Yakoubov, Y. H. & Haberman, S. (1998). Review of actuarial applications of fuzzy set theory (Report
No. Actuarial Research Paper No. 105). London, UK: Faculty of Actuarial Science & Insurance, City

University London.

CITY UNIVERSITY City Research Online
LONDON

EST 1894

Original citation: Yakoubov, Y. H. & Haberman, S. (1998). Review of actuarial applications of fuzzy
set theory (Report No. Actuarial Research Paper No. 105). London, UK: Faculty of Actuarial Science

& Insurance, City University London.

Permanent City Research Online URL. http://openaccess.city.ac.uk/2235/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.


http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

REVIEW OF ACTUARIAL APPLICATIONS
OF FUZZY SET THEORY

by

Y H YAKOUBOY and S HABERMAN

Actuarial Research Paper No. 105

Department of Actuarial Science and Statistics
City University
London

February 1998

ISBN 190161523 5



“Any opinions expressed in this paper are my/our own and
not necessarily those of my/our employer or anyone else
I/we have discussed them with. You must not copy this
paper or quote it without my/our permission”.



ABSTRACT
This paper reviews the applications of fuzzy set theory to actuarial problems. Fuzzy sets are used to
describe uncertain statements, where the uncertainty is due to the nature of the phenomenon, its
perception by humans or arising from its complexity. The basic definitions and principles of fuzzy set
theory are presented and fuzzy techniques, such as fuzzy numbers, fuzzy zooming of cash flows, fuzzy
clustering, fuzzy expert svstems and fuzzy decision making , which have been applied to actuarial and
insurance problems are investigated. The areas of applications of the theory include financial
mathematics, underwriting and risk classification, pricing of general insurance business, asset
allocation, assets and liabilities matching and marketing. One of the key conclusions is that fuzzy set
theory provides a promising way of treating uncertainty which is inherent to many actuarial

applications and it would be a useful addition to the modelting tools used by actuaries.
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1. INTRODUCTION

1.1 Fuzzy sets were introduced in 1965, when Lotfi A. Zadeh published his historic article ‘Fuzzy
sets’, where he described the concept of a fuzzy set and some basic principles of fuzzy set
theory(FST). The notion of a fuzzy set is very simple but has profound implications. A fuzzy set is a
generalisation of the classical, Boolean set, for which an element either belongs or does not belong to
the set. The fuzzy set is a set with ill- defined and imprecise boundaries. That is, the membership is a
matter of degree, which is characterised by an appropriate membership function.

The fuzziness can be found anywhere in the real world. Concepts like ‘beautiful’, ‘tall’, ‘young’,
‘satisfied customer’ or statements such as ‘our company has a high loss ratio’ are fuzzy. A major
concern in modelling the real world is accommodating and treating such vague and imprecise
information. The opinion that vagueness/fuzziness is unscientific and thus should be avoided can no

longer be justified.

1.2 Fuzzy set theory is about modelling uncertainty. Randomness is an important constituent of
uncertainty. But does the notion of probability exhaust our notions of uncertainty? Does FST bring
some new insights to the world of uncertainty or it is just a different interpretation and presentation of
what we already know from the probability theory?

A classic review of the varieties of the notions of uncertainty, such as vagueness, nonspecificity and
ambiguity is given by Black(1937). We can regard uncertainty as consisting of vagueness/ ambiguity/
fuzziness and randomness. Ostaszewski (1993, p. 2) states:

¢ Vagueness is associated with the difficulty of making sharp or precise distinctions among
the objects studied. Ambiguity(or in our terminology randomness) is caused by situations
where the choice between two or more alternatives is unspecified.’
Randomness describes the uncertainty of event occurrence, whether an event occurs or not and
fuzziness relates to the degree to which an event occurs, not whether it occurs. Fuzziness refers to
deterministic uncertainty. An anecdotal illustration is given by Kosko (1990): if there is 50% chance

of finding an apple in the fridge, this is a state of affairs arrived at using probabilistic inference and if



we consider that there is half an apple in the fridge, this would be another event. The two events are

equivalent in terms of their numerical uncertainty, but one of them is random, the other is fuzzy.

Probability theory- the Kolmogorov (or frequentist) or Bayesian approaches- is successfully used to
model the ‘randomness’ side of events and the fuzziness/imprecision is usually considered negligible:
this is often the case in the physical sciences. But when we are confronted with the imprecision of
natural language and of human perception, vagueness appears as a very important factor in modelling

such phenomena.

There are many similarities between the two theories - FST and Probability Theory. Both describe
uncertainty in a numerical manner, using numbers from the unit interval [0,1] and both theories
involve the combination of their basic notions associatively, commutatively and distributively.
There are also differences. An interesting approach to them is given by Kosko (1990). He states that
fuzziness occurs when, and only when, the first law of Aristotle’s ‘laws of thought’ of non-
contradiction (i.e. ANA° = @) is violated, others being the law of excluded middle (i.e.
AUA® = X) and the law of identity (i.e. 4=A), where 4 is a ‘thing’ and A °is its opposite and X is
the set of all ‘things’. He writes:
‘Classical logic and set theory assume that the law of noncontradiction and equivalently the
law of excluded middle, is never violated. That is what makes the classical theory black and
white. Fuzziness begins where Western logic ends.’
Probability theory is based on the theory of measure, while FST is not.
Increasing information about a phenomenon reduces the importance of probability and randomness,
while if all facts are presented , fuzziness very often remains, i.e. a large hill is only roughly a
mountain or a person with light injuries is only to some extent disabled.
Lemaire adds (1990) :
‘Probability concepts are derived from considerations about uncertainty of propositions about
the real world. Fuzzy concepts are closely related to the multivalued logic treatments of issues

of imprecision in the definition of entitles. Hence, fuzzy set theory provides a better



framework than probability theory for modelling problems that have some inherent
imprecision. ...
Classical probability theory has its effectiveness limited when dealing with problems in which

some of the principal sources of uncertainty are non-statistical in nature.’

1.3 The first application of FST to insurance and actuarial problems is due to DeWit (1982). Some
eight years later, fuzzy sets were rediscovered by Lemaire (1990), where the examples presented cover
such areas as underwriting, reinsurance and financial mathematics. Under the auspices of the Society
of Actuaries, Ostasziewski (1993) presented a review of possible applications of FST in actuarial
science in areas such as the economics of risk, the time value of money, individual models, collective
models and risk classification. Cummins and Derrig (1993, 1997), Derrig and Ostaszewski (1994,
1995) and Young (1996) have applied the fuzzy approach in non-life insurance context. Buehlmann
and Berliner (1992), Berliner and Buehlmann (1993) have developed the theory of fuzzy ‘zooming® of
cash flows, while Babad and Berliner (1994, 1995) have used a slightly different approach towards the
uncertainty- the Intervals of Possibilities. Other areas of applications have included asset allocation
(Guo and Huang, 1996), underwriting and marketing (Hellman, 1995; Young, 1993), the matching of

assets and liabilities (Chang and Wang, 1995).

1.4 In the following sections are presented the basic definitions and principles of FST and the fuzzy
tools and techniques that have been applied to actuarial and insurance problems. Chapter 2 gives the
basic definitions and principles, which represent in a rigorous, mathematical way the foundations of
FST. Chapter 3 deals with the notion of a fuzzy number and its use in the time value of money, in
calculating cash flows where amounts, interest rates, time of payments are uncertain quantities and in
the theory of ‘fuzzy zooming’, as developed by Berliner and Buehlmann. Chapter 4 looks at fuzzy
pattern recognition and gives examples of the applications of the fuzzy c-means clustering algorithm in
actuarial modelling. Fuzzy approximate reasoning, fuzzy expert systems and fuzzy control systems are
explained in Chapter 5 and applications in underwriting and risk classification are presented. Decision

making in a fuzzy environment and its potential in the insurance and actuarial context are discussed in



Chapter 6. Chapter 7 presents a brief consideration to the so called ‘hybrid’ systems and their merits in
modelling real world problems and presents the description of three such systems. Finally, we present

our conclusions and some thoughts about further research in Chapter 8.



2. MATHEMATICS OF FUZZY SET THEORY

2.1 Definitions.
2.1.1 Given a universe of discourse U, a fuzzy set A in it is defined by

UM
Ky is called the membership function of 4 and for each element x of U, gives the degree of
membership of x in 4, M is an ordered set, normally is taken to be the unit interval, M=/0, 1]. The
definition is a generalization of the characteristic function of an ordinary set, where the characteristic
function y of a set 4 is

()= 0 ifxegd
=1 ifxed
The two extreme values 0 and 1 represent, respectively, the lowest and highest degree of membership.

The degree of membership could be interpreted as the “truth value” of a statement such as “x is a

member of A”.

2.1.2 The a - cut of a fuzzy set A is the crisp set A, defined as

Ao {xeU: ux) 2al
It could be thought of as an error interval whose truth value is ¢, i.e. there is a % belief that a
particular element is in the set. For example a 0.90-cut of A contains all elements that are at least 90%
in the set, and a 1-cut contains the elements that are for certain in the set. In the decision making

process, the fuzzy decision, represented by a fuzzy set is replaced by an appropriate o - cut, and the so

defined crisp set gives the set of optimal decisions.
The o - level in a fuzzy set A is
Aac{x €U: pyx) = a}

and Aa=UAk.

k2a

2.1.3 A fuzzy set A is normal if thereisanx € U: y (%) = 1.



If it is not and m = sup p,(x), x € U, then the new set 4’ = A/ m, with g4:(x) = py(x)/m is normal.

2.1.4 AcRis convex if for ¢ €/0,1] and for any x and y

Halex+(1-¢)y) 2min( py(x), pa(3)) -

2.1.5  The union of fuzzy sets 4 and B is the fuzzy set A B with membership function
Hoaup(x) = max (uyx), pp (x)), x €U
This is the standard definition that includes the crisp case.
Other definitions that satisfy some particular set of axioms could be given. Ostaszewski (1993, pp.13-
15) lists the axioms and shows the relationship of the generalised union (and intersection) with the so

called 7- norms and T- conorms.

The intersection of A and B is AnB with membership function

K arp(%) = min (1y(%) , pp (x), x € U.

The complement -4 of a fuzzy set 4 is defined as

Ha®) =1 - py(x).

These operations are closely related to the connectives ‘or’, ‘and” and negation respectively

and naturally extend the corresponding definitions from standard set theory.

2.1.6 As an illustration, let

U={0,12345,6782910}
represents the possible outcome from an examination, rounded to the nearest multiple of 10, (i.e. 4 is
assigned to 44 and 5 is assigned to 45). Let 4 and B denote the fuzzy sets that represent a student’s
expectation from two exams.
A={(0,0), (1,0), (2,0.3), (3,0.9), (4,1), (5,0.9), (6,0.8), (7,0.5), (8,0.1), (9,0), (10,0)}
B={(0,0), (1,0), (2,0), (3,0), (4,0.1), (5,0.2), (6,0.9), (7,1), (8,0.9), (9,0.2), (10,0.1)}

9



where (2,0.3) denotes 1(2)=0.3

then

AUB={(0,0), (1,0), (2,0.3), (3,0.9), (4,1), (50.9), (6,0.9), (7,1), (8,0.9), (9,0.2), (10,0.1)}

ANB={(0,0), (1,0), (2,0), (3,0), (4,0.1), (5,0.2), (6,0.8), (7,0.5), (8,0.1), (9,0), (10,0)}

-A={(0,1), (1,1), (2,0.7), (3,0.1), (4,0), (5,0.1), (6,0.2), (7,0.5), (8,0.9), (9,1), (10,1)}.

2.1.7 In many applications, the minimum definition of intersection given above is too strict. Other
definitions can be considered. Lemaire(1990) introduces the following three properties that the

possible definitions of the intersection should satisfy:

Property 1: (cumulative effects):

H arp(®) < min (%), ptp (%),
if pax), pp (x) are <l.

The effect of two factors is worse than each separately.

Property 2: (interactions between criteria):
The effects of 4 and B on AB are not independent,i.c. the effect of a change of z,(%) on u 4-5(%) may

also depend on gp(x).

Property 3: (compensation between criteria)

An increase in z4(x) could be eliminated by a decrease in u(x).

The minimum operator does not satisfy any of these properties.

2.1.8 The following definitions satisfy some or all of the three properties in 2.1.7



algebraic product 4B, defined by

Hap(%) = pa®) pp (x), x € U,

It satisfies all of the three properties.

bounded difference 4-B, defined by
Hap() = max(0, py(x) + pg (x) - 1), x € U
1t satisfies only the properties 1 and 3. Indeed the change in 4-B caused by a change in z,(x) is

independent of the value of p(x) as long as s,(x) + up (x) - 1>0.

Hamacher operator, H, which depends on p is defined by

H(A,B,p)= Ha (X)pp(x) 0<p<l
P+ (1= P)Laa (%) + pp (x) = pp () 15 (%))
when p=1 the Hamacher operator reduces to the algebraic product, which is the intersection that allows

maximum interaction. In general the following inequalities are in force

Bap SpESph<punp 93P
The degree of interaction decreases when p decreases. The Hamacher operator satisfies the three

properties in 2.1.7.

Yager operator, Y, depends on p and is defined by
Y(A,Bp) =1-min{1,[(I- @)l +(1- ps &)1} p 21
When p=1 the Yager operator reduces to the bounded difference and when p— it is equivalent to the

minimum intersection. Y(4,B,p) is an increasing function of p. For p>1 it satisfies the three properties

in2.1.7.

The Hamacher definition falls somewhere between the minimum and the algebraic, and the Yager
definition falls between the minimum and the bounded difference in modelling the possible

interactions between the sets; the choice of p gives greater flexibility in determining the level of the

interaction.



2.1.9 Let us consider the fuzzy sets defined in 2.1.6. The overall exam expectation could be given by
the intersection of 4 and B.

