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Abstract

“Smoothed asset value” methods are used by actuaries, when they value pension plan
assets, in order to stabilize the contribution rates recommended to plan sponsors. Methods
with exponential and arithmetic smoothing are considered within a simple funding model
where only asset gains and losses, smoothed exclusively by the asset valuation method, are
permitted. It is shown mathematically that (1) excessive smoothing is counterproductive
as it results in less stable contribution rates, (2) exponential smoothing is more efficient
than arithmetic smoothing in terms of minimizing the volatility of contribution rates as
well as that of funding levels. Suitable smoothing parameter values are discussed.
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1 Introduction

Actuarial practitioners employ special “asset valuation methods” when valuing defined
benefit pension plans. Asset values are smoothed or averaged over time to remove exces-
sive volatility which is not reflected in Liability values. A comprehensive survey of actuarial
practice in this respect was undertaken by the Committee on Retirement Systems Re-
search (2001) at the Society of Actuaries.

Actuaries normally assume that longer averaging periods smooth market fluctuations
and reduce the volatility of contribution rates. They also assume that longer averaging
periods make funding levels more volatile as gains and losses are deferred over longer
periods. In this paper, we investigate this by extending the work of Dufresne (1988,
1989), who defines a criterion of efficiency in terms of a tradeoff between the volatility of
contribution rates and the volatility of funding levels.

The paper is structured as follows. Smoothed asset values are incorporated in the
model of Dufresne (1988, 1989) in section 2. A direct correspondence with the results of
Dufresne (1988, 1989) allows us to state the moments of contribution rates and funding
levels in section 3. The effect of the choice of the averaging period or smoothing parameter
on the volatility of funding levels and contribution rates is investigated in section 4 and
efficient choices are discussed. Finally, it is shown in section 5 that exponential smoothing
is preferable to arithmetic averaging.

A list of important symbols is included here for ease of reference:

AL actuarial liability

AV, actuarial (smoothed) value of pension plan assets at time ¢
B; w(n—1—j)/nforj€{0,n—1}

B benefit paid every year

Cy pension contribution paid every year



E market value of pension plan assets at time ¢

i technical valuation rate of interest equal to Ery
k exponential smoothing parameter

Aj W (n— j)/nfor j € {0,n— 1}

L, intervaluation loss

n arithmetic averaging period

NC normal cost or normal contribution rate

o w/nfor j € {0,n— 1}

Ty rate of return on assets in year (¢ — 1, t)
o? Var(ry)

U 1414

UL unfunded liability = AL — F,
v 1/(1 +1)

2 Model

A simple model of a defined benefit pension plan is used here to analyze the effects of
smoothing asset values. For details of the model, refer to Dufresne (1988, 1989). Its
essential features are listed here: (1) The only source of uncertainty is in asset returns.
That is, only asset gains and losses occur. (2) The rate of return is independent and
identically distributed each year. (3) Demographic factors are projected in accordance
with fixed actuarial valuation assumptions. (4) The pension plan population is stationary.
(5) The pension benefit upon retirement is fully indexed with wage inflation.

As a consequence of the last feature, only asset returns net of wage inflation need be
considered. Indeed all variables may be deflated by wage inflation. The random rate of

return on the pension fund, net of wage inflation, is denoted r;. The benefit B paid out



yearly, the actuarial liability AL calculated at yearly actuarial valuations of the pension
plan, the normal cost NC under the actuarial cost method employed, and the total payroll
are all constant (all deflated by wage inflation). AL and NC are evaluated at a technical
valuation interest rate ¢ which is assumed to be equal to the expected rate of return on
assets.

The model is an abstraction of reality but it enables us to obtain closed-form expressions
for the variance of contribution rates and funding levels [see Dufresne (1988, 1989)]. It
captures the variability of asset returns and hence allows us to study the effects of using
asset valuation methods.

