
Karakostas, B. & Theodoulidis, B. (2013). A MapReduce architecture for web site user behaviour

monitoring in real time. Paper presented at the 2nd International Conference on Data Management

Technologies and Applications (DATA), 29 - 31 July 2013, Reykjavik, Iceland.

City Research Online

Original citation: Karakostas, B. & Theodoulidis, B. (2013). A MapReduce architecture for web site

user behaviour monitoring in real time. Paper presented at the 2nd International Conference on Data

Management Technologies and Applications (DATA), 29 - 31 July 2013, Reykjavik, Iceland.

Permanent City Research Online URL: http://openaccess.city.ac.uk/2251/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/9983013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A MapReduce Architecture for Web Site User Behaviour Monitoring in Real

Time

Bill Karakostas
1
 , Babis Theodoulidis

2

1School of Informatics, City University London, Northampton Square, London, UK

2Manchester Business School, University of Manchester, Booth Street West, Manchester, UK

billk@soi.city.ac.uk, b.theodoulidis@manchester.ac.uk

Keywords: real time MapReduce, data stream analysis, web log analysis, web mining, Erlang

Abstract: Monitoring the behaviour of large numbers of web site users in real time poses significant performance challenges, due to

the decentralised location and volume of generated data. This paper proposes a MapReduce-style architecture where the

processing of event series from the Web users is performed by a number of cascading mappers, reducers and rereducers,

local to the event origin. With the use of static analysis and a prototype implementation, we show how this architecture is

capable to carry out time series analysis in real time for very large web data sets, based on the actual events, instead of

resorting to sampling or other extrapolation techniques.

1 INTRODUCTION

The ability to analyse the behaviour of a process

based on a history of observed events in order to

forecast future behaviour, and based upon that make

decisions, is important for many types of business

and other command and control systems.

One type of application requiring trends analysis

and forecasting based on past observations are web

sites used for e-commerce, e-government and other

similar purposes. Decisions aim to optimise their

operation or to maximise their effectiveness, in for

example, selling to the maximum number of

customers or serving the maximum number of

citizens. Web-based business processes are

considered as traffic intensive applications, since the

number of users can fluctuate dramatically within a

short time (Pun and Si, 2009), thus often requiring

decision making in real time.

Also, applications such as personalization, user

feedback, malicious traffic detection, and real-time

search require both very fast response and scalability

(Royans, 2010). Other reasons why a web site needs

to be monitored in real time includes:

 Identifying flash crowd situations in which

the server can no longer handle

overwhelming service requests (Pun and Si,

2009).

 Assessing the effectiveness of a business

marketing campaign in order to amplify it

or modify it in real time, for example

monitoring user traffic to the web page of a

product that is under promotion, in order to,

for example, adjust the promotion

parameters or ensure that enough stock is

available to meet demand.

Traditionally, attempts to understand user

behaviour were done through analysis of web logs.

A web log is a record of user data as captured by a

web server and includes for example the time spent

on the web site, total value of transactions made and

so on. One of the main problems with this approach

is that web logs can reach several gigabytes in size,

making the need for specialised storage and analysis

software (data warehouse). For example, the weblog

of Amazon is reported to be in excess of 15

Gigabytes (Devi et al, 2012). Also, the data in these

large-scale weblogs often comes from multiple

sources, and existing algorithms do not address the

distributed nature of such data.

However, the main obstacle in attempting to

mine user behaviour from web logs is that this is not

a real time method. It can take several hours before

useful user behaviour patterns are extracted from a

large web log. Such time gap makes this approach

unsuitable for time critical applications, such as for

example, detecting a denial of service (DoS) attack

on the web site. A real time approach to web user

behaviour monitoring, on the other hand, would

require a dedicated architecture for data capture

from distributed sources, distributed processing of

the data for statistical analysis, pattern identification,

and finally centralised processing of the

consolidated results. However, existing formalisms

and methods of inference have not been effective in

real-time applications, where tradeoffs between

decision quality and computational tractability are

essential (Arsham, 2012).

This paper proposes such an architecture that

follows the MapReduce paradigm, but is adapted for

real time usage. The architecture consists of layers

of mappers, reducers and rereducers, that

successively perform data aggregation and feed the

consolidated results to a decision making tool.

