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Multiple-instrument polyphonic music transcription using
a temporally constrained shift-invariant model
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(Received 16 August 2012; revised 17 January 2013; accepted 22 January 2013)

A method for automatic transcription of polyphonic music is proposed in this work that models the

temporal evolution of musical tones. The model extends the shift-invariant probabilistic latent

component analysis method by supporting the use of spectral templates that correspond to sound

states such as attack, sustain, and decay. The order of these templates is controlled using hidden

Markov model-based temporal constraints. In addition, the model can exploit multiple templates

per pitch and instrument source. The shift-invariant aspect of the model makes it suitable for music

signals that exhibit frequency modulations or tuning changes. Pitch-wise hidden Markov models

are also utilized in a postprocessing step for note tracking. For training, sound state templates were

extracted for various orchestral instruments using isolated note samples. The proposed transcription

system was tested on multiple-instrument recordings from various datasets. Experimental results

show that the proposed model is superior to a non-temporally constrained model and also outperforms

various state-of-the-art transcription systems for the same experiment.

VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4790351]

PACS number(s): 43.75.Zz, 43.75.Xz, 43.66.Mk [TRM] Pages: 1727–1741

I. INTRODUCTION

The automatic transcription task refers to the conversion

of an audio recording into some form of music notation, usu-

ally a MIDI file or a music score. It is one of the fundamental

problems of music information retrieval (MIR) and has addi-

tional applications in computational musicology and the cre-

ation of interactive music systems. The core problem of

automatic transcription is multi-pitch detection, i.e., pitch

estimation of several concurrent sounds over short frames of

a recording. Additional subtasks of automatic transcription

include onset/offset detection, instrument identification, and

the extraction of rhythmic information (Klapuri and Davy,

2006). For an overview of the transcription and multi-pitch

detection problem, the reader is referred to Klapuri and

Davy (2006) and de Cheveign�e (2006). Although for the

single-pitch detection case the problem is generally consid-

ered to be solved, the multi-pitch case still remains open,

especially in the case where the music signal is produced by

multiple instruments.

Automatic transcription methods can be categorized

according to the various techniques employed for multi-

pitch detection. Several techniques employ audio features

and music signal processing techniques (e.g., Klapuri and

Davy, 2006; Pertusa and I~nesta, 2008; Yeh et al., 2010; Ben-

etos and Dixon, 2011a; Emiya et al., 2010). A large subset

of transcription systems (including the present work) employ

methods stemming from spectrogram factorization techni-

ques, which exploit the redundancies found in music spectro-

grams (e.g., Vincent et al., 2010; Mysore and Smaragdis,

2009; Grindlay and Ellis, 2011; Carabias-Orti et al., 2011).

In Davy et al. (2006), a Bayesian framework for the estima-

tion of pitch, dynamics, and instrument sources was pro-

posed where the unknown parameters are estimated using a

Markov chain Monte Carlo (MCMC) method. In Peeling

et al. (2007) and Peeling and Godsill (2011), a generative

model using a non-homogeneous Poisson process was pro-

posed for multi-pitch detection. A machine learning-based

transcription system was proposed in Poliner and Ellis

(2007), while in Lee et al. (2011) sparse coding was used for

piano-only transcription. In Duan et al. (2010), a maximum

likelihood approach was proposed for multiple-F0 estimation

by modeling spectral peaks and non-peak regions. Typically

hidden Markov models (HMMs) are used in a postprocessing

stage for note tracking due to the sequential structure offered

by the models (e.g., Poliner and Ellis, 2007; Quesada et al.,

2010; Yeh et al., 2010).

One of the drawbacks of current transcription systems is

that in most cases, the non-stationarity of music sounds is

not addressed. A note produced by a musical instrument can

be expressed as a sequence of sound states, for example

attack, transient, sustain, and decay parts (Bello et al., 2005).

One such example is given in Fig. 1, where the log-

frequency spectrogram of a piano note can be seen, and vari-

ous sound states are labeled. Additionally, depending on the

instrument, frequency modulations such as vibrato and am-

plitude modulations such as tremolo might also take place.

The problem of detecting frequency modulations using a sin-

gle template for relative pitch tracking was addressed by

Smaragdis (2009) using shift-invariant probabilistic latent

component analysis (PLCA), which will be detailed in

Sec. II. Also an algorithm that models the sound evolution in

music signals was proposed in Nakano et al. (2010) where

the non-negative matrix factorization algorithm is combined

with HMMs. Finally, a non-parametric Bayesian extension
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of the non-negative matrix factorization algorithm for ana-

lyzing music spectrograms was proposed by Nakano et al.

(2011), where a model with infinite-state spectral bases was

proposed.

The motivation for this work is to (1) propose a model

that can deal with tuning and frequency modulations in

music sounds by employing shift-invariance, (2) propose a

model that will express the temporal evolution of sounds,

and (3) integrate these aforementioned features in a

multiple-source, multiple-pitch template model for auto-

matic music transcription. Specifically, the model extends

the shift-invariant PLCA technique by adding temporal

constraints using multiple HMMs. Spectral templates that

correspond to each sound state of a note are used across the

complete pitch ranges of multiple orchestral instruments.

The sequence of these sound states within a produced note

is constrained via pitch-wise HMMs.

At the same time, the shift-invariance of the model sup-

ports the presence of tuning changes and frequency modula-

tions within the music signal. A preliminary version of the

proposed model was presented in Benetos and Dixon (2012).

For the experiments reported in this paper, several sound

state templates were extracted using an unsupervised single-

pitch version of the proposed model, using the MAPS

(Emiya et al., 2010) and RWC (Goto et al., 2003) databases.

Experiments were performed using three widely used tran-

scription datasets, and results are reported using several error

metrics. It is shown that the proposed model outperforms a

non-temporally constrained convolutive probabilistic model

(Benetos and Dixon, 2011b) using the same time-frequency

representation and note tracking steps. Also, the system is

shown to outperform other state-of-the-art transcription sys-

tems for the same experiments. Finally, this model can also

be applied for instrument identification in poly-phonic

music. Instrument assignment experiments are made using

the MIREX multi-F0 woodwind recording, where the pro-

posed system produced promising results.

The outline of this paper is as follows. In Sec. II, the

PLCA and shift-invariant PLCA methods are presented along

with related applications of these methods to automatic music

transcription and pitch tracking. The proposed temporally

constrained convolutive model for single-pitch detection is

detailed in Sec. III, while the multi-pitch model is described

in Sec. IV. Section V presents the HMM-based postprocess-

ing step for note tracking. The employed training and test

datasets, error metrics, and experimental results on auto-

matic music transcription using the proposed model are

shown in Sec. VI. Finally, conclusions are drawn and future

directions are indicated in Sec. VII.

II. RELATEDWORK

A. PLCA

PLCA is a subspace analysis technique proposed in

Smaragdis et al. (2006). It can be viewed as a probabilistic

extension of the non-negative matrix factorization (NMF)

algorithm (Lee and Seung, 1999) using the Kullback–Leibler

cost function, providing a framework that is easy to general-

ize and interpret. PLCA can also offer a convenient way to

incorporate priors over the parameters and control the result-

ing decomposition, for example using entropic priors

(Shashanka et al., 2008). In PLCA, the input spectrogram,

which must be scaled to have integer entries, is modeled as

the histogram of the draw of N independent random varia-

bles (xn, tn), which are distributed according to P(x,t)

(x denotes frequency, and t time) and a component activity

matrix.