The market value of pension plan assets at time ¢ is denoted by F,. At the start of
year (¢ — 1, t) contributions C;_; are paid in and benefits B are paid out and, at a rate of

return of ry, the following recurrence relation applies (for ¢ > 1):

F, = (1 +Tt)[Fr,——1 +Ci1— B]. (1)
Pension plan liability is constant so that the following equation of equilibrium holds (Trow-
bridge, 1952):

AL = (14i)(AL+ NC - B). (2)

The unfunded liability in the plan at time ¢ is the excess of liability over assets:
UL, = AL - F,. (3)

The intervaluation loss Ly in year (¢ — 1, ¢) is defined as the difference between the un-
funded liability at time ¢ and the anticipated unfunded liability had valuation assumptions
been realized during year (¢ — 1, ¢). In the model of Dufresne (1988, 1989), experience
differs from actuarial valuation assumptions only in the rate of return on assets. Hence,

the unfunded liability at time ¢ as anticipated at time t—1 is AL — (149)[F3-1+Cs—1— B],



whereas the actual unfunded liability at time ¢ is given in equation (3). For t > 1,

Li=(144)(F-1+Cio1— B)]| - F, 4)

= (i —r¢)[Fim1 + Cpy — Bj, (5)

where the last equality follows from equation (1).

For the purposes of funding, that is when recommending a contribution rate, an ac-
tuarial asset value AV, is used. An actuarial deficit of AL — AV, is evaluated and the
contribution recommended by the actuary should make good this deficit. The contribution
is equal to the normal cost NC (associated with the actuarial liability AL under a given
actuarial cost method) plus a supplementary contribution.

In practice, the supplementary contribution may be a fraction of the unfunded liabil-
ity (Dufresne, 1988) or may involve the amortization of intervaluation gains and losses
(Dufresne, 1989). It is assumed here that the deficit AL — AV is paid off immediately and
that the supplementary contribution equals the deficit. The contribution paid at time ¢ is
therefore:

Cy = NC + (AL - AVj). (6)

It is also assumed that any initial unfunded liability (in respect of amendments to plan
benefits, for example) is paid off by means of a separate schedule of contribution payments.

As in Dufresne (1989), we set up two equations as follows. The intervaluation loss may
be rewritten by using equation (2) and by replacing UL,_; from equation (3) and Cy_;

from equation (6) into, respectively, equations (4) and (5), yielding

ULt —Uu ULt_l = Lt - 'LL[AL - Al/t_l], (7)

L= (ry —9)[ULs—1 + AViey — (1 +0)AL). ®)

In the above, t > 1, u=1+44iand v = (1 +4)"L.



3 Asset Valuation Methods

Two methods of calculating the actuarial smoothed asset value AV, are commonly used
for funding purposes. For more details about these methods, refer to the survey of the

Committee on Retirement Systems Research (2001).

3.1 Exponential Smoothing

The actuarial asset value AV; at time ¢ is a weighted average of the market value F} of the
fund at time ¢ and the actuarial value of the fund at time # as anticipated at time t — 1

given the valuation assumptions at time ¢ — 1:
AV; =kF + (1 - k)u(AVi_1 + Gy — B), )

where k is a smoothing parameter and k € R: 1 —v < k < 1. A smaller value of k means
that more weight is placed on the past market values and more smoothing is applied. AV,

is an infinite exponentially weighted average, allowing for interest and cash flows:

AVi= S MU~ KPFry + 3 u(l - K (G — Bl (10)
=0 =1
Replace C; from equation (6) into equation (9), and use equation (2) to simplify:
AVi=kF,+ (1 - I;)AL. (11)
Under exponential smoothing, the contribution recommended is (equation (6)):

C,= NC + k(AL — F). (12)

Equations (1), (2) and (12) are exactly as in Dufresne (1988). In that paper, no special
asset valuation method was used but the contribution involved a fraction of AL — Fi,asin

equation (12). Asset gains and losses were smoothed implicitly through the contribution



in Dufresne (1988) whereas here asset gains and losses are smoothed through the asset
valuation method only.