The results of the different definitions are presented in the table below.

0.3 0 0 0 0 0 0
0.9 0 0 0 0 0 0
1 0.1 0.1 01 0.1 0.1 0.1
09 02 02 0.18 0.1 0.19 0.19
08 09 0.8 0.72 0.7 0.73 0.78
0.5 1 05 05 0.5 0.5 0.5
0.1 09 0.1 0.09 0 0.09 0.09
0 02 0 0 0 0 0
0 01 0 0 0 0 0

From the results from the above table, we can see that the highest level of interaction is presented by
the algebraic product, while the minimum intersection presents the least interaction. The Hamacher and

Yager operators lie between these two extremes.

2.2 Fuzzy operations

Each fuzzy set can be manipulated by the fuzzy operations of concentration, dilation or intensification.

These are defined as follows.

2.2.1 Concentration of 4 is a fuzzy set CON(4,a) defined by

Heonua (%) = { pa®) J, a>1.

12



The degree of membership of each element that belongs partially to A is reduced. The less the element

is in the set, the more is its membership value reduced.

2.2.2 The opposite operation is dilation, DIL(4, a)

Hpi, o) = { Ha(x) ¥, 0<a<l.

The degree of membership of each element that belongs partially to A is increased.

2.2.3 Intensification of A is the fuzzy set INT(4), defined by

244 (x) 0< py(x)<05

()= {1 ~2(1- (3’ 05<py(x)<1

The degree of membership of elements that are at least half in the set is increased and the degree of

membership of those which are not is decreased.

These operations could be used in constructing fuzzy expert systems or in decision making procedures.
They enable us to weight the significance of the different factors or groups of factors that influence the

outcome of the model.

2.3 Special fuzzy sets.

2.3.1 A fuzzy number is a fuzzy set A c R, characterized by four real numbers a;, a,, a;, a,and

defined as(Lemaire 1990):
(a) py(x) is continuous
(b) py(x) = O0forx € (-0 a,;] and [a,, +)
(€) pq(x) is strictly increasing in fa,, a,] and strictly decreasing in /a;, a,]

D =1 x€la a)

This is represented in Figure 2.1.

13



a, a, a ay X

fuzzy number(a,, a,, a3, a,)

Fig.2.1 Fuzzy number

A more general definition of a fuzzy number is given by Ostaszewski(1993, p.11). It is defined as a
normal, convex fuzzy set, with membership function that is continuous and vanishes outside an
interval [a,b] of the real line.

A fuzzy number can be interpreted as a fuzzy subset of the real line whose highest membership values
are clustered around a given real number or a real interval.

Ifa; = a,= a; = a,then 4 is an ordinary number.

We can say that 4 is a positive number if ¢,>0 and a negative number if a, < 0.

2.3.2 A triangular fuzzy number (TFN) 4 is a fuzzy number with linear increasing and decreasing

parts of the membership function and a, = a;, as depicted in Figure 2.2.

a; a, a;

Fig.2.2 Triangular Fuzzy Number
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2.4 Other useful concepts.

2.4.1 It is possible to define fuzzy analogues to many other elements from the fields of algebra,
analysis and other branches of contemporary mathematics. For our purposes, we will present two
definitions of fuzzy inequalities. Further discussions of this and similar extensions can be found in
Zimmerman (1991), Dubois and Prade (1980) or in the specialised journals (e.g. ‘Fuzzy sets and
systems’). For example, another useful concept is that of fuzzy equations (Buckley, 1990; Cummins

and Derrig, 1997).

2.4.2 If fis a conventional function (i.e. a mapping to the set of real numbers, f: X — R'), a fuzzy
inequality is denoted as

Sf(x)~b(9
and the meaning is that f{x) is ‘somewhat’ bigger than b and the degree of being ‘somewhat’ bigger is
controlled by the tolerance 6, 0<6<I (Zimmerman, 1991).
The solution is the fuzzy set 4 with a membership function x,,

Ha(x)=sup{y| fix)=b-6(1-y) } and y is a number between 0 and / .

The above defined solution comprises the solution under the conventional approach with certainty and

it also includes small intervals around the border points to some degree.

2.4.3 A second approach to fuzzy inequalities uses a fuzzy mapping and in fact, consists of comparing
a fuzzy number with a ‘crisp” number.
A fuzzy mapping is a function which returns as values (triangular) fuzzy numbers, f: X — TFN(R'),
where TFN(R) is the set of all (triangular) fuzzy numbers.
The solution is the fuzzy set B, with a membership function p;,

Hp(x)=sup{ y| v, (I-y) 2 b},
where v, is the inverse of the decreasing part of fuzzy number’s f{x) membership function (see section

3.2.1) and y is a number between 0 and 1.

15



2.4.3 Other definitions of fuzzy inequalities are possible. For example, Chang and Wang (1995)
consider two further examples, based on the above definitions and the same authors provide some

elements of fuzzy calculus as well.



3. FUZZY MATHEMATICS OF FINANCE

3.1 Introduction

The elements that characterise many financial problems are vague and imprecise. For a given cash
flow, when calculating the present value, the future rate of interest, time of payment or amount of each
payment are not known and appropriate estimates are needed. When there are sufficient statistical data
and confidence that the future development of the cash flow will follow the past experience, stochastic
models are used. Fuzzy numbers could be used when the whole picture is not clear and the available
information is scarce or it is not possible to make a definite decision because of the subjective nature of
the human perception. The fuzzy numbers are used when the complexity of models makes it difficult
to obtain practical results. Then methods based on fuzzy arithmetics could be used in order to simplify

the original model.

3.2 Fuzzy arithmetics

3.2.1 Operations on fuzzy numbers, such as summation, product and power are defined, using the
Extension Principle of Zadeh. It is a method of extending functions to fuzzy sets (see Ostaszewski,
1993, pp.11, 28) and in an elementary form it was presented by Zadeh (1965) and developed by

Dubois and Prade (1980).

3.2.1 The sum of two fuzzy numbers A and B
S=4+B
is defined as the fuzzy set with the following membership function
Hs(8) = max min(z 4 (x), g (»))
It can be proved that the so defined fuzzy set is a fuzzy number and that the summation is (in this

context) an associative and commutative operator (Dubois and Prade, 1980). This is illustrated in

Figure 3.1.
The properties below follow from this definition.
L us(s) =0 Jorx € (-0 ar+by U(a/th, )

17



2. us(s) =1 forx € (a;+by,as+b3)
3. if u, and u are the increasing and decreasing parts of a fuzzy number’s membership
function and v,=/y,] ", v.=[u] ! are the inverse functions then
Vsr = Var T Vg

Vs =vy tvp

08 1
06 1
04 | v
02 1 ’

degree of membership

1 234567 8 9101112131415
Fig. 3.1 Sum of two fuzzy numbers. A=(1, 3, 5, 7), B=(2, 4, 6, 8); A+B=(3, 7, 11, 15).

3.2.2 A similar definition, based on the Zadeh’s Extension Principle, can be given to the product P of

two fuzzy numbers A and B, P = A®B, which is defined as

Hp(p)= max min(u 4 (x), 45 (¥))

It can be shown that P is a fuzzy number and is characterized by
pi=a;b;, py=azb,, ps=ash; p,~ab,
and has the following inverse parts of the membership function:
Vpe = Vg * vy
vp. =V, *¥vp
Also it can be proved that the product is associative, commutative and distributive with respect to

summation (Dubois and Prade, 1980).

323 Then™ power of A is defined recursively as

A" =484""

18



3.3 Example

3.3.1 We will calculate the net single premium of a £100 10-year pure endowment policy on a life aged

25.

3.3.1.1 We assume that the rate of interest / (assumed to be constant) for the next 10 years is a fuzzy

number, clustered around the 7% level so that the fuzzy number /+ i has the following membership

function:
100x - 105 105<x <106
e =11 1.06 < x <1.075
44 — 40x 1.075<x <11

which is shown in Figure 3.2.

Fuzzy interest rate

degree of membershi
=}
N

1.05 1.06 1.075 11

Fig. 3.2 Interest rate factor /+i=(1.05, 1.06, 1.075, 1.1)

If the inverse functions of the monotonic parts are v, and v, then

v () =105+001y
v, () =11-0.025y y €[0,1]

19



3.3.1.2 The net single premium (NSP) for the pure endowment is
NSP={sum assured}*{prob. that payment is made}* {discount factor}

The discount factor DF = (I + i) ™ where (1 + i) is the fuzzy number defined above, and

Vpre = (1L1-0025y)7"°
Ve =(105+001y)™  ye[0,]]

and therefore DF is approximately the fuzzy number DF= (0.3855, 0.4852, 0.5584, 0.6139)
The survival probability (mortality table A1967/70) is
10 P25 =135 [ 1,5 =099
Then
NSP = 100%0.99%(1 +i)™"°

and using the definitions of product and n power, NSP is found to be approximately the fuzzy

number NSP=(38.16, 48.03, 55.28, 60.78), shown in Figure 3.3.

0.8 |
0.6 -
04 |
02 ]

degree of membership

38.16 48.03 55.28 60.78

Figure 3.3 Net single premium as a fuzzy number, NSP=(38.16, 48.03, 55.28, 60.78).
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3.3.1.3 Next it could be assumed that ,sp,s is also a fuzzy number. Specifically we assume that:

0 x<09

%x—lo 09 <x <099
Hp(x)=19 9

100 - 100x 099<x<1

0 x>1

or using the inverse functions

Vpe =0.09y+09
v,.=1-001y ye€[0]]

And then the inverse functions for the fuzzy premium become

V premiums (V) = 100% v, * v = 100009 +0.09)(105+0.01y)™*°
Y premin- (¥) = 100%V,,_%vp_ =100(1 - 0.01y)(11-0.025y) ™"

and the fuzzy number that represents the NSP is (34.70, 48.03, 55.28, 61.39)
The number is fuzzier because of the fuzzy survival probability that has been introduced.

It is also possible to ‘fuzzify’ the time of the payment (Buckley 1987) or the amount of payment

(Buehlmann and Berliner, 1992).

3.3.2 We now revisit the same example but using a different approach. Assume that the rates of interest
each year are represented by independent and identically distributed random variables i, which have

lognormal distribution with parameters u and o, i.e. log i, ~N(i, %)
3.3.2.1 The present value(PV) of 1 payable after 10 years equals to
PV = {(1+ i) (1+i,) ... (I+i})}"
log PV = - {log (1+ i) +log(1+iy) + ... + log(I+i,g)}

21



The right-hand side of the last equation is a sum of independent normally distributed random variables

. . 2
with mean - p and variance 6”. Then

logPV ~N( - 10, 105°).
3.3.2.2 If we take E(I+i) = m = 1.07 and Var(I+i) =s° = 0.015°
and using the relationships between the parameters of the lognormal distribution and its mean and

variance:

H=log

0'2 S
m = exp(u+—) 1+(5)?
2 m

and theinverse

s :exp(2;t+0'2)(expc>'2—l) o’ =log(1+(i)2)
m

we come to the following distribution for logPV
logPV ~ N{(-.72146, 0.00346)

or mean(PV) = 0.5094
s.d. (PV) =0.0226

then the NSP = 100*0.99*PV is a random variable with mean = 50.43 and standard deviation = 2.24

3.3.3 The result is similar to that calculated with the use of fuzzy numbers. In the fuzzy case, the length
of the interval of most possible values is about £7. In the stochastic result, if we assume that a

“confidence” interval for the NSP has length 3*s.d., then it is again about £7.

The use of the stochastic approach needs a solid theoretical basis, but allows implicitly for the
inclusion of any statistical data available (estimating mean and variance from the past experience). The
use of fuzzy numbers is simpler conceptually and allows greater flexibility (in determining the shape

and actual values of the fuzzy numbers). The fuzzy approach is easily modified to include the cases

22



when not only the interest rates, but also the amount or time of payment are not certain quantities. Both

methods need an estimate of the future interest rates.

3.4 A life insurance application.

Using the same fuzzy approach, we can find the actuarial values of other benefits. Ostaszewski (1993)
calculates the net single premium for a 2 year term assurance with the benefit payable at the end of
year of death. The interest rates are fuzzy numbers and are read from a fuzzy yield curve. The yield
curve is assumed at time 0 to be equal to the set of current short term interest rates, the 10 year rate is
taken to be a triangular fuzzy number, having degree of membership of 1 at the current 10 year bond
yield and the yield curve is assumed to increase linearly from the level of the short term interest rates
to the fuzzy 10 year yield with increasing “fuzzification”. The process of calculation is quite laborious
but can be easily handled by computer.

The author suggests the use of a fuzzy approach in calculating future reserves and the possibility of
showing at an early stage when the premiums charged appear low and a correction is needed.

It would be interesting to see how the fuzzy approach, with its flexibility in choosing the level and the
form of the fuzzy yield curve compares to the more traditional deterministic modelling, scenario
testing or stochastic modelling. An extension to the above example would be to perform a fuzzy

scenario testing, with different assumptions regarding the fuzzy yield curve.

3.5 Fuzzy ‘zooming’ of cash flows.

Buehlmann& Berliner (1992) and Berliner& Buehlmann (1993) take the applications further by
developing a theory that allows complex and uncertain cash flows to be replaced by some specific
payments that approximately detect the sensitivity of the original cash flow to the interest rate
movements.

3.5.1 In their approach we consider a given set of cash flows {G} t=1,2, .., n. Then

Tw'G,
PV

the duration D is defined as D=
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2 !
tv G,
the dispersion M is defined as M= % -D?

the convexity CO is defined as Co = vz(M 24+D?+D)

and the fuzzy payment equivalent to the cash flows G is defined as the ordered pair
{PV(1+)"; FID-M?*,D,D+V M1}

where F is a triangular fuzzy number, PV is the present value of the payments PV = Z G,v' and

3.5.2 The duration characterises the sensitivity of the cash flow to interest rate changes. The dispersion
can be regarded as a measure of the deviation of a cash flow from a zero coupon bond of the same
duration (Buehlmann& Berliner, 1992). An important feature of the concepts of duration and
convexity (as defined above) is that the sum of the durations and the convexities of securities in a
portfolio, weighted by their present values is equal to the duration and convexity of the portfolio as a
whole.