There are two ways of modeling P(x,t), using symmet-

ric or asymmetric factorizations. For the symmetric model,

P(x, t) is expressed as a mixture of two-dimensional latent

factors with each factor being a product of one-dimensional

marginal distributions (Shashanka et al., 2008) and can be

expressed as

Pðx; tÞ ¼
X

z

PðzÞPðxjzÞPðtjzÞ; (1)

where z is the component index, P(z) refers to the component

weights, P(xjz) is the spectral template that corresponds to

the zth component, and P(tjz) describes the time-varying

energy of each component. In the context of music signal

analysis, the components (or latent factors) typically refer to

the constituent elements of a spectrogram (e.g., pitches or

instrument sources).

The asymmetric factorization, which is called PLCA,

treats x and t differently and decomposes P(x, t) as a prod-

uct of a spectral basis matrix and a component activity ma-

trix. It can be expressed as

Pðx; tÞ ¼ PðtÞ
X

z

PðxjzÞPðzjtÞ; (2)

where z is the component index, P(t) is the energy of the input

spectrogram (known quantity), P(xjz) is the spectral template

that corresponds to the zth component, and P(zjt) is the activa-
tion of the zth component. To estimate the unknown parame-

ters P(xjz) and P(zjt), iterative update rules are applied, using
the Expectation–Maximization (EM) algorithm (Dempster

et al., 1977). The derivation of the EM algorithm for PLCA

FIG. 1. (Color online) Log-frequency spectrogram of a B1 piano note (con-

stant-Q transform with 60 bins/octave and lowest frequency at 27.5 Hz).

The attack and release parts of the note can be seen in the marked areas

around frames 50 and 250, respectively.
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can be found in Smaragdis and Raj (2007). The update rules

are guaranteed to converge to a local minimum.

Concerning PLCA-based work on music signal analysis,

Grindlay and Ellis (2011) proposed an extension to the

PLCA model for multiple-instrument transcription, support-

ing templates for multiple instrument sources. The notion of

eigeninstruments was presented, by modeling the fixed spec-

tral templates as a linear combination of basic instrument

models in a training step. Sparsity was enforced on the pitch

activity matrix and the source contribution matrix by modi-

fying the model update equations. Experiments were per-

formed on J. S. Bach duets and on pairs of tracks from the

multi-track MIREX multi-F0 woodwind recording (MIREX,

2007), which is also used in this work.

In Mysore (2010), temporal constraints were incorpo-

rated into the PLCA model for music signal analysis. This

non-negative hidden Markov model expressed each note

using a set of spectral templates linked to a hidden state in

an HMM. Parameter estimation was achieved using the

PLCA update rules combined with the HMM forward-

backward procedure (Rabiner, 1989). An extension for two

sources was also proposed by Mysore for source separation,

which employed factorial HMMs (Ghahramani and Jordan,

1997). It should be noted that the model of Mysore (2010)

cannot be used directly for automatic music transcription;

the proposed approach extends the model of Mysore (2010)

by incorporating shift-invariance across log-frequency and

by introducing a sound state-pitch-instrument hierarchy

instead of a component-source hierarchy.

B. Shift-invariant PLCA

Incorporating a shift-invariant model into the PLCA

framework is practical because the sum of two random

variables corresponds to a convolution of their distribution.

Shift-invariant PLCA (Smaragdis et al., 2008) was proposed

for extracting shifted structures in non-negative data. It has

been used in music signal processing applications using a

normalized log-frequency spectrogram as an input because a

shift over log-frequency corresponds to a pitch change. The

shift-invariant PLCA (SI-PLCA) model can be defined as

Pðx; tÞ ¼
X

z

PðzÞ
X

f

Pðx� f jzÞPðf ; tjzÞ; (3)

where x is the log-frequency index, z the component index,

and f the shifting factor. P(x � fjz)¼P(ljz) denotes the

spectral template for the zth component, P(f,tjz) the time-

varying pitch shifting, and P(z) the component prior. Again

the EM algorithm can be used for deriving update rules for

the unknown parameters. An example of an SI-PLCA model

is given in Fig. 2, where the input log-frequency spectrogram

of a violin glissando is decomposed into a spectral template

and a pitch impulse distribution.

In Smaragdis (2009), the SI-PLCA model was used for

relative pitch tracking, where sparsity was enforced on the

unknown matrices using an entropic prior. Mysore and

Smaragdis (2009) used the SI-PLCA model for multiple-

instrument relative pitch tracking, tested on the MIREX

multi-F0 recording (MIREX, 2007). For eliminating octave

errors, a sliding-Gaussian Dirichlet prior was used in

the model, while a temporal continuity constraint using a

Kalman filter type smoothing was applied to P(f, tjz) to

extract a smooth pitch track.

More recently, an extension of the SI-PLCA algorithm

was proposed for harmonic signals by Fuentes et al. (2011).

Each note is modeled as a weighted sum of narrowband log-

spectra that are also shifted across log-frequency. This

FIG. 2. A shift-invariant PLCA decomposition of a violin glissando (constant-Q transform with 120 bins/octave and lowest frequency at 27.5 Hz) with z¼ 1.

(a) Input log-frequency spectrogram, (b) spectral template P(ljz), (c) pitch shift P(f, tjz).
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approach is a convolutive probabilistic formulation of the har-

monic NMF algorithm proposed by Vincent (Vincent et al.,

2010) with added time dependence for the weights of the nar-

rowband spectra. The harmonic SI-PLCA method was tested

for single-pitch detection on isolated note samples, and a

model was proposed for multi-pitch detection. An asymmetric

minimum variance prior was also incorporated into the pa-

rameter update rules to eliminate any harmonic errors.

Finally, the authors proposed an extension of the

shift-invariant PLCA model for automatic transcription in

Benetos and Dixon (2011b). The model supported the use of

one spectral template per pitch and instrument source. Each

template could be shifted across log-frequency in a semitone

range around the ideal pitch position. This system was also

publicly evaluated in the MIREX 2011 competition (MIREX,

2007), where it ranked second in the note tracking task.

III. SINGLE-PITCH MODEL

In this section, a temporally constrained shift-invariant

model first introduced by the authors in Benetos and Dixon

(2011c) will be presented. The model expresses the evolution

of monophonic music sounds as a sequence of sound state tem-

plates, shifted across log-frequency. The motivation behind it

is to address drawbacks of current pitch detection approaches

by (1) explicitly modeling sound states instead of using a con-

stant spectral template for a complete note event, as in Smar-

agdis (2009), Mysore and Smaragdis (2009), and Grindlay and

Ellis (2011) and (2) incorporating shift-invariance into the

model to support the detection of notes that exhibit frequency

modulations and tuning changes, extending the work done in

Mysore (2010) and Nakano et al. (2010). Finally, compared to

the NMF-based work in Nakano et al. (2010), the parameters

for the temporal constraints are learned from a hidden Markov

model instead of being pre-defined.