The algebraic identity between the work of Dufresne (1988) and actuarial asset val-
uation by exponential smoothing means that the results of Dufresne (1988) apply here.
In particular, if the rates of return {r;} are independent and identically distributed with

mean i and variance o2 and provided (u? + 0?)(1 — k)? < 1,

Jlim VarFy = o®?AL?/[1 - (& + 0%)(1 — k)7, (13)
tlim VarC; = k? tlim VarF. (14)

We also note from equation (6) or equation (11) that

Jlim VarAV; = lim VarC, = k* lim VarF,. (15)
—00 —00 —00

3.2 Arithmetic Smoothing

An alternative method is to define the actuarial asset value AV; as an arithmetic average
of the market values of assets over the past n years, with an explicit adjustment for cash
flows and interest:

1 n—1
AVtZE{Ft-i-Z

J=1

Uth_j + zj:uk [Ct—k - B]] } ) (16)

k=1

where n € N : n > 2. The term in square brackets in equation (16) above represents a
written-up value of the fund at time ¢ based on the value at time t — ; allowing both for
interest and intermediate cash flows in the fund. By definition, AV, = F, for n = 1.

Since u(C; — B) = Fiy1 + Lyt — uFy, from equation (4), it follows that

J Jj-1
WFj+y wMCis— Bl =F+ Y u*Ley, 7
k=1 k=0
and that
n—1 j-1 n—Zn_j_l ]
AV, =F, +~ D> Ly =F+ ZTUJL,_]-. (18)
=1 k=1 j=0



Using equation (3), the above may be rewritten as

n—1 .
—i_1 .
AL— AV, =UL, -y %uﬂLH. (19)
=0

For n =1, AV; = F; = AL — UL, by definition and the sums on the right hand sides of
equations (18) and (19) do not appear.
Equations (7) and (19) give an equation for the unfunded liability I/ L, in terms of the

intervaluation losses only:
n—1

UL; = Z )\th‘j (20)
=0
where
N=v(n—j)/n, je0,n-1]. (21)

A similar equation is given in Dufresne (1989). In that paper no special asset valuation
method was used but the supplementary contribution was calculated so that gains and
losses were amortized over a period m. In Dufresne (1989), equation (20) holds with the
exception that A; = aq— /.

Substituting equation (20) into equation (19) expresses the actuarial value of assets in

terms of the intervaluation losses:

AV, = AL — nz_lertﬁ (22)
=0
where
m=ul/n, je0,n—1]. (23)
From equation (6), X
C,=NC+ nzijt_]-. (24)
=0

Equation (24) has an analogue in Dufresne (1989), wherein m; = 1/ b



Finally, a recurrence relation for the intervaluation losses may be obtained by substi-

tuting equation (19) into equation (8) to give

n—1
Ly = (rep1 — 9) {Z BiLe—j — UAL} ) (25)
3=0
where
Bi=v(n—j-1)/n, jelo,n-1]. (26)

Equation (25) also holds in Dufresne (1989) except that 8; = g7/ G-
By direct correspondence with the results of Dufresne (1989), the following may be
stated regarding the second moments. If the rates of return {r;} are independent and

identically distributed with mean i and variance o and provided that 1 — 623 6 <1,

tlim VarF, = c*v* AL*Y A2 /[1 - DY H N 27
t]H& VarCy = c** AL*y n? /1 - UZZ,B?] . (28)

From equation (6), it is also clear that
tlim VarAV, = tlim VarC;. (29)
—00 ~—00

When neither arithmetic smoothing is used (put n = 1 in equations (27)-(29)) nor

exponential smoothing is used (put k =1 in equations (13)-(15)),

lim VarF; = lim VarC; = lim VarAV, = c%v?AL?. (30)

3.3 Relationship between Asset Valuation and Supplementary Contribution

Dufresne (1988, 1989) explores practical actuarial funding methods concerning the deter-
mination of supplementary contributions to pay off intervaluation gains and losses over
time. Market values of assets are assumed. In this paper, smoothed market values are

explored but the deficit or surplus emerging during a valuation is liquidated immediately.

9



In both cases, gains and losses are deferred. This explains the similarity between supple-
mentary contribution funding methods, as in Dufresne (1988, 1989), and asset valuation
methods as described in this paper.