Replacing the cash flow by an equivalent fuzzy payment reduces the complexity that arises from the
pattern of the payments, but retains the main characteristics. The first element of the equivalent fuzzy

payment PV(1+i)” gives the “value” of the cash flow at time point D, which could be thought of as the
P

»

cash flows’ “centre of gravity”. The second element takes the duration as the central point of the
triangular fuzzy number and the corner points give maximum “stretches” of the cash flow payments,

because M’ provides (as stated above) a measure of the deviation of the cash flow from a zero coupon

bond.

3.5.3 The equivalent fuzzy payments are easily extended to fuzzy zoomings of a cash flow as follows:
- a fuzzy zooming of first order is the fuzzy payment equivalent to the cash flow.
- the original cash flow is divided into two cash flows by the duration D, i.e. one with

payments between times 0 and D and second with payments between times D and n.
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- for these two partial cash flows the durations and dispersions D and M are calculated, then
the respective equivalent fuzzy payments are determined. These two payments represent the fuzzy
zooming of second order.

- each of the two partial cash flows is divided again into another pair using the same approach,
giving altogether four partial cash flows. Each one is assigned an equivalent fuzzy payment and these
represent the fuzzy zooming of order four and so on...

- a fuzzy zooming of order k is represented by the k equivalent fuzzy payments

(PY(1+)®,, F), (PVy(1+)°5, Fy), ..., (PVI+)", Fy).

3.5.4 Two cash flows react similarly to interest rate changes if they have identical fuzzy zoomings of
some specified order. The equality of these zoomings could be used to obtain a result which is
intermediate between a perfect hedge and an immunisation position. As stated in Buehlmanné& Berliner

(1992) the fuzzy zooming of first order is ‘a much improved form of immunisation, because it takes

into account the “stretching” by v M?* and the fuzzy zoomings of higher order are nearly a perfect
match’.
The fuzzy zooming could be generalised (Berliner& Buehlmann, 1993) by dividing the original cash

flow into k disjunctive partial cash flows and for each one, an equivalent fuzzy payment is defined as

above.

3.5.5 A simple illustration of a fuzzy zooming of a cash flow in life annuities is given by Buehlmann&
Berliner (1992) and is reproduced below.

3.5.5.1 A deferred annuity financed by a single premium is issued to a life aged 20, the payments start
at age 60 and the rate of payment is I p.a., and an annual rate of interest of 5% is assumed. For
simplicity the cash flow paid by the life office is taken to be /, (according to a mortality table,
1,=100,000, x = 60, 61, ...).

3.5.5.2 Then the following is calculated for the zooming of first order:

Duration D=48.1 (years)

Present value PY=139 200
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Time value at time D TV =1460 000

Dispersion M=469 (vears) z

PV and TV are expressed in monetary units.

Then the fuzzy zooming of first order is (TV; TFN(D-M, D, D+M)) or

(1460000;TFN(41.25,48.1,54.95)) which is shown in Figure 3.4.

Fuzzy zooming of first order

14 *
12 1

11
0.8 1
0.6 4
04 1
02 L

cash flow(in millions

Figure 3.4 A fuzzy zooming of a cash flow in life annuities.

3.5.5.3 The fuzzy zooming of second order is calculated as mentioned above.

D,; = 43.9 (years) D,,=55,8 (vears)
PV,,=89 700 PV,,=49500
TV,,=765 000 TV,,=754 000

M}, =8 (years)* ]\1221 =25.9 (vears)’
And the ordered pairs

(765 000, TFN(41.0, 43.9, 46.7)), (754 000, TFN(50.7, 55.8, 60.8))
are the fuzzy zoomings of second order.

Thus a cash flow, consisting of many payments is replaced by an equivalent simpler cash flow, which

is easier to analyse.

3.5.6 A second example (Berliner & Buehlmann, 1993) considers a geometrically increasing cash flow

which is exposed to four different types of “interest rate shocks” and it is shown that generalised
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zooming of order five is a good approximation to the original cash flow, comparing its sensitivity to

interest rate shocks.

3.5.7 A potential area of use of this technique would be the modelling of assets and liabilities for a life
insurer or a pension fund.

Given the simplicity of the fuzzy cash flows and the results of the fuzzy ‘zooming’ process, the above
technique could replace the classical immunisation approach and given its alleged superiority, it could
be used as an integral part of determining an appropriate matched position for an insurance company

or a pension fund. _

3.6 Intervals of possibilities.

Babad and Berliner(1994, 1995) add a third approach to the treatment of vague and imprecise nature
of the real world. Instead of using stochastic techniques or fuzzy set theory they introduce the Interval
of Possibilities as a tool for modelling, analysis and decision making when the underlying information
is scanty.

3.6.1 An interval of possibilities is a subset of the real line and is used to replace exact numbers,
without making assumptions about any probability measure or degree of membership. It is defined by
an ordered triplet (a;, az, a3); a; is the infimum value of the interval and it is interpreted as the most
pessimistic value, a;is the supremum value, the most optimistic value and a; is the plausible value,
the “average” person’s view regarding uncertainty. The ordinary real numbers are a limiting case

when a;= a,= as.

Arithmetic operations such as addition, subtraction, multiplication and division of intervals are

defined in a natural manner.



An interval of possibilities could be easily “upgraded” to a fuzzy set and more precisely a triangular

fuzzy number, by defining the membership function as shown below.

08 1

0.6 1

04 L

0.2

degree of membership

al a2 a3

3.6.2 Applications of the above concept are considered by Babad and Berliner (1995) and include an
interpretation of the sliding scale excess of loss (XL) reinsurance treaty as an Interval of Possibilities,
the pricing of a fixed income security, the pricing of a callable bond- a security with an uncertain
maturity date and the calculation of the pure premium for a life assurance policy with mortality rates

represented by intervals of possibilities.

3.6.3 One of the biggest advantages of this theory, the delay in elimination of the uncertainty to the
latest possible moment in the decision making process, also leads to a very large interval for the final
result that sometimes makes the analysis a rather futile exercise. Babad & Betliner (1995) present a
way of overcoming the problem by an “actualisation” of the intervals i.e. when a value from an interval
is chosen it is consistently used in all places where the interval is presented. This results in a reduction
of the size of decision intervals because some values become impossible.

The idea of actualisation is used in a Stop Loss Reinsurance example.

3.6.4 The concept of Intervals of Possibilities is simple and easy to understand. It could be used as an
initial step in analysing processes which are not well determined. Because of the apparent low level of
mathematical difficulty, the concept could be attractive to people who do not want to experience

‘heavy’ mathematics or could be useful for explaining results, obtained using other more “strict’

28



methods, to non-actuaries, for example, the trustees of an pension fund or the directors of an

insurance company.

3.7 Other applications.

Many actuarial problems can be presented using fuzzy theory terminology and solutions derived using
the tools of the fuzzy mathematics of finance. Two further examples appearing in the literature are
briefly presented in the next paragraphs.

3.7.1 Derrig and Ostaszewski (1995) consider a situation where the use of the fuzzy numbers provides
a simple and easy-to-apply tool. They look at the hedging of the tax liabilities of a general insurer and
the uncertainty in the underwriting and investment parameters is modelled with fuzzy numbers. This
leads to fuzzy quantities for the effective tax rate, the rate of return and the liability hedge. They
conclude that the use of fuzzy numbers instead of exact numbers provides a more realistic view of the
variability of the outcome quantities.

An alternative solution for this problem would be the use of random variables, instead of fuzzy
numbers, and simulation techniques for obtaining the distribution for the outcome quantities.
Although the two approaches are different in their nature, a common characteristic is the significant
amount of subjectivity which is inherent in determining the input quantities. It is likely that the two
models would lead to comparable results and superiority of one over the other would depend on the

processes that are modelled and their characteristics.

3.7.2 In Chang and Wang (1995). fuzzy analogues of the classical immunisation theory and the
matching of assets and liabilities are presented. The conventional theories are “translated” into fuzzy
terminology and then some results from fuzzy algebra are used to solve the resulting problems.

The use of the fuzzy approach brings a new view to the problems themselves, provides an extension to
the solutions by using fuzzy techniques and. more importantly, allows the setting of the problems to be

closer to the real world and provides some flexibility in the interpretation of the solutions.
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3.8 Conclusions

Fuzzy numbers provide an alternative to use of exact numbers for important actuarial quantities like
interest and inflation rates. and amounts and times of payment. They are a convenient way to include
easily, in a mathematical model. statements such as ‘approximately between SI% and 8 %’ or ‘around
£20, 000,

The use of fuzzy numbers instead of probability theory is justified when insufficient statistical data are
available or the underlying characteristics are vague and imprecise. Then fuzzy numbers allow their
user to incorporate his/her opinion or feelings about the future behaviour of the unknown
phenomenon.

When the problem itself is complex, a fuzzy approach could lead to a model that is simpler to solve
but which still gives reliable resuits.

The theory of fuzzy numbers is relatively simple and that makes it easy to apply and the changes in
the sizes or shapes of the fuzzy numbers can be given an intuitive explanation.

A drawback of the use of fazzy numbers is the high level of subjectivity . There could exist several
‘reasonable’ assumptions which may lead to very different decisions.

Although the concept of a fuzzy number is theoretically simple and easy to use, producing meaningful
results, which are an improvement on the results arising from conventional methods, requires skills
and awareness of the underlying real world processes. In this sense, there is no ‘standard’

methodology, but each problem requires a unique approach.
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4. FUZZY PATTERN RECOGNITION IN ACTUARIAL SCIENCE

4.1 Pattern recognition.

4.1.1 Pattern recognition is one of the dynamic branches of modern mathematics. In includes research in
many areas of contemporary science - artificial intelligence, linguistic, biological and medical sciences.
Bezdek(1991) defines pattern recognition as “a search for structure in data”. Modem pattern recognition
techniques can be divided into two classes: mathematical (primarily cluster analysis) and non -
mathematical. The techniques of mathematical pattern recognition are more universal and are applicable to

a variety of situations.

4.1.2 The most effective and easy way of finding a structure in data- when possible- is the ‘eyeball’
technique (e.g. medical diagnosis). Often the data are not easily interpretable and the need for more
powerful and sophisticated search procedures arises. Statistical pattern recognition techniques have been
developed to analyse multidimensional data. However, there are data sets which have a non-probabilistic

nature and fuzzy set theory offers a way to analyse such data.

4.1.3 The entire pattern recognition process can be presented by Figure 4.1 (Zimmerman 1991):

Physical world N dimensions ¢ Clusters
Transducers 1 Dimensionality 1 Decision
Reduction Algorithm
Data Pattern Feature Classification
space Space Space

Fig. 4.1 Pattern recognition process.
The data are drawn from a real process; the form of the data could be quantitative, qualitative, numerical,
pictorial, linguistic or any combinations of them. The data carry information about the process. Then the

initial, raw data are transformed by the transducers to a format, which is suitable for analysis.
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Finding a structure in the pattern space is defined by Bezdek (1981) as ‘the manner in which this
information can be organised so that the relationships between the variables in the process could be
identified.” The feature space includes only those characteristics of the data that have a significant
influence on the process. The classification space contains the clustering rules, implemented by the

clustering algorithm.

4.1.4 In summary, the main issues for any pattern recognition problem are (Bezdek 1991, p.4):
- feature selection: the search for structure in the observed data.
- cluster analysis: the search for structure in data sets.

classification: the search for structure in data space or population.

4.2 Fuzzy clustering.

4.2.1 Let us denote a data set by X, i.e.

X = {x,%,,..,x,} where X, € R’ are the observations and p is the number of features that
characterise the process (already selected from the data space).
The aim of clustering is to divide X into ¢ homogeneous subsets, called “clusters”. The objects which

belong to one cluster should be as similar as possible, and the objects from different clusters as dissimilar

as possible.
To do this some parameters need to be determined:
1) ¢, the number of clusters, which is usually not known in advance

2) the clustering criterion, i.e. what is the explicit aim for the clustering. This is closely related to

how we measure the similarity between the elements.

Mathematical properties of the data, e.g. distance, angle, curvature, connectivity, symmetry, intensity and

so on would be used in the search for structure in the data.
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4.2.2 1t is important to bear in mind that there is not a clustering criterion that is universally acceptable and
two reasonable criteria could exist for the data that lead to quite different results. As an illustration Bezdek

(1981, p.45) provides an example, illustrated in Figure 4.2:
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Fig.4.2 Clustering- success and failure.
The two data sets are divided into two clusters using:
1) a distance-based objective functional (Within Group Sums of Squares Criterion),
2) a distance-based graph theoretic method (Single-Linkage Criterion).
Obviously, the criterion that gives a good result in one of the data sets, performs badly in the other.
Thus the success of a cluster analysis (crisp or fuzzy) depends on the investigator’s ability to choose the

criterion and the similarity measure that are most appropriate to the data.

4.2.3 The clustering algorithms are commonly categorised by their axiomatic basis (deterministic,
stochastic, fuzzy) and then by the type of clustering criterion (hierarchical, graph-theoretic and objective
Junctional criteria). Further subdivision can be made by considering the types of similarity measure. These

terms are explained in more detail below:

deterministic basis refers to the fact that an outcome can, with absolute certainty, be predicted; for

example, it has a certain functional form. In biology, for instance, the amount of bacteria at time ¢ is often
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assumed to obey the law of exponential growth and the parameters of the functional dependence are

uniquely determined. The uncertainty involved is called deterministic;

stochastic basis refers to random outcomes, which are unaffected by the environmental imprecision, but

are inherent for the models. These models are called stochastic and are dealt with by statistical science.