The main contribution of this paper are as

follows:

 It proves theoretically and with

experiments, that the proposed architecture

can be used to analyse web user data in real

time for large numbers of concurrently

connected users, i.e. ranging to hundreds of

thousands of users.

 The proposed approach does not require

dedicated or specialised software or

hardware such as real time databases and

high performance servers, as all the

processing is performed by the same web

servers, or other commodity hardware used

by the web site.

The remaining of the paper is structured as

follows. Section 2 analyses the different approaches

to web user behaviour analysis and also the use of

MapReduce style processing for real time analysis

of web logs. Section 3 presents the proposed

architecture and carries out a theoretical analysis of

its performance. Section 4 presents experimental

results from the prototype implementation of the

architecture and its performance in a simulated web

site with varying numbers of connected users.

Finally, the paper concludes with further

improvements to the proposed architecture and its

integration with other technologies for user

behaviour analysis.

2 LITERATURE REVIEW

In the past decade, the importance of analyzing

systems logs has grown, because log data constitute

a relevant aspect in evaluating the quality of such

systems (Agosti et al, 2012). For online systems

serving large numbers of users such as e-commerce

and e-business sites, analysis of such logs serves not

only for understanding system behaviour, but also

for user behaviour analysis, through mining. This

section first surveys approaches to web log data

analysis, and their applications in user behaviour

mining, and then considers the more recent category

of distributed, parallel and real time web log

analysis algorithms and techniques.

2.1 User behaviour mining and analysis

from Web logs
System log analysis has been used for performance

analysis, i.e. for understanding workloads and

improvement purposes (Iyengar, et al, 1999).

System logs produced by distributed systems are

also often used for troubleshooting and problem

diagnosis (Fu et al, 2009), as detection of execution

anomalies such as workflow errors and performance

issues is very important for the maintenance,

development, and performance refinement of large

scale distributed systems (Fu et al, 2009). For

example, in (Sugaya et al, 2011) an online log

analysis architecture and an extensible framework

for detecting errors and faults in the target real-time

system is proposed.

A more popular application of web log analysis,

is for mining knowledge about the user behaviours,

and through that, understand the users better. This in

turn, can lead to more effective, i.e. more

personalised, responsive, and profitable web sites.

One of the objectives of user behaviour mining is to

discover frequent patterns of web site usage

concentrated over a period of time, or very long

sequential patterns. (Maseglia et al, 2002).

Users leave the trails of their interaction with the

web site in various places, such as in web logs,

queries, etc. One reported approach, for example to

infer user behaviour is through the analysis of their

web search query logs (Cayci et al, 2009). Thus,

identification of patterns and trends in the user

behaviour over large scale web site deployment can

utilise different sources of logged data. Web log

files therefore, can be analyzed to identify usage

and access trends (Sudhamathy, 2010). Decision

trees have also been proposed for web user

behaviour analysis. This includes prediction of user

future actions and the typical pages leading to

browsing termination (Pabaskaite, 2003). Another

proposed user mining technique is the application of

hierarchical unsupervised niche clustering to user

profiles (Hawash and Nasraoui, 2010).

A number of approaches consider web originated

user data to be streams, to which stream analysis

techniques can be applied, i.e. algorithms for mining

and summarizing time series data (Li, 2011).

(Yoshino et al, 2011) for example, monitor resource

usage for web systems using real-time statistical

analysis of log data. (Campanile et al, 2009)

propose parsing of heterogeneous data streams based

on the definition of format-dependent grammars and

automatic production of adhoc parsers. They present

a working implementation of the approach in a

telecommunication environment for real-time

processing of billing information flows. In (Zhang

et al, 2009) time series analysis is used to evaluate

predictive scenarios using search engine

transactional logs.

2.3 Distributed and Parallel Architectures

for User Behaviour Mining
Since the early research in web mining of user data,

it became apparent that an ideal mining method

should provide frequent patterns in real time,

allowing the result to be available immediately

(Masseglia et al, 2001).

However, only recently, the state of the art in

real time processing of massive data sets has started

to make such techniques technically feasible.

Processing times for massive data sets have been

improved with the use of parallel techniques such as

MapReduce, a programming model and framework

that hides details of parallel execution and allow

users to focus only on data processing strategies

(Lee et al, 2011). However, data analytics for large

data sets such as web logs, traditionally use batch

processing systems such as Hive and Hadoop (Devi

et al, 2012)

Architectures for real time parallel processing of

web data streams are an emerging area of research.