Asset valuation and the calculation of supplementary contribution are nevertheless dis-
tinct. The incidence of payments for gains and losses is different when the actuarial asset
value involves arithmetic smoothing compared to when gain/loss amortization (Dufresne,
1989) is used. There is no algebraic identity between the results in section 3.2 and those of
Dufresne (1989). Furthermore, only asset gains and losses are modelled here. Gains and
losses also arise in practice when demographic and economic experience diverges from actu-
arial valuation assumptions. They are amortized through the supplementary contribution
payment and are not smoothed by any asset valuation method.

Further work is required to explore the relationship between funding and asset valuation

methods. In this paper, only asset valuation is investigated.

4 Effect of Smoothing Asset Values on Pension Funding

The choice of the smoothing parameter k or averaging period n on the pension funding

process is investigated in this section. To this end, define

A(k) =1-(u®+ ) (1 - k)?, : (31)
B, =[1-o" L8]] /5N, (32)
P(k) =[1— (u? + o?)(1 - k)] /K2, (33)
Qn=[1-0"T6] /77, (34)

which are proportional to the reciprocals of the variances in equations (13), (27), (14) and

(28) respectively.
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4.1 Volatility of Funding Level

The funding level or funded ratio of a pension plan is defined as the ratio of assets to
liabilities. Tt provides a measure of the security of pension benefits (McGill et al. , 1996,
p. 592). One of the desirable properties of a funding method is that the funding level is
stable. The variance of the funding level is proportional to the variance of F; as actuarial
liability is constant under the simple model described in section 2.

If smoothed asset values are used, intervaluation gains and losses will not be recognised
immediately but will instead be deferred. Losses accumulate and the consequent unfunded
liability may not be paid off fast enough. It is sensible that the more asset values are
smoothed, the more variable the funding level is. The following proposition makes this

concrete.

PROPOSITION 1 As the amount of smoothing in actuarial asset values increases, the vari-
ance of the funding level increases. That is,

1. lim VarF; increases as k decreases in equation (13) (ezponential smoothing),

2. lim VarF; increases as n increases in equation (27) (arithmetic smoothing).

"The proof for part 1 of Proposition 1 concerning exponential smoothing is identical to
the one given in Dufresne’s (1988) Proposition 2 because of the algebraic identity discussed
in section 3.1. The proof for part 2 of Proposition 1 concerning arithmetic smoothing is

given in the Appendix.

4.2 Volatility of Contribution Rate and Actuarial Asset Value

The contribution rate is the contribution paid as a proportion of total payroll. Since payroll
is constant in this model (section 2), the variance of the contribution rate is equal to the

variance of C;.

11



It is usually assumed that smoother actuarial asset values lead to more stable con-
tribution rates. Stable contribution rates are desirable to plan sponsors since one of the
objectives of funding pension benefits in advance is to spread costs (Trowbridge and Farr,
1976).

Dufresne (1988) and Owadally and Haberman (1999) have shown that if gains and
losses are deferred beyond a certain period longer spreading or amortization periods lead
to more variable contribution rates. The similarity between supplementary contribution
methods and asset valuation indicates that excessive smoothing of asset values may have
the counterintuitive effect of greater variability in contribution rates. The next proposition

confirms this.

PROPOSITION 2 As the amount of smoothing in actuarial asset values increases, the vari-

ance of the contribution rate decreases and then increases. That is,
1. lim VarCy has a single minimum wrt. k in equation (14) (ezponential smoothing),
2. lim VarCy has a single minimum wrt. to n in equation (28) (arithmetic smoothing).

Part 1 of Proposition 2 is proven exactly as in Dufresne (1988) because of the identity
between exponential smoothing and the spreading of unfunded liability. Part 2 of Propo-
sition 2 is proven in the Appendix. Note that lim VarAV, = lim VarC; from equations (15)
and (29).

The preconception described at the beginning of this section that smoother actuarial
asset values lead to more stable contribution rates is not therefore always borne out. If
the amount of smoothing in asset values is excessive, contribution rate volatility increases

with more smoothing.

12



4.3 Efficient Choices of k and n

Owadally and Haberman (1999) argue that the actuarial objectives of pension benefit
security for pension plan members and contribution stability for pension sponsors can be
interpreted as a criterion that both the variances of the funding level and of the contribution
rate should be minimized.