In thie first two cases, either the source of uncertainty is deterministic, but our ability to monitor it exactly
is uncertain (deterministic), or the outcome itself is uncertain (stochastic). However fuzziness refers to
uncertainty due to the subjective perception of the real world or to its complexity. For example, a

statement such as * this man is tall” is fuzzy.

Hierarchical methods create a hierarchy of partitions by successive merging or splitting of the clusters. In
both cases, reallocation of one point at a time is considered, based on some similarity measure and the
results are presented in the form of a tree-like structure. i.e. a hierarchy of nested clusters is generated.
Deterministic and stochastic models are widely used. and a fuzzy hierarchical method is also available, in

terms of “similarity trees”, (defined in Zimmerman, 1991).

With graph-theoretic methods, the data set X is regarded as a set of nodes and the edge weights between
pairs of nodes can be based on a measure of similarity between the nodes.

The criterion for clustering is some kind of measure of connectivity between the groups of nodes. The
clustering strategy often involves the breaking of edges in order to form subgraphs.

Such methods are suited to special types of data, but they do not generate typical representatives of each
subclass and therefore are useful for initial attempts at classification.

These methods are mainly deterministic and if the graph that represents the data is a fuzzy graph then

different definitions of fuzzy connectivity lead to different clustering algorithms.



Objective functional methods allow the most precise formulation of the clustering criteria.
A local extremum of the objective functional is considered as an optimal solution to the clustering problem.
Many different objectives are known (deterministic, stochastic and fuzzy), and an extensive coverage is

given by Bezdek (1981).

4.2.4 The most frequently used clustering method (crisp and fuzzy versions) with applications in image
recognition, medicine and many other areas of the contemporary science is the so called c-means
algorithm. The classical, crisp algorithms generate partitions such that each element belongs to exactly one
cluster. Often, however, it is difficult to find such distinct clusters and there exist elements that are
“between” clusters. Then, the use of fuzzy clustering methods gives a more precise interpretation of the
real data.

Let us consider the clustering method itself.

4.2.4.1 The data setis X =(x1,x2,...,xn) and x, € RP.
Each x; is an observation and consists of p features:
X = (XXX )

>Vip

where X, is the j-th feature of the observation x;

The measure of dissimilarity between two elements x,, x, is taken to be their distance apart d(x,,x,), where d

is a suitably defined metric in X.

If the fuzzy clusters are
S; i=l, ..,n

we can define

M= s (X)),
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where g (x ,) is the degree of membership of x, in S;.

The matrix
U= [wy] i=1,...c, k=1, ...,n
is a fuzzy ¢ - partition for X if it satisfies (Bezdek, 1981, p. 26):

Dupel01] i=l.,c k=l ..,n

DY =1 k=l ..n
i=1

n
3)0< D py <n i=1, ...c.

i=1

Elements can belong to two or more clusters to some extent, determined by the membership functions.

The location of a cluster is given by its centre
v, =(v“.vi2,_..,v,.p) cR? i= 1,...,n,

around which the elements are concentrated.

Then the objective functional is

2n(U,v)= Zg%)mhxk - @.1)

Here v; is the “centre of gravity” of cluster S;, and x, with a higher degree of membership have a higher

influence on v;.

|| . || is a norm defined on X and the distance between two elements is

d(xpx) = “xk - x,ﬂ.
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The exponential weight m reduces the influence of the “noise” in the membership values, with relation to
the clustering criterion. The larger is m, the more weight is assigned to elements with a higher degree of
membership and the less to ones with a lower degree of membership. For m=a, U becomes

U=[1/c],
i.e. each element is assigned to each cluster with the same degree of membership. It is preferable,

however, to have a less fuzzy U and usually m=2 is chosen.

Using differential calculus the necessary conditions for a local optimum for (4.1) are found to be

(Bezdek,1981, p.67):

v, :"—l—i(uik)”’xk m>1 i=l, .., ¢ 4.2)
Z(Mk)"' -
k=1
-
1
2
U I v, i=1, ...c k=1 “3)
= i=1,...ck=1..,n .
ik . . %—l
2
Jj=1 uxk —v,.l

For all m>1 a fuzzy ‘c-means’ algorithm is designed that solves iteratively the necessary conditions (4.2)

and (4.3) and converges to a local optimum (Bezdek, 1981, p.80).

4.2.4.2 The algorithm itself consists of the following steps:

Stepl: choose ¢, (2<c<n);
m, (m>1);

G=[gyl, asymmetric and positive definite (pxp) matrix, used to define a

suitable norm in X
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Ixl; = x'Gx,

where X' is the transpose of x. G indicates the relative numerical importance of each element and the

correlations between the elements.
Examples of G are I, the identity matrix, a diagonal matrix [diag(g;)] and the covariance matrix [cov(x)].

U'is initialised as U (the initial fuzzy partition, see section 3.2.2) and the steps counter / is set to 0, /=0.

Step2: Calculate the centres of the fuzzy clusters {v,-(') '} i=1,..., c using U

and equation (4.2).

Step3: Calculate U™ using v,” and equation (4.3) if x,=v” .

Else

1 Jor j=i
Hr =0 forjzi’
Step4: Calculate
4=l v™ -y || ,.
If A>e, then /=1+1 and go back to step 2. If A<e the algorithm stops; e is a small positive number, which

measures the level of convergence.

4.2.4.3 The final problem for a clustering algorithm is to consider the validity of the clustering, which is

“... the quality of the degree to which the final partition of a cluster algorithm approximates the real or

hypothesised structure of a set of data”(Zimmerman, p.236).

This usually involves investigating only the appropriateness of c. The criteria, for both crisp and fuzzy

cases, are discussed in Bezdek(1981).
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4.2.4.4 The fuzzy c-means algorithm is widely used in many areas. There are many modifications, on the
theoretical or on practical level, which are thought to do better in some special cases.

When applying this algorithm, there is no need to specify a probability distribution and the scale problems,
considering characteristics which differ in magnitude, e.g. a simultaneous treatment of claim frequency and
claim severity, can be treated through a suitably defined norm matrix.

Care is needed with the initial partition, because the algorithm comes to a local optimum and very different
initial partitions may sometimes lead to non-consistent results.

There are no computational problems applying the algorithm even with a large number of elements.

4.2.5 An example which uses the above described fuzzy ‘c-means’ algorithm on a set of students from a

postgraduate course in actuarial science is given in appendix 1.

4.3 Actuarial Applications.

4.3.1 The possible applications of pattern recognition in actuarial science are mainly in the field of risk
classification. In this case, the aim is to group similar risks and to distinguish significantly different risks.
Insurance risks and the criteria for determining the “good” risks are vague and ill-defined and therefore
fuzzy clustering algorithms appear as natural candidates for handling this kind of data.

An advantage of the clustering in risk classification is that it does not need prior assumptions, but derives
the clusters from the data. For example, as Ostaszewski (1993) states, in motor insurance in the US, where
the rates are dependent on the driver’s place of residence, charging the city inhabitants higher premiums
could be interpreted by the public as discrimination against the inner city inhabitants and could be alleged
to be racially motivated. Thus, it would be preferable to use methods that do not use any assumptions but

rather discover any patterns in the data.
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4.3.2 There are a few actuarial applications of fuzzy clustering. Two examples, using real insurance data,
are given by Derrig and Ostaszewski (1995) and Yakoubov (1997) uses the above method for defining a

grouping of a rating factor in motor insurance context.

4.3.2.1 Ostaszewski (1993) provides an example using artificial data. He considers a population of four
people and each person being characterised by four features- weight, height, resting pulse and sex. The aim
of the exercise is to form two clusters, one of them for standard lives and the second for substandard lives.
The initial partition is based on sex and when the algorithm (fuzzy ‘c-means’) is performed" different
clusters are formed, taking into account the remaining three features. The persons who are ‘healthy’ (lower
weight/height ratio and lower resting pulse) form the first cluster and the “unhealthy” persons the second

one.

4.3.2.2 The two examples given by Derrig and Ostaszewski (1995) look at the (a) the definition of motor
rating territories and (b) the classification of motor claims with respect to possible fraudulent content.
The motor rating data are drawn from the experience of the state of Massachusetts, USA. The State
Commissioner for Insurance sets the premium rates for each rating territory in the state. In the study
presented, 360 towns are identified for rating purposes and each town belongs to one of 24 rating
territories. The towns are grouped by similar levels of expected losses, regardless of the geographic
contiguity of the grouped towns, i.e the towns in a territory do not form a single connected area on the
map.

The conventional approach uses an empirical Bayes procedure to determine a set of indices, one for each
town, (DuMouchel, 1983), which are then ordered and cut-off points are chosen to determine the rating

territories.

* Some minor errors exist, on p- 52, in the norm definition and on p.56, in the calculation of the entries for the first
partition.
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The 1993 indices are used, based on claim frequency data for five types of motor insurance claims over a
four year period. Six rankings of the 360 towns are produced, one for each of the five types of claims and a
combined index.

The assignment of the towns which are on the boundaries of the clusters to only one cluster is questionable.
Furthermore, towns that reduce their relative claim cost, for example, by maintaining the roads, safety
engineering codes or stricter law enforcement would expect a positive response from the rating system.
The fuzzy algorithm detects fractional degrees of membership that may indicate that the town is in
transition from one cluster to another and this can be used as an early warning of the change occurring.
Compared to their current membership, towns may tend to become associated with nearby clusters as well
as with their ‘home’ cluster. A geographical proximity factor can be included in the set of features. When it
is combined with the expected claims, it results in fuzzier clusters, when applied to the whole state data.
Neighbouring territories whose current territory boundaries become close could indicate a need for
merging these clusters. Partial membership values for towns in a cluster could allow for the imperfect

correlation between the different types of coverage.

4.3.2.3 The second application of the fuzzy ‘c-means’ algorithm, presented by Derrig and Ostaszewski
(1995) deals with classification of the claims. It considers the growing problem of fraudulent claims, i.e.

the claimants and/or the providers (medical services, garages) can manipulate the system for their own

benefit.

Two types of fraud are distinguished:

-criminal or hard fraud, where there is a clear and wilful attempt to obtain money under false pretences
and

- build-up or soft fraud, for example the ones that come from prolonged medical treatment or inflated car
repair bills.

The information presented in support of a claim is vague and ill-defined, and it is difficult to find a

benchmark, a model claim, because fraudulent claims are usually made to appear as normal and this makes

41



the detection of fraud even more difficult. The studies of US general insurance data show that nearly 50%
of the claims are suspicious, but only a very small part of these is detected and the appropriate actions
taken (Weisberg and Derrig, 1992).

Ideally, one would like to construct a screening device that sorts the incoming claims into different “trays”,
according to their suspected fraud content. Attempts have been made to detect fraudulent claims, using
regression models and neural networks. Because of the nature of the problem, fuzzy analysis has been
considered as being a natural candidate for handling such data.

Derrig and Ostaszewski’s investigation is based on a set of motor insurance claims data in Massachusetts,
and the purpose is to determine how suspicion of fraud can be measured more precisely and to construct
decision rules for determining the level of fraud content.

To investigate the ways of measuring the suspicion of possible fraud, for each claim a record on a zero to
ten scale of suspected fraud is produced by a claims adjuster and four claims investigators. In order to
“pool” more subjective opinions two more expert opinions are taken and a “vote” from “0” - none of the
opinions classifies the claim as fraud, to “3”- three of the four opinions classify the claim as frand (there
was no one claim that collected four “votes™). Thus each claim is assigned with a three dimensional feature

vector

(adjuster’s suspicion, investigator’s suspicion, result from the “voting”).
The study shows that the clusters defined by the claims adjuster’s level of suspicion approximately
coincide with the fuzzy clustering algorithm applied to the ‘better’ information, represented by the feature
vector, and thus the claims adjuster’s expertise can be used to screen for possible fraud despite its
subjective nature.
Having this result, the authors propose that a claims adjuster should evaluate each component of a

particular claim and then an overall claim fraud assessment should be based on that evaluation.
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4.3.2.4 Yakoubov (1997) uses clustering as a useful tool in the risk classification process for a motor
insurer and describes three clustering algorithms, the minimum variance, an algorithin proposed by
Loimaranta et al (1980) and the fuzzy c-means algorithm.

A grouping of the age factor based solely on claim data is presented using a fuzzy c-means clustering
algorithm.

The idea behind the experiment is as follows.

A large number of underwriting factors in motor insurance are considered as factors, i.e. they take only a
few values. The factors can have classes in the range of 2 as in the case of sex and more than 20 as for the
car group. For example, driving experience is one of the underwriting factors in one of the states in the
USA and it is grouped in three groups- 0-3, 4-6 and 7+ (Derrig. 1997). An obvious question is how the
range of a rating factor can be divided into distinct and homogeneous groups, regarding the risk content,
whether measured as a claim frequency, a claim severity or a pure premiuin.

The problem of age grouping is approached using a fizzv c-means algorithm, based on past claim
experience. The analysis is based on claim frequency data for two types of claims; material damage and
bodily injury, and the relatively higher cost of the second claim type compared to the first is taken into
account.

Each age is allocated to one or more clusters with a certain degree of membership. The so defined groups

represent homogeneous risks and can be used further in the premium rating process.

4.4 Conclusions

Fuzzy pattern recognition and in particular fuzzy clustering methods are capable of giving realistic
insights into problems with some degree of ambiguity. Thus Derrig and Ostaszewski conclude that fuzzy
clustering, as applied to geographical risk classification. is able to identify fractional degrees of

membership which may indicate towns or areas that are strongly associated with two or more clusters,



Fuzzy clustering, as applied to fraud detection, provides a means of formalising the subjective claim
assessment process, quantifying the components of the claim, instead of quantifying the claim itself.