Yahoo! Lab! for example, announced in 2010 a

general purpose, real-time, distributed, fault-tolerant,

scalable, event driven, expandable platform (S4)

which allows programmers to implement

applications for processing continuous unbounded

streams of data. S4 clusters are built using low-cost

commoditized hardware, and based on technologies

from Hadoop. S4 abstracts the input data as streams

of key-value pairs that arrive asynchronously and

are dispatched to processing nodes that produce data

sets of output key-value pairs(Royans, 2010). It is

always difficult, however, to decide how many

splitters, mappers and reducers must be there for an

optimal configuration (Zhang et al, 2010).

In conclusion, there is a generally acknowledged

requirement for efficient and scalable architectures

for analysing large volumes of web generated data.

However, the process of setting up and configuring

dedicated parallel and distributed architectures

capable of such task, that can also scale up

efficiently, is ad-hoc, and more research is required.

3 ARCHITECTURE

The proposed architecture of the system is illustrated

in Figure 1. Large web deployments such as clusters

of web servers can be accommodated by the

proposed architecture. A number of mappers and

reducers are assigned to each web server cluster to

capture and process in real time user generated

events. Aggregation of such events is done at the

reducer stage, and further aggregation of

summarised events across clusters is performed by

rereducers. The final aggregated results are

transmitted to appropriate decision support

application(s) and tools. All processing is done in

main memory, with no secondary storage used to

store the intermediate or final results.

Communication between processing nodes is carried

out using message passing.

The detailed formats of events and messages

processed and exchange is explained in the

following sections.

Figure 1:Conceptual Architecture of the proposed

approach.

3.1 User Event data
The structure of a typical record of user activity

captured in a web log looks as follows:

{Transaction ID, Date/time, fromPage,

Operation type, ToPage, Userid}

However, not all such records contain useful

information about user behaviour. This paper

suggests that to automatically analyse the behaviour

of a user group, it is first necessary to classify such

behaviour into distinct categories. We define as

interesting behaviour actions of user that cause an

important change in the user’s current state. For

users of an e-commerce site, for example, the

following types of user states could be considered as

interesting:

 landed: the user has just visited the home

page of the web site,

 browsing: the user is in a web site page

(other than the landing page) for over a

certain amount of time

 bounced: the user leaves the web site soon

after he/she lands on the web site (usually

within a few seconds). Because bouncing

does not usually captured by an explicit

action such as clicking on a link, it is

recorded as user inactivity (timeout)) when

a certain time has elapsed since the user has

landed

 buying: a buy transaction has been recorded

under the user’s tracking id.

Moreover, we are interested in identifying such

behaviours over the total population of users i.e.

changes in the sizes of the above populations and the

size of flows between populations, in real time . We

are interested for example to know, at any time,

how many landed users 'bounce’, browse the web

site, or actually buy something.
Figure 2 shows the state transition model for the

interesting user states.

Figure 2: State transition diagram for web site users.

As opposed to static, non real time analysis

which can be done on saved web logs, and

transaction data, real time analysis requires that the

user events that cause the above types of behaviour

are detected, classified correctly and aggregated

across all nodes on the web server cluster within

given time limits.

This information can then be sent to a decision

support tool to be visualised or even to trigger an

automatic decision. If such information is

transmitted sequentially to a decision support

application, real time performance requirements

cannot be easily met. On the other hand, if it is

transmitted in parallel, it can require a high

performance system that can process potentially

millions o request concurrently. Thus, a staged

bought

browsed

bounced

landed

processing architecture is required as explained in

the following section.

3.2 Key architectural concepts
The system architecture is illustrated in Figure 3. In

general, the architecture assumes a set E of event

types, n mappers, r reducers and rr rereducers. The

responsibility of a mapper is to collect events from a

cluster of web servers, classify them according to

the given taxonomy E, and emit c {ek, e(k), t}

messages at ts, ts+1, ... intervals, to its assigned

reducer, where c is the cardinality of E, ek is an

event in E, and e(k) is the number of events of type

ek detected . As not all event types are interesting, a

mapper therefore acts as both a classifier and a filter.

