 1-901615-93-6