In defining groups over the range of a rating factor, fuzzy clustering provides a way to interpret fuzziness
due to the inherent imprecision coming from the past experience data and to the possibility of an age being
between two clusters. The age grouping under the fuzzy approach involves a substantial amount of

judgement and would allow some other technical or marketing considerations to be included as well.
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Appendix. THE ACTUARIAL EXAMINATIONS, fuzzy ¢ c-means’ algorithm applied to determine

the level of importance of mathematical background and degree level.

1. Introduction

To qualify as an actuary in the UK, the candidate is necessary to pass or gain exemptions from the
professional examinations set by the Institute of Actuaries and Faculty of Actuaries. The first four subjects
are technical and include the fundamentals of actuarial mathematics (subject A), economics, finance and
accountancy (subject B), statistical methods in insurance (subject C) and more advanced actuarial
mathematics (subject D).

The main requirement for prospective actuarial students is a first degree in a mathematical or related
subject. As an illustration of the fuzzy techniques, the fuzzy ¢ c-means’ algorithm is used to test and
determine the level of importance of this entry requirement, i.e. do graduates in mathematics do better in
the theoretical subjects A, B, C and D?

Since 1985 City University has offered a one year postgraduate diploma course in Actuarial Science, which

covers the above professional subjects, effectively comprising eight half subjects (or their equivalents).

2. The experiments

2.1 Experiment 1

The data set in this experiment contains the exam results of 22 postgraduate students in Actuarial Science
from City University, eleven of them having a degree in mathematics and/or statistics and remaining eleven
having in economics, finance or some other non-mathematical degree.

Each student is assigned with a 8-dimensional vector (x;;,x,,,...,%;3) and x;; is the i-th student’s index
result in subject j (subjects are ordered as A1, A2, BI, ..., for instance, subject A2 is the second element in
the vector). The index result is defined to be the actual result of the student divided by the average for the

subject and represents the student’s relative performance in the subject. When a student is exempted from a
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subject, he/she is assigned an index result of 1 and the average for the subject includes only these students

who have taken the subject. Table A1l presents the full data set.

The data set is divided into two equally-sized initial clusters, based on the first degree of the students. The
students with non -mathematical or non- statistical degree are in initial cluster 1, and the remaining

students are in initial cluster 2. Cluster i is determined by its characteristic function ¥;, defined as

xiS—>{0, 1}
0 if student s & cluster i
and  7,(5)= / .
1 if student s € cluster i

The elements belong to the initial clusters with certainty. The initial clusters are given in Table A2

The initial clusters are used as the initial fuzzy partition input for the algorithm (see section 4.2.4.1).

The norm matrix is the identity matrix I (we ignore the correlations between the subjects, although it is
possible to calculate them from the data, and we allocate the same weights to each subject, although there
may be ‘easy’ and more ‘difficult’ subjects).

A computer program in Visual Basic, run in Excel performs the iterative calculations of the fuzzy ‘c-

means’ algorithm.

The results (the final fuzzy clusters) are given in Table A.3 and Fig. A.1 and Fig.A.2. Instead of only
permitting full membership of a cluster, the fuzzy clustering allows partial membership. For instance,
student 1, belongs to the second cluster with a degree of membership of 82% and to the first cluster with a
degree of membership of 18%, instead of the 100% membership to the second cluster as we assumed at the
outset.

It is surprising to see how well the final clusters correspond to the initial clusters (7 out of 22 cases deviate
largely from the initial hypothesis), taking into account the fact that the degree type is only one of many
and probably not the most important factor that may influence a student’s performance in the examinations.

Factors such as the degree level (first, second upper ....), student’s own intellectual abilities and
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and commitment, and the amount of work and time he is ready to sacrifice, are likely to be of equal

importance as the type of the degree.

2.2 Experiment 2.

Let us adopt a slightly different approach towards the students with exemptions( from subjects B and C1).
Instead of assigning an average mark, taking into account the fact that exemption level in actuarial
examinations at City University is around 65%, we can recognise the exemption achievement by
assigning a notional mark of 65%. Table A.4 represents the new index table, where 65% exemption mark
is used in calculating the subject averages. The results from the fuzzy clustering are in Table A.5 and

Figures A.3 and A.4.

The most dramatic changes are shown by three students-1, 4, and 18. The highest deviation (the
membership value from section A.2.1 - modified membership value) is 15% and in two of the cases it is
towards the initial clusters and in one of them it is in the opposite direction. If 50% is the required
membership level for belonging to a cluster, the number of the misclassifications is reduced from 7 to 6,
but the value for student 18 is only 60%, with value of 45% from experiment 1, therefore in both cases the
student lies between the clusters.

The other changes are minor and not decisive for the final classification.

2.3 Experiment 3.

This experiment uses the data set from experiment 2 but investigates the relationship between the success
in actuarial examinations and the gl'ﬂde of the first degree.

The set of students is divided into three groups: excellent students are in group 1 (with UK first or
equivalent overseas grades). very good students are in group 2 (with UK upper second or equivalent
overseas grades) and the remaining students are in group 3. Some of the data were incomplete and so the

classifications were based on expected. rather than actual grade, obtained from letters of reference.
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The three initial clusters and the final fuzzy clusters are given in Table A.6.
If we accept that an element belongs to the cluster in which it has the highest membership value, we have

the following distribution of elements:

groupl group2 group3

initial grouping | 5 11 6

fuzzy grouping | 11 8 3

The final clusters differ quite significantly from our initial assumptions, only 8 out of 22 are in their initial
groups. The reasons for this could be the following:

Firstly, the students come from different universities and countries with different systems and quality of
education. Degrees of the same class may not be easily comparable.

Secondly , the fuzzy ‘c-means’ clustering algorithm divides the population into ¢ ‘equal’ groups, i.e. the
groups have equal weights. However, the grades, considered as groups are not equally weighted. For
instance, it is not the case that achieving a first would require a score of between 67% and 100% on each
dimension of work, intelligence, effort and so on, while achieving an upper second would require between
33% and 66% with for the lower grades requiring below 33%. The distribution of the qualities of students
and the effort expected is unlikely to be ‘uniformly’ distributed in this simplistic matter.

Thirdly, the grade is unlikely to be the only important factor in determining future success in the actuarial

examinations.

3. Conclusions

The experiment shows that the type of the first degree is an important feature which is associated with an
actuarial student’s performance at least in the first group of (technical) subjects, but it is not decisive. The
partial memberships indicate the existence of other factors.

The grade of the first degree, while considered as very important, does not appear to be decisive for the

particular data set examined. Looking at the result, one can deduce that students with not ‘very good’ first
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degrees are capable of doing well in the examinations. Indeed, four out of the six students with lower
second or worse (initial group 3) are classified into the highest group (fuzzy group 1) and only one
remained in group 3.

The fuzzy ‘c-means’ algorithm is useful in situations, where there is a need for grouping, based on a set of
characteristics. The concept of partial membership is very convenient when the available information
represents only a part of the true phenomenon, thus leaving the interpretation of the results to the

judgement of the decision maker.
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Table A.1 Set of index results for 22 students in 8 subjects, exempted subjects having index 1.
Code 1 is for a mathematical or related degree and 0 is otherwise.

e B

1.1384 1.0216 1.1446 1.0265 1.0000 1.0562

0.1708  0.0547 0.4077 0.4248 0.1492 0.3188 0.1401 0.3829
09534 0.7114 1.0000 0.5841 1.0000 0.7971 0.6306 0.7850
0.9392  0.8027 0.7369 0.9381 1.0000 0.9964 0.8232 1.1871
1.2950 1.3864 14111 12920 13610 13351 1.5589 1.3020
1.1242  1.0216 0.9878 0.9735 1.0000 13351 1.2962 1.1488
0.9819 1.0945 0.6899 0.8496 1.0000 1.4547 0.9984 1.1680
1.2238 1.3317 1.0662 0.8142 1.0000 1.3152 1.2787 0.9574
0.4981 0.6385 09721 0.6903 0.8576 0.6775 04379 0.7659
1.1527 1.1675 12544 1.4690 1.0000 14149 12436 1.3211
0.9677 0.7297 1.0000 1.1681 1.0000 0.7971 0.8057 0.5936
1.0530 0.9668 0.7213 0.5664 0.7458 0.5380 0.6481 0.4787
0.8538 0.7662 0.9251 1.1150 0.7085 0.6377 0.6131 0.5936
13946 1.6965 1.4582 1.5752 1.8271 1.8333 1.7341 1.7998
1.2523  1.3499 12544 12743 1.0000 1.1558 1.5414 1.1297
1.1953  1.1310 1.1446 14690 12305 1.1957 1.3838 1.3020
0.8680 0.7844 0.9878 0.6549 1.0000 0.8370 0.8232 1.0722
1.0530 1.3134 1.0000 1.0000 0.6712 0.9366 0.9108 0.7084
1.1384 1.0216 1.2700 1.1504 1.3610 1.0163 1.0510 1.2446
1.1100  1.1857 1.0000 1.0000 1.4356 1.2554 1.4188 1.3786
0.5265 03831 0.5801 0.6726 0.6525 0.2790 0.3153 0.3255
1.1100  1.4411 09878 12920 1.0000 0.8170 1.1736 1.3977
1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

N~ OO m = O SO0~ = =0 O

o
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Table A.2 Initial clusters
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Table A.3 The reéults from the fuzzy clustering
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©0.181927

0.79016
0.907683
0.593283
0.069898

0.09322
0.296269
0.141316
0.941864
0.066198
0.785986
0.896765
0.923471
0.201868
0.058228
0.043929
0.762757

0.54546
0.121743
0.066293
0.879178
0.153233

0.818073

0.20984
0.092317
0.406717
0.930102

0.90678
0.703731
0.858684
0.058136
0.933802
0.214014
0.103235
0.076529
0.798132
0.941772
0.956071
0.237243

0.45454
0.878257
0.933707
0.120822
0.846767
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Table A.4

5

'Table A5 '

1 1.1406 1.012698 1.095785 1.0562

0 0.1708 0.0547 0.4063 0.419048 0.134866 0.3188 0.1401 0.3829

0 09534 0.7114 1.0156 0.57619 1.095785 0.7971 0.6306 0.7850

1 09392 0.8027 0.7344 0.925397 1.095785 0.9964 0.8232 1.1871

1 12950 1.3864 1.4063 1.274603 1230651 1.3351 1.5589 1.3020

1 11242 1.0216 0.9844 0.960317 1.095785 1.3351 1.2962 1.1488

0 09819 1.0945 0.6875 0.838095 1.095785 1.4547 0.9984 1.1680

0 12238 13317 1.0625 0.803175 1.095785 1.3152 1.2787 0.9574

0 04981 0.6385 0.9688 0.680952 0.775479 0.6775 0.4379 0.7659

1 11527 11675 12500 1.449206 1.095785 1.4149 1.2436 1.3211

0 09677 0.7297 1.0156 1.152381 1.095785 0.7971 0.8057 0.5936

0 1.0530 09668 0.7188 0.55873 0.67433 0.5380 0.6481 0.4787

0 0.8538 0.7662 0.9219 1.10000 0.640613 0.6377 0.6131 0.5936

1 13946 1.6965 1.4531 1.553968 1.652107 1.8333 1.7341 1.7998

1 12523 13499 12500 1257143 1.095785 1.1558 1.5414 1.1297

0 11953 1.1310 1.1406 1.449206 1.112644 1.1957 1.3838 1.3020

1 08680 0.7844 0.9844 0.646032 1.095785 0.8370 0.8232 1.0722

1 10530 13134 1.0156 1.134921 0.606897 0.9366 0.9108 0.7084

1 11384 1.0216 12656 1.134921 1.230651 1.0163 1.0510 1.2446

0 L1100 1.1857 1.0156 1.134921 1.298084 1.2554 1.4188 1.3786

0 05265 0.3831 0.5781 0.663492 0.590038 0.2790 0.3153 0.3255

I L1100 14411 0.9844 1274603 1.095785 0.8170 1.1736 1.3977
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.105886 0.894114

0 0.78388 021612

0 0.865532 0.134468

1 0.693152 0.306848

1 0.068254 0.931746

1 0.086624 0.913376

0 0.317617 0.682383

0 0.09561 0.90439

0 0.945811 0.054189

1 0.058783 0.941217

0 0.65603 0.34397

0 0.879832 0.120168

0 0.896087 0.103913

1 0.186818 0.813182

1 0.046023 0.953977

0 0.045206 0.954794

1 0.814863 0.185137

1 0.401941 0.598059

1 0.136265 0.863735

0 0.030778 0.969222

0 0.884123 0.115877
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Table A.6

0.558997 0.40084 0.040163
0.060764 0.128933 0.810303
0.093559 0.759044 0.147397
0.06269 0.89423 0.04308
0.898301 0.079427 0.022272
0.696659 0.262942 0.040399
0.381622 0.525055 0.093324
0.729786 0.226981 0.043233
0.070392 0.311643 0.617965
0.878949  0.09802 0.023031
0.108068 0.82437 0.067562
0.121403 0.553357 0.32524
0.115841 0.604605 0.279554
0.70061 0.21367 0.08572
0.927984 0.057682 0.014334
0.905517 0.077295 0.017188
0.067422 0.86181 0.070768
0.343746  0.5445 0.111754
0.559028 0.39361 0.047362
0.909424 0.075848 0.014728
0.00796 0.023653 0.968388
0.617643 0.319228 0.063129
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Fig.A.5 The degree of membership of the elements to each fuzzy cluster, based on the examination results.
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5. FUZZY EXPERT SYSTEMS AND FUZZY LOGIC CONTROL

5.1 Theory

5.1.1 An expert system is a computer program which holds knowledge of some subject and reasons
with that knowledge with a view to solving a problem or giving advice. It can act as a human expert or
play an assistant role in a decision making process. The origins of expert systems are in Artificial
Intelligence, a branch of computer science which deals with the design and implementation of
programs capable of problem solving, visual perception and understanding language. The general

structure of an expert system is shown in Figure 5.1 (Zimmerman 1991, p.174).