The task of a reducer is to collect messages

{ek, k1, t}, ..{en, kn, t} sent by its assigned mappers,

and at intervals t aggregate those that are at most

time units before or after t, and send the

aggregate values to a rereducer rr as a series of

messages {e1, e1), t}, {e2, e2), t}, ... {ec, e2),

t} where e1, e2,... are all the members of E.

Rereducers, similar to reducers, aggregate event

populations but also carry out preprocessing of the

aggregated data before they submit to the final

receiving application. Thus, a rereducer will send

messages {Op, e, t} to the receiving application,

where Op is a data operation such as average, max,

min etc and e is a member of E.

Because the receiving application is not part of

the processing system, the paper does not prescribe

how it should process the received data. The

receiving application could, for example, act as a

further reducer, by aggregating data received from

several rereducers, or instead, process each data

received separately. For this purpose, it is also

recommended that rereducers include as part of the

message an indication of their coverage of the total

population, for example the number of clusters that

they aggregate. The application is expected to use

such information in order to compile several metrics

as to the quality of the received data, as explained in

the following section.

3.3 Performance Analysis

In general, a system that measures behaviour of

large numbers of events in real time can be

characterised by the following properties:

 Coverage: This is defined as the percentage

of the total population that is being

measured. For example, if the total number

of events is 1 million and 500,000of them

are included in the measurements, the

coverage is said to be 50%

 Resolution: This is measured as the time

interval between two measurements, whereas

the smaller the interval, the higher the

resolution For example, the resolution of

measurements taken every 1 mS is 1000

higher than the resolution for measurements

taken every 1 second.

 Accuracy: This is a measure of the

percentage of events that are correctly

reported as having occurred at time t.

 Delay D is the difference between the event

measurement of t and the time t’ is received

by the monitoring application.

Taking into account the above, the analysis of

the architectural components performance

requirements is as follows:

Assuming E event categories, N generated

events per time unit, M mappers, R reducers and

RR rereducers.

 Each mapper performs N/M classification

operations per time unit and emits to its

reducer E messages.

 Each reducer receives E *M/R messages

performs E*M/R additions and emit E

messages to its rereducer.

 Finally, a rereducer receives E* R/RR

messages and performs E*R/RR operations

such as min, max, average, moving average

etc, before transmitting their output to the

receiving application.

Assuming that the times to generate transmit

and receive the messages are insignificant compared

to the time it takes to complete the main data

processing operations, from the above analysis it can

be noted that the delay D is a function of

max(tclassify(N/M)) + max(E*M/Rtaddition()) +

max(tstatistics(E*R/RR))

Operations tclassify and taddition can be

parallelised, unlike some of the operations in tstatistics

that involve sorting or other not easily parallelisable

operations. Therefore, delay D which determines

the real time performance of the system can be

controlled by increasing the number of mappers, and

by keeping the ratios of mappers to reducers and

reducers to rereducers within limits that ensure that

the overheads of managing concurrent messaging

operations do not become significant compared to

the other operations.

The requirement that processing nodes at each

processing stage must have adequate processing

capacity to handle the expected number of messages,

can be illustrated by using an example. A 10% loss

of events at the mapper stage, combined with a 5%

loss at reducer and 2% loss at rereducer stages

respectively, will reduce the system’s coverage to

0.9*0.95*0.98 = 83% This suggests to avoid using

too many reducing stages, as well as to try to

minimise event losses at every processing stage.

Figure 3: Block diagram of the proposed real time web

user behaviour system

4 EXPERIMENTS

We experimented with the proposed architecture by

developing a prototype in Erlang, a concurrent

language that facilitates the implementation of large

numbers of distributed communicating nodes.

Mappers, reducers and rereducers are implemented

as Erlang functions, so that large numbers of those

can be spawned at runtime, according to the needs of

the simulation. A separate Erlang function is used to

simulate the web users, allowing the numbers of

generated events to be easily adjusted. The

following parameters were used for

experimentation:

 Number of simulated users (n): variable

between 1000 and 1 million, with each user

generating on average 1 event every 10

seconds. Reflecting real world patterns we set

the frequencies of events to be variable, with

landing events having a frequency of 1,

bouncing events having a frequency of 0.5 and

buying events a frequency of 0.1. This

simulates the idea that a landed user has a 0.5

probability to bounce, a 0.1 probability to buy

and a 0.4 probability to carry other activities

(e.g. browse).