A. Formulation

The proposed method can be named as HMM-constrained

SI-PLCA. The notion is that the input log-frequency spectro-

gram Vx,t is decomposed as a sum of sound state spectral tem-

plates that are shifted across log-frequency, producing a pitch

track. Each sound state q is constrained using an HMM. Here,

x 2 [1, X] is the log-frequency index and t 2 [1, T] the time

index. The model in terms of the observations is defined as

PðxÞ ¼
X

q

�

Pðq1Þ
Y

t

Pðqtþ1jqtÞ
��

Y

t

PðxtjqtÞ
�

; (4)

where x is the complete sequence of draws for all time frames

(observable via Vx,t), q is the sequence of draws of q, P(q1) is

the sound state prior distribution, P(qtþ1jqt) is the state transi-
tion matrix, PðxtjqtÞ is the observation probability given a

state, and xt is the sequence of draws of x at the tth frame.

The observation probability is calculated as

PðxtjqtÞ ¼
Y

xt

PtðxtjqtÞ
Vx;t

(5)

because Vx,t represents the number of times x has been

drawn at time t. PtðxtjqtÞ is decomposed as

PtðxtjqtÞ ¼
X

ft

Pðxt � ftjqtÞPtðftjqtÞ: (6)

Equation (6) denotes the spectrum reconstruction for a given

state. Pðx� f jqÞ ¼ PðljqÞ are the sound state templates

and Ptðf jqÞ is the time-dependent pitch track for each state

(f 2 [1, F]). The subscript t in ft, xt, qt denotes the values of

the random variables f, x, q taken at frame t. It should also

be noted that the observation probability of Eq. (5) is com-

puted in the log-domain to avoid any underflow errors.

Thus the generative process for the proposed model is

as follows:

(1) Choose an initial state according to P(q1).

(2) Set t¼ 1.

(3) Repeat the following steps Vt times ðVt ¼
P

xVx;tÞ:
(a) Choose l according to PðltjqtÞ.
(b) Choose f according to PtðftjqtÞ.
(c) Set xt¼ ltþ ft.

(4) Choose a new state qtþ1 according to Pðqtþ1jqtÞ.
(5) Set t¼ tþ 1 and go to step 3 if t< T.

B. Parameter estimation

The unknown parameters PðltjqtÞ and PtðftjqtÞ can be

estimated by maximizing the log-likelihood of the data,

using the EM algorithm (Dempster et al., 1977). The update

equations are a combination of the SI-PLCA update rules

and the HMM forward-backward algorithm (Rabiner, 1989).

The posterior distribution of the model is given by

Pðf ; qjxÞ, where f is the sequence of draws of f.
For the Expectation step, we compute the contribution of

the latent variables f, q over the complete model reconstruction:

Ptðft; qtjxÞ ¼
Ptðftjx; qtÞPtðx; qtÞ

PðxÞ
Ptðftjxt; qtÞPtðqtjxÞ;

(7)

where

Ptðftjxt; qtÞ ¼
Pðxt � ftjqtÞPtðftjqtÞ

X

ft

Pðxt � ftjqtÞPtðftjqtÞ
; (8)

PtðqtjxÞ ¼
Ptðx; qtÞ

X

qt

Ptðx; qtÞ
¼

atðqtÞbtðqtÞ
X

qt

atðqtÞbtðqtÞ
: (9)

Equation (7) is the posterior of the hidden variables over the

observations and is computed using the fact that

Ptðftjx; qtÞ ¼ Ptðftjxt; qtÞ. Equation (8) is computed using

Bayes’ rule and the notion that Pðxtjft; qtÞ ¼ Pðxt � ftjqtÞ.
Equation (9) is the time-varying contribution of each sound

state and is derived from the following:

Ptðx; qtÞ ¼ Pðx1;x2;…;xt; qtÞPðxtþ1;xtþ2;…;xT jqtÞ

¼ atðqtÞbtðqtÞ; (10)

where T is the total number of frames, and at(qt) and bt(qt) are

the HMM forward and backward variables (Rabiner, 1989),

respectively.
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The forward variable at(qt) can be computed recursively

using the forward-backward algorithm as follows:

a1ðq1Þ ¼ Pðx1jq1ÞPðq1Þ;

atþ1ðqtþ1Þ ¼
�

X

qt

Pðqtþ1jqtÞatðqtÞ
�

� Pðxtþ1jqtþ1Þ;

(11)

while the backward variable bt(qt) can be computed as

bTðqTÞ ¼ 1;

btðqtÞ ¼
X

qtþ1

btþ1ðqtþ1ÞPðqtþ1jqtÞPðxtþ1jqtþ1Þ: (12)

The posterior for the sound state transition matrix is given by

Ptðqt;qtþ1jxÞ ¼
Ptðx;qt;qtþ1Þ

X

qt

X

qtþ1

Ptðx;qt;qtþ1Þ

¼
atðqtÞPðqtþ1jqtÞbtþ1ðqtþ1ÞPðxtþ1jqtþ1Þ
X

qt;qtþ1

atðqtÞPðqtþ1jqtÞbtþ1ðqtþ1ÞPðxtþ1jqtþ1Þ
:

(13)

For the Maximization step, we derive the update equations

for the unknown parameters PðljqÞ, PtðftjqtÞ, Pðqtþ1jqtÞ, and
P(q1) using the computed posteriors:

PðljqÞ ¼

X

f ;t

Vx;tPtðf ; qjxÞ

X

x;f ;t

Vx;tPtðf ; qjxÞ
; (14)

PtðftjqtÞ ¼

X

xt

Vx;tPtðft; qtjxÞ

X

ft;xt

Vx;tPtðft; qtjxÞ
; (15)

Pðqtþ1jqtÞ ¼

X

t

Ptðqt; qtþ1jxÞ

X

qtþ1

X

t

Ptðqt; qtþ1jxÞ
; (16)

Pðq1Þ ¼ P1ðq1jxÞ: (17)

After estimating the unknown parameters, the activation of

each sound state is given by

PtðqtjxÞ
X

x

Vx;t: (18)

An example of the single-source model is given in Fig. 3,

where the 10-cent resolution log-frequency spectrogram of a

B1 piano note from the MAPS database (Emiya et al., 2010)

is used as input. Here, a four-state left-to-right HMM is used.

The temporal succession of spectral templates can be seen

in Fig. 3(d).

IV. MULTI-PITCH MODEL

Here we will extend the single-source model of Sec. III

for supporting multiple sources as well as multiple components

per source. The goal is to create a multi-pitch detection system

for multiple instruments, supporting also multiple sets of sound

state tem-plates per source. At the same time, the model will

be able to support tuning changes and frequency modulations

using a shift-invariant formulation. For modeling, the temporal

evolution of the sound state templates, one HMM will be

linked with each pitch. Sparsity will also be enforced on cer-

tain distributions, as in Grindlay and Ellis (2011) and Benetos

and Dixon (2011b) for further constraining the solution. All of

the preceding features will allow for an informative representa-

tion of the input music signal, addressing some drawbacks of

current multi-pitch detection systems.

A. Formulation

This model decomposes an input log-frequency spectro-

gram Vx,t as a series of sound state templates per source and

pitch, a shifting parameter per pitch, a pitch activation, a

source activation, and a sound state activation. The sound

state sequence for each pitch p¼ 1,…, 88 (denoting notes

A0 to C8) is constrained using a corresponding HMM. The

proposed model can be given in terms of the observations as

PðxÞ ¼
X

q
ð1Þ

� � �
X

q
ð88Þ

P
�

q
ð1Þ
1

�

� � �P
�

q
ð88Þ
1

�

�
�

Y

t

P
�

q
ð1Þ
tþ1jq

ð1Þ
t

��

� � �
�

Y

t

P
�

q
ð88Þ
tþ1 jq

ð88Þ
t

��

�
�

Y

t

P
�

xtjq
ð1Þ
t ;…; q

ð88Þ
t

��

; (19)

where qðpÞ refers to the state sequences for a given pitch, Pðq
ðpÞ
1 Þ

is the sound state prior distribution for pitch p, Pðq
ðpÞ
tþ1jq

ðpÞ
t Þ is

the sound state transition matrix, and Pðxtjq
ð1Þ
t ;…; q

ð88Þ
t Þ is the

observation probability.