Given this criterion and given Propositions 1 and 2, the argument of Dufresne (1988)
concerning admissible or efficient parameters for pension funding may be reiterated. The
argument is briefly restated here in terms of n and k. As the amount of smoothing in
asset valuation increases (that is, as n increases or k decreases), lim VarF, increases. As
the amount of smoothing increases up to a critical amount, lim VarG; decreases. Beyond
that critical amount of smoothing, lim VarC; increases with increased smoothing and the
tradeoff between lim VarF; and lim VarC; is broken. Therefore, it is not efficient to smooth
asset values beyond that critical amount since a lower lim VarF; is always achievable if
asset values are smoothed by less than the critical amount. This is encapsulated in the

following proposition.

PROPOSITION 3 Let n* and k* be the lim VarCy-minimizing values of the averaging period
and smoothing parameter respectively. The efficient range of averaging periods is [1, n*].

The efficient range of the smoothing parameter is k* <k < 1.

By correspondence with the results of Dufresne (1988), k* = 1 — 1/(u? + ¢?). Tables 1
and 2 list n* and k* respectively for various values of the moments of the rate of return.
The Committee on Retirement Systems Research (2001) reports that a typical value for
n is 5 years. We conclude from Table 1 that the typical arithmetic averaging period is

efficient.

13



5 Comparison of Exponential and Arithmetic Smoothing in Asset Valuation

It is also possible to show mathematically, in the simple model described in section 2, that

exponential smoothing in asset valuation should be preferred to arithmetic smoothing.

PROPOSITION 4 Asset valuation using ezponential smoothing is more efficient than arith-
metic smoothing in the sense that, for any combination of k and n (withk <1 andn > 1)
such that lim VarF; is equal under ezponential and arithmetic smoothing, lim VarC, is less

under ezponential smoothing than under arithmetic smoothing.

Refer to the Appendix for a proof of Proposition 4. The proof is similar, but not iden-
tical, to a proof by Owadally and Haberman (1999) concerning the efficiency of the supple-
mentary contribution method described by Dufresne (1988) over the alternative method
in Dufresne (1989).

We conclude from Proposition 4 and Table 2 that efficient actuarial asset valuation
requires exponential smoothing with a smoothing parameter (or weight on current market

value) greater than 15%.

6 Conclusion

Actuarial asset valuation methods involving exponential and arithmetic smoothing and
allowing for interest and cash flows were considered in a simplified model of a defined
benefit pension plan described by Dufresne (1988). The analysis of Dufresne (1988, 1989)
and Owadally and Haberman (1999) was adapted and the choice of averaging periods and
smoothing parameters and its effect on the pension plan funding level and on contribution
rates was explored. It was shown that smoother actuarial asset values may increase the
volatility of contribution rates. Practical smoothing periods were discussed: arithmetic

averaging over 5 years and exponential smoothing with more than 15% weight on current

14



market value are both efficient. It was shown, however, that exponential smoothing is
preferable to arithmetic smoothing in the sense that less volatile contribution rates and
funding levels are achievable with the former than with the latter.

A deficiency in the analysis in this paper pertains to the modelling assumption that
only the return on pension plan assets, net of wage inflation, is uncertain. Gains and losses
also emerge in practice as a consequence of various uncertain factors such as mortality and
disability which were ignored here. The wage inflation-indexed benefit design is also an
abstraction of reality. Another deficiency lies in the assumption that plan sponsors pay
off any actuarial deficit (that is, the excess of actuarial liability over actuarial asset value)
immediately rather than over time. The similarity between the funding methods described
by Dufresne (1988, 1989) and smoothed asset value methods deserves more study. Further

work to remedy these deficiencies is in progress.
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Appendix
Proof of Part 2 of Proposition 1

Showing that lim VarF} in equation (27) strictly increases with n is equivalent to showing
that B, in equation (32) strictly decreases with n. It is easily shown from equations (21)

and (26) that

DB =Y N - (35)

so that B, may be rewritten as:

B, = [l +o%? — 0'21)22/\?] /EA? . (36)
Now,
n—1 . n—1 ) Y n—2 zjn_l_.z
v, <]§)\j) _ ;um(nnZJ) _J;Ou ((nT)g)
u2n— n—2
et e LWl e - )= (= L= (= )= 1)+ (21— )
=0
wr? R - -1 +(n—1—j
e

Since Y AZ increases strictly with n, it follows from equation (36) that B, decreases strictly

withn. O

Proof of Part 2 of Proposition 2

Part 1 of Proposition 2 states that lim VarC, under exponential smoothing has a minimum
over k, as proven by Dufresne (1988). From equation (33), P(k) is proportional to the
reciprocal of lim VarCy under exponential smoothing and therefore has a maximum over k.
Proving that lim VarC; in the arithmetic smoothing case has a minimum with 7 is equiv-
alent to proving that @, has a maximum with n (see equation (34)). To do this, we use

the approach in Owadally and Haberman (1999) of comparing P(k) with Q.
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Assume that k is discretized and k = 1/n, n € N, and denote P(k) by P,. From

equation (33), P, = n? — (u? + 02)(n — 1)2. It is shown in the following that
n—1 n ]
Qu Y u = 3" P, 37)
=0 =1

By comparison, Owadally and Haberman (1999) discretize k such that k = 1 /ézy and then
establish that Ga(m)m = 377, B.(i), in their notation.
Observe that Pu?™9) = [ —(u*+02)(j—1)4u2"~9) = V, (j2u>r~9) —(j—1)202u2(9)

so that the right hand side of equation (37) is

n n n—1 n~1
ZPjuz(n—j) =n? - g2 Z(] _ 1)2u2(n—j) =p2_ g2 Z(n —1— j)2u2j - anuzj
=1 =1 =0 =0

where @y, is given in equation (34). This proves equation (37).
Now, apply the lag operator once on both sides of equation (37), multiply both sides by
u?, and subtract the resulting equation from equation (37) to yield Qn+(VaQn) E;‘;ll u¥ =

P, which may be rewritten as

n—1
VQu=(Pa=Qn) /Y u¥. (38)
=1
Furthermore, the quotient rule immediately yields
n—1 n—1 n—2
V2Qn= (VP = VQu) > 1% — (P, — Q,,)uﬂ“-l)] / [Z Yy uzj] . (39)
= =1 j=1

When there is no smoothing (n = k£ = 1), P, = Q; = 1. Consider the variation
of P, and @, against n € N. P, has a single maximum. From equation (37), Qn is a
weighted average of {P;}} with positive weights u™) /3" 4% that sum to unity. As n
increases, P, initially increases and, likewise, Q, must initially increase; P, eventually
reaches a maximum and decreases; and @Q,, continues to increase and then also decreases.
Equation (38) shows that @, has a stationary point (VQ, ~ 0) when Q, intersects P,
(Pn & Qn). Equation (39) shows that, at that stationary point, V2Q,, = (VF,)/ i,

17



The stationary point in @, occurs when P, is decreasing and at that point V2Q, < 0,
giving rise to a single maximum in Q,, that is, a single minimum in lim VarC; under

arithmetic smoothing. O

Proof of Proposition 4

We wish to show that Q, < P(k) when B, = A(k), withn > 1 and k < 1.

Using equation (35), A(k) = B, may be rewritten as
1= (W + o)1 -k =[1-0*167 /32,
From equation (35), 1 =37 A% —u*3 82 and the preceding equation may be rewritten as
1= (@ +0%)(1 =k = [TX] — @ + o) O /502 =1 - (u? + )5/ AL
Hence, (1~ k)? =362/ A% and
B = (%) - (S8 = £+ 56 -2 (D)™ (m8) .
Now, A; > ;> 0 and
YN0 > 1> T (N8)/6
= (CX28) > [S(6)2
Hence,
KX < 5 +3068 - 2508 = Sy — )2 = Tk,

Since A(k) = k*P(k) from equations (31) and (33) and since B, = Q,, w2/ ¥ A% from
equations (32) and (34), we can rewrite A(k) = B, as P(k)k? X = Qn Y w2 We have
shown that k* 3 A2 < Y- n2. It follows that Q, < P(k). O
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