 Monitored event types: land, bounce and buy

 Number of mappers (m) : variable and ranging

between n and n/100

 Number of reducers: m/10

 Number of rereducers:1

With the number and behaviour of the users

controlled by the simulator, the purpose of the

experiments were to validate that the user behaviour

was reproduced accurately in the receiving

application, and that the total delay incurred by the

processing stages did not exceed a maximum D, as

per the definitions in section 3.5. For this purpose,

the RRDtool a high performance data logging and

graphing system for time series data, was used as the

receiving application. To implement 100%

coverage, the interval with which data is fed into the

RRDtool was set equal to the data sending interval

used by the rereducer.

Figure 5: Visualising the behaviour of a 200k
user population.

Figure 5 shows the behaviour of the user

population by the changes to the numbers of

‘landers’ (shown in blue) , ‘bouncers’ (green) and

‘buyers’ (red), from a total user base of around

200,000 users, monitored over a period of 30

minutes, with measurements recorded every 10

seconds by the RRDtool. From the diagram, it can

be noted that the population of bouncers shows a

more sharp rate of increase over time, compared to

the other two populations, something expected, since

bouncers by definition leave the web site very soon

after they have landed. It must be also noted that

figures 5 to 7 show changes in rate rather than

moving averages, as over a sufficient long period

the later would normally smooth to an almost

constant rate. Figure 6 shows the rate of change for

the different populations for a smaller set of users

compared to Figure 5 (approximately 1000 users),

recorded with a frequency of 1 second by the

RRDtool.

Figure 6: Visualising the behaviour of a 1000
user population.

As in Figure 5, ‘bouncers’ show the highest rate of

change. Figure 7 shows the behaviour of the

different user categories, but from a smaller user

base of around 10,000 users and over longer periods

(2 hours). Again, ‘bouncers’ show the largest

fluctuations in numbers, as expected.

Fig. 7 visualising population change rates for 10,000 web

users.

As a final experiment, an attempt was made to

populate the RDDtool database concurrently, with

data from 100 mapper processes. As expected,this

experiment failed with the mapper processes

experiencing lock contention. This confirmed the

paper’s premise that a centralised approach to web

user data updating cannot scale up.

5 CONCLUSIONS AND

FURTHER RESEARCH

This paper has argued that real time analysis of web

user behaviour requires a suitably distributed and

multistage processing architecture, that collects and

analyses user behaviour data online rather than in

batch. Thus, in this paper’s proposed approach web

logs are not stored on files or databases, with

processing instead taking place in memory and near

to the source of the events, as they occur. The

approach utilises multiple processing stages in order

to improve performance, scalability and resilience.

Mappers, reducers and rereducers can be added and

withdrawn from the monitoring system, either due to

failures or because of other availability and

performance requirements.

The proposed system can be integrated with

various types of decision support, and other

command-and- control-type systems. Visualisation

tools can be used for example, to show in real time

the activity status for the whole web site,

highlighting areas and paths of high or low activity.

A high traffic path can for example indicate the

pages with the most visitors as well as the order they

were visited. Aberrant behaviour can also be

detected with this system, as when a rate in some

type of behaviour exceeds a specified threshold

within a specified temporal window. An example of

such aberrant behaviour would be a more than 100%

increase in the number of ‘bouncers’ within an hour.

Finally, automated tools can be devised to

calculate the optimal numbers of mappers, reducers

and rereducers based on the number and type of

monitoring events and historical data about the web

site traffic such as audit trail data from the web

application performance.

REFERENCES

Agosti , Maristella , Franco Crivellari Giorgio Maria Di

Nunzio2012. Web log analysis: a review of a decade of

studies about information acquisition, inspection and

interpretation of user interaction. Data Mining and

Knowledge Discovery archive. Volume 24 Issue 3, May

2012 . Pages 663-696

Arsham, Hosein. 2012. Time-Critical Decision Making

for

Business Administration. Merrick School of Business

University of Baltimore. Available from

http://home.ubalt.edu/ntsbarsh/stat-

data/forecast.htm#rgintroduction

Campanile, Ferdinando Alessandro Cilardo, Luigi

Coppolino,Luigi Romano. 2007. Adaptable Parsing of

Real-Time Data Streams. In 15th Euromicro

International Conference on Parallel, Distributed and

Network-Based Processing (PDP'07) Naples, Italy

February 07-February 09

Cayci, Aysegul Selcuk Sumengen Cagatay Turkay Selim

Balcisoy Yucel Saygin. 2009. Temporal Dynamics of

User Interests in Web Search Queries. In International

Conference on Advanced Information Networking and

Applications Workshops, Bradford, United Kingdom.