The observation probability is calculated as

P
�

xtjq
ð1Þ
t ;…; q

ð88Þ
t

�

¼
Y

xt

Pt

�

xtjq
ð1Þ
t ;…; q

ð88Þ
t

�Vx;t

;

(20)

where

Pt

�

xtjq
ð1Þ
t ;…; q

ð88Þ
t

�

¼
X

st;pt;ft

PtðptÞPtðstjptÞP
�

xt � ftjst; pt; q
ðptÞ
t

�

PtðftjptÞ:

(21)

In Eq. (21), s denotes the instrument sources, f is the log-

frequency pitch shifting parameter, and q(p) is the sound state

sequence linked to pitch p. Pt(p) is the pitch activity matrix

(which is the output of the transcription system), and PtðsjpÞ is
the contribution of each instrument source for each pitch across

time. Pðx� f js; p; qðpÞÞ¼Pðljs; p; qðpÞÞ denotes a spectral

template for the qth sound state, pth pitch and sth source, and

Ptðf jpÞ is the time- and pitch-dependent log-frequency shifting

distribution. For computing Eq. (21), we exploit the fact that

Pðxt � ftjst; pt; q
ð1Þ
t ;…; q

ð88Þ
t Þ¼Pðxt � ftjst; pt; q

ðptÞ
t Þ. To con-

strain the pitch shifting f so that each sound state template is

associated with a single pitch, the shifting occurs in a semitone
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range around the ideal position of each pitch. Thus because we

are using in this paper a log-frequency representation with a

spectral resolution of 60 bins/octave, f 2 [� 2, 2].

Thus the generative process for the multi-pitch model is

as follows:

(1) Choose initial states for each p according to Pðq
ðpÞ
1 Þ.

(2) Set t¼ 1.

(3) Repeat the following steps Vt times ðVt ¼
P

xVx;tÞ:
(a) Choose p according to Pt(pt).

(b) Choose s according to PtðstjptÞ.
(c) Choose f according to PtðftjptÞ.
(d) Choose l according to Pðltjst; pt; q

ðptÞ
t Þ.

(e) Set xt¼ ltþ ft.

(4) Choose new states q
ðpÞ
tþ1 for each p according to

Pðq
ðpÞ
tþ1jq

ðpÞ
t Þ.

(5) Set t¼ tþ 1 and go to step 3 if t< T.

B. Parameter estimation

As in Sec. III, the unknown model parameters can be

estimated using the EM algorithm (Dempster et al., 1977).

For the Expectation step, the posterior of all hidden variables

is given by

Pt

�

ft; st; pt; q
ð1Þ
t ;…q

ð88Þ
t jx

�

¼ Pt

�

q
ð1Þ
t ;…q

ð88Þ
t jx

�

Pt

�

ft; st; ptjxt; q
ð1Þ
t ;…q

ð88Þ
t

�

:

(22)

Because independent HMMs are used, the joint probability of

all pitch-wise sound states over the observations is given by

Pt

�

q
ð1Þ
t ;…q

ð88Þ
t jx

�

¼
Y

88

p¼1

Pt

�

q
ðpÞ
t jx

�

; (23)

where

Pt

�

q
ðpÞ
t jx

�

¼
Pt

�

x; q
ðpÞ
t

�

X

q
ðpÞ
t

Pt

�

x; q
ðpÞ
t

� ¼
at

�

q
ðpÞ
t

�

bt

�

q
ðpÞ
t

�

X

q
ðpÞ
t

at

�

q
ðpÞ
t

�

bt

�

q
ðpÞ
t

�

(24)

and atðq
ðpÞ
t Þ, btðq

ðpÞ
t Þ are the forward and backward variables

for the pth HMM (Rabiner, 1989), which can be computed

recursively using Eqs. (11) and (12). The second term of Eq.

FIG. 3. (a) Log-frequency spectro-

gram Vx,t of a B1 piano note. (b)

Approximation of the spectrogram

using estimated parameters from the

single-source model. (c) Spectral tem-

plates PðljqÞ. (d) Sound state activa-

tion PtðqtjxÞ
P

xVx;t. (e) Sound state

transition matrix Pðqtþ1jqtÞ. (f)

Sound state priors P(q1).
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(22) can be computed using Bayes’ theorem and the inde-

pendence of the pitch-wise HMMs as

Pt

�

ft; st; ptjxt; q
ð1Þ
t ;…; q

ð88Þ
t

�

¼ Pt

�

ft; st; ptjxt; q
ðptÞ
t

�

¼
PtðptÞP

�

xt � ftjst; pt; q
ðptÞ
t

�

PtðftjptÞPtðstjptÞ
X

pt

PtðptÞ
X

st;ft

P
�

xt � ftjst; pt; q
ðptÞ
t

�

PtðftjptÞPtðstjptÞ
:

(25)

Finally, the posterior probability for the pth pitch transition

matrix is given by

Pt

�

q
ðpÞ
tþ1; q

ðpÞ
t jx

�

¼
at

�

q
ðpÞ
t

�

P
�

q
ðpÞ
tþ1jq

ðpÞ
t

�

btþ1

�

q
ðpÞ
tþ1

�

P
�

xtþ1jq
ðpÞ
tþ1

�

X

q
ðpÞ
t

X

q
ðpÞ
tþ1

at

�

q
ðpÞ
t

�

P
�

q
ðpÞ
tþ1jq

ðpÞ
t

�

btþ1

�

q
ðpÞ
tþ1

�

P
�

xtþ1jq
ðpÞ
tþ1

� ;

(26)

where Pðxtjq
ðpÞ
t Þ is given from

P

q
ðpÞ
t

Pðxjq
ð1Þ
t ;…; q

ð88Þ
t Þ

�Pðq
ð1Þ
t ;…; q

ðp�1Þ
t ; q

ðpþ1Þ
t ;…; q

ð88Þ
t Þ, where

P

q
ðpÞ
t

¼
P

q
ð1Þ
t

…
P

q
ðp�1Þ
t

P

q
ðpþ1Þ
t

…
P

q
ð88Þ
t

.