Expert Knowledge User
engineer
Dialogue Module
Knowledge Inference Explanatory
Acquisition Engine Module
Module
v v v
Knowledge Base
Expert System

Fig.5.1 Structure of an expert system.

The knowledge about the event in investigation is entered in the knowledge base of the system via the

knowledge acquisition module. The knowledge base is made up of a declarative part, which describes
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the objects in the expert system and the relationships between these objects, and a procedural part,

which contains information as to how these objects can be used to reach conclusions.

The expert knowledge is represented in the system in a format that best suits the domain of expertise of
the system. The four most frequently used techniques are:
production rules, used mainly for procedural knowledge. The rules are in the IF ... THEN form:
IF a set of conditions is satisfied THEN a set of consequences can be produced. For

example(Zimmerman, 1991, p.176)

IF the car won’t start and the lights are dim

THEN the battery may be dead.
semantic nets, which are used mainly for declarative knowledge. The concepts are presented by a
number of nodes, associated with one other by links. The links can represent various types of
relationships between the concepts. Zimmerman(1991, p. 177) uses a semantic net to represent

knowledge, related to motor vehicles. Part of the example is presented in Figure 5.2

Car has -part Chassis

I l has - part
is la 1

Sportscar Engine has-part_| Vespa(Scooter)

Fig.5.2 Semantic net

[frames are introduced by Minsky (1975), as structures that collect together information about a concept
and provide expectations and default knowledge about it. Typically, the frame is represented by a
group of slots and their values, which themselves can be frames. For example part of the knowledge in

the Fig.5.2 can be represented by a frame:

Frame: car
Classes: sportscar, small car, family car
Has parts: chassis, engine;
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and predicate calculus is a part of mathematical logic. In its arsenal, in addition to the conventional
logic operators (and, or, ...) are included the universal, or ‘all’ operator (V) and existential or ‘some’

operator (3). For example, it allows us to express statements such as:

V cars have chassis’

¢ A vehicles which have engines’.

The Inference Engine is a mechanism for forming inferences and drawing conclusions. The ways of
deducing conclusions depend on the structure of the inference engine and the method used to represent
the knowledge. In the case of production rules, two popular techniques are forward chaining and
backward chaining. An extensive coverage of these and other inference techniques can be found in

Waterman (1986).

5.1.2 Uncertainty is inherent in modelling expert systems. The following reasons for the use of fuzzy
set theory are identified (Zimmerman, 1991, p.179) :

-The interfaces of the expert systems are with human beings, and therefore the use of the
natural language as a means of communication involves the imprecision inherent to statements made
by humans.

-The knowledge base of an expert systems contains human knowledge and it is usually the
case that the rules and facts are neither totally certain, nor totally consistent. The storage of this kind of
knowledge by using fuzzy sets seems very appropriate.

-The uncertainty in the knowledge base induces uncertainty in the conclusions and therefore

there is a need to transfer the degree of uncertainty to the conclusions.
5.1.3 Fuzzy expert systems are structured as follows:

The rules and facts are presented using fuzzy sets. It enables the designer of the expert system

to allow implicitly for uncertainty.
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The inference engine is based on fuzzy logic and approximate reasoning methods. An
example of fuzzy logic tool is fuzzy modus ponens, defined as the following expression:
Implication: IfxisAthenyis B
Premise: xis A’
Conclusion: yis B’
in which 4, 4°, and B, B’ are fuzzy sets defined in universes of discourse X and Y and x is a variable
in X and y is a variable in Y. The fuzzy set 4’ measures the degree to which x ‘satisfies’ 4 and based on
the degree of satisfaction, one defines the fuzzy set B’.
For example(Young, 1996), at the beginning of the year, an actuary might say,
‘If the number of the insurance policies decreases by a moderate amount during the year,
then I will decrease the rates moderately.’
This statement can be written as:
Implication: If the number of the insurance policies decreases by a moderate amount during
the year, then I will decrease the rates moderately.
Premise: The number of the insurance policies decreased somewhat moderately.
Conclusion: I will decrease the rates somewhat moderately.
In this example x= decrease in the number of policies, y = rate decrease, A= moderate decrease in the

number of policies, and B = moderate rate decrease.

5.1.4 Fuzzy expert systems have been developed and used in many areas of human activities. (Some of
them are described in Zimmerman, 1991, chapter 10). There are systems in medicine used for
diagnostic purposes, in earthquake engineering for assessing structural damages, in management and

economics and in strategic planning.

5.1.5 Fuzzy logic control (FLC) systems are similar to fuzzy expert systems; both aim at modelling
human decision making behaviour, but there are clear differences between the two systems. The origin
of fuzzy logic control systems is in control engineering, rather than in artificial intelligence; its main
characteristics are: the input mainly comes from a technological process; the decision making is rule-

based and the output is a control statement.
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The sequential steps in designing a FLC systems include (Zimmerman, 1991, p.204):

-Definition of the input variables and the possible control actions.

-Consideration of the way in which the observations are ‘translated’ into fuzzy sets and fuzzy
control statements transformed into deterministic actions.

-Design of the rule-base, i.e. which rules under which conditions are to be applied.

- Design of the algorithm performing the necessary computations.
The applications of fuzzy logic controls vary from fuzzy control of a cement kiln, train operations
control for the underground system in Sendai (Japan) to control of car by oral instructions

(Zimmerman, 1991).

5.2 Actuarial applications.

5.2.1 The actuarial applications of fuzzy expert systems which have been suggested in the literature so
far, are mainly in underwriting and risk classification, where the available knowledge and rules are
vague and not very well defined. Very often, a rigid definition of some criterion, as ‘a standard life has
systolic blood pressure that does not exceed 130 mm of Hg’ makes the distinction abrupt. It would be
more sensible and useful to have a more flexible definition. Furthermore, the existence of two or more
characteristics will have an influence on the output decision which is dependent on the extent and
nature of each of the characteristics. For example, the life expectancy of a policyholder with a high
blood pressure and a high ratio of actual weight to recommended weight is likely to depend on the

level of these characteristics and their interaction.

5.2.2 A simple expert system that recognises a ‘preferred policyholder’ category is described by
Lemaire (1990). In recent years, heavy competition between the American life assurers has resulted in
a greater subdivision of policyholders and premium discounts being granted to policyholders who
meet certain stringent health requirements-the ‘preferred policyholder’ category is a result of this
refinement (Werth, 1995).

In Lemaire’s system, a prospective policyholder x is characterised by four variables

x = x(t),0,0,t,)
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t, is the level of cholesterol in the blood, in mg/dl,

t, is the systolic blood pressure, in mm of Hg,

t; is the ratio of the effective weight to the recommended weight, as a function of height and
build,

t,is the average consumption of cigarettes per day.
Each variable is assigned with a fuzzy set that describes the desirability of the criterion. For instance, if
the normal systolic blood pressure is in the region of 130 mm and data from follow up studies
demonstrate that a person with a blood pressure greater than 170 mm is approximately five times more
likely to suffer from heart disease than an individual with a normal blood pressure. Therefore, Lemaire
defines the fuzzy set of individuals with a normal blood pressure by the membership function:

1 x <130

2
1—2("‘4:)30] 130 <x <150
fx)=

2
2(”0_") 150<x<170
40

0 x>170

Then, inference is based on appropriately defined intersections between the fuzzy sets. The definition
of the intersection, depending on the nature of the characteristics, can allow for cumulative effects,
interaction and compensation between the criteria. Having obtained the fuzzy set of ‘preferred
policyholder’, then an a-cut can give the decision rule. For instance, if the intersection is the minimum
intersection then an adopted 0.75 a-cut would give a decision at a point where each variable’s
membership function is at least 75%.

Furthermore, the approach of fuzzy set theory can accommodate differences in the level of importance
of the criteria. If, for medical reasons, it is thought that the level of cholesterol is a better indicator of
future heart problems compared to the level of blood pressure, then the fuzzy set that represents the
cholesterol level can be concentrated, in order to reflect the importance of this criterion and the fuzzy

set for blood pressure can be dilated(see section 2.2).
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5.2.3 Another application of fuzzy expert systems to actuarial problems is given by Young(1993). The
author describes two fuzzy expert systems in group health underwriting, where an employer offers
single option or multiple-option health plans to its employees. The desirable characteristics of such a
group, i.e. the rating factors include factors such as an appropriate minimum number of employees, a
minimum percentage of participation in the plan, stable morbidity, ensured by a constant flow of
young lives in the group, the employer’s involvement in the plan, his credit rating, the administrative
structure, type of industry (some are to be avoided), ongoing claims should not be a large proportion
of the total claims, good claims experience and low turnover rate with respect to carriers.

Four categories of groups are considered: preferred risk, normal risk, substandard risk and
unacceptable risk. Each criterion is associated wit a fuzzy set, that quantifies the level of risk.
Young(1993) defines the boundaries of these four groups to be 1, 0.5, 0.25 respectively, i.e. a
preferred group has a degree of membership 1 and an unacceptable group is below 0.25. For instance,

the minimum participation factor is assigned with the following fuzzy set:

L 090<x,
f(x)=15x-35, 0.70 < x < 0.90,
0, else

A preferred group is specified as having more than 90% participation, the normal group’s participation

is between 80% and 90% and a substandard group has participation of 75% to 80%.

The interaction between the criteria and the relative importance of one criterion to the others are

modelled by an appropriate fuzzy intersections and fuzzy operations. After an analysis of interactions

among the factors, the following fuzzy set is given as a solution to the underwriting problem
Q=[H(H(P, credit rating;0.5), turnover; 0]”3 Niparticipation x employers com‘ribution]”z
r[H(participation, flow of lives; 0.5)] 2 floss ratio],

where H(4, B, p) is the Hamacher operator with parameter p and A and B are fuzzy sets (see 2.1.8).

The parameter p determines the degree of interaction: p=0 brings mild interaction, and when p

increases the degree of interaction increases, and for p=17 the Hamacher operator reduces to the

algebraic product, which is the intersection with a maximum interaction effect.

P is a linear combination of the administrative function factor, type of industry factor, and on-going

claims factor.
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Participation in the plan and employer’s contribution have maximum interaction and they intersect
through the algebraic product. The square root makes this term commensurate with the others.

The loss ratio does not interact with any of the other variables; it is a single term.

The cut - off points for Q determine the underwriting result for a particular group. For example if for a
group, Q lies between 1 and 0.75, then the group represents a normal risk.

A sensitivity analysis of the system, i.e. how changes in the input variables affect the output, can be
carried out in order to verify that the chosen functions characterise the qualities appropriately and that
the combination of those functions accurately reflects the given underwriting process.

A similar, slightly more complex model is proposed by Young (1993) for describing the underwriting

of multiple-option plans.

5.2.4 A further example is provided by Hellman(1995) who describes a fuzzy expert system which
evaluates Finland’s 461 municipalities with respect to the interest they represent to the insurance
industry. The problem is not to find the rich and big provinces or small ones, but those of average size
that are well managed and whose insurance cover is not adequate. The recognition of these provinces
could lead to wider marketing efforts by the insurer and, it is hoped a gain of a new business.

The selection factors that are of interest to the insurer are: the population of the province, the non-life
premium income, claims ratio, whether the province is already a client, the structure of the province’s
finances, the level of capital expenditure, the growth potential and the province’s current financial
strength.

After consulting an expert about the impact of these factors, Hellman describes them using fuzzy sets
with a membership function that is a smoothed variant of the expert opinion. For example, the claims

ratio factor( including the investment income) has the following membership function, determined by

the expert:
claims ratio degree of membership

less or equal to 15% 1
25% claims ratio 0.97
35% 0.93
50% 0.85
75% 0.65
100% 0.05

greater or equal to 122% 0
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and the smooth function that is used to represent the membership function for the fuzzy set is

43(1- arctan(M)

18

=minj1l, 0,
f.(x) = minq 1, max 100

Having fuzzy sets for each factor, the next step is to combine the fuzzy sets in a way that most
accurately represents the problem. Hellman divides the set of factors, described above, into three
groups- economic, insurance and adjusting groups of factors. Then, each group is considered on its
own merits. For example, the following structure for the group of economic factors (population,
financial structure and level of capital expenditure) is proposed:

Secon =051, population + 0.5(f, financial structure ®f capital exp enditure) >

where f'stand for the respective membership function and ® is the normal multiplication operation (or
in terms of fuzzy sets it corresponds to the algebraic product, see 2.1.8). The multiplication in the
above formula means that if both factors have low values, their combined effect is even more severe,
and the equally weighted summation means that the effects of the population factor and the

combination of the two financial factors is thought to be of similar importance.

5.3 Conclusions

The advantages of the fuzzy approach to expert systems over the traditional models are in (a) the
simplicity of the models, which makes them easy to understanding; in (b) the ability of the models to
accommodate vague, imprecise and subjective knowledge and therefore provide useful techniques in
areas such as customer evaluation and marketing; and in (c) the flexibility of their structure, expressed
by the ease with which the shape of the membership function can be changed or new factors thought to
play a significant role in understanding a real-world problem can be incorporated.

Fuzzy modelling allows the simultaneous treatment of the problem being investigated and the model
for solving this problem and therefore a much more realistic and closer relationship between the

problem itself and the model can be established and utilised.

64



It can be argued that fuzzy expert systems are subjective and the output depends to a great extent on
the input to the system. However, the expert opinion, on which the description of the system is based,
could be thought of as the best available knowledge about the problem. Similarly, the opinions of
several experts can be pocled in order to come to more objective decisions.

The construction of a ‘good’ expert systems requires skill and a thorough knowledge of the
phenomenon, which is modelled and its interactions with the other processes.