May 26-May 29.

Devi, T, Ramasubramanian, Thiyagarajan Sivakumar

Kuppusamy. 2012. Hive and Hadoop for Data Analytics

on Large Web Logs. Available from

http://www.devx.com/Java/Article/48100

Fu, Qiang Jian-Guang Lou Yi Wang Jiang Li. 2009.

Execution Anomaly Detection in Distributed Systems

through Unstructured Log Analysis. In Ninth IEEE

International Conference on Data Mining. Miami,

Florida December 06-December 09.

Hawwash, Basheer & Olfa Nasraoui. 2010. Mining and

tracking evolving web user trends from large web

server logs. Statistical Analysis and Data Mining

archive Volume 3 Issue 2, April 2010 Pages 106-125

John Wiley & Sons, Inc. New York, NY, USA

Iyengar, Arun K. Mark S. Squillante Li Zhang. 1999.

Analysis and characterization of large-scale Web server

access patterns and performance. World Wide Web

archives Volume 2 Issue 1-2, 1999 Pages 85 - 100

Lee, Kyong-Ha , Yoon-Joon Lee, Hyunsik Choi, Yon

Dohn

Chung, Bongki Moon. 2011. Parallel Data Processing

with MapReduce: A Survey. SIGMOD Record,

December 2011 (Vol. 40, No. 4)

Li, Lei (2011) Fast Algorithms for Mining Co-evolving

TimeSeries September 2011 CMU-CS-11-127.

Computer Science Department. School of Computer

Science. Carnegie Mellon University Pittsburgh, PA.

Masseglia, F. M. Teisseire P. Poncelet (2001) Real-Time

Web Usage Mining: A Heuristic Based Distributed

Miner. WISE '01 In Proceedings of the Second

International Conference on Web Information Systems

Engineering (WISE'01) Volume 1 - Volume 1 Page 288

IEEE Computer Society Washington, DC, USA.

Masseglia, F., M. Teisseire, P. Poncelet. 2002. Real Time

Web Usage Mining with a Distributed Navigation

Analysis. In Proc. 12th International Workshop on

Research Issues in Data Engineering: Engineering E-

Commerce/E-Business Systems (RIDE'02) San Jose,

California February 24-February 25.

Pabarskaite, Zidrina. 2003. Decision trees for web log

mining. Intelligent Data Analysis archive. Volume 7

Issue 2, April 2003 Pages 141 - 154 .

Pun, Ka-I Yain-Whar Si. 2009. Audit Trail Analysis for

TrafficIntensive Web Application. In IEEE

International Conference on e-Business Engineering

Macau, China October 21-October 23

Royans. 2010. Real-Time MapReduce using S4. Available

at http://www.royans.net/arch/page/4/

Sudhamathy, G. 2010. Mining web logs: an automated

approach. In A2CWiC '10: Proceedings of the 1st

Amrita ACM-W Celebration on Women in Computing in

India September 2010.

Sugaya, Midori, Ken Igarashi Masaaki Goshima Shinpei

Nakata Kimio Kuramitsu. 2011. Extensible online log

analysis system. In EWDC '11 Proceedings of the 13th

European Workshop on Dependable Computing Pages

79-84 .

Yoshino, Matsuki , Atsuro Handa, Norihisa Komoda,

Michiko Oba. 2011. Resource usage monitoring for

web systems using real-time statistical analysis of log

data. In The 13th WSEAS international conference on

mathematical methods, computational techniques and

intelligent systems.

Ying Zhang, Bernard J. Jansen, Amanda Spink. 2009.

Time series analysis of a Web search engine transaction

log Information Processing and Management: an

International Journal , Volume 45 Issue 2.

Zhang, Fan,Junwei Cao, Xiaolong Song, Hong Cai, Chen

Wu. 2010 . AMREF: An Adaptive MapReduce

Framework for Real Time Applications. In GCC 2010:

(157-162.)

http://www.royans.net/arch/page/4/