For the Maximization step, the unknown parameters in

the model can be computed using the following update

equations:

P
�

ljs; p; qðpÞ
�

¼

X

f ;s;t

X

q
ðpÞ
t

Vx;tPt

�

f ; s; p; qð1Þ;…; qð88Þjx
�

X

x;f ;s;t

X

q
ðpÞ
t

Vx;tPt

�

f ; s; p; qð1Þ;…; qð88Þjx
� ; (27)

PtðftjptÞ

¼

X

xt;st

X

q
ð1Þ
t

…
X

q
ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

�

X

ft;xt;st

X

q
ð1Þ
t

…
X

q
ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

� ;

(28)

PtðstjptÞ

¼

X

xt;ft

X

q
ð1Þ
t

…
X

q
ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

�

X

st;xt;ft

X

q
ð1Þ
t

…
X

q
ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

� ;

(29)

PtðptÞ

¼

X

xt;ft;st

X

q
ð1Þ
t

…
X

q
ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

�

X

pt;xt;ft;st

X

q
ð1Þ
t

…
X

q
ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

� ;

(30)

P
�

q
ðpÞ
tþ1jq

ðpÞ
t

�

¼

X

t

Pt

�

q
ðpÞ
t ; q

ðpÞ
tþ1jx

�

X

q
ðpÞ
tþ1

X

t

Pt

�

q
ðpÞ
t ; q

ðpÞ
tþ1jx

� ; (31)

P
�

q
ðpÞ
1

�

¼ P1

�

q
ðpÞ
1 jx

�

: (32)

It should be noted that the proposed multi-pitch transcrip-

tion system uses pre-extracted sound state templates using the

single-pitch model of Sec. III, thus the spectral template update

rule of Eq. (27) is not utilized but is included here for com-

pleteness. After convergence using the update equations from

the EM steps, the output of the system is a pitch activity matrix

in MIDI scale and a pitch activity tensor in the resolution of

the input time-frequency (T/F) representation, given by

PtðpÞ
X

x

Vx;t;

PtðpÞPtðf jpÞ
X

x

Vx;t: (33)

A time-pitch representation can be created by stacking together

matrix slices of tensor PtðpÞPtðf jpÞ
P

xVx;t for all pitch values.

We will denote this time-pitch representation as P(f 0, t), which

can be used for pitch visualization purposes or for extracting

tuning information. An example of the proposed model is given

in Fig. 4, where the output time-pitch representation P(f 0, t) and

the MIDI ground-truth of a guitar recording can be seen.

C. Sparsity

The multi-pitch model can be further constrained using

sparsity restrictions. Sparsity was enforced in the shift-

invariant models of Smaragdis (2009) and Mysore and Smar-

agdis (2009), using an entropic prior. However, those models

were completely unconstrained because the spectral tem-

plates were not pre-extracted. Because we know that for a

transcription problem few notes are active at a given time

frame and that few instrument sources are responsible for

creating a note event at a time frame, we impose sparsity on

the pitch activity matrix Pt(pt) and the pitch-wise source con-

tribution matrix PtðstjptÞ. This is achieved in a similar way

to the methods in Grindlay and Ellis (2011) and Benetos and

Dixon (2011b), by modifying update Eqs. (29) and (30):

PtðstjptÞ

¼

X

xt;ft;q
ð1Þ
t ;…;q

ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

�j
 !

X

st

X

xt;ft;q
ð1Þ
t ;…;q

ð88Þ
t

Vx;tPt

�

ft; st; pt; q
ð1Þ
t ;…; q

ð88Þ
t jx

�j
 ! ;

(34)

PtðptÞ

¼

X

xt;ft;st;q
ð1Þ
t ;…;q

ð88Þ
t

Vx;tPt

�

ft; st;pt; q
ð1Þ
t ;…;q

ð88Þ
t jx

��
 !

X

pt

X

xt;ft;st;q
ð1Þ
t ;…;q

ð88Þ
t

Vx;tPt

�

ft; st;pt;q
ð1Þ
t ;…;q

ð88Þ
t jx

��
 ! :

(35)
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By setting j, � > 1, the entropy in matrices PtðsjpÞ and Pt(p)

is lowered and sparsity is enforced (Grindlay and Ellis,

2011). It should be mentioned that this solution does not

guarantee convergence, although it is observed in practice.

V. POSTPROCESSING

To estimate the note activations from the pitch activity

matrix PtðpÞ
P

xVx;t, a postprocessing step needs to take

place. Most spectrogram factorization-based transcription or

pitch tracking methods (Grindlay and Ellis, 2011; Mysore

and Smaragdis, 2009; Dessein et al., 2010) estimate the note

activations by thresholding the pitch activity matrix. How-

ever, HMMs have been used in audio feature-based tran-

scription approaches for note tracking, using the salience

function of the system (Poliner and Ellis, 2007; Benetos and

Dixon, 2011a; Ryyn€anen and Klapuri, 2005). Here we will

employ pitch-wise HMMs for note tracking using

PtðpÞ
P

xVx;t, as in the non-temporally constrained single

pitch template system of Benetos and Dixon (2011b).

We model each pitch using a two-state, on/off HMM,

which denotes pitch activity/inactivity. The hidden state

sequence for each pitch, which is the output of the note tracking

step, is given by Q0(p)¼ {q
0ðpÞ
t }. For computing the note priors

and transition matrices, we used 130 MIDI files from the clas-

sic and jazz genres from the RWC database (Goto et al., 2003).

The notes that are present in the training set fall within the

A1–E6 range, which is representative for the RWC test record-

ings presented in Sec. VIB. The prior probability for an active

note that is lower than A1 or higher than E6 is automatically

set to 0.1. We denote the state priors for each pitch p as P(q0
ðpÞ
1 )

and the corresponding transitions as Pðq0ðpÞt jq0
ðpÞ
t�1Þ. The most

likely state sequence for each pitch is given by

Q̂
0ðpÞ

¼ argmax
q0

ðpÞ
t

Y

t

P
�

q0
ðpÞ
t jq0

ðpÞ
t�1

�

P
�

o
ðpÞ
t jq0

ðpÞ
t

�

; (36)

where Pðo
ðpÞ
t jq0ðpÞt Þ is the observation probability for the p-

HMM. Equation (36) can be estimated using the Viterbi

algorithm (Rabiner, 1989). We define the observation proba-

bility for an active note event using P(p, t) as

P
�

o
ðpÞ
t jq0

ðpÞ
t ¼ 1

�

¼
1

1þ e�PtðpÞ
P

x
Vx;t�k

: (37)

Equation (37) is a sigmoid curve with Pt(p)
P

xVx,t as

input. Parameter k controls the smoothing (a high value will

discard pitch candidates with low probability). Essentially,

in a case of high values in the pitch activation for a given

note, where a gap might occur due to an octave error, a high

transition probability in an active state would help filling in

that gap, thus performing note smoothing. The output of the

postprocessing step is a piano-roll transcription, which can

be used for evaluation. An example of the HMM-based note

tracking step is given in Fig. 5, where the input pitch activity

matrix and the output transcription piano roll of a string

quartet recording can be seen.

VI. EXPERIMENTS

A. Training data

Sound state templates were extracted for various instru-

ments, using their complete note range given the training data

available. For extracting piano templates, the MAPS database

was employed (Emiya et al., 2010), where templates from three

different piano models were extracted. Sound state templates for

bassoon, cello, clarinet, flute, guitar, harpsichord, horn, oboe,

organ, and violin were extracted using isolated notes from the

RWC musical instrument samples database (Goto et al., 2003).

In total, source parameter s has a size of 13 (three sets of tem-

plates from the piano and 10 for the rest of the instruments).

The note range of each instrument used for sound state template

extraction can be seen in Table I. It should be noted that the pro-

posed algorithm can support different note ranges for the exist-

ing instruments or can support additional instruments.

Ground-truth labels were given for each note and instru-

ment type, but the sound state templates for each note segment

were computed in an unsupervised manner, where the model

learns the templates using the single-pitch model of Sec. III.

Three sound states were set in the model of Eq. (6). As a

time-frequency representation, the constant-Q transform

(CQT) with 60 bins/octave was used (Brown, 1991).