Fuzzy expert systems can become an important part of so called ‘hybrid’ systems, which use a
combination of approaches to model a phenomenon as accurately as possible. A more detailed
discussion of such systems is presented in section 7.

We believe that fuzzy expert systems, with their superiority in dealing with the presence of
information of poor quality and the facility for automating the decision process, are one of the
approaches with considerable future potential in the areas of risk classification and underwriting. A
promising example of this is the ready-to-use fuzzy expert system presented by Horgby et al (1997)

which quantifies the risk of an applicant with diabetes mellitus for a life policy.



6. DECISION MAKING IN FUZZY ENVIRONMENTS

6.1 Theory

6.1.1 In statistical decision theory, a decision is characterised by a set of decision alternatives (the
decision space), described by enumeration or by a set of constraints; a set of states of nature (the state
space); a relation assigning to each pair of decision and state a result and a utility function that orders
the results according to their desirability.

Fuzzy decision theory considers the situation where the utility (objective) function and constraints are
fuzzy and both objective and constraints are modelled by fuzzy sets. Since by analogy to the non-fuzzy
case, we want to satisfy simultaneously the objective and the constraints, therefore a decision can be
viewed as the intersection of the fuzzy constraints and the fuzzy objective(s). This then provides a fully

symmetric relationship between the constraints and the objectives.

6.1.2 Let us consider an example. The board of directors wants to determine the optimal dividend to be
paid to the shareholders of the company. It ought to be attractive and for reasons of public and
employee relations it should be modest. An ‘attractive’ dividend can be defined as the fuzzy set with

membership function f(Zimmerman, 1991, p. 244)

1, x>58
1
fa(x)= m(—zw —366x> —877x +540) 1<x<58
0 x<1

The so defined function is 0 for x<1, i.e. dividend less than 1% is not attractive at all, / for x>5.8, i.e.

this is the domain of the attractive dividends and between 1 and 5.8 fis an increasing cubic function.

The fuzzy set ‘modest dividend’ can be defined by f,

1, x<12
1
Fux)= m(—zw —243x? +16x + 2388) 12<x<6
0 x26
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The definition implies that a dividend is ‘modest’ for certain if is less than 1.2%, it is not ‘modest’ at

all if it is greater than 6% and between 1.2% and 6% is modest to some ‘decreasing’ degree.

Then the fuzzy decision would be characterised by its membership function fr=min(f,,, f,,J and if the
decision maker wants a ‘crisp’ decision then the obvious choice would be the element with highest

membership value.

Xnmax=arg(max min(fy, (%), ful%),

where arg stands for the argument of the function, i.e. arg(f(x))=x. The so defined decision is called a

‘maximising decision’ and is similar to the conventional maximin criterion.

6.1.3 Formally, a decision in a fuzzy environment in the sense of Bellman and Zadeh (Bellman and
Zadeh, 1970) is defined as:

if X = {x;, x, ..., x,} is the set of alternatives

G,, G, ..., G, are the fuzzy goals, represented by fuzzy sets

C.,C,, ..., C; are the fuzzy constraints,
the decision D is defined to be the fuzzy set

D = G*Gy* ..., *G, *C,*C, * ...*C, where * are appropriately defined, probably
context dependent, connective operators.

The set of the decisions can be found as

K={x eX: up(x) =max}.

Each alternative that belongs to the set is an optimal decision. This is one of the approaches in
choosing optimal decisions. The problem is context and goal dependent. A discussion of some

alternative approaches is given by McCauley-Bell and Badiru (1996).

6.1.4 Special kinds of fuzzy decision models are the fuzzy linear programming models (FLP). The

classical LP problem can be stated as :

67



max c'x
suchthat Ax <b
x20

withc,x e R",b e R", 4 e R™"

6.1)

Possible fuzzifications of the classical LP would be in terms of:

-a fuzzy objective function, e.g. one that describes a statement such as ’improve the present

cost situation considerably’;

-vague constraints, the relation (<) or the parameters (4, b, ¢) are fuzzy , because of their

nature or because the perception of them is fuzzy.

6.1.5 The simplest FLP model is the symmetric FLP, as described by Zimmerman (1991, p.250). It is
assumed that the decision maker can establish an aspiration level, z, for the value of the objective and

each of the constraints is modelled as a fuzzy set. The FLP model becomes:

x>z
suchthat Ax <b
x20

withe,x e R",b € R"™, 4 € R™" < isthe fuzzified versionof <.

6.2)

A fuzzy inequality relation can be described as ‘essentially smaller/greater than or equal’ (see section
2.4). The first two inequalities in (6.2) are fully symmetric (the objective and the constraints) and we

can combine them:

Bx <d

x=0 ©3)

where B and d are respectively an appropriately defined matrix and vector. Each of the (m+1) rows are
represented by a fuzzy set and if the membership functions are f; , then the decision D is given by the

fuzzy set with

£ (x) = min{ f; ()} 64
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/(%) can be interpreted as the degree to which x satisfies the fuzzy inequality B;x < d; (where B; is the

i~th row of B).

6.2 Actuarial applications.

6.2.1 Lemaire(1990) gives an example that uses the fuzzy decision procedure to identify the optimal
excess of loss retention level of a reinsurer that offers 10 different deductibles.

The goals and constraints for an optimal decision are derived from ones used in reinsurance practice
and their nature is imprecise and vague.

Four variables are evaluated for each level of retention: the probability of ruin, the coefficient of
variation of the retained portfolio and the respective ratios of the reinsurance premium and the
deductible to the original premium income.

For instance, it is plausible for the reinsurance premium not to exceed 2.5% of the premium income (of
the line of business) by much. This statement can be modelled by a fuzzy set and Lemaire suggests the

following membership function, represented in Figure 6.1:

i 1<25
1- 2(%)Z 25<1<28
TE0=Y 314
231ty 28<1<31
06
0 i<t

where x is an alternative (see section 6.1.3).

2.5 3

Fig. 6.1 The membership function of reinsurance premium/cedents’ premium income

The membership function of the fuzzy decision is then easily calculated from the functions for
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the goals- low probability of ruin, not exceeding 0.00002 and low coefficient of variation, not
exceeding 3.1 and

the constraints - reinsurance premium less then 2.5% and the deductible close to a level of 1%
of the line’s premium income.
The alternative with the highest degree is chosen as the optimal decision of the problem.
It is important to mention that the goals and constraints may be conflicting and it may not be possible
for all of them to be fully satisfied. It could be decided that one of them is much more important than
the others and that higher weight should be given to the membership function using the concentration
operation. Also different definitions for intersection could be used when small violations of constraints
are acceptable or just some improvements in the objective function (rather than the maximum) are

required. Fuzzy decision making allows these features to be incorporated explicitly in the model.

6.2.2 Cummins and Derrig (1993) look at the accuracy of forecasting pure premium rates. Claim cost
forecasting models are developed and a fuzzy approach is used to choose the best method. To the
standard actuarial methods are added econometric and more sophisticated time trend models. Each
forecasting method is characterised by its estimation period, estimation technique, frequency and claim
size models. The objective is to apply the best of the existing methods to forecast pure premiums and

then to use a fuzzy decision procedure to solve the model selection problem.

The measure of accuracy of a model is the fotal predicted change error (TPCE), defined as:
TPCE = (1+d)/(1+d,) - 1
1+d is the predicted trend factor and

1+d, is the actual trend factor.

72 forecasting methods are used to estimate the trend factor. The primary measure of the forecast
performance is the average absolute TPCE and the average TPCE is used as an alternative accuracy
measure mainly as an indicator of the degree of bias, i.e. the tendency of methods consistently to over-

predict or under-predict the trend.
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The experiment showed wide variation in the estimates, even among the “best” methods. The
conventional choice of “best” forecasting method would be the one with the optimal value under
certain specified statistical decision criteria. Instead a fuzzy decision procedure is used.

X, the set of alternatives is the set of 72 forecasting methods. The objective of the decision making is
defined as a reasonable closeness to the average of all methods, i.e. the chosen best method should not
be extreme, compared to the ‘average’ method.

The constraints imposed on the choice come from historical accuracy , whether the method was good
for past predictions measured by the average absolute TPCEs and unbiasedness, measured by the
average TPCEs.

Fuzzy decision making assigns to each method a degree to which the method is good for the decision
maker. If the method with the lowest absolute average TPCE is labelled the best method, then the fuzzy
set that describes the first constraint, the historical accuracy has a membership function Ufx), defined

as

TPCE(Best)

Ui = —pcE)

H

the second constraint is made operational by defining the membership function
U2 (x) — e-\Avemge(TPCE(x)ﬂ

and finally, the objective of a ‘moderate, not too extreme’ method is represented by the fuzzy set with

the membership function
4, -d la, -d|
_Jl-— jf ——<1
Ug(¥) = 20 4 20
0, otherwise

where o is the standard deviation of the trend factors, 4 is the mean value of the trend factors and d, is
the trend factor produced by the method. Under an appropriately chosen intersection operator, the
degree of membership of each method is calculated. The best forecast is determined either

as the one which results from the method with the highest degree of membership or

as the weighted average of either the entire set of trends or of an a-cut, where the weights are

the degrees of membership of the methods.
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This second approach, as Cummins and Derrig (1993) mention, allows information from the closely
ranked forecasting methods to be taken into account and it is not very sensitive to the choice of an
intersection operator, which is not the case with the maximum membership approach. The experiment
shows that the weighted average trend factor ( from the second approach) is not very different from

the trend factor with the highest degree of membership.

"6.2.3 In their work Guo and Huang (1996) look at a modified version of the mean-variance asset
allocation method, where skewness is included in the model.
The formulation is as follows. If there are N asset classes with allocation weights x; and the rate of
return for asset i is R; , a random variable. with first and second moments, respectively z; and o; and

R, is the rate of return for the whole portfolio, then the following programming problem can be set up:

N N N

PIELEDN)

Min xX;of + X;X;0,0;
i=1

i=1 j=1
Max EIR, - 1)’V o)
S (6.5)
Subject to Z Xl = U
i=1

N
Z x; =1
i=l

i.e. the conventional minimising of the variance of the rate of return of the whole portfolio, while the
expected rate of return for the portfolio is fixed at some desired level.

The rationale behind the second objective, maximising the skewness of the rate of return is that we
prefer small downside risk. i.c. large positive skewness indicates “fatter’ right tail, i.e minimising the
risk of lower return (the variance cffect) and maximising the ‘risk’ of higher return (the skewness
effect) for a given expected rate of return. As stated by Guo and Huang, in a continuous time model,
moments higher than two are irrelevant to the asset allocation decisions (this follows from Ito’s
differentiation rule for assets whose prices follow a diffusion process), but in the discrete case the

higher moments are relevant to the manner in which assets are allocated.



If R, are assumed to be triangular fuzzy numbers, i.e. R; = TEN(r,? ,r," ,7,°) , where 77 is the most

pessimistic value for R;, r," is the most optimistic value and #" is the most likely value, then (6.5) is

approximated by (Guo and Huang, 1996)

N
min Z " -rf
i=1

N
max Z ° -r")x;
i=1

Subject to 6.6)
N

z" Fx, =p

i=1

N

Z x; =1

i=1
Problem (6.6) is a multiple-objective linear programming problem which can be solved by using fuzzy
programming methods.
The incorporation of the skewness in the model leads to a non-linear programming with the associated
computational complications. Fuzzy programming provides an alternative way of representing and
solving problems which include uncertain rates of return. It reduces the complexity of the multiple-

objective programming problem (6.5), preserves the linear structure of the classical mean/variance

model and provides an approximate solution.

6.3 Conclusions

Fuzzy set theory provides a systematic approach to decision making problems. Vague and conflicting
requirements can be accommodated in order to produce results that satisfy these constraints to some
extent.

The choice of membership function and intersection operator is subjective and allows for the decision
maker’s judgement to be incorporated. The fuzzy decision making procedure provides an effective
method for mixing statistical results with the decision maker’s judgement.

Fuzzy decisions are ‘consensus’ decisions, because they allow simultaneously for satisfying multiple

objectives and constraints, and this may explain why they have flourished in Japan.
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The fuzzy linear programming approach of Guo and Huang is a type of alternative to the mean/semi-

variance model developed by Markowitz, as a modification of the standard modemn portfolio theory. It
emphasises the fact that deviation above the mean is not a risk to which the investor should be averse.
It would be interesting to see how the results from the above approach compare to ones obtained using

mearn/semi-variance model, for example, and this is left to future research.
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7. FUZZY TECHNIQUES AS PART OF ‘HYBRID’ MODELS

7.1 Introduction
7.1.1 A prevailing opinion among statisticians and actuaries is that fuzzy set theory aims to replace

probability theory in modelling financial and risk management processes.

7.1.2 There are concepts which are inherently non random, for example the degree of disability can
vary from 0% to 100% and it can not be described by a random variable (Hellman, 1995); or some
other variable can be random and fuzzy at the same time, such as the claim amounts, arising from a
general insurance business (Cummins and Derrig, 1997). In practice, future claims cost is predicted,
based on the past experience data, which can have different levels of reliability. In addition, one may
want to allow implicitly for inflation or some social changes (for example higher court awards in
personal injury cases). Therefore, the claim amount can be thought of as a hybrid number, consisting
of a random part and a fuzzy part, where the random part represents the realisation from the random
process and the fuzzy part accommodates the influence of some other factors such as data reliability,

inflation and some other factors that are not easily quantifiable.

7.1.3 Cummins and Derrig(1997) state:
"FST actually does not compete with mathematical probability as a means of evaluating
random phenomena, but rather is complimentary to probability theory in dealing with real

world problems where the available information is subjective, incomplete, or unreliable.’