FIG. 4. (a) Time-pitch representation P(f 0, t) of an excerpt of “RWC-MDB-J-2001 No. 7” (guitar). (b) The pitch ground truth of the same recording.
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B. Test data

For testing, 12 excerpts from the RWC database (Goto

et al., 2003) were employed that have been used extensively

for evaluating transcription systems (Kameoka et al., 2007;

Quesada et al., 2010; Benetos and Dixon, 2011a). Details for

the employed recordings can be seen, e.g., in Quesada et al.

(2010). The excerpts belong to the classic and jazz genres from

the RWC database and the duration of each excerpt is 23 s.

In addition, we employed the woodwind quintet recording

from the MIREX 2007 multi-F0 development dataset (MIREX,

2007). The multi-track recording has been evaluated in the past

in its complete duration (Benetos and Dixon, 2011a), in shorter

segments (Vincent et al., 2010; Peeling and Godsill, 2011; Grind-

lay and Ellis, 2011; Carabias-Orti et al., 2011), or in pairs of

tracks (Mysore and Smaragdis, 2009). Finally, we used the 10

Disklavier recordings developed in Poliner and Ellis (2007) that

were additionally evaluated in Lee et al. (2011) and Benetos and

Dixon (2011a). The Disklavier recordings are sampled at 8kHz,

while the RWC and MIREX recordings are sampled at 44.1kHz.

C. Metrics

For assessing the performance of the proposed system,

we employ several metrics from the automatic transcription

literature. Frame-based evaluations are made by comparing

the transcribed output and the MIDI ground-truth frame by

frame using a 10ms scale as in the MIREX multiple-F0 esti-

mation task (MIREX, 2007). The first employed metric is

the overall accuracy, defined in Dixon (2000):

Acc1 ¼

X

n

Ntp½n�

X

n

Nf p½n� þ Nf n½n� þ Ntp½n�
; (38)

where Ntp[n] is the number of correctly detected pitches at

frame n, Nfn[n] denotes the number of false negatives, and

Nfp[n] the number of false positives.

A second accuracy metric is also used, proposed in

Kameoka et al. (2007), that also takes into account pitch

substitutions:

Acc2 ¼

X

n

Nref ½n� � Nf n½n� � Nf p½n� þ Nsubs½n�

X

n

Nref ½n�
; (39)

where Nref ½n� is the number of ground-truth pitches at frame

n and Nsubs[n] is the number of pitch substitutions, given by

Nsubs[n]¼min(Nfn[n], Nfp[n]). We also employ the error

TABLE I. MIDI note range of the instruments employed for sound state

template extraction.

Instrument Lowest note Highest note

Bassoon 34 72

Cello 26 81

Clarinet 50 89

Flute 60 96

Guitar 40 76

Harpsichord 28 88

Horn 41 77

Oboe 58 91

Organ 36 91

Piano 21 108

Violin 55 100

FIG. 5. (a) The pitch activity matrix Pt(p)
P

xVx,t of the first 23 s of “RWC-MDB-C-2001

No. 12” (string quartet). (b) The piano-roll tran-

scription output of the note tracking step.
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metrics defined in Poliner and Ellis (2007) that measure the

substitution errors (Esubs), missed detection errors (Efn), false

alarm errors (Efp), and the total error (Etot).

We also used the frame-wise precision, recall, and F-

measure metric for comparing the transcription performance

of the MIREX recording with other methods in the literature,

defined in Vincent et al. (2010) as

P ¼

X

n

Ntp½n�

X

n

Nsys½n�
; R¼

X

n

Ntp½n�

X

n

Nref ½n�
; F ¼

2RP

RþP
; (40)

where Nsys[n] is the number of detected pitches.

Finally, for note-based evaluation, we utilized the onset-

based metric defined in Bay et al. (2009) that is also used in

the MIREX note tracking task (MIREX, 2007). A note event

is assumed to be correct if its onset is within a 650ms range

of a ground-truth onset. For this case, metrics are defined in

a similar way to Eq. (40), resulting in the note-based preci-

sion, recall, and F-measure, denoted as Pn, Rn, and F n,

respectively.

D. Results

Experiments were performed using the multi-pitch

model of Sec. IV with the postprocessing method of Sec. V.

For comparison, we utilized the non-temporally constrained

shift-invariant PLCA transcription model of Benetos and

Dixon (2011b) using the same time-frequency representation

as an input (CQT with 60 bins/octave) and the same post-

processing step. Experiments were performed using ergodic

(fully connected) HMMs, which were initialized with uni-

form priors and transition probabilities. As in Grindlay and

Ellis (2011), Dessein et al. (2010), and Benetos and Dixon

(2011b), results are presented by selecting the parameter

value (in this case k) that maximizes the average accuracy in

a dataset. For each dataset, results using state-of-the-art tran-

scription methods published in the literature for the same

experiment are reported for comparison.

Regarding runtimes, the computational time for extract-

ing the sound state templates is negligible. In contrast, the

multi-pitch estimation stage has a heavy computational bur-

den, mostly due to the convolutions computed in the E-step

of Eq. (25), and the M-step in Eqs. (28)–(30). In practice, the

algorithm converges at about 10–15 iterations; 15 iterations

are chosen for the present experiments. Using 32-bit MATLAB

with a 1.5GHz processor, the computation time is approxi-

mately 50�real time. The note tracking step takes about

1�real time. The computation time for the method in

Benetos and Dixon (2011b) is approximately 30�real time

and for the PLCA method is approximately 4�real time.

1. RWC dataset

Transcription results using the 12 excerpts from the

RWC database (Goto et al., 2003) and the complete set of

instrument templates are shown in terms of Acc2 in Table II.

Comparisons are made with the non-temporally constrained

SI-PLCA method of Benetos and Dixon (2011b) as well as

the GMM-based method of Quesada et al. (2010) and the

HTC method of Kameoka et al. (2007). It is clearly seen that

the proposed method outperforms other transcription

approaches for the same experiment. In terms of specific

recordings, the lowest performance of the system is reported

for recording 12, which is a piano-tenor duet. The lower per-

formance can be attributed to the fact that the current system

does not support any spectral templates for singing voice

and does not track vibrati that span more than one semitone

in range. On the other hand, the best system performance is

reported for recording 10, which was performed by a string

quartet. This demonstrates that the proposed method can

accurately transcribe recordings of non-ideally tuned instru-

ments that also exhibit vibrati, contrary to state-of-the-art

audio feature-based methods.

Concerning the statistical significance of the accuracy

improvement of the proposed system compared to the other

reported systems from the literature, it should be noted that

because transcription evaluations take place using 10ms

frames, even a small accuracy change can be shown to be

statistically significant (Benetos and Dixon, 2011a). In par-

ticular, using the recognizer comparison technique of Guyon

et al. (1998) for the experiments using the RWC

TABLE II. Transcription results (Acc2) for the 12 RWC recordings compared with other approaches.

Data Proposed Benetos and Dixon (2011b) Quesada et al. (2010) Kameoka et al. (2007)

1 (%) 65.1 61.3 63.5 64.2

2 (%) 65.0 68.6 72.1 62.2

3 (%) 65.3 61.7 58.6 63.8

4 (%) 66.8 61.3 79.4 77.9

5 (%) 57.1 66.0 55.6 75.2

6 (%) 76.6 75.7 70.3 81.2

7 (%) 67.0 59.7 49.3 70.9

8 (%) 67.9 65.5 64.3 63.2

9 (%) 50.4 52.0 50.6 43.2

10 (%) 80.7 68.1 55.9 48.1

11 (%) 57.6 52.8 51.1 37.6

12 (%) 34.0 29.6 38.0 27.5

Mean (%) 62.8 60.2 59.1 59.6

Std. (%) 12.1 11.8 11.5 16.9
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transcription dataset, the significance threshold with 95%

confidence is 1.1% in terms of Acc2, which makes the

improvement significant. Thus the differences reported

between our current work and previously published results

are significant.

Additional transcription metrics for the RWC dataset

using the proposed method, the non-temporally constrained

one in Benetos and Dixon (2011b), and a standard

PLCA-based method using one template per instrument and

pitch can be seen in Table III. The average note-based preci-

sion and recall for the proposed system are 51.2% and

40.4%, respectively. The most common errors occurring in

the system are missed detections, usually occurring in dense

chords, where only the root note is detected and the higher

notes are considered as harmonics. Another source of missed

detections in the frame-based evaluation also occurs when

the decay part of a note is not recognized due to low energy.

Given the fact that estimating note durations is a challenging

task even for a human annotator, missed detections due to

different note durations is not considered as important as,

e.g., having octave errors. Note substitutions can also be

octave errors when the lower note is missing or can be semi-

tone errors when an instrument might be severely untuned or

might momentarily change pitch. False alarms also occur

that are usually octave errors taking place in the attack part

of a note. When comparing the proposed system with the

non-temporally constrained one, it is apparent that the pro-

posed method outperforms the non-temporally constrained

method of Benetos and Dixon (2011b) in terms of the lower

false alarms produced as well as on note substitutions. The

number of false alarms is diminished in the proposed system

due to the fact that attack states have been modeled. Also

octave errors counting as note substitutions have been dimin-

ished due to modeling the decay state of produced notes,

where in some cases the fundamental might be suppressed

(e.g., piano).

It can also be seen that the shift-invariant model of Bene-

tos and Dixon (2011b) outperforms the standard PLCA-based

transcription model. Most of the additional errors introduced

by PLCA are false alarms, which are commonly extra notes

one octave higher than the expected pitch. Note substitution

errors also increased with the majority being semitone errors

due to the inability of the PLCA-based model to estimate

fine tuning or frequency modulations. It should be noted

though that the improvement of a SI-PLCA model over a

PLCA one is also dependent on the overall tuning of a data-

set, it is expected that transcribing an untuned dataset will

cause additional errors in a PLCA-based transcription model.

It should be noted that the proposed model (which can

extract pitch in high-frequency resolution) can also be useful

for tuning and temperament estimation of music recordings.

To demonstrate the effect of the HMM-based postpro-

cessing procedure of Sec. V, we perform a comparative

experiment on the 12 RWC recordings using the proposed

method with simple thresholding on Pt(p)
P

xVx,t. In that

case, Acc1¼ 61.4%, Acc2¼ 61.9%, and F n¼ 42.1%. Thus

the HMM-based postprocessing helps achieve improved per-

formance, especially for the note tracking task.

Regarding sparsity parameters j and �, the accuracy rates

for the RWC dataset using different sparsity values for the

two parameters are presented in Fig. 6, where the other spar-

sity parameter is set to 1.0. It can be seen that with increased

source contribution sparsity the accuracy of the system dimin-

ishes, while enforcing sparsity on the pitch activation leads to

TABLE III. Transcription error metrics for the 12 RWC recordings.

Method F n (%) Acc1 (%) Acc2 (%) Etot (%) Esubs (%) Efn (%) Efp (%)

Proposed 44.3 61.8 62.8 37.2 8.7 19.0 9.5

Benetos and Dixon (2011b) 42.0 59.6 60.2 39.8 9.7 18.7 11.4

PLCA (%) 38.8 58.5 58.6 41.4 10.6 17.5 13.4

FIG. 6. (Color online) Transcription results

(Acc2) for the RWC dataset using various spar-

sity parameters (while the other parameter is set

to 1.0).
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a significant improvement. However, the optimal combination

of sparsity parameters was found to be j¼ 1.1 and �¼ 1.3, af-

ter experimentation. This indicates that applying a sparsity

constraint on the pitch activation results in a cleaner pitch

track with less octave errors even though the resulting spectro-

gram approximation might deviate further compared to the

original spectrogram. It should be noted, however, that for a

monophonic piece, a greater value of � might be needed com-

pared to a polyphonic piece with a high polyphony level,

where a lower � value is more appropriate. It was also shown

that by slightly applying sparsity to the source contribution

helps in assigning produced notes to single instruments

instead of instrument combinations.

2. MIREX recording

Results using the MIREX 2007 woodwind quintet re-

cording are shown in Tables IV and V. We use the complete

set of instrument templates for transcription. In Table IV,

results using the first 30 s of the recording are reported using

the F-measure and compared with the method of Benetos

and Dixon (2011b), the harmonic NMF method of Vincent

et al. (2010), and the likelihood search method using a Pois-

son process in Peeling and Godsill (2011) (the aforemen-

tioned methods used only the first 30 s of the MIREX

recording). Again, the proposed method clearly outperforms

other methods in the literature. It should be noted that the

corresponding precision and recall for the proposed method

are P¼ 63.7% and R¼ 68.7%.

Additional transcription metrics using the complete 54 s

recording are shown in Table V, compared with the method

in Benetos and Dixon (2011b). A similar trend with the

RWC dataset can be seen where the number of missed detec-

tions is significantly greater than the number of false alarms.

The note-based precision and recall for the proposed system

are 55.0% and 62.2%, respectively. In addition, the first 30 s

of the piece were also utilized in Carabias-Orti et al. (2011),

resulting in F n¼ 66.9%. However, in the case of Carabias-

Orti et al. (2011), the number of instruments present in the

signal is known in advance, making again the experimental

procedure not directly comparable with the present one. It

should be noted that F n is quite higher compared to the

frame-based accuracy measure, while the opposite occurs for

the RWC database. This can be attributed to the fact that the

majority of the produced notes in the MIREX recording are

flute trills (with extremely short duration) that are success-

fully detected by the system.

As far as the choice of templates is concerned, we also

transcribe the MIREX recording by only using woodwind

templates. The frame-based F-measure reaches 65.2%,

which is about 1% lower compared to the full set of tem-

plates. This indicates that having a large set of templates that

might include instruments not present in the recording does

in fact improve transcription accuracy because the combina-

tion of different instrument templates might better approxi-

mate the spectra of the produced notes.

3. Disklavier dataset

Transcription results using the Disklavier dataset from

Poliner and Ellis (2007) are presented in Table VI. For that

case, the proposed system and the system of Benetos and

Dixon (2011b) utilized only the sets of piano templates

extracted from the MAPS database (Emiya et al., 2010).

Using Acc1, it can be seen that the proposed system outper-

forms the non-temporally constrained system of Benetos and

Dixon (2011b), the SVM classifier of Poliner and Ellis

(2007), and the iterative spectral subtraction system with

note tracking from Ryyn€anen and Klapuri (2005). Additional

metrics for the Disklavier dataset are presented in Table VII.