7.1.4 One of the new and promising ways of using the fuzzy techniques is in combination with other
deterministic and statistical methods. Fuzzy set theory provides a rigorous, mathematical way of

utilising vague, subjective and qualitative concepts which are difficult to be incorporated into other

methods.
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7.2 Examples of hybrid systems

7.2.1 An actuarial example of a hybrid system which uses fuzzy techniques has been developed by the
Dutch Insurance Supervisory Bureau, ISB (Kramer, 1997,p. 191, footnote) called “Early”. It is an early
warning system for detecting possible difficulties of pension funds and it is a combination of a logit

model and a fuzzy set model, based on analysis of financial ratios of pension funds.

7.2.2 A similar hybrid system is developed by Kramer (1997) and it is an early warning system for
evaluation of the risk exposure of non life insurance companies. Kramer’s system, NEWS, combines a
traditional statistical method, an ordered logit model with a neural network and an expert system.
Although it does not include fuzzy techniques, we believe that if they had been included in the system,
it would have given interesting results. In the following paragraphs, we will look at the original model
and will suggest some modifications.

The classification of the insurance companies is based on the actual assessment made by the
supervisory body, which distinguishes between high risk, medium risk and low risk companies. The
data set upon which the system is based consists of seventy firm-specific variables, which cover the
solvency, profitability, investments, reinsurance, types of risks insured, technical provisions, premium
growth, size, and dependence on company groups: these factors are available for all insurance
companies in Holland, except the relatively new companies and those companies in a run-off situation.
7.2.2.1 An ordered logit model is used to rank a company as a low, a medium or a high risk. This is a
place where fuzzy techniques can be used. A fuzzy clustering algorithm can be used to classify a
company to one of the above-named categories. The advantages of such approach are the possibility of
partial memberships of the categories, the possibility of weighting the variables according to their
influence and a flexible interpretation of the results.

7.2.2.2 The second stage of NEWS uses a “specially’ trained neural network (which can be considered
as a special type of nonparametric regression estimator (Geman et al. 1992)) to obtain a second
classification of the companies.

The overall result (where a misclassification by one method is compensated by a correct classification
by the other method) is a combination of the results of the two methods. Although the results,

concerning the high and low risk are very good (over 96% are correctly classified), both methods fail
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to recognise the medium risk group. Again it is our belief that an appropriate fuzzy clustering method
could solve this particular problem.

7.2.2.3 The combined results from the logic and neural network methods are used as inputs to the final
stage of the system, the expert system. Although the analysis of the financial ratios is important in the
final assessment of a company, the expertise of the supervisor also needs to be included. The output is
in the form of priorities for investigation for each company. Because the supervisor’s expertise is not in
quantitative form and very often is not strictly defined, we believe that the best representation of this
expertise would be given by fuzzy sets. Therefore, we suggest that it would be worth exploring the idea
of using a rule-based fuzzy expert system, where the rules are based on fuzzy approximate reasoning

methods.

7.2.3 Two interesting hybrid models, which combine an Analytic Hierarchy Process (AHP, see the
Appendix to this section) methodology with Fuzzy Set Theory (FST) are presented by Chen&He
(1997) and McCauley-Bell&Badiru (1996). Neither application is actuarial in content-both deal with
disability related issues which nevertheless have some relevance to potential actuarial applications.
7.2.3.1 Chen&He (1997) present an assessment model for measuring and interpreting a disabled
person’s (visually impaired in their study) capabilities to comply with the requirements of a work
environment. AHP is used to obtain a hierarchical framework for measuring an Overall Disability
Index (ODI). The index consists of factors, such as achievements, aptitudes, interests and opinions and
other factors. Each of them is treated as a subindex and is measured by one or more evaluation
systems. For instance, the ‘interests and opinions’ subindex in the model is measured by three tests-
WRIOT (Wide Range Interest Opinion Test), AAMD (American Association of Mental Deficiency)

and COPS (Chené&He, 1997, p.4). The structure which follows from WRIOT is given in Figure 7.1
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Second level First level Test Results

Figure 7.1 WRIOT evaluation system.

Then the first level of the AHP consists of elemental test results, which give input data to the
evaluation system, which is one of the evaluation systems in the second level. A particular subindex is
measured by the evaluation systems in its second level. Finally the Overall Disability Index is a linear
combination of the subindices.

Developing such a model is a Multiple-Attribute Decision-Making(MADM) problem, where the
weights for each attribute are to be defined. The eigenvector method and entropy method are used to
derive the weights at the first level of the AHP. A single measure from the evaluation systems is not
considered appropriate, because of the imprecision and the uncertainty of the resuilts, due to the
expert’s judgements, evaluator’s measuring skills and person’s feelings during the test (Chen&He,
1997, p.8).

The solution which is offered is to treat the results as fuzzy sets. Then a subindex is defined as a
weighted intersection of the fuzzy sets for the evaluation systems. And finally the ODI is a weighted
sum of the subindices. Therefore, the systems defines the set of disabled people as a fuzzy set and each
person belongs to the set (i.e. is disabled) to a certain extent, which is determined by the membership

function.

7.2.3.2 McCauley-Bell&Badiru (1996) develop a similar model, based on AHP and FST. The model
looks at the quantifying the significance of the risk factors for cumulative trauma disorders (CTD) of

the forearm and hand and their impact on the likelihood of such injuries occurring. The research
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focuses on the use of linguistic variables as determinants of the risk levels, and quantifies these
variables using FST.

AHP is used to obtain the weights for the factors in each of three categories, which were identified in a
preliminary analysis and which are considered to constitute the overall risk. The categories of risk
factors are: task-related, personal and organisational. For example, the following are the AHP results

from level 1(McCauley-Bell& Badiru, 1996, p.134):

Task related Risk Personal Risk Organisational Risk
Factor Relative Factor Relative | Factor Relative
Weight Weight Weight
Joint posture 0.299 Previous CTD 0.383 Equipment 0.346
Repetition 0.189 Hobbies and habits 0.223 Production rate 0.249
Hand Tool Use 0.180 Diabetes 0.170 Ergonomics 0.183
Force 0.125 Thyroid prob. 0.097 Peer influence 0.0645
Task duration 0.124 Age 0.039 Training 0.059
Vibration 0.083 Arthritis 0.088 CTD level 0.053
Awareness 0.045

Fig. 7.2 AHP, level 1.
The weights for each of the three risk groups add to 1 and they determine the relative impact of each
one of the factors in the three categories to the output. The second level consists of defining the overall

risk, which is determined by the three categories. The relative importance of the categories is given in

Figure 7.3:

Category Relative weight
Task related Risks 0.637

Personal Risks 0.258
Organisational Risks 0.105

Fig. 7.3 AHP, level 2.
The linguistic variables and the weights obtained from the AHP are used to evaluate the current

condition of a given category using fuzzy inferencing (a rule-based expert system) and the output is a
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linguistic variable, such as ‘very high risk’, ‘high risk’. ‘average risk’, ‘some risk’ or ‘little or no
risk’. Again a weighted sum of the categories is considered most appropriate.

For example within task-related risks, if the factors force, repetition and joint posture have values
‘very high risk’ or ‘high risk’, then the fuzzy inferencing rules that the output for task- related
category is ‘very high’. The overall risk is a function of the linguistic output from the three categories.
The complete system is realised in the model CTXPERT. developed by the authors.

The defuzzification, the process of translating the fuzzy outputs into a crisp value, follows Hayashi’s
‘fuzzy quantification theory’ (Terano et al, 1987) and more precisely Theory I, which attempts to find
a linear relationship between qualitative and numerical variables, assigning a numerical value to the
linguistic variables.

The system is tested on a data set and actual vs predicted values are considered. Sensitivity, the ability
to identify the CTD cases and specificity, the ability to identify only CTD cases analyses ( types I and
11 errors) indicate good adherence to the actual experience. This is confirmed by a 3 test.

As noted by McCauley-Beli& Badiru(1997), FST provides a useful approach to the assessment of
injuries or disabilities, which can develop over a period (possibly prolonged). FST can be used to
measure the degree to which an injury or disability occurs and not just whether it occurs. Tilus, ‘the
representation of this grey area is critical to recognise whether an injury is developing to make efforts

to prohibit the continual exposure to the risk factors’.

7.2.4 The two hybrid systems (described in section 7.2.3) which combine knowledge, AHP and fuzzy
inference show very good results. Furthermore, the models considered in this section are an indication
that FST is a reasonable and effective approach in assessing risks, that are characterised by great
complexity and variability. Although these are not actuarial models, one can easily see applications of
such or similar models in situations with a great variability of individual factors in an insurance or
risk management context, for example underwriting and risk classification, and the pricing of general
insurance risks. Potentially, these methodologies could lead to the replacement of the underwriting

manuals that are currently in widespread use.



7.3 Conclusions

7.3.1 Hybrid models provide an interesting approach to the complexity of real world applications.
Various theories and methodologies may represent better different sides of an investigated
phenomenon in a more effective way. A carefully chosen combination of these can be used as a
complement to those aspects of a traditional method which are poorly modelled or as a correction or a

double-checking device.

7.3.2 We believe that the development of hybrid models is a promising area for further research.
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Appendix: AHP- A BRIEF DESCRIPTION

Al. Analytic Hierarchy Process (AHP) method is one of the widely used multi-criteria decision making
(MCDM) methods and is based on the principle that in decision making, experience and knowledge of
the decision makers is at least as valuable as the data, which describes the particular problem and on
which the conclusions are normally based.

Applications of AHP are found in many areas and among these are bank strategic planning, benefit-
cost evaluation, bond ratings models. We will give a brief description of the method, closely following

chapter 2 of Kumar&Ganesh (1996). A detailed discussion of the theory of AHP is also presented by

Saaty (1980).

A2. The AHP process can be thought of as consisting of four parts (Kumar and Ganesh, 1996).
First, the problem in investigation is decomposed hierarchically, starting from the overall objective’s
main characteristics (level n, where n is the number of levels) and each of the elements at a previous

level is decomposed until the process gets to a point, where a reasonable evaluations of these ‘basic’

characteristics can be obtained.

Level 3

Level 2 (criteria)

Level 1 (alternatives)

Fig. A1 AHP hierarchy.

Second, at each level, the pairs of elements are compared with respect to every element in the higher
level, using Saaty’s nine- point scale and a pairwise comparison matrix is defined. The matrix is
reciprocal (a;=1/a;) and if it is consistent (a;=a;a,;) then the computations in part 3 are
straightforward. The matrix definition is a subjective operation and fully reflects the decision maker’s

knowledge and preferences. Some broad guidelines are given by Saaty’s scale presented below.
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Intensity of Definition Description

importance
1 Equal importance Two criteria contribute equally to the objective in
the immediate higher level
3 Weak importance of one Experience and judgement slightly favour one
over another criterion over another
5 Essential or strong Experience and judgement strongly favour one
importance criterion over another
7 Very strong or demonstrated A criterion is favoured very strongly; its
importance dominance demonstrated in practice
9 Absolute importance The evidence favouring one criterion over another
is of the highest possible order of affirmation
2,4,6,8 Intermediate values between ~ When compromise is needed.
adjacent scale values
Reciprocals of If criterion A has one of the A reasonable assumption
the above above judgements compared
judgements to criterion B then B has the
reciprocal value when

compared to A

Table Al. Saaty’s nine- point scale and its description.

Third, the eigenvector method is used for generating the weights/priority vectors at each level with
respect to every element at the next higher level. The weights vector is the normalised principal
eigenvector of a pairwise comparison matrix i.e.

w’: Aw’=Aw’ and w=w"/||w’|| is the normalised principal eigenvector of 4, where 4 is a reciprocal

square matrix (a;=1/a;) and 4 is its principal eigenvalue.

And finally all weight vectors are synthesised in order to obtain the final vector of weights. The
weights vectors from a level are used to obtain the weights vectors at the next higher level. If W,
denotes the weight of alternative i, c; is the weight of criterion j and wj; is the weight of the alternative i

with respect to criterion j, then

W =Zc,w,,-

A3. AHP method is not perfect and it has received a mixed reaction among researchers. The main

drawback is the so called rank reversal phenomenon.This refers to the inability of the theory to
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preserve the ranking of the alternatives if an alternative is added or deleted. But the theory and the
associated mathematics are relatively simple, the method is intuitively clear and easy to understand and

it can be equally easy to deal with quantitative and qualitative data.
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8. CONCLUSIONS AND FURTHER RESEARCH.

8.1 Actuarial science provides solutions to problems involving the financial implications of future
uncertain events and makes wide use of mathematical and statistical techniques. The range of fields in
which actuarial expertise is employed is both extensive and complex and some would argue, could be
expanded (Ferguson, 1997). The arsenal of actuarial techniques needs a continuous update in order to
keep a competitive edge in presentation of and solution finding in new and unfamiliar situations or to
present in a new light the existing ones (Cook and Valentine, 1997). Fuzzy set theory provides such an

opportunity.

8.2 Fuzzy sets are used to describe uncertain statements, where the uncertainty is due to the nature of
the phenomenon, its perception by humans or arising from its complexity.

Since the concept of a fuzzy set was first introduced some thirty years ago, FST has undergone a rapid
and continuous development and now it is common to find a fuzzy approach in linguistics, artificial
intelligence, pattern analysis and classification, decision making and many other branches of

contemporary science.

8.3 In this paper, we have presented a review of fuzzy concepts and techniques which have been used
in an actuarial environment and we have presented new ideas, such as hybrid models, which might be
of interest in future. The applications reviewed include areas such as financial mathematics, asset/

liability considerations, risk classification and underwriting in both life and non- life insurance.

8.4 FST is a new branch of modern mathematics and its applications in actuarial science are even more
recent. Our view is that it provides a promising way of treating the uncertainty which is inherent in
many actuarial applications. We believe that FST would be a useful addition to the modelling tools
used by actuaries and that many of the potential applications lie in non-life insurance and the (so-
called) ‘wider’ fields.
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