For the proposed method, Pn and Rn are 58.8% and 53.0%,

respectively. Additional experiments using the Disklavier

dataset were performed in the sparse coding system of Lee

et al. (2011) using the frame-based F-measure as a metric. In

that case, the reported F from Lee et al. (2011) was 70.2%,

while the proposed system reaches F ¼ 73.1%. For the Dis-

klavier dataset (Poliner and Ellis, 2007), the statistical signif-

icance threshold with 95% confidence is 0.44% in terms of

Acc1, which makes the performance difference significant.

As far as the choice of templates is concerned, comparative

experiments were made using the full template set for the

Disklavier recordings. The full set produced Acc1¼ 59.4%

and Acc2¼ 57.8%, which outperform the results using only

the piano templates.

4. Instrument assignment

Finally, an evaluation on the performance of the pro-

posed system for instrument identification in polyphonic

music is also performed, using the first 30 s of the MIREX

woodwind quintet recording. In this instrument assignment

task, a pitch is only considered correct if it occurs at the cor-

rect time and is assigned to the proper instrument source

(Grindlay and Ellis, 2011). Two variants of the system are

utilized, one using only templates from the instruments that

are present in the signal (bassoon, clarinet, flute, horn, and

TABLE IV. Frame-based F for the first 30 s of the MIREX recording com-

pared with other approaches.

Method F (%)

Proposed 65.9

Benetos and Dixon (2011b) 63.7

Peeling and Godsill (2011) 59.6

Vincent et al. (2010) 62.5

TABLE V. Transcription error metrics for the complete MIREX woodwind quintet compared with the approach in Benetos and Dixon (2011b).

Method F n (%) Acc1 (%) Acc2 (%) Etot (%) Esubs (%) Efn (%) Efp (%)

Proposed 58.4 47.8 51.5 48.5 23.7 12.7 12.2

Benetos and Dixon (2011b) 57.3 45.2 50.9 49.2 18.5 25.7 5.0
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oboe) and another using the complete set of instrument tem-

plates. The instrument-specific output is given by P(s¼ i, p, t)

¼Pt(p)Pt(s¼ ijp)
P

xVx,t, where i is the index for the

selected instrument. Postprocessing using the method of Sec.

V is applied to each instrument-pitch activation to produce a

binary piano-roll, which is compared to the MIDI ground truth

of the specific instrument track.

Results are presented in Fig. 7, where it can be seen that

the system using the complete set of templates has a higher

instrument identification accuracy compared to the system that

uses only woodwind templates (a similar trend was reported in

Grindlay and Ellis, 2011). This can be attributed to the fact

that combining several instrument templates can help in better

approximating produced notes. However, we can note that

identification accuracy for bassoon and oboe was better when

woodwind templates were used. Clarinet and flute are more

accurately transcribed compared to the rest of the instruments;

this might be attributed to the spectral shape of the clarinet

templates and the pitch range of the flute (where the specific

flute notes in the recording were mostly outside the pitch range

of the other woodwind instruments). The same segment was

also evaluated in Carabias-Orti et al. (2011) where F ¼ 37.0%

in the case where the instrument sources are known. A 22 s

segment of the same recording was also evaluated in Grindlay

and Ellis (2011), where the reported F-measure for the com-

plete set of templates was 40.0% and the performance for the

instrument-specific transcription case interestingly drops at

35.0%. Using the same 22 s segment, the F-measure of the pro-

posed system using the woodwind templates is 43.85% and

rises to 45.49% for the complete template set. Thus the pro-

posed system shows promising results for instrument assign-

ment in polyphonic music.

VII. CONCLUSIONS

In this paper, we presented a polyphonic transcription sys-

tem that supported the modeling of the temporal evolution of

notes produced by multiple instruments. We presented a model

that extracted sound state templates from monophonic record-

ings that was used for creating a multi-pitch multi-instrument

template set. Also proposed was a model for multi-pitch detec-

tion that extended shift-invariant PLCA by including temporal

constraints using multiple HMMs. The system was tested on

three datasets that are widely used in the transcription litera-

ture, and results were reported using various error metrics. It

was shown that the proposed model clearly outperforms a non-

temporally constrained shift-invariant PLCA-based model pre-

viously proposed in Benetos and Dixon (2011b) as well as a

standard PLCA-based model, using the same T/F representa-

tion and note tracking steps. Also the proposed transcription

system outperformed several state-of-the-art multi-pitch detec-

tion and transcription systems, and the accuracy improvement

achieved was shown to be statistically significant. All in all,

the accuracy improvement of the model is attributed to the fact

that notes are treated as a sequence of sound state templates

that can also exhibit tuning changes and frequency modula-

tions. We also showed that this model is useful for instrument

identification in polyphonic music.

Although the proposed model is very rich, it makes an

assumption regarding instruments playing the same note at

the same time. The pitch shifting tensor Ptðf jpÞ is only de-

pendent on the pitch and not on the source s. This was done

for computational speed purposes to avoid using a fourth-

order tensor in the form of Ptðf js; pÞ. Likewise, the sound

state sequence is not source-dependent, to avoid using 88� s

HMMs in the formulation. Thus when two instruments play

the same note at the same time, a single sound state is active

for a given time frame. However, the proposed model can

still detect the same note played concurrently by different

instruments by using PtðsjpÞ, which can be active for multi-

ple sources, even though the pitch shifting and sound state

information might not be accurate, thus leading to some

expense in accuracy for this rare case.

In the future, the present system will be evaluated in the

forthcoming MIREX multi-F0 and note tracking contest

(MIREX, 2007) as was done with the non-temporally con-

strained system previously developed by the authors (Benetos

TABLE VI. Mean transcription results (Acc1) for the piano recordings in

Poliner and Ellis (2007) compared with other approaches.

Method Acc1 (%)

Proposed 58.2

Benetos and Dixon (2011b) 57.4

Poliner and Ellis (2007) 56.5

Ryyn€anen and Klapuri (2005) 41.2

TABLE VII. Transcription error metrics for the piano recordings in Poliner and Ellis (2007) compared with the approach in Benetos and Dixon (2011b).

Method F n (%) Acc1 (%) Acc2 (%) Etot (%) Esubs (%) Efn (%) Efp (%)

Proposed 55.5 58.2 57.7 42.3 9.8 18.6 13.9

Benetos and Dixon (2011b) 51.9 57.4 55.5 44.5 10.8 16.3 17.4

FIG. 7. Instrument assignment results (F ) using the first 30 s of the MIREX

woodwind quintet.

J. Acoust. Soc. Am., Vol. 133, No. 3, March 2013 E. Benetos and S. Dixon: Multiple-instrument music transcription 1739

A
ut

ho
r's

 c
om

pl
im

en
ta

ry
 c

op
y



and Dixon, 2011b). Regarding the postprocessing step, a key

induction procedure would assist in assigning priors and transi-

tion probabilities using training data in the same key. The num-

ber of sound states can also become instrument-dependent by

performing slight modifications to the model. To that end, an

analysis on the number of sound states needed to approximate

each instrument source is needed. As far as instrument identifi-

cation is concerned, although results outperformed the state-of-

the-art for the same experiment, additional work needs to be

done to improve the current instrument recognition performance

of the system. This can be achieved by utilizing the information

provided by the source contribution matrix PtðsjpÞ, combined

with features for characterizing music timbre (Peeters, 2004).

Finally, the present model can be further extended by incorpo-

rating a musicological model of note transitions in the top level

(Ryyn€anen and Klapuri, 2005), which can be done using

HMMs or Bayesian networks